5b479a076d
My previous change added in:
commit 815833e7ec
ath9k: fix tx status reporting
was not checking all possible tx error conditions. This could possibly
lead to throughput issues due to slow rate control adaption or missed
retransmissions of failed A-MPDU frames.
This patch adds a mask for all possible error conditions and uses it
in the xmit ok check.
Cc: stable@kernel.org
Reported-by: Björn Smedman <bjorn.smedman@venatech.se>
Signed-off-by: Felix Fietkau <nbd@openwrt.org>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2292 lines
58 KiB
C
2292 lines
58 KiB
C
/*
|
|
* Copyright (c) 2008-2009 Atheros Communications Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
#include "ath9k.h"
|
|
|
|
#define BITS_PER_BYTE 8
|
|
#define OFDM_PLCP_BITS 22
|
|
#define HT_RC_2_MCS(_rc) ((_rc) & 0x0f)
|
|
#define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
|
|
#define L_STF 8
|
|
#define L_LTF 8
|
|
#define L_SIG 4
|
|
#define HT_SIG 8
|
|
#define HT_STF 4
|
|
#define HT_LTF(_ns) (4 * (_ns))
|
|
#define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
|
|
#define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
|
|
#define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
|
|
#define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
|
|
|
|
#define OFDM_SIFS_TIME 16
|
|
|
|
static u32 bits_per_symbol[][2] = {
|
|
/* 20MHz 40MHz */
|
|
{ 26, 54 }, /* 0: BPSK */
|
|
{ 52, 108 }, /* 1: QPSK 1/2 */
|
|
{ 78, 162 }, /* 2: QPSK 3/4 */
|
|
{ 104, 216 }, /* 3: 16-QAM 1/2 */
|
|
{ 156, 324 }, /* 4: 16-QAM 3/4 */
|
|
{ 208, 432 }, /* 5: 64-QAM 2/3 */
|
|
{ 234, 486 }, /* 6: 64-QAM 3/4 */
|
|
{ 260, 540 }, /* 7: 64-QAM 5/6 */
|
|
{ 52, 108 }, /* 8: BPSK */
|
|
{ 104, 216 }, /* 9: QPSK 1/2 */
|
|
{ 156, 324 }, /* 10: QPSK 3/4 */
|
|
{ 208, 432 }, /* 11: 16-QAM 1/2 */
|
|
{ 312, 648 }, /* 12: 16-QAM 3/4 */
|
|
{ 416, 864 }, /* 13: 64-QAM 2/3 */
|
|
{ 468, 972 }, /* 14: 64-QAM 3/4 */
|
|
{ 520, 1080 }, /* 15: 64-QAM 5/6 */
|
|
};
|
|
|
|
#define IS_HT_RATE(_rate) ((_rate) & 0x80)
|
|
|
|
static void ath_tx_send_ht_normal(struct ath_softc *sc, struct ath_txq *txq,
|
|
struct ath_atx_tid *tid,
|
|
struct list_head *bf_head);
|
|
static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
|
|
struct ath_txq *txq,
|
|
struct list_head *bf_q,
|
|
int txok, int sendbar);
|
|
static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
|
|
struct list_head *head);
|
|
static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf);
|
|
static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf,
|
|
int txok);
|
|
static void ath_tx_rc_status(struct ath_buf *bf, struct ath_desc *ds,
|
|
int nbad, int txok, bool update_rc);
|
|
|
|
enum {
|
|
MCS_DEFAULT,
|
|
MCS_HT40,
|
|
MCS_HT40_SGI,
|
|
};
|
|
|
|
static int ath_max_4ms_framelen[3][16] = {
|
|
[MCS_DEFAULT] = {
|
|
3216, 6434, 9650, 12868, 19304, 25740, 28956, 32180,
|
|
6430, 12860, 19300, 25736, 38600, 51472, 57890, 64320,
|
|
},
|
|
[MCS_HT40] = {
|
|
6684, 13368, 20052, 26738, 40104, 53476, 60156, 66840,
|
|
13360, 26720, 40080, 53440, 80160, 106880, 120240, 133600,
|
|
},
|
|
[MCS_HT40_SGI] = {
|
|
/* TODO: Only MCS 7 and 15 updated, recalculate the rest */
|
|
6684, 13368, 20052, 26738, 40104, 53476, 60156, 74200,
|
|
13360, 26720, 40080, 53440, 80160, 106880, 120240, 148400,
|
|
}
|
|
};
|
|
|
|
|
|
/*********************/
|
|
/* Aggregation logic */
|
|
/*********************/
|
|
|
|
static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
|
|
{
|
|
struct ath_atx_ac *ac = tid->ac;
|
|
|
|
if (tid->paused)
|
|
return;
|
|
|
|
if (tid->sched)
|
|
return;
|
|
|
|
tid->sched = true;
|
|
list_add_tail(&tid->list, &ac->tid_q);
|
|
|
|
if (ac->sched)
|
|
return;
|
|
|
|
ac->sched = true;
|
|
list_add_tail(&ac->list, &txq->axq_acq);
|
|
}
|
|
|
|
static void ath_tx_pause_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
|
|
{
|
|
struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
|
|
|
|
spin_lock_bh(&txq->axq_lock);
|
|
tid->paused++;
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
}
|
|
|
|
static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
|
|
{
|
|
struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
|
|
|
|
BUG_ON(tid->paused <= 0);
|
|
spin_lock_bh(&txq->axq_lock);
|
|
|
|
tid->paused--;
|
|
|
|
if (tid->paused > 0)
|
|
goto unlock;
|
|
|
|
if (list_empty(&tid->buf_q))
|
|
goto unlock;
|
|
|
|
ath_tx_queue_tid(txq, tid);
|
|
ath_txq_schedule(sc, txq);
|
|
unlock:
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
}
|
|
|
|
static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
|
|
{
|
|
struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
|
|
struct ath_buf *bf;
|
|
struct list_head bf_head;
|
|
INIT_LIST_HEAD(&bf_head);
|
|
|
|
BUG_ON(tid->paused <= 0);
|
|
spin_lock_bh(&txq->axq_lock);
|
|
|
|
tid->paused--;
|
|
|
|
if (tid->paused > 0) {
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
return;
|
|
}
|
|
|
|
while (!list_empty(&tid->buf_q)) {
|
|
bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
|
|
BUG_ON(bf_isretried(bf));
|
|
list_move_tail(&bf->list, &bf_head);
|
|
ath_tx_send_ht_normal(sc, txq, tid, &bf_head);
|
|
}
|
|
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
}
|
|
|
|
static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
|
|
int seqno)
|
|
{
|
|
int index, cindex;
|
|
|
|
index = ATH_BA_INDEX(tid->seq_start, seqno);
|
|
cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
|
|
|
|
tid->tx_buf[cindex] = NULL;
|
|
|
|
while (tid->baw_head != tid->baw_tail && !tid->tx_buf[tid->baw_head]) {
|
|
INCR(tid->seq_start, IEEE80211_SEQ_MAX);
|
|
INCR(tid->baw_head, ATH_TID_MAX_BUFS);
|
|
}
|
|
}
|
|
|
|
static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
|
|
struct ath_buf *bf)
|
|
{
|
|
int index, cindex;
|
|
|
|
if (bf_isretried(bf))
|
|
return;
|
|
|
|
index = ATH_BA_INDEX(tid->seq_start, bf->bf_seqno);
|
|
cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
|
|
|
|
BUG_ON(tid->tx_buf[cindex] != NULL);
|
|
tid->tx_buf[cindex] = bf;
|
|
|
|
if (index >= ((tid->baw_tail - tid->baw_head) &
|
|
(ATH_TID_MAX_BUFS - 1))) {
|
|
tid->baw_tail = cindex;
|
|
INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* TODO: For frame(s) that are in the retry state, we will reuse the
|
|
* sequence number(s) without setting the retry bit. The
|
|
* alternative is to give up on these and BAR the receiver's window
|
|
* forward.
|
|
*/
|
|
static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
|
|
struct ath_atx_tid *tid)
|
|
|
|
{
|
|
struct ath_buf *bf;
|
|
struct list_head bf_head;
|
|
INIT_LIST_HEAD(&bf_head);
|
|
|
|
for (;;) {
|
|
if (list_empty(&tid->buf_q))
|
|
break;
|
|
|
|
bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
|
|
list_move_tail(&bf->list, &bf_head);
|
|
|
|
if (bf_isretried(bf))
|
|
ath_tx_update_baw(sc, tid, bf->bf_seqno);
|
|
|
|
spin_unlock(&txq->axq_lock);
|
|
ath_tx_complete_buf(sc, bf, txq, &bf_head, 0, 0);
|
|
spin_lock(&txq->axq_lock);
|
|
}
|
|
|
|
tid->seq_next = tid->seq_start;
|
|
tid->baw_tail = tid->baw_head;
|
|
}
|
|
|
|
static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
|
|
struct ath_buf *bf)
|
|
{
|
|
struct sk_buff *skb;
|
|
struct ieee80211_hdr *hdr;
|
|
|
|
bf->bf_state.bf_type |= BUF_RETRY;
|
|
bf->bf_retries++;
|
|
TX_STAT_INC(txq->axq_qnum, a_retries);
|
|
|
|
skb = bf->bf_mpdu;
|
|
hdr = (struct ieee80211_hdr *)skb->data;
|
|
hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
|
|
}
|
|
|
|
static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
|
|
{
|
|
struct ath_buf *tbf;
|
|
|
|
spin_lock_bh(&sc->tx.txbuflock);
|
|
if (WARN_ON(list_empty(&sc->tx.txbuf))) {
|
|
spin_unlock_bh(&sc->tx.txbuflock);
|
|
return NULL;
|
|
}
|
|
tbf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
|
|
list_del(&tbf->list);
|
|
spin_unlock_bh(&sc->tx.txbuflock);
|
|
|
|
ATH_TXBUF_RESET(tbf);
|
|
|
|
tbf->aphy = bf->aphy;
|
|
tbf->bf_mpdu = bf->bf_mpdu;
|
|
tbf->bf_buf_addr = bf->bf_buf_addr;
|
|
*(tbf->bf_desc) = *(bf->bf_desc);
|
|
tbf->bf_state = bf->bf_state;
|
|
tbf->bf_dmacontext = bf->bf_dmacontext;
|
|
|
|
return tbf;
|
|
}
|
|
|
|
static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
|
|
struct ath_buf *bf, struct list_head *bf_q,
|
|
int txok)
|
|
{
|
|
struct ath_node *an = NULL;
|
|
struct sk_buff *skb;
|
|
struct ieee80211_sta *sta;
|
|
struct ieee80211_hw *hw;
|
|
struct ieee80211_hdr *hdr;
|
|
struct ieee80211_tx_info *tx_info;
|
|
struct ath_atx_tid *tid = NULL;
|
|
struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
|
|
struct ath_desc *ds = bf_last->bf_desc;
|
|
struct list_head bf_head, bf_pending;
|
|
u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0;
|
|
u32 ba[WME_BA_BMP_SIZE >> 5];
|
|
int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
|
|
bool rc_update = true;
|
|
|
|
skb = bf->bf_mpdu;
|
|
hdr = (struct ieee80211_hdr *)skb->data;
|
|
|
|
tx_info = IEEE80211_SKB_CB(skb);
|
|
hw = bf->aphy->hw;
|
|
|
|
rcu_read_lock();
|
|
|
|
/* XXX: use ieee80211_find_sta! */
|
|
sta = ieee80211_find_sta_by_hw(hw, hdr->addr1);
|
|
if (!sta) {
|
|
rcu_read_unlock();
|
|
return;
|
|
}
|
|
|
|
an = (struct ath_node *)sta->drv_priv;
|
|
tid = ATH_AN_2_TID(an, bf->bf_tidno);
|
|
|
|
isaggr = bf_isaggr(bf);
|
|
memset(ba, 0, WME_BA_BMP_SIZE >> 3);
|
|
|
|
if (isaggr && txok) {
|
|
if (ATH_DS_TX_BA(ds)) {
|
|
seq_st = ATH_DS_BA_SEQ(ds);
|
|
memcpy(ba, ATH_DS_BA_BITMAP(ds),
|
|
WME_BA_BMP_SIZE >> 3);
|
|
} else {
|
|
/*
|
|
* AR5416 can become deaf/mute when BA
|
|
* issue happens. Chip needs to be reset.
|
|
* But AP code may have sychronization issues
|
|
* when perform internal reset in this routine.
|
|
* Only enable reset in STA mode for now.
|
|
*/
|
|
if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
|
|
needreset = 1;
|
|
}
|
|
}
|
|
|
|
INIT_LIST_HEAD(&bf_pending);
|
|
INIT_LIST_HEAD(&bf_head);
|
|
|
|
nbad = ath_tx_num_badfrms(sc, bf, txok);
|
|
while (bf) {
|
|
txfail = txpending = 0;
|
|
bf_next = bf->bf_next;
|
|
|
|
if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, bf->bf_seqno))) {
|
|
/* transmit completion, subframe is
|
|
* acked by block ack */
|
|
acked_cnt++;
|
|
} else if (!isaggr && txok) {
|
|
/* transmit completion */
|
|
acked_cnt++;
|
|
} else {
|
|
if (!(tid->state & AGGR_CLEANUP) &&
|
|
ds->ds_txstat.ts_flags != ATH9K_TX_SW_ABORTED) {
|
|
if (bf->bf_retries < ATH_MAX_SW_RETRIES) {
|
|
ath_tx_set_retry(sc, txq, bf);
|
|
txpending = 1;
|
|
} else {
|
|
bf->bf_state.bf_type |= BUF_XRETRY;
|
|
txfail = 1;
|
|
sendbar = 1;
|
|
txfail_cnt++;
|
|
}
|
|
} else {
|
|
/*
|
|
* cleanup in progress, just fail
|
|
* the un-acked sub-frames
|
|
*/
|
|
txfail = 1;
|
|
}
|
|
}
|
|
|
|
if (bf_next == NULL) {
|
|
/*
|
|
* Make sure the last desc is reclaimed if it
|
|
* not a holding desc.
|
|
*/
|
|
if (!bf_last->bf_stale)
|
|
list_move_tail(&bf->list, &bf_head);
|
|
else
|
|
INIT_LIST_HEAD(&bf_head);
|
|
} else {
|
|
BUG_ON(list_empty(bf_q));
|
|
list_move_tail(&bf->list, &bf_head);
|
|
}
|
|
|
|
if (!txpending) {
|
|
/*
|
|
* complete the acked-ones/xretried ones; update
|
|
* block-ack window
|
|
*/
|
|
spin_lock_bh(&txq->axq_lock);
|
|
ath_tx_update_baw(sc, tid, bf->bf_seqno);
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
|
|
if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
|
|
ath_tx_rc_status(bf, ds, nbad, txok, true);
|
|
rc_update = false;
|
|
} else {
|
|
ath_tx_rc_status(bf, ds, nbad, txok, false);
|
|
}
|
|
|
|
ath_tx_complete_buf(sc, bf, txq, &bf_head, !txfail, sendbar);
|
|
} else {
|
|
/* retry the un-acked ones */
|
|
if (bf->bf_next == NULL && bf_last->bf_stale) {
|
|
struct ath_buf *tbf;
|
|
|
|
tbf = ath_clone_txbuf(sc, bf_last);
|
|
/*
|
|
* Update tx baw and complete the frame with
|
|
* failed status if we run out of tx buf
|
|
*/
|
|
if (!tbf) {
|
|
spin_lock_bh(&txq->axq_lock);
|
|
ath_tx_update_baw(sc, tid,
|
|
bf->bf_seqno);
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
|
|
bf->bf_state.bf_type |= BUF_XRETRY;
|
|
ath_tx_rc_status(bf, ds, nbad,
|
|
0, false);
|
|
ath_tx_complete_buf(sc, bf, txq,
|
|
&bf_head, 0, 0);
|
|
break;
|
|
}
|
|
|
|
ath9k_hw_cleartxdesc(sc->sc_ah, tbf->bf_desc);
|
|
list_add_tail(&tbf->list, &bf_head);
|
|
} else {
|
|
/*
|
|
* Clear descriptor status words for
|
|
* software retry
|
|
*/
|
|
ath9k_hw_cleartxdesc(sc->sc_ah, bf->bf_desc);
|
|
}
|
|
|
|
/*
|
|
* Put this buffer to the temporary pending
|
|
* queue to retain ordering
|
|
*/
|
|
list_splice_tail_init(&bf_head, &bf_pending);
|
|
}
|
|
|
|
bf = bf_next;
|
|
}
|
|
|
|
if (tid->state & AGGR_CLEANUP) {
|
|
if (tid->baw_head == tid->baw_tail) {
|
|
tid->state &= ~AGGR_ADDBA_COMPLETE;
|
|
tid->state &= ~AGGR_CLEANUP;
|
|
|
|
/* send buffered frames as singles */
|
|
ath_tx_flush_tid(sc, tid);
|
|
}
|
|
rcu_read_unlock();
|
|
return;
|
|
}
|
|
|
|
/* prepend un-acked frames to the beginning of the pending frame queue */
|
|
if (!list_empty(&bf_pending)) {
|
|
spin_lock_bh(&txq->axq_lock);
|
|
list_splice(&bf_pending, &tid->buf_q);
|
|
ath_tx_queue_tid(txq, tid);
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
|
|
if (needreset)
|
|
ath_reset(sc, false);
|
|
}
|
|
|
|
static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
|
|
struct ath_atx_tid *tid)
|
|
{
|
|
struct sk_buff *skb;
|
|
struct ieee80211_tx_info *tx_info;
|
|
struct ieee80211_tx_rate *rates;
|
|
u32 max_4ms_framelen, frmlen;
|
|
u16 aggr_limit, legacy = 0;
|
|
int i;
|
|
|
|
skb = bf->bf_mpdu;
|
|
tx_info = IEEE80211_SKB_CB(skb);
|
|
rates = tx_info->control.rates;
|
|
|
|
/*
|
|
* Find the lowest frame length among the rate series that will have a
|
|
* 4ms transmit duration.
|
|
* TODO - TXOP limit needs to be considered.
|
|
*/
|
|
max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
if (rates[i].count) {
|
|
int modeidx;
|
|
if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
|
|
legacy = 1;
|
|
break;
|
|
}
|
|
|
|
if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
|
|
modeidx = MCS_HT40_SGI;
|
|
else if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
|
|
modeidx = MCS_HT40;
|
|
else
|
|
modeidx = MCS_DEFAULT;
|
|
|
|
frmlen = ath_max_4ms_framelen[modeidx][rates[i].idx];
|
|
max_4ms_framelen = min(max_4ms_framelen, frmlen);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* limit aggregate size by the minimum rate if rate selected is
|
|
* not a probe rate, if rate selected is a probe rate then
|
|
* avoid aggregation of this packet.
|
|
*/
|
|
if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
|
|
return 0;
|
|
|
|
if (sc->sc_flags & SC_OP_BT_PRIORITY_DETECTED)
|
|
aggr_limit = min((max_4ms_framelen * 3) / 8,
|
|
(u32)ATH_AMPDU_LIMIT_MAX);
|
|
else
|
|
aggr_limit = min(max_4ms_framelen,
|
|
(u32)ATH_AMPDU_LIMIT_MAX);
|
|
|
|
/*
|
|
* h/w can accept aggregates upto 16 bit lengths (65535).
|
|
* The IE, however can hold upto 65536, which shows up here
|
|
* as zero. Ignore 65536 since we are constrained by hw.
|
|
*/
|
|
if (tid->an->maxampdu)
|
|
aggr_limit = min(aggr_limit, tid->an->maxampdu);
|
|
|
|
return aggr_limit;
|
|
}
|
|
|
|
/*
|
|
* Returns the number of delimiters to be added to
|
|
* meet the minimum required mpdudensity.
|
|
*/
|
|
static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
|
|
struct ath_buf *bf, u16 frmlen)
|
|
{
|
|
struct sk_buff *skb = bf->bf_mpdu;
|
|
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
|
|
u32 nsymbits, nsymbols;
|
|
u16 minlen;
|
|
u8 flags, rix;
|
|
int width, half_gi, ndelim, mindelim;
|
|
|
|
/* Select standard number of delimiters based on frame length alone */
|
|
ndelim = ATH_AGGR_GET_NDELIM(frmlen);
|
|
|
|
/*
|
|
* If encryption enabled, hardware requires some more padding between
|
|
* subframes.
|
|
* TODO - this could be improved to be dependent on the rate.
|
|
* The hardware can keep up at lower rates, but not higher rates
|
|
*/
|
|
if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR)
|
|
ndelim += ATH_AGGR_ENCRYPTDELIM;
|
|
|
|
/*
|
|
* Convert desired mpdu density from microeconds to bytes based
|
|
* on highest rate in rate series (i.e. first rate) to determine
|
|
* required minimum length for subframe. Take into account
|
|
* whether high rate is 20 or 40Mhz and half or full GI.
|
|
*
|
|
* If there is no mpdu density restriction, no further calculation
|
|
* is needed.
|
|
*/
|
|
|
|
if (tid->an->mpdudensity == 0)
|
|
return ndelim;
|
|
|
|
rix = tx_info->control.rates[0].idx;
|
|
flags = tx_info->control.rates[0].flags;
|
|
width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
|
|
half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
|
|
|
|
if (half_gi)
|
|
nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
|
|
else
|
|
nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
|
|
|
|
if (nsymbols == 0)
|
|
nsymbols = 1;
|
|
|
|
nsymbits = bits_per_symbol[rix][width];
|
|
minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
|
|
|
|
if (frmlen < minlen) {
|
|
mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
|
|
ndelim = max(mindelim, ndelim);
|
|
}
|
|
|
|
return ndelim;
|
|
}
|
|
|
|
static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
|
|
struct ath_txq *txq,
|
|
struct ath_atx_tid *tid,
|
|
struct list_head *bf_q)
|
|
{
|
|
#define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
|
|
struct ath_buf *bf, *bf_first, *bf_prev = NULL;
|
|
int rl = 0, nframes = 0, ndelim, prev_al = 0;
|
|
u16 aggr_limit = 0, al = 0, bpad = 0,
|
|
al_delta, h_baw = tid->baw_size / 2;
|
|
enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
|
|
|
|
bf_first = list_first_entry(&tid->buf_q, struct ath_buf, list);
|
|
|
|
do {
|
|
bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
|
|
|
|
/* do not step over block-ack window */
|
|
if (!BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno)) {
|
|
status = ATH_AGGR_BAW_CLOSED;
|
|
break;
|
|
}
|
|
|
|
if (!rl) {
|
|
aggr_limit = ath_lookup_rate(sc, bf, tid);
|
|
rl = 1;
|
|
}
|
|
|
|
/* do not exceed aggregation limit */
|
|
al_delta = ATH_AGGR_DELIM_SZ + bf->bf_frmlen;
|
|
|
|
if (nframes &&
|
|
(aggr_limit < (al + bpad + al_delta + prev_al))) {
|
|
status = ATH_AGGR_LIMITED;
|
|
break;
|
|
}
|
|
|
|
/* do not exceed subframe limit */
|
|
if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
|
|
status = ATH_AGGR_LIMITED;
|
|
break;
|
|
}
|
|
nframes++;
|
|
|
|
/* add padding for previous frame to aggregation length */
|
|
al += bpad + al_delta;
|
|
|
|
/*
|
|
* Get the delimiters needed to meet the MPDU
|
|
* density for this node.
|
|
*/
|
|
ndelim = ath_compute_num_delims(sc, tid, bf_first, bf->bf_frmlen);
|
|
bpad = PADBYTES(al_delta) + (ndelim << 2);
|
|
|
|
bf->bf_next = NULL;
|
|
bf->bf_desc->ds_link = 0;
|
|
|
|
/* link buffers of this frame to the aggregate */
|
|
ath_tx_addto_baw(sc, tid, bf);
|
|
ath9k_hw_set11n_aggr_middle(sc->sc_ah, bf->bf_desc, ndelim);
|
|
list_move_tail(&bf->list, bf_q);
|
|
if (bf_prev) {
|
|
bf_prev->bf_next = bf;
|
|
bf_prev->bf_desc->ds_link = bf->bf_daddr;
|
|
}
|
|
bf_prev = bf;
|
|
|
|
} while (!list_empty(&tid->buf_q));
|
|
|
|
bf_first->bf_al = al;
|
|
bf_first->bf_nframes = nframes;
|
|
|
|
return status;
|
|
#undef PADBYTES
|
|
}
|
|
|
|
static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
|
|
struct ath_atx_tid *tid)
|
|
{
|
|
struct ath_buf *bf;
|
|
enum ATH_AGGR_STATUS status;
|
|
struct list_head bf_q;
|
|
|
|
do {
|
|
if (list_empty(&tid->buf_q))
|
|
return;
|
|
|
|
INIT_LIST_HEAD(&bf_q);
|
|
|
|
status = ath_tx_form_aggr(sc, txq, tid, &bf_q);
|
|
|
|
/*
|
|
* no frames picked up to be aggregated;
|
|
* block-ack window is not open.
|
|
*/
|
|
if (list_empty(&bf_q))
|
|
break;
|
|
|
|
bf = list_first_entry(&bf_q, struct ath_buf, list);
|
|
bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
|
|
|
|
/* if only one frame, send as non-aggregate */
|
|
if (bf->bf_nframes == 1) {
|
|
bf->bf_state.bf_type &= ~BUF_AGGR;
|
|
ath9k_hw_clr11n_aggr(sc->sc_ah, bf->bf_desc);
|
|
ath_buf_set_rate(sc, bf);
|
|
ath_tx_txqaddbuf(sc, txq, &bf_q);
|
|
continue;
|
|
}
|
|
|
|
/* setup first desc of aggregate */
|
|
bf->bf_state.bf_type |= BUF_AGGR;
|
|
ath_buf_set_rate(sc, bf);
|
|
ath9k_hw_set11n_aggr_first(sc->sc_ah, bf->bf_desc, bf->bf_al);
|
|
|
|
/* anchor last desc of aggregate */
|
|
ath9k_hw_set11n_aggr_last(sc->sc_ah, bf->bf_lastbf->bf_desc);
|
|
|
|
ath_tx_txqaddbuf(sc, txq, &bf_q);
|
|
TX_STAT_INC(txq->axq_qnum, a_aggr);
|
|
|
|
} while (txq->axq_depth < ATH_AGGR_MIN_QDEPTH &&
|
|
status != ATH_AGGR_BAW_CLOSED);
|
|
}
|
|
|
|
void ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
|
|
u16 tid, u16 *ssn)
|
|
{
|
|
struct ath_atx_tid *txtid;
|
|
struct ath_node *an;
|
|
|
|
an = (struct ath_node *)sta->drv_priv;
|
|
txtid = ATH_AN_2_TID(an, tid);
|
|
txtid->state |= AGGR_ADDBA_PROGRESS;
|
|
ath_tx_pause_tid(sc, txtid);
|
|
*ssn = txtid->seq_start;
|
|
}
|
|
|
|
void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
|
|
{
|
|
struct ath_node *an = (struct ath_node *)sta->drv_priv;
|
|
struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
|
|
struct ath_txq *txq = &sc->tx.txq[txtid->ac->qnum];
|
|
struct ath_buf *bf;
|
|
struct list_head bf_head;
|
|
INIT_LIST_HEAD(&bf_head);
|
|
|
|
if (txtid->state & AGGR_CLEANUP)
|
|
return;
|
|
|
|
if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
|
|
txtid->state &= ~AGGR_ADDBA_PROGRESS;
|
|
return;
|
|
}
|
|
|
|
ath_tx_pause_tid(sc, txtid);
|
|
|
|
/* drop all software retried frames and mark this TID */
|
|
spin_lock_bh(&txq->axq_lock);
|
|
while (!list_empty(&txtid->buf_q)) {
|
|
bf = list_first_entry(&txtid->buf_q, struct ath_buf, list);
|
|
if (!bf_isretried(bf)) {
|
|
/*
|
|
* NB: it's based on the assumption that
|
|
* software retried frame will always stay
|
|
* at the head of software queue.
|
|
*/
|
|
break;
|
|
}
|
|
list_move_tail(&bf->list, &bf_head);
|
|
ath_tx_update_baw(sc, txtid, bf->bf_seqno);
|
|
ath_tx_complete_buf(sc, bf, txq, &bf_head, 0, 0);
|
|
}
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
|
|
if (txtid->baw_head != txtid->baw_tail) {
|
|
txtid->state |= AGGR_CLEANUP;
|
|
} else {
|
|
txtid->state &= ~AGGR_ADDBA_COMPLETE;
|
|
ath_tx_flush_tid(sc, txtid);
|
|
}
|
|
}
|
|
|
|
void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
|
|
{
|
|
struct ath_atx_tid *txtid;
|
|
struct ath_node *an;
|
|
|
|
an = (struct ath_node *)sta->drv_priv;
|
|
|
|
if (sc->sc_flags & SC_OP_TXAGGR) {
|
|
txtid = ATH_AN_2_TID(an, tid);
|
|
txtid->baw_size =
|
|
IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
|
|
txtid->state |= AGGR_ADDBA_COMPLETE;
|
|
txtid->state &= ~AGGR_ADDBA_PROGRESS;
|
|
ath_tx_resume_tid(sc, txtid);
|
|
}
|
|
}
|
|
|
|
bool ath_tx_aggr_check(struct ath_softc *sc, struct ath_node *an, u8 tidno)
|
|
{
|
|
struct ath_atx_tid *txtid;
|
|
|
|
if (!(sc->sc_flags & SC_OP_TXAGGR))
|
|
return false;
|
|
|
|
txtid = ATH_AN_2_TID(an, tidno);
|
|
|
|
if (!(txtid->state & (AGGR_ADDBA_COMPLETE | AGGR_ADDBA_PROGRESS)))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/********************/
|
|
/* Queue Management */
|
|
/********************/
|
|
|
|
static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
|
|
struct ath_txq *txq)
|
|
{
|
|
struct ath_atx_ac *ac, *ac_tmp;
|
|
struct ath_atx_tid *tid, *tid_tmp;
|
|
|
|
list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
|
|
list_del(&ac->list);
|
|
ac->sched = false;
|
|
list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
|
|
list_del(&tid->list);
|
|
tid->sched = false;
|
|
ath_tid_drain(sc, txq, tid);
|
|
}
|
|
}
|
|
}
|
|
|
|
struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
|
|
{
|
|
struct ath_hw *ah = sc->sc_ah;
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
struct ath9k_tx_queue_info qi;
|
|
int qnum;
|
|
|
|
memset(&qi, 0, sizeof(qi));
|
|
qi.tqi_subtype = subtype;
|
|
qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
|
|
qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
|
|
qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
|
|
qi.tqi_physCompBuf = 0;
|
|
|
|
/*
|
|
* Enable interrupts only for EOL and DESC conditions.
|
|
* We mark tx descriptors to receive a DESC interrupt
|
|
* when a tx queue gets deep; otherwise waiting for the
|
|
* EOL to reap descriptors. Note that this is done to
|
|
* reduce interrupt load and this only defers reaping
|
|
* descriptors, never transmitting frames. Aside from
|
|
* reducing interrupts this also permits more concurrency.
|
|
* The only potential downside is if the tx queue backs
|
|
* up in which case the top half of the kernel may backup
|
|
* due to a lack of tx descriptors.
|
|
*
|
|
* The UAPSD queue is an exception, since we take a desc-
|
|
* based intr on the EOSP frames.
|
|
*/
|
|
if (qtype == ATH9K_TX_QUEUE_UAPSD)
|
|
qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
|
|
else
|
|
qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
|
|
TXQ_FLAG_TXDESCINT_ENABLE;
|
|
qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
|
|
if (qnum == -1) {
|
|
/*
|
|
* NB: don't print a message, this happens
|
|
* normally on parts with too few tx queues
|
|
*/
|
|
return NULL;
|
|
}
|
|
if (qnum >= ARRAY_SIZE(sc->tx.txq)) {
|
|
ath_print(common, ATH_DBG_FATAL,
|
|
"qnum %u out of range, max %u!\n",
|
|
qnum, (unsigned int)ARRAY_SIZE(sc->tx.txq));
|
|
ath9k_hw_releasetxqueue(ah, qnum);
|
|
return NULL;
|
|
}
|
|
if (!ATH_TXQ_SETUP(sc, qnum)) {
|
|
struct ath_txq *txq = &sc->tx.txq[qnum];
|
|
|
|
txq->axq_qnum = qnum;
|
|
txq->axq_link = NULL;
|
|
INIT_LIST_HEAD(&txq->axq_q);
|
|
INIT_LIST_HEAD(&txq->axq_acq);
|
|
spin_lock_init(&txq->axq_lock);
|
|
txq->axq_depth = 0;
|
|
txq->axq_tx_inprogress = false;
|
|
sc->tx.txqsetup |= 1<<qnum;
|
|
}
|
|
return &sc->tx.txq[qnum];
|
|
}
|
|
|
|
int ath_tx_get_qnum(struct ath_softc *sc, int qtype, int haltype)
|
|
{
|
|
int qnum;
|
|
|
|
switch (qtype) {
|
|
case ATH9K_TX_QUEUE_DATA:
|
|
if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) {
|
|
ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
|
|
"HAL AC %u out of range, max %zu!\n",
|
|
haltype, ARRAY_SIZE(sc->tx.hwq_map));
|
|
return -1;
|
|
}
|
|
qnum = sc->tx.hwq_map[haltype];
|
|
break;
|
|
case ATH9K_TX_QUEUE_BEACON:
|
|
qnum = sc->beacon.beaconq;
|
|
break;
|
|
case ATH9K_TX_QUEUE_CAB:
|
|
qnum = sc->beacon.cabq->axq_qnum;
|
|
break;
|
|
default:
|
|
qnum = -1;
|
|
}
|
|
return qnum;
|
|
}
|
|
|
|
struct ath_txq *ath_test_get_txq(struct ath_softc *sc, struct sk_buff *skb)
|
|
{
|
|
struct ath_txq *txq = NULL;
|
|
u16 skb_queue = skb_get_queue_mapping(skb);
|
|
int qnum;
|
|
|
|
qnum = ath_get_hal_qnum(skb_queue, sc);
|
|
txq = &sc->tx.txq[qnum];
|
|
|
|
spin_lock_bh(&txq->axq_lock);
|
|
|
|
if (txq->axq_depth >= (ATH_TXBUF - 20)) {
|
|
ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_XMIT,
|
|
"TX queue: %d is full, depth: %d\n",
|
|
qnum, txq->axq_depth);
|
|
ath_mac80211_stop_queue(sc, skb_queue);
|
|
txq->stopped = 1;
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
return NULL;
|
|
}
|
|
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
|
|
return txq;
|
|
}
|
|
|
|
int ath_txq_update(struct ath_softc *sc, int qnum,
|
|
struct ath9k_tx_queue_info *qinfo)
|
|
{
|
|
struct ath_hw *ah = sc->sc_ah;
|
|
int error = 0;
|
|
struct ath9k_tx_queue_info qi;
|
|
|
|
if (qnum == sc->beacon.beaconq) {
|
|
/*
|
|
* XXX: for beacon queue, we just save the parameter.
|
|
* It will be picked up by ath_beaconq_config when
|
|
* it's necessary.
|
|
*/
|
|
sc->beacon.beacon_qi = *qinfo;
|
|
return 0;
|
|
}
|
|
|
|
BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
|
|
|
|
ath9k_hw_get_txq_props(ah, qnum, &qi);
|
|
qi.tqi_aifs = qinfo->tqi_aifs;
|
|
qi.tqi_cwmin = qinfo->tqi_cwmin;
|
|
qi.tqi_cwmax = qinfo->tqi_cwmax;
|
|
qi.tqi_burstTime = qinfo->tqi_burstTime;
|
|
qi.tqi_readyTime = qinfo->tqi_readyTime;
|
|
|
|
if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
|
|
ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
|
|
"Unable to update hardware queue %u!\n", qnum);
|
|
error = -EIO;
|
|
} else {
|
|
ath9k_hw_resettxqueue(ah, qnum);
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
int ath_cabq_update(struct ath_softc *sc)
|
|
{
|
|
struct ath9k_tx_queue_info qi;
|
|
int qnum = sc->beacon.cabq->axq_qnum;
|
|
|
|
ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
|
|
/*
|
|
* Ensure the readytime % is within the bounds.
|
|
*/
|
|
if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
|
|
sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
|
|
else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
|
|
sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
|
|
|
|
qi.tqi_readyTime = (sc->beacon_interval *
|
|
sc->config.cabqReadytime) / 100;
|
|
ath_txq_update(sc, qnum, &qi);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Drain a given TX queue (could be Beacon or Data)
|
|
*
|
|
* This assumes output has been stopped and
|
|
* we do not need to block ath_tx_tasklet.
|
|
*/
|
|
void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
|
|
{
|
|
struct ath_buf *bf, *lastbf;
|
|
struct list_head bf_head;
|
|
|
|
INIT_LIST_HEAD(&bf_head);
|
|
|
|
for (;;) {
|
|
spin_lock_bh(&txq->axq_lock);
|
|
|
|
if (list_empty(&txq->axq_q)) {
|
|
txq->axq_link = NULL;
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
break;
|
|
}
|
|
|
|
bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
|
|
|
|
if (bf->bf_stale) {
|
|
list_del(&bf->list);
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
|
|
spin_lock_bh(&sc->tx.txbuflock);
|
|
list_add_tail(&bf->list, &sc->tx.txbuf);
|
|
spin_unlock_bh(&sc->tx.txbuflock);
|
|
continue;
|
|
}
|
|
|
|
lastbf = bf->bf_lastbf;
|
|
if (!retry_tx)
|
|
lastbf->bf_desc->ds_txstat.ts_flags =
|
|
ATH9K_TX_SW_ABORTED;
|
|
|
|
/* remove ath_buf's of the same mpdu from txq */
|
|
list_cut_position(&bf_head, &txq->axq_q, &lastbf->list);
|
|
txq->axq_depth--;
|
|
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
|
|
if (bf_isampdu(bf))
|
|
ath_tx_complete_aggr(sc, txq, bf, &bf_head, 0);
|
|
else
|
|
ath_tx_complete_buf(sc, bf, txq, &bf_head, 0, 0);
|
|
}
|
|
|
|
spin_lock_bh(&txq->axq_lock);
|
|
txq->axq_tx_inprogress = false;
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
|
|
/* flush any pending frames if aggregation is enabled */
|
|
if (sc->sc_flags & SC_OP_TXAGGR) {
|
|
if (!retry_tx) {
|
|
spin_lock_bh(&txq->axq_lock);
|
|
ath_txq_drain_pending_buffers(sc, txq);
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
|
|
{
|
|
struct ath_hw *ah = sc->sc_ah;
|
|
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
|
|
struct ath_txq *txq;
|
|
int i, npend = 0;
|
|
|
|
if (sc->sc_flags & SC_OP_INVALID)
|
|
return;
|
|
|
|
/* Stop beacon queue */
|
|
ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
|
|
|
|
/* Stop data queues */
|
|
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
|
|
if (ATH_TXQ_SETUP(sc, i)) {
|
|
txq = &sc->tx.txq[i];
|
|
ath9k_hw_stoptxdma(ah, txq->axq_qnum);
|
|
npend += ath9k_hw_numtxpending(ah, txq->axq_qnum);
|
|
}
|
|
}
|
|
|
|
if (npend) {
|
|
int r;
|
|
|
|
ath_print(common, ATH_DBG_FATAL,
|
|
"Unable to stop TxDMA. Reset HAL!\n");
|
|
|
|
spin_lock_bh(&sc->sc_resetlock);
|
|
r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
|
|
if (r)
|
|
ath_print(common, ATH_DBG_FATAL,
|
|
"Unable to reset hardware; reset status %d\n",
|
|
r);
|
|
spin_unlock_bh(&sc->sc_resetlock);
|
|
}
|
|
|
|
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
|
|
if (ATH_TXQ_SETUP(sc, i))
|
|
ath_draintxq(sc, &sc->tx.txq[i], retry_tx);
|
|
}
|
|
}
|
|
|
|
void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
|
|
{
|
|
ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
|
|
sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
|
|
}
|
|
|
|
void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
|
|
{
|
|
struct ath_atx_ac *ac;
|
|
struct ath_atx_tid *tid;
|
|
|
|
if (list_empty(&txq->axq_acq))
|
|
return;
|
|
|
|
ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
|
|
list_del(&ac->list);
|
|
ac->sched = false;
|
|
|
|
do {
|
|
if (list_empty(&ac->tid_q))
|
|
return;
|
|
|
|
tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, list);
|
|
list_del(&tid->list);
|
|
tid->sched = false;
|
|
|
|
if (tid->paused)
|
|
continue;
|
|
|
|
ath_tx_sched_aggr(sc, txq, tid);
|
|
|
|
/*
|
|
* add tid to round-robin queue if more frames
|
|
* are pending for the tid
|
|
*/
|
|
if (!list_empty(&tid->buf_q))
|
|
ath_tx_queue_tid(txq, tid);
|
|
|
|
break;
|
|
} while (!list_empty(&ac->tid_q));
|
|
|
|
if (!list_empty(&ac->tid_q)) {
|
|
if (!ac->sched) {
|
|
ac->sched = true;
|
|
list_add_tail(&ac->list, &txq->axq_acq);
|
|
}
|
|
}
|
|
}
|
|
|
|
int ath_tx_setup(struct ath_softc *sc, int haltype)
|
|
{
|
|
struct ath_txq *txq;
|
|
|
|
if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) {
|
|
ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
|
|
"HAL AC %u out of range, max %zu!\n",
|
|
haltype, ARRAY_SIZE(sc->tx.hwq_map));
|
|
return 0;
|
|
}
|
|
txq = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, haltype);
|
|
if (txq != NULL) {
|
|
sc->tx.hwq_map[haltype] = txq->axq_qnum;
|
|
return 1;
|
|
} else
|
|
return 0;
|
|
}
|
|
|
|
/***********/
|
|
/* TX, DMA */
|
|
/***********/
|
|
|
|
/*
|
|
* Insert a chain of ath_buf (descriptors) on a txq and
|
|
* assume the descriptors are already chained together by caller.
|
|
*/
|
|
static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
|
|
struct list_head *head)
|
|
{
|
|
struct ath_hw *ah = sc->sc_ah;
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
struct ath_buf *bf;
|
|
|
|
/*
|
|
* Insert the frame on the outbound list and
|
|
* pass it on to the hardware.
|
|
*/
|
|
|
|
if (list_empty(head))
|
|
return;
|
|
|
|
bf = list_first_entry(head, struct ath_buf, list);
|
|
|
|
list_splice_tail_init(head, &txq->axq_q);
|
|
txq->axq_depth++;
|
|
|
|
ath_print(common, ATH_DBG_QUEUE,
|
|
"qnum: %d, txq depth: %d\n", txq->axq_qnum, txq->axq_depth);
|
|
|
|
if (txq->axq_link == NULL) {
|
|
ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
|
|
ath_print(common, ATH_DBG_XMIT,
|
|
"TXDP[%u] = %llx (%p)\n",
|
|
txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
|
|
} else {
|
|
*txq->axq_link = bf->bf_daddr;
|
|
ath_print(common, ATH_DBG_XMIT, "link[%u] (%p)=%llx (%p)\n",
|
|
txq->axq_qnum, txq->axq_link,
|
|
ito64(bf->bf_daddr), bf->bf_desc);
|
|
}
|
|
txq->axq_link = &(bf->bf_lastbf->bf_desc->ds_link);
|
|
ath9k_hw_txstart(ah, txq->axq_qnum);
|
|
}
|
|
|
|
static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
|
|
{
|
|
struct ath_buf *bf = NULL;
|
|
|
|
spin_lock_bh(&sc->tx.txbuflock);
|
|
|
|
if (unlikely(list_empty(&sc->tx.txbuf))) {
|
|
spin_unlock_bh(&sc->tx.txbuflock);
|
|
return NULL;
|
|
}
|
|
|
|
bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
|
|
list_del(&bf->list);
|
|
|
|
spin_unlock_bh(&sc->tx.txbuflock);
|
|
|
|
return bf;
|
|
}
|
|
|
|
static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
|
|
struct list_head *bf_head,
|
|
struct ath_tx_control *txctl)
|
|
{
|
|
struct ath_buf *bf;
|
|
|
|
bf = list_first_entry(bf_head, struct ath_buf, list);
|
|
bf->bf_state.bf_type |= BUF_AMPDU;
|
|
TX_STAT_INC(txctl->txq->axq_qnum, a_queued);
|
|
|
|
/*
|
|
* Do not queue to h/w when any of the following conditions is true:
|
|
* - there are pending frames in software queue
|
|
* - the TID is currently paused for ADDBA/BAR request
|
|
* - seqno is not within block-ack window
|
|
* - h/w queue depth exceeds low water mark
|
|
*/
|
|
if (!list_empty(&tid->buf_q) || tid->paused ||
|
|
!BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno) ||
|
|
txctl->txq->axq_depth >= ATH_AGGR_MIN_QDEPTH) {
|
|
/*
|
|
* Add this frame to software queue for scheduling later
|
|
* for aggregation.
|
|
*/
|
|
list_move_tail(&bf->list, &tid->buf_q);
|
|
ath_tx_queue_tid(txctl->txq, tid);
|
|
return;
|
|
}
|
|
|
|
/* Add sub-frame to BAW */
|
|
ath_tx_addto_baw(sc, tid, bf);
|
|
|
|
/* Queue to h/w without aggregation */
|
|
bf->bf_nframes = 1;
|
|
bf->bf_lastbf = bf;
|
|
ath_buf_set_rate(sc, bf);
|
|
ath_tx_txqaddbuf(sc, txctl->txq, bf_head);
|
|
}
|
|
|
|
static void ath_tx_send_ht_normal(struct ath_softc *sc, struct ath_txq *txq,
|
|
struct ath_atx_tid *tid,
|
|
struct list_head *bf_head)
|
|
{
|
|
struct ath_buf *bf;
|
|
|
|
bf = list_first_entry(bf_head, struct ath_buf, list);
|
|
bf->bf_state.bf_type &= ~BUF_AMPDU;
|
|
|
|
/* update starting sequence number for subsequent ADDBA request */
|
|
INCR(tid->seq_start, IEEE80211_SEQ_MAX);
|
|
|
|
bf->bf_nframes = 1;
|
|
bf->bf_lastbf = bf;
|
|
ath_buf_set_rate(sc, bf);
|
|
ath_tx_txqaddbuf(sc, txq, bf_head);
|
|
TX_STAT_INC(txq->axq_qnum, queued);
|
|
}
|
|
|
|
static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
|
|
struct list_head *bf_head)
|
|
{
|
|
struct ath_buf *bf;
|
|
|
|
bf = list_first_entry(bf_head, struct ath_buf, list);
|
|
|
|
bf->bf_lastbf = bf;
|
|
bf->bf_nframes = 1;
|
|
ath_buf_set_rate(sc, bf);
|
|
ath_tx_txqaddbuf(sc, txq, bf_head);
|
|
TX_STAT_INC(txq->axq_qnum, queued);
|
|
}
|
|
|
|
static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
|
|
{
|
|
struct ieee80211_hdr *hdr;
|
|
enum ath9k_pkt_type htype;
|
|
__le16 fc;
|
|
|
|
hdr = (struct ieee80211_hdr *)skb->data;
|
|
fc = hdr->frame_control;
|
|
|
|
if (ieee80211_is_beacon(fc))
|
|
htype = ATH9K_PKT_TYPE_BEACON;
|
|
else if (ieee80211_is_probe_resp(fc))
|
|
htype = ATH9K_PKT_TYPE_PROBE_RESP;
|
|
else if (ieee80211_is_atim(fc))
|
|
htype = ATH9K_PKT_TYPE_ATIM;
|
|
else if (ieee80211_is_pspoll(fc))
|
|
htype = ATH9K_PKT_TYPE_PSPOLL;
|
|
else
|
|
htype = ATH9K_PKT_TYPE_NORMAL;
|
|
|
|
return htype;
|
|
}
|
|
|
|
static bool is_pae(struct sk_buff *skb)
|
|
{
|
|
struct ieee80211_hdr *hdr;
|
|
__le16 fc;
|
|
|
|
hdr = (struct ieee80211_hdr *)skb->data;
|
|
fc = hdr->frame_control;
|
|
|
|
if (ieee80211_is_data(fc)) {
|
|
if (ieee80211_is_nullfunc(fc) ||
|
|
/* Port Access Entity (IEEE 802.1X) */
|
|
(skb->protocol == cpu_to_be16(ETH_P_PAE))) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static int get_hw_crypto_keytype(struct sk_buff *skb)
|
|
{
|
|
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
|
|
|
|
if (tx_info->control.hw_key) {
|
|
if (tx_info->control.hw_key->alg == ALG_WEP)
|
|
return ATH9K_KEY_TYPE_WEP;
|
|
else if (tx_info->control.hw_key->alg == ALG_TKIP)
|
|
return ATH9K_KEY_TYPE_TKIP;
|
|
else if (tx_info->control.hw_key->alg == ALG_CCMP)
|
|
return ATH9K_KEY_TYPE_AES;
|
|
}
|
|
|
|
return ATH9K_KEY_TYPE_CLEAR;
|
|
}
|
|
|
|
static void assign_aggr_tid_seqno(struct sk_buff *skb,
|
|
struct ath_buf *bf)
|
|
{
|
|
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
|
|
struct ieee80211_hdr *hdr;
|
|
struct ath_node *an;
|
|
struct ath_atx_tid *tid;
|
|
__le16 fc;
|
|
u8 *qc;
|
|
|
|
if (!tx_info->control.sta)
|
|
return;
|
|
|
|
an = (struct ath_node *)tx_info->control.sta->drv_priv;
|
|
hdr = (struct ieee80211_hdr *)skb->data;
|
|
fc = hdr->frame_control;
|
|
|
|
if (ieee80211_is_data_qos(fc)) {
|
|
qc = ieee80211_get_qos_ctl(hdr);
|
|
bf->bf_tidno = qc[0] & 0xf;
|
|
}
|
|
|
|
/*
|
|
* For HT capable stations, we save tidno for later use.
|
|
* We also override seqno set by upper layer with the one
|
|
* in tx aggregation state.
|
|
*/
|
|
tid = ATH_AN_2_TID(an, bf->bf_tidno);
|
|
hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
|
|
bf->bf_seqno = tid->seq_next;
|
|
INCR(tid->seq_next, IEEE80211_SEQ_MAX);
|
|
}
|
|
|
|
static int setup_tx_flags(struct ath_softc *sc, struct sk_buff *skb,
|
|
struct ath_txq *txq)
|
|
{
|
|
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
|
|
int flags = 0;
|
|
|
|
flags |= ATH9K_TXDESC_CLRDMASK; /* needed for crypto errors */
|
|
flags |= ATH9K_TXDESC_INTREQ;
|
|
|
|
if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
|
|
flags |= ATH9K_TXDESC_NOACK;
|
|
|
|
return flags;
|
|
}
|
|
|
|
/*
|
|
* rix - rate index
|
|
* pktlen - total bytes (delims + data + fcs + pads + pad delims)
|
|
* width - 0 for 20 MHz, 1 for 40 MHz
|
|
* half_gi - to use 4us v/s 3.6 us for symbol time
|
|
*/
|
|
static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, struct ath_buf *bf,
|
|
int width, int half_gi, bool shortPreamble)
|
|
{
|
|
u32 nbits, nsymbits, duration, nsymbols;
|
|
int streams, pktlen;
|
|
|
|
pktlen = bf_isaggr(bf) ? bf->bf_al : bf->bf_frmlen;
|
|
|
|
/* find number of symbols: PLCP + data */
|
|
nbits = (pktlen << 3) + OFDM_PLCP_BITS;
|
|
nsymbits = bits_per_symbol[rix][width];
|
|
nsymbols = (nbits + nsymbits - 1) / nsymbits;
|
|
|
|
if (!half_gi)
|
|
duration = SYMBOL_TIME(nsymbols);
|
|
else
|
|
duration = SYMBOL_TIME_HALFGI(nsymbols);
|
|
|
|
/* addup duration for legacy/ht training and signal fields */
|
|
streams = HT_RC_2_STREAMS(rix);
|
|
duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
|
|
|
|
return duration;
|
|
}
|
|
|
|
static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf)
|
|
{
|
|
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
|
|
struct ath9k_11n_rate_series series[4];
|
|
struct sk_buff *skb;
|
|
struct ieee80211_tx_info *tx_info;
|
|
struct ieee80211_tx_rate *rates;
|
|
const struct ieee80211_rate *rate;
|
|
struct ieee80211_hdr *hdr;
|
|
int i, flags = 0;
|
|
u8 rix = 0, ctsrate = 0;
|
|
bool is_pspoll;
|
|
|
|
memset(series, 0, sizeof(struct ath9k_11n_rate_series) * 4);
|
|
|
|
skb = bf->bf_mpdu;
|
|
tx_info = IEEE80211_SKB_CB(skb);
|
|
rates = tx_info->control.rates;
|
|
hdr = (struct ieee80211_hdr *)skb->data;
|
|
is_pspoll = ieee80211_is_pspoll(hdr->frame_control);
|
|
|
|
/*
|
|
* We check if Short Preamble is needed for the CTS rate by
|
|
* checking the BSS's global flag.
|
|
* But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
|
|
*/
|
|
rate = ieee80211_get_rts_cts_rate(sc->hw, tx_info);
|
|
ctsrate = rate->hw_value;
|
|
if (sc->sc_flags & SC_OP_PREAMBLE_SHORT)
|
|
ctsrate |= rate->hw_value_short;
|
|
|
|
/*
|
|
* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive.
|
|
* Check the first rate in the series to decide whether RTS/CTS
|
|
* or CTS-to-self has to be used.
|
|
*/
|
|
if (rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
|
|
flags = ATH9K_TXDESC_CTSENA;
|
|
else if (rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
|
|
flags = ATH9K_TXDESC_RTSENA;
|
|
|
|
/* FIXME: Handle aggregation protection */
|
|
if (sc->config.ath_aggr_prot &&
|
|
(!bf_isaggr(bf) || (bf_isaggr(bf) && bf->bf_al < 8192))) {
|
|
flags = ATH9K_TXDESC_RTSENA;
|
|
}
|
|
|
|
/* For AR5416 - RTS cannot be followed by a frame larger than 8K */
|
|
if (bf_isaggr(bf) && (bf->bf_al > sc->sc_ah->caps.rts_aggr_limit))
|
|
flags &= ~(ATH9K_TXDESC_RTSENA);
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
bool is_40, is_sgi, is_sp;
|
|
int phy;
|
|
|
|
if (!rates[i].count || (rates[i].idx < 0))
|
|
continue;
|
|
|
|
rix = rates[i].idx;
|
|
series[i].Tries = rates[i].count;
|
|
series[i].ChSel = common->tx_chainmask;
|
|
|
|
if (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS)
|
|
series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
|
|
if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
|
|
series[i].RateFlags |= ATH9K_RATESERIES_2040;
|
|
if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
|
|
series[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
|
|
|
|
is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
|
|
is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
|
|
is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
|
|
|
|
if (rates[i].flags & IEEE80211_TX_RC_MCS) {
|
|
/* MCS rates */
|
|
series[i].Rate = rix | 0x80;
|
|
series[i].PktDuration = ath_pkt_duration(sc, rix, bf,
|
|
is_40, is_sgi, is_sp);
|
|
continue;
|
|
}
|
|
|
|
/* legcay rates */
|
|
if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
|
|
!(rate->flags & IEEE80211_RATE_ERP_G))
|
|
phy = WLAN_RC_PHY_CCK;
|
|
else
|
|
phy = WLAN_RC_PHY_OFDM;
|
|
|
|
rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
|
|
series[i].Rate = rate->hw_value;
|
|
if (rate->hw_value_short) {
|
|
if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
|
|
series[i].Rate |= rate->hw_value_short;
|
|
} else {
|
|
is_sp = false;
|
|
}
|
|
|
|
series[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
|
|
phy, rate->bitrate * 100, bf->bf_frmlen, rix, is_sp);
|
|
}
|
|
|
|
/* set dur_update_en for l-sig computation except for PS-Poll frames */
|
|
ath9k_hw_set11n_ratescenario(sc->sc_ah, bf->bf_desc,
|
|
bf->bf_lastbf->bf_desc,
|
|
!is_pspoll, ctsrate,
|
|
0, series, 4, flags);
|
|
|
|
if (sc->config.ath_aggr_prot && flags)
|
|
ath9k_hw_set11n_burstduration(sc->sc_ah, bf->bf_desc, 8192);
|
|
}
|
|
|
|
static int ath_tx_setup_buffer(struct ieee80211_hw *hw, struct ath_buf *bf,
|
|
struct sk_buff *skb,
|
|
struct ath_tx_control *txctl)
|
|
{
|
|
struct ath_wiphy *aphy = hw->priv;
|
|
struct ath_softc *sc = aphy->sc;
|
|
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
|
|
int hdrlen;
|
|
__le16 fc;
|
|
int padpos, padsize;
|
|
|
|
tx_info->pad[0] = 0;
|
|
switch (txctl->frame_type) {
|
|
case ATH9K_NOT_INTERNAL:
|
|
break;
|
|
case ATH9K_INT_PAUSE:
|
|
tx_info->pad[0] |= ATH_TX_INFO_FRAME_TYPE_PAUSE;
|
|
/* fall through */
|
|
case ATH9K_INT_UNPAUSE:
|
|
tx_info->pad[0] |= ATH_TX_INFO_FRAME_TYPE_INTERNAL;
|
|
break;
|
|
}
|
|
hdrlen = ieee80211_get_hdrlen_from_skb(skb);
|
|
fc = hdr->frame_control;
|
|
|
|
ATH_TXBUF_RESET(bf);
|
|
|
|
bf->aphy = aphy;
|
|
bf->bf_frmlen = skb->len + FCS_LEN;
|
|
/* Remove the padding size from bf_frmlen, if any */
|
|
padpos = ath9k_cmn_padpos(hdr->frame_control);
|
|
padsize = padpos & 3;
|
|
if (padsize && skb->len>padpos+padsize) {
|
|
bf->bf_frmlen -= padsize;
|
|
}
|
|
|
|
if (conf_is_ht(&hw->conf) && !is_pae(skb))
|
|
bf->bf_state.bf_type |= BUF_HT;
|
|
|
|
bf->bf_flags = setup_tx_flags(sc, skb, txctl->txq);
|
|
|
|
bf->bf_keytype = get_hw_crypto_keytype(skb);
|
|
if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR) {
|
|
bf->bf_frmlen += tx_info->control.hw_key->icv_len;
|
|
bf->bf_keyix = tx_info->control.hw_key->hw_key_idx;
|
|
} else {
|
|
bf->bf_keyix = ATH9K_TXKEYIX_INVALID;
|
|
}
|
|
|
|
if (ieee80211_is_data_qos(fc) && bf_isht(bf) &&
|
|
(sc->sc_flags & SC_OP_TXAGGR))
|
|
assign_aggr_tid_seqno(skb, bf);
|
|
|
|
bf->bf_mpdu = skb;
|
|
|
|
bf->bf_dmacontext = dma_map_single(sc->dev, skb->data,
|
|
skb->len, DMA_TO_DEVICE);
|
|
if (unlikely(dma_mapping_error(sc->dev, bf->bf_dmacontext))) {
|
|
bf->bf_mpdu = NULL;
|
|
ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
|
|
"dma_mapping_error() on TX\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
bf->bf_buf_addr = bf->bf_dmacontext;
|
|
|
|
/* tag if this is a nullfunc frame to enable PS when AP acks it */
|
|
if (ieee80211_is_nullfunc(fc) && ieee80211_has_pm(fc)) {
|
|
bf->bf_isnullfunc = true;
|
|
sc->sc_flags &= ~SC_OP_NULLFUNC_COMPLETED;
|
|
} else
|
|
bf->bf_isnullfunc = false;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* FIXME: tx power */
|
|
static void ath_tx_start_dma(struct ath_softc *sc, struct ath_buf *bf,
|
|
struct ath_tx_control *txctl)
|
|
{
|
|
struct sk_buff *skb = bf->bf_mpdu;
|
|
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
|
|
struct ath_node *an = NULL;
|
|
struct list_head bf_head;
|
|
struct ath_desc *ds;
|
|
struct ath_atx_tid *tid;
|
|
struct ath_hw *ah = sc->sc_ah;
|
|
int frm_type;
|
|
__le16 fc;
|
|
|
|
frm_type = get_hw_packet_type(skb);
|
|
fc = hdr->frame_control;
|
|
|
|
INIT_LIST_HEAD(&bf_head);
|
|
list_add_tail(&bf->list, &bf_head);
|
|
|
|
ds = bf->bf_desc;
|
|
ds->ds_link = 0;
|
|
ds->ds_data = bf->bf_buf_addr;
|
|
|
|
ath9k_hw_set11n_txdesc(ah, ds, bf->bf_frmlen, frm_type, MAX_RATE_POWER,
|
|
bf->bf_keyix, bf->bf_keytype, bf->bf_flags);
|
|
|
|
ath9k_hw_filltxdesc(ah, ds,
|
|
skb->len, /* segment length */
|
|
true, /* first segment */
|
|
true, /* last segment */
|
|
ds); /* first descriptor */
|
|
|
|
spin_lock_bh(&txctl->txq->axq_lock);
|
|
|
|
if (bf_isht(bf) && (sc->sc_flags & SC_OP_TXAGGR) &&
|
|
tx_info->control.sta) {
|
|
an = (struct ath_node *)tx_info->control.sta->drv_priv;
|
|
tid = ATH_AN_2_TID(an, bf->bf_tidno);
|
|
|
|
if (!ieee80211_is_data_qos(fc)) {
|
|
ath_tx_send_normal(sc, txctl->txq, &bf_head);
|
|
goto tx_done;
|
|
}
|
|
|
|
if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
|
|
/*
|
|
* Try aggregation if it's a unicast data frame
|
|
* and the destination is HT capable.
|
|
*/
|
|
ath_tx_send_ampdu(sc, tid, &bf_head, txctl);
|
|
} else {
|
|
/*
|
|
* Send this frame as regular when ADDBA
|
|
* exchange is neither complete nor pending.
|
|
*/
|
|
ath_tx_send_ht_normal(sc, txctl->txq,
|
|
tid, &bf_head);
|
|
}
|
|
} else {
|
|
ath_tx_send_normal(sc, txctl->txq, &bf_head);
|
|
}
|
|
|
|
tx_done:
|
|
spin_unlock_bh(&txctl->txq->axq_lock);
|
|
}
|
|
|
|
/* Upon failure caller should free skb */
|
|
int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
|
|
struct ath_tx_control *txctl)
|
|
{
|
|
struct ath_wiphy *aphy = hw->priv;
|
|
struct ath_softc *sc = aphy->sc;
|
|
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
|
|
struct ath_buf *bf;
|
|
int r;
|
|
|
|
bf = ath_tx_get_buffer(sc);
|
|
if (!bf) {
|
|
ath_print(common, ATH_DBG_XMIT, "TX buffers are full\n");
|
|
return -1;
|
|
}
|
|
|
|
r = ath_tx_setup_buffer(hw, bf, skb, txctl);
|
|
if (unlikely(r)) {
|
|
struct ath_txq *txq = txctl->txq;
|
|
|
|
ath_print(common, ATH_DBG_FATAL, "TX mem alloc failure\n");
|
|
|
|
/* upon ath_tx_processq() this TX queue will be resumed, we
|
|
* guarantee this will happen by knowing beforehand that
|
|
* we will at least have to run TX completionon one buffer
|
|
* on the queue */
|
|
spin_lock_bh(&txq->axq_lock);
|
|
if (sc->tx.txq[txq->axq_qnum].axq_depth > 1) {
|
|
ath_mac80211_stop_queue(sc, skb_get_queue_mapping(skb));
|
|
txq->stopped = 1;
|
|
}
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
|
|
spin_lock_bh(&sc->tx.txbuflock);
|
|
list_add_tail(&bf->list, &sc->tx.txbuf);
|
|
spin_unlock_bh(&sc->tx.txbuflock);
|
|
|
|
return r;
|
|
}
|
|
|
|
ath_tx_start_dma(sc, bf, txctl);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void ath_tx_cabq(struct ieee80211_hw *hw, struct sk_buff *skb)
|
|
{
|
|
struct ath_wiphy *aphy = hw->priv;
|
|
struct ath_softc *sc = aphy->sc;
|
|
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
|
|
int padpos, padsize;
|
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
|
|
struct ath_tx_control txctl;
|
|
|
|
memset(&txctl, 0, sizeof(struct ath_tx_control));
|
|
|
|
/*
|
|
* As a temporary workaround, assign seq# here; this will likely need
|
|
* to be cleaned up to work better with Beacon transmission and virtual
|
|
* BSSes.
|
|
*/
|
|
if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
|
|
if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
|
|
sc->tx.seq_no += 0x10;
|
|
hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
|
|
hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
|
|
}
|
|
|
|
/* Add the padding after the header if this is not already done */
|
|
padpos = ath9k_cmn_padpos(hdr->frame_control);
|
|
padsize = padpos & 3;
|
|
if (padsize && skb->len>padpos) {
|
|
if (skb_headroom(skb) < padsize) {
|
|
ath_print(common, ATH_DBG_XMIT,
|
|
"TX CABQ padding failed\n");
|
|
dev_kfree_skb_any(skb);
|
|
return;
|
|
}
|
|
skb_push(skb, padsize);
|
|
memmove(skb->data, skb->data + padsize, padpos);
|
|
}
|
|
|
|
txctl.txq = sc->beacon.cabq;
|
|
|
|
ath_print(common, ATH_DBG_XMIT,
|
|
"transmitting CABQ packet, skb: %p\n", skb);
|
|
|
|
if (ath_tx_start(hw, skb, &txctl) != 0) {
|
|
ath_print(common, ATH_DBG_XMIT, "CABQ TX failed\n");
|
|
goto exit;
|
|
}
|
|
|
|
return;
|
|
exit:
|
|
dev_kfree_skb_any(skb);
|
|
}
|
|
|
|
/*****************/
|
|
/* TX Completion */
|
|
/*****************/
|
|
|
|
static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
|
|
struct ath_wiphy *aphy, int tx_flags)
|
|
{
|
|
struct ieee80211_hw *hw = sc->hw;
|
|
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
|
|
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
|
|
struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
|
|
int padpos, padsize;
|
|
|
|
ath_print(common, ATH_DBG_XMIT, "TX complete: skb: %p\n", skb);
|
|
|
|
if (aphy)
|
|
hw = aphy->hw;
|
|
|
|
if (tx_flags & ATH_TX_BAR)
|
|
tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
|
|
|
|
if (!(tx_flags & (ATH_TX_ERROR | ATH_TX_XRETRY))) {
|
|
/* Frame was ACKed */
|
|
tx_info->flags |= IEEE80211_TX_STAT_ACK;
|
|
}
|
|
|
|
padpos = ath9k_cmn_padpos(hdr->frame_control);
|
|
padsize = padpos & 3;
|
|
if (padsize && skb->len>padpos+padsize) {
|
|
/*
|
|
* Remove MAC header padding before giving the frame back to
|
|
* mac80211.
|
|
*/
|
|
memmove(skb->data + padsize, skb->data, padpos);
|
|
skb_pull(skb, padsize);
|
|
}
|
|
|
|
if (sc->sc_flags & SC_OP_WAIT_FOR_TX_ACK) {
|
|
sc->sc_flags &= ~SC_OP_WAIT_FOR_TX_ACK;
|
|
ath_print(common, ATH_DBG_PS,
|
|
"Going back to sleep after having "
|
|
"received TX status (0x%x)\n",
|
|
sc->sc_flags & (SC_OP_WAIT_FOR_BEACON |
|
|
SC_OP_WAIT_FOR_CAB |
|
|
SC_OP_WAIT_FOR_PSPOLL_DATA |
|
|
SC_OP_WAIT_FOR_TX_ACK));
|
|
}
|
|
|
|
if (unlikely(tx_info->pad[0] & ATH_TX_INFO_FRAME_TYPE_INTERNAL))
|
|
ath9k_tx_status(hw, skb);
|
|
else
|
|
ieee80211_tx_status(hw, skb);
|
|
}
|
|
|
|
static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
|
|
struct ath_txq *txq,
|
|
struct list_head *bf_q,
|
|
int txok, int sendbar)
|
|
{
|
|
struct sk_buff *skb = bf->bf_mpdu;
|
|
unsigned long flags;
|
|
int tx_flags = 0;
|
|
|
|
if (sendbar)
|
|
tx_flags = ATH_TX_BAR;
|
|
|
|
if (!txok) {
|
|
tx_flags |= ATH_TX_ERROR;
|
|
|
|
if (bf_isxretried(bf))
|
|
tx_flags |= ATH_TX_XRETRY;
|
|
}
|
|
|
|
dma_unmap_single(sc->dev, bf->bf_dmacontext, skb->len, DMA_TO_DEVICE);
|
|
ath_tx_complete(sc, skb, bf->aphy, tx_flags);
|
|
ath_debug_stat_tx(sc, txq, bf);
|
|
|
|
/*
|
|
* Return the list of ath_buf of this mpdu to free queue
|
|
*/
|
|
spin_lock_irqsave(&sc->tx.txbuflock, flags);
|
|
list_splice_tail_init(bf_q, &sc->tx.txbuf);
|
|
spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
|
|
}
|
|
|
|
static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf,
|
|
int txok)
|
|
{
|
|
struct ath_buf *bf_last = bf->bf_lastbf;
|
|
struct ath_desc *ds = bf_last->bf_desc;
|
|
u16 seq_st = 0;
|
|
u32 ba[WME_BA_BMP_SIZE >> 5];
|
|
int ba_index;
|
|
int nbad = 0;
|
|
int isaggr = 0;
|
|
|
|
if (ds->ds_txstat.ts_flags == ATH9K_TX_SW_ABORTED)
|
|
return 0;
|
|
|
|
isaggr = bf_isaggr(bf);
|
|
if (isaggr) {
|
|
seq_st = ATH_DS_BA_SEQ(ds);
|
|
memcpy(ba, ATH_DS_BA_BITMAP(ds), WME_BA_BMP_SIZE >> 3);
|
|
}
|
|
|
|
while (bf) {
|
|
ba_index = ATH_BA_INDEX(seq_st, bf->bf_seqno);
|
|
if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
|
|
nbad++;
|
|
|
|
bf = bf->bf_next;
|
|
}
|
|
|
|
return nbad;
|
|
}
|
|
|
|
static void ath_tx_rc_status(struct ath_buf *bf, struct ath_desc *ds,
|
|
int nbad, int txok, bool update_rc)
|
|
{
|
|
struct sk_buff *skb = bf->bf_mpdu;
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
|
|
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
|
|
struct ieee80211_hw *hw = bf->aphy->hw;
|
|
u8 i, tx_rateindex;
|
|
|
|
if (txok)
|
|
tx_info->status.ack_signal = ds->ds_txstat.ts_rssi;
|
|
|
|
tx_rateindex = ds->ds_txstat.ts_rateindex;
|
|
WARN_ON(tx_rateindex >= hw->max_rates);
|
|
|
|
if (update_rc)
|
|
tx_info->pad[0] |= ATH_TX_INFO_UPDATE_RC;
|
|
if (ds->ds_txstat.ts_status & ATH9K_TXERR_FILT)
|
|
tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
|
|
|
|
if ((ds->ds_txstat.ts_status & ATH9K_TXERR_FILT) == 0 &&
|
|
(bf->bf_flags & ATH9K_TXDESC_NOACK) == 0 && update_rc) {
|
|
if (ieee80211_is_data(hdr->frame_control)) {
|
|
if (ds->ds_txstat.ts_flags &
|
|
(ATH9K_TX_DATA_UNDERRUN | ATH9K_TX_DELIM_UNDERRUN))
|
|
tx_info->pad[0] |= ATH_TX_INFO_UNDERRUN;
|
|
if ((ds->ds_txstat.ts_status & ATH9K_TXERR_XRETRY) ||
|
|
(ds->ds_txstat.ts_status & ATH9K_TXERR_FIFO))
|
|
tx_info->pad[0] |= ATH_TX_INFO_XRETRY;
|
|
tx_info->status.ampdu_len = bf->bf_nframes;
|
|
tx_info->status.ampdu_ack_len = bf->bf_nframes - nbad;
|
|
}
|
|
}
|
|
|
|
for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
|
|
tx_info->status.rates[i].count = 0;
|
|
tx_info->status.rates[i].idx = -1;
|
|
}
|
|
|
|
tx_info->status.rates[tx_rateindex].count = bf->bf_retries + 1;
|
|
}
|
|
|
|
static void ath_wake_mac80211_queue(struct ath_softc *sc, struct ath_txq *txq)
|
|
{
|
|
int qnum;
|
|
|
|
spin_lock_bh(&txq->axq_lock);
|
|
if (txq->stopped &&
|
|
sc->tx.txq[txq->axq_qnum].axq_depth <= (ATH_TXBUF - 20)) {
|
|
qnum = ath_get_mac80211_qnum(txq->axq_qnum, sc);
|
|
if (qnum != -1) {
|
|
ath_mac80211_start_queue(sc, qnum);
|
|
txq->stopped = 0;
|
|
}
|
|
}
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
}
|
|
|
|
static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
|
|
{
|
|
struct ath_hw *ah = sc->sc_ah;
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
struct ath_buf *bf, *lastbf, *bf_held = NULL;
|
|
struct list_head bf_head;
|
|
struct ath_desc *ds;
|
|
int txok;
|
|
int status;
|
|
|
|
ath_print(common, ATH_DBG_QUEUE, "tx queue %d (%x), link %p\n",
|
|
txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
|
|
txq->axq_link);
|
|
|
|
for (;;) {
|
|
spin_lock_bh(&txq->axq_lock);
|
|
if (list_empty(&txq->axq_q)) {
|
|
txq->axq_link = NULL;
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
break;
|
|
}
|
|
bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
|
|
|
|
/*
|
|
* There is a race condition that a BH gets scheduled
|
|
* after sw writes TxE and before hw re-load the last
|
|
* descriptor to get the newly chained one.
|
|
* Software must keep the last DONE descriptor as a
|
|
* holding descriptor - software does so by marking
|
|
* it with the STALE flag.
|
|
*/
|
|
bf_held = NULL;
|
|
if (bf->bf_stale) {
|
|
bf_held = bf;
|
|
if (list_is_last(&bf_held->list, &txq->axq_q)) {
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
break;
|
|
} else {
|
|
bf = list_entry(bf_held->list.next,
|
|
struct ath_buf, list);
|
|
}
|
|
}
|
|
|
|
lastbf = bf->bf_lastbf;
|
|
ds = lastbf->bf_desc;
|
|
|
|
status = ath9k_hw_txprocdesc(ah, ds);
|
|
if (status == -EINPROGRESS) {
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* We now know the nullfunc frame has been ACKed so we
|
|
* can disable RX.
|
|
*/
|
|
if (bf->bf_isnullfunc &&
|
|
(ds->ds_txstat.ts_status & ATH9K_TX_ACKED)) {
|
|
if ((sc->sc_flags & SC_OP_PS_ENABLED)) {
|
|
sc->ps_enabled = true;
|
|
ath9k_hw_setrxabort(sc->sc_ah, 1);
|
|
} else
|
|
sc->sc_flags |= SC_OP_NULLFUNC_COMPLETED;
|
|
}
|
|
|
|
/*
|
|
* Remove ath_buf's of the same transmit unit from txq,
|
|
* however leave the last descriptor back as the holding
|
|
* descriptor for hw.
|
|
*/
|
|
lastbf->bf_stale = true;
|
|
INIT_LIST_HEAD(&bf_head);
|
|
if (!list_is_singular(&lastbf->list))
|
|
list_cut_position(&bf_head,
|
|
&txq->axq_q, lastbf->list.prev);
|
|
|
|
txq->axq_depth--;
|
|
txok = !(ds->ds_txstat.ts_status & ATH9K_TXERR_MASK);
|
|
txq->axq_tx_inprogress = false;
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
|
|
if (bf_held) {
|
|
spin_lock_bh(&sc->tx.txbuflock);
|
|
list_move_tail(&bf_held->list, &sc->tx.txbuf);
|
|
spin_unlock_bh(&sc->tx.txbuflock);
|
|
}
|
|
|
|
if (!bf_isampdu(bf)) {
|
|
/*
|
|
* This frame is sent out as a single frame.
|
|
* Use hardware retry status for this frame.
|
|
*/
|
|
bf->bf_retries = ds->ds_txstat.ts_longretry;
|
|
if (ds->ds_txstat.ts_status & ATH9K_TXERR_XRETRY)
|
|
bf->bf_state.bf_type |= BUF_XRETRY;
|
|
ath_tx_rc_status(bf, ds, 0, txok, true);
|
|
}
|
|
|
|
if (bf_isampdu(bf))
|
|
ath_tx_complete_aggr(sc, txq, bf, &bf_head, txok);
|
|
else
|
|
ath_tx_complete_buf(sc, bf, txq, &bf_head, txok, 0);
|
|
|
|
ath_wake_mac80211_queue(sc, txq);
|
|
|
|
spin_lock_bh(&txq->axq_lock);
|
|
if (sc->sc_flags & SC_OP_TXAGGR)
|
|
ath_txq_schedule(sc, txq);
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
}
|
|
}
|
|
|
|
static void ath_tx_complete_poll_work(struct work_struct *work)
|
|
{
|
|
struct ath_softc *sc = container_of(work, struct ath_softc,
|
|
tx_complete_work.work);
|
|
struct ath_txq *txq;
|
|
int i;
|
|
bool needreset = false;
|
|
|
|
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
|
|
if (ATH_TXQ_SETUP(sc, i)) {
|
|
txq = &sc->tx.txq[i];
|
|
spin_lock_bh(&txq->axq_lock);
|
|
if (txq->axq_depth) {
|
|
if (txq->axq_tx_inprogress) {
|
|
needreset = true;
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
break;
|
|
} else {
|
|
txq->axq_tx_inprogress = true;
|
|
}
|
|
}
|
|
spin_unlock_bh(&txq->axq_lock);
|
|
}
|
|
|
|
if (needreset) {
|
|
ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_RESET,
|
|
"tx hung, resetting the chip\n");
|
|
ath9k_ps_wakeup(sc);
|
|
ath_reset(sc, false);
|
|
ath9k_ps_restore(sc);
|
|
}
|
|
|
|
ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
|
|
msecs_to_jiffies(ATH_TX_COMPLETE_POLL_INT));
|
|
}
|
|
|
|
|
|
|
|
void ath_tx_tasklet(struct ath_softc *sc)
|
|
{
|
|
int i;
|
|
u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
|
|
|
|
ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
|
|
|
|
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
|
|
if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
|
|
ath_tx_processq(sc, &sc->tx.txq[i]);
|
|
}
|
|
}
|
|
|
|
/*****************/
|
|
/* Init, Cleanup */
|
|
/*****************/
|
|
|
|
int ath_tx_init(struct ath_softc *sc, int nbufs)
|
|
{
|
|
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
|
|
int error = 0;
|
|
|
|
spin_lock_init(&sc->tx.txbuflock);
|
|
|
|
error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
|
|
"tx", nbufs, 1);
|
|
if (error != 0) {
|
|
ath_print(common, ATH_DBG_FATAL,
|
|
"Failed to allocate tx descriptors: %d\n", error);
|
|
goto err;
|
|
}
|
|
|
|
error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
|
|
"beacon", ATH_BCBUF, 1);
|
|
if (error != 0) {
|
|
ath_print(common, ATH_DBG_FATAL,
|
|
"Failed to allocate beacon descriptors: %d\n", error);
|
|
goto err;
|
|
}
|
|
|
|
INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
|
|
|
|
err:
|
|
if (error != 0)
|
|
ath_tx_cleanup(sc);
|
|
|
|
return error;
|
|
}
|
|
|
|
void ath_tx_cleanup(struct ath_softc *sc)
|
|
{
|
|
if (sc->beacon.bdma.dd_desc_len != 0)
|
|
ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
|
|
|
|
if (sc->tx.txdma.dd_desc_len != 0)
|
|
ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
|
|
}
|
|
|
|
void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
|
|
{
|
|
struct ath_atx_tid *tid;
|
|
struct ath_atx_ac *ac;
|
|
int tidno, acno;
|
|
|
|
for (tidno = 0, tid = &an->tid[tidno];
|
|
tidno < WME_NUM_TID;
|
|
tidno++, tid++) {
|
|
tid->an = an;
|
|
tid->tidno = tidno;
|
|
tid->seq_start = tid->seq_next = 0;
|
|
tid->baw_size = WME_MAX_BA;
|
|
tid->baw_head = tid->baw_tail = 0;
|
|
tid->sched = false;
|
|
tid->paused = false;
|
|
tid->state &= ~AGGR_CLEANUP;
|
|
INIT_LIST_HEAD(&tid->buf_q);
|
|
acno = TID_TO_WME_AC(tidno);
|
|
tid->ac = &an->ac[acno];
|
|
tid->state &= ~AGGR_ADDBA_COMPLETE;
|
|
tid->state &= ~AGGR_ADDBA_PROGRESS;
|
|
}
|
|
|
|
for (acno = 0, ac = &an->ac[acno];
|
|
acno < WME_NUM_AC; acno++, ac++) {
|
|
ac->sched = false;
|
|
INIT_LIST_HEAD(&ac->tid_q);
|
|
|
|
switch (acno) {
|
|
case WME_AC_BE:
|
|
ac->qnum = ath_tx_get_qnum(sc,
|
|
ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BE);
|
|
break;
|
|
case WME_AC_BK:
|
|
ac->qnum = ath_tx_get_qnum(sc,
|
|
ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BK);
|
|
break;
|
|
case WME_AC_VI:
|
|
ac->qnum = ath_tx_get_qnum(sc,
|
|
ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VI);
|
|
break;
|
|
case WME_AC_VO:
|
|
ac->qnum = ath_tx_get_qnum(sc,
|
|
ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VO);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
|
|
{
|
|
int i;
|
|
struct ath_atx_ac *ac, *ac_tmp;
|
|
struct ath_atx_tid *tid, *tid_tmp;
|
|
struct ath_txq *txq;
|
|
|
|
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
|
|
if (ATH_TXQ_SETUP(sc, i)) {
|
|
txq = &sc->tx.txq[i];
|
|
|
|
spin_lock(&txq->axq_lock);
|
|
|
|
list_for_each_entry_safe(ac,
|
|
ac_tmp, &txq->axq_acq, list) {
|
|
tid = list_first_entry(&ac->tid_q,
|
|
struct ath_atx_tid, list);
|
|
if (tid && tid->an != an)
|
|
continue;
|
|
list_del(&ac->list);
|
|
ac->sched = false;
|
|
|
|
list_for_each_entry_safe(tid,
|
|
tid_tmp, &ac->tid_q, list) {
|
|
list_del(&tid->list);
|
|
tid->sched = false;
|
|
ath_tid_drain(sc, txq, tid);
|
|
tid->state &= ~AGGR_ADDBA_COMPLETE;
|
|
tid->state &= ~AGGR_CLEANUP;
|
|
}
|
|
}
|
|
|
|
spin_unlock(&txq->axq_lock);
|
|
}
|
|
}
|
|
}
|