eb254f323b
Pull x86 cache allocation interface from Thomas Gleixner: "This provides support for Intel's Cache Allocation Technology, a cache partitioning mechanism. The interface is odd, but the hardware interface of that CAT stuff is odd as well. We tried hard to come up with an abstraction, but that only allows rather simple partitioning, but no way of sharing and dealing with the per package nature of this mechanism. In the end we decided to expose the allocation bitmaps directly so all combinations of the hardware can be utilized. There are two ways of associating a cache partition: - Task A task can be added to a resource group. It uses the cache partition associated to the group. - CPU All tasks which are not member of a resource group use the group to which the CPU they are running on is associated with. That allows for simple CPU based partitioning schemes. The main expected user sare: - Virtualization so a VM can only trash only the associated part of the cash w/o disturbing others - Real-Time systems to seperate RT and general workloads. - Latency sensitive enterprise workloads - In theory this also can be used to protect against cache side channel attacks" [ Intel RDT is "Resource Director Technology". The interface really is rather odd and very specific, which delayed this pull request while I was thinking about it. The pull request itself came in early during the merge window, I just delayed it until things had calmed down and I had more time. But people tell me they'll use this, and the good news is that it is _so_ specific that it's rather independent of anything else, and no user is going to depend on the interface since it's pretty rare. So if push comes to shove, we can just remove the interface and nothing will break ] * 'x86-cache-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (31 commits) x86/intel_rdt: Implement show_options() for resctrlfs x86/intel_rdt: Call intel_rdt_sched_in() with preemption disabled x86/intel_rdt: Update task closid immediately on CPU in rmdir and unmount x86/intel_rdt: Fix setting of closid when adding CPUs to a group x86/intel_rdt: Update percpu closid immeditately on CPUs affected by changee x86/intel_rdt: Reset per cpu closids on unmount x86/intel_rdt: Select KERNFS when enabling INTEL_RDT_A x86/intel_rdt: Prevent deadlock against hotplug lock x86/intel_rdt: Protect info directory from removal x86/intel_rdt: Add info files to Documentation x86/intel_rdt: Export the minimum number of set mask bits in sysfs x86/intel_rdt: Propagate error in rdt_mount() properly x86/intel_rdt: Add a missing #include MAINTAINERS: Add maintainer for Intel RDT resource allocation x86/intel_rdt: Add scheduler hook x86/intel_rdt: Add schemata file x86/intel_rdt: Add tasks files x86/intel_rdt: Add cpus file x86/intel_rdt: Add mkdir to resctrl file system x86/intel_rdt: Add "info" files to resctrl file system ...
631 lines
17 KiB
C
631 lines
17 KiB
C
/*
|
|
* Copyright (C) 1995 Linus Torvalds
|
|
*
|
|
* Pentium III FXSR, SSE support
|
|
* Gareth Hughes <gareth@valinux.com>, May 2000
|
|
*
|
|
* X86-64 port
|
|
* Andi Kleen.
|
|
*
|
|
* CPU hotplug support - ashok.raj@intel.com
|
|
*/
|
|
|
|
/*
|
|
* This file handles the architecture-dependent parts of process handling..
|
|
*/
|
|
|
|
#include <linux/cpu.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/elfcore.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/user.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/export.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/prctl.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/io.h>
|
|
#include <linux/ftrace.h>
|
|
|
|
#include <asm/pgtable.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/fpu/internal.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/prctl.h>
|
|
#include <asm/desc.h>
|
|
#include <asm/proto.h>
|
|
#include <asm/ia32.h>
|
|
#include <asm/syscalls.h>
|
|
#include <asm/debugreg.h>
|
|
#include <asm/switch_to.h>
|
|
#include <asm/xen/hypervisor.h>
|
|
#include <asm/vdso.h>
|
|
#include <asm/intel_rdt.h>
|
|
|
|
__visible DEFINE_PER_CPU(unsigned long, rsp_scratch);
|
|
|
|
/* Prints also some state that isn't saved in the pt_regs */
|
|
void __show_regs(struct pt_regs *regs, int all)
|
|
{
|
|
unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
|
|
unsigned long d0, d1, d2, d3, d6, d7;
|
|
unsigned int fsindex, gsindex;
|
|
unsigned int ds, cs, es;
|
|
|
|
printk(KERN_DEFAULT "RIP: %04lx:%pS\n", regs->cs & 0xffff,
|
|
(void *)regs->ip);
|
|
printk(KERN_DEFAULT "RSP: %04lx:%016lx EFLAGS: %08lx", regs->ss,
|
|
regs->sp, regs->flags);
|
|
if (regs->orig_ax != -1)
|
|
pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax);
|
|
else
|
|
pr_cont("\n");
|
|
|
|
printk(KERN_DEFAULT "RAX: %016lx RBX: %016lx RCX: %016lx\n",
|
|
regs->ax, regs->bx, regs->cx);
|
|
printk(KERN_DEFAULT "RDX: %016lx RSI: %016lx RDI: %016lx\n",
|
|
regs->dx, regs->si, regs->di);
|
|
printk(KERN_DEFAULT "RBP: %016lx R08: %016lx R09: %016lx\n",
|
|
regs->bp, regs->r8, regs->r9);
|
|
printk(KERN_DEFAULT "R10: %016lx R11: %016lx R12: %016lx\n",
|
|
regs->r10, regs->r11, regs->r12);
|
|
printk(KERN_DEFAULT "R13: %016lx R14: %016lx R15: %016lx\n",
|
|
regs->r13, regs->r14, regs->r15);
|
|
|
|
asm("movl %%ds,%0" : "=r" (ds));
|
|
asm("movl %%cs,%0" : "=r" (cs));
|
|
asm("movl %%es,%0" : "=r" (es));
|
|
asm("movl %%fs,%0" : "=r" (fsindex));
|
|
asm("movl %%gs,%0" : "=r" (gsindex));
|
|
|
|
rdmsrl(MSR_FS_BASE, fs);
|
|
rdmsrl(MSR_GS_BASE, gs);
|
|
rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
|
|
|
|
if (!all)
|
|
return;
|
|
|
|
cr0 = read_cr0();
|
|
cr2 = read_cr2();
|
|
cr3 = read_cr3();
|
|
cr4 = __read_cr4();
|
|
|
|
printk(KERN_DEFAULT "FS: %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
|
|
fs, fsindex, gs, gsindex, shadowgs);
|
|
printk(KERN_DEFAULT "CS: %04x DS: %04x ES: %04x CR0: %016lx\n", cs, ds,
|
|
es, cr0);
|
|
printk(KERN_DEFAULT "CR2: %016lx CR3: %016lx CR4: %016lx\n", cr2, cr3,
|
|
cr4);
|
|
|
|
get_debugreg(d0, 0);
|
|
get_debugreg(d1, 1);
|
|
get_debugreg(d2, 2);
|
|
get_debugreg(d3, 3);
|
|
get_debugreg(d6, 6);
|
|
get_debugreg(d7, 7);
|
|
|
|
/* Only print out debug registers if they are in their non-default state. */
|
|
if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
|
|
(d6 == DR6_RESERVED) && (d7 == 0x400))) {
|
|
printk(KERN_DEFAULT "DR0: %016lx DR1: %016lx DR2: %016lx\n",
|
|
d0, d1, d2);
|
|
printk(KERN_DEFAULT "DR3: %016lx DR6: %016lx DR7: %016lx\n",
|
|
d3, d6, d7);
|
|
}
|
|
|
|
if (boot_cpu_has(X86_FEATURE_OSPKE))
|
|
printk(KERN_DEFAULT "PKRU: %08x\n", read_pkru());
|
|
}
|
|
|
|
void release_thread(struct task_struct *dead_task)
|
|
{
|
|
if (dead_task->mm) {
|
|
#ifdef CONFIG_MODIFY_LDT_SYSCALL
|
|
if (dead_task->mm->context.ldt) {
|
|
pr_warn("WARNING: dead process %s still has LDT? <%p/%d>\n",
|
|
dead_task->comm,
|
|
dead_task->mm->context.ldt->entries,
|
|
dead_task->mm->context.ldt->size);
|
|
BUG();
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
|
|
unsigned long arg, struct task_struct *p, unsigned long tls)
|
|
{
|
|
int err;
|
|
struct pt_regs *childregs;
|
|
struct fork_frame *fork_frame;
|
|
struct inactive_task_frame *frame;
|
|
struct task_struct *me = current;
|
|
|
|
p->thread.sp0 = (unsigned long)task_stack_page(p) + THREAD_SIZE;
|
|
childregs = task_pt_regs(p);
|
|
fork_frame = container_of(childregs, struct fork_frame, regs);
|
|
frame = &fork_frame->frame;
|
|
frame->bp = 0;
|
|
frame->ret_addr = (unsigned long) ret_from_fork;
|
|
p->thread.sp = (unsigned long) fork_frame;
|
|
p->thread.io_bitmap_ptr = NULL;
|
|
|
|
savesegment(gs, p->thread.gsindex);
|
|
p->thread.gsbase = p->thread.gsindex ? 0 : me->thread.gsbase;
|
|
savesegment(fs, p->thread.fsindex);
|
|
p->thread.fsbase = p->thread.fsindex ? 0 : me->thread.fsbase;
|
|
savesegment(es, p->thread.es);
|
|
savesegment(ds, p->thread.ds);
|
|
memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
|
|
|
|
if (unlikely(p->flags & PF_KTHREAD)) {
|
|
/* kernel thread */
|
|
memset(childregs, 0, sizeof(struct pt_regs));
|
|
frame->bx = sp; /* function */
|
|
frame->r12 = arg;
|
|
return 0;
|
|
}
|
|
frame->bx = 0;
|
|
*childregs = *current_pt_regs();
|
|
|
|
childregs->ax = 0;
|
|
if (sp)
|
|
childregs->sp = sp;
|
|
|
|
err = -ENOMEM;
|
|
if (unlikely(test_tsk_thread_flag(me, TIF_IO_BITMAP))) {
|
|
p->thread.io_bitmap_ptr = kmemdup(me->thread.io_bitmap_ptr,
|
|
IO_BITMAP_BYTES, GFP_KERNEL);
|
|
if (!p->thread.io_bitmap_ptr) {
|
|
p->thread.io_bitmap_max = 0;
|
|
return -ENOMEM;
|
|
}
|
|
set_tsk_thread_flag(p, TIF_IO_BITMAP);
|
|
}
|
|
|
|
/*
|
|
* Set a new TLS for the child thread?
|
|
*/
|
|
if (clone_flags & CLONE_SETTLS) {
|
|
#ifdef CONFIG_IA32_EMULATION
|
|
if (in_ia32_syscall())
|
|
err = do_set_thread_area(p, -1,
|
|
(struct user_desc __user *)tls, 0);
|
|
else
|
|
#endif
|
|
err = do_arch_prctl(p, ARCH_SET_FS, tls);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
err = 0;
|
|
out:
|
|
if (err && p->thread.io_bitmap_ptr) {
|
|
kfree(p->thread.io_bitmap_ptr);
|
|
p->thread.io_bitmap_max = 0;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static void
|
|
start_thread_common(struct pt_regs *regs, unsigned long new_ip,
|
|
unsigned long new_sp,
|
|
unsigned int _cs, unsigned int _ss, unsigned int _ds)
|
|
{
|
|
loadsegment(fs, 0);
|
|
loadsegment(es, _ds);
|
|
loadsegment(ds, _ds);
|
|
load_gs_index(0);
|
|
regs->ip = new_ip;
|
|
regs->sp = new_sp;
|
|
regs->cs = _cs;
|
|
regs->ss = _ss;
|
|
regs->flags = X86_EFLAGS_IF;
|
|
force_iret();
|
|
}
|
|
|
|
void
|
|
start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
|
|
{
|
|
start_thread_common(regs, new_ip, new_sp,
|
|
__USER_CS, __USER_DS, 0);
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp)
|
|
{
|
|
start_thread_common(regs, new_ip, new_sp,
|
|
test_thread_flag(TIF_X32)
|
|
? __USER_CS : __USER32_CS,
|
|
__USER_DS, __USER_DS);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* switch_to(x,y) should switch tasks from x to y.
|
|
*
|
|
* This could still be optimized:
|
|
* - fold all the options into a flag word and test it with a single test.
|
|
* - could test fs/gs bitsliced
|
|
*
|
|
* Kprobes not supported here. Set the probe on schedule instead.
|
|
* Function graph tracer not supported too.
|
|
*/
|
|
__visible __notrace_funcgraph struct task_struct *
|
|
__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
|
|
{
|
|
struct thread_struct *prev = &prev_p->thread;
|
|
struct thread_struct *next = &next_p->thread;
|
|
struct fpu *prev_fpu = &prev->fpu;
|
|
struct fpu *next_fpu = &next->fpu;
|
|
int cpu = smp_processor_id();
|
|
struct tss_struct *tss = &per_cpu(cpu_tss, cpu);
|
|
unsigned prev_fsindex, prev_gsindex;
|
|
|
|
switch_fpu_prepare(prev_fpu, cpu);
|
|
|
|
/* We must save %fs and %gs before load_TLS() because
|
|
* %fs and %gs may be cleared by load_TLS().
|
|
*
|
|
* (e.g. xen_load_tls())
|
|
*/
|
|
savesegment(fs, prev_fsindex);
|
|
savesegment(gs, prev_gsindex);
|
|
|
|
/*
|
|
* Load TLS before restoring any segments so that segment loads
|
|
* reference the correct GDT entries.
|
|
*/
|
|
load_TLS(next, cpu);
|
|
|
|
/*
|
|
* Leave lazy mode, flushing any hypercalls made here. This
|
|
* must be done after loading TLS entries in the GDT but before
|
|
* loading segments that might reference them, and and it must
|
|
* be done before fpu__restore(), so the TS bit is up to
|
|
* date.
|
|
*/
|
|
arch_end_context_switch(next_p);
|
|
|
|
/* Switch DS and ES.
|
|
*
|
|
* Reading them only returns the selectors, but writing them (if
|
|
* nonzero) loads the full descriptor from the GDT or LDT. The
|
|
* LDT for next is loaded in switch_mm, and the GDT is loaded
|
|
* above.
|
|
*
|
|
* We therefore need to write new values to the segment
|
|
* registers on every context switch unless both the new and old
|
|
* values are zero.
|
|
*
|
|
* Note that we don't need to do anything for CS and SS, as
|
|
* those are saved and restored as part of pt_regs.
|
|
*/
|
|
savesegment(es, prev->es);
|
|
if (unlikely(next->es | prev->es))
|
|
loadsegment(es, next->es);
|
|
|
|
savesegment(ds, prev->ds);
|
|
if (unlikely(next->ds | prev->ds))
|
|
loadsegment(ds, next->ds);
|
|
|
|
/*
|
|
* Switch FS and GS.
|
|
*
|
|
* These are even more complicated than DS and ES: they have
|
|
* 64-bit bases are that controlled by arch_prctl. The bases
|
|
* don't necessarily match the selectors, as user code can do
|
|
* any number of things to cause them to be inconsistent.
|
|
*
|
|
* We don't promise to preserve the bases if the selectors are
|
|
* nonzero. We also don't promise to preserve the base if the
|
|
* selector is zero and the base doesn't match whatever was
|
|
* most recently passed to ARCH_SET_FS/GS. (If/when the
|
|
* FSGSBASE instructions are enabled, we'll need to offer
|
|
* stronger guarantees.)
|
|
*
|
|
* As an invariant,
|
|
* (fsbase != 0 && fsindex != 0) || (gsbase != 0 && gsindex != 0) is
|
|
* impossible.
|
|
*/
|
|
if (next->fsindex) {
|
|
/* Loading a nonzero value into FS sets the index and base. */
|
|
loadsegment(fs, next->fsindex);
|
|
} else {
|
|
if (next->fsbase) {
|
|
/* Next index is zero but next base is nonzero. */
|
|
if (prev_fsindex)
|
|
loadsegment(fs, 0);
|
|
wrmsrl(MSR_FS_BASE, next->fsbase);
|
|
} else {
|
|
/* Next base and index are both zero. */
|
|
if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
|
|
/*
|
|
* We don't know the previous base and can't
|
|
* find out without RDMSR. Forcibly clear it.
|
|
*/
|
|
loadsegment(fs, __USER_DS);
|
|
loadsegment(fs, 0);
|
|
} else {
|
|
/*
|
|
* If the previous index is zero and ARCH_SET_FS
|
|
* didn't change the base, then the base is
|
|
* also zero and we don't need to do anything.
|
|
*/
|
|
if (prev->fsbase || prev_fsindex)
|
|
loadsegment(fs, 0);
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* Save the old state and preserve the invariant.
|
|
* NB: if prev_fsindex == 0, then we can't reliably learn the base
|
|
* without RDMSR because Intel user code can zero it without telling
|
|
* us and AMD user code can program any 32-bit value without telling
|
|
* us.
|
|
*/
|
|
if (prev_fsindex)
|
|
prev->fsbase = 0;
|
|
prev->fsindex = prev_fsindex;
|
|
|
|
if (next->gsindex) {
|
|
/* Loading a nonzero value into GS sets the index and base. */
|
|
load_gs_index(next->gsindex);
|
|
} else {
|
|
if (next->gsbase) {
|
|
/* Next index is zero but next base is nonzero. */
|
|
if (prev_gsindex)
|
|
load_gs_index(0);
|
|
wrmsrl(MSR_KERNEL_GS_BASE, next->gsbase);
|
|
} else {
|
|
/* Next base and index are both zero. */
|
|
if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
|
|
/*
|
|
* We don't know the previous base and can't
|
|
* find out without RDMSR. Forcibly clear it.
|
|
*
|
|
* This contains a pointless SWAPGS pair.
|
|
* Fixing it would involve an explicit check
|
|
* for Xen or a new pvop.
|
|
*/
|
|
load_gs_index(__USER_DS);
|
|
load_gs_index(0);
|
|
} else {
|
|
/*
|
|
* If the previous index is zero and ARCH_SET_GS
|
|
* didn't change the base, then the base is
|
|
* also zero and we don't need to do anything.
|
|
*/
|
|
if (prev->gsbase || prev_gsindex)
|
|
load_gs_index(0);
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* Save the old state and preserve the invariant.
|
|
* NB: if prev_gsindex == 0, then we can't reliably learn the base
|
|
* without RDMSR because Intel user code can zero it without telling
|
|
* us and AMD user code can program any 32-bit value without telling
|
|
* us.
|
|
*/
|
|
if (prev_gsindex)
|
|
prev->gsbase = 0;
|
|
prev->gsindex = prev_gsindex;
|
|
|
|
switch_fpu_finish(next_fpu, cpu);
|
|
|
|
/*
|
|
* Switch the PDA and FPU contexts.
|
|
*/
|
|
this_cpu_write(current_task, next_p);
|
|
|
|
/* Reload esp0 and ss1. This changes current_thread_info(). */
|
|
load_sp0(tss, next);
|
|
|
|
/*
|
|
* Now maybe reload the debug registers and handle I/O bitmaps
|
|
*/
|
|
if (unlikely(task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT ||
|
|
task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV))
|
|
__switch_to_xtra(prev_p, next_p, tss);
|
|
|
|
#ifdef CONFIG_XEN
|
|
/*
|
|
* On Xen PV, IOPL bits in pt_regs->flags have no effect, and
|
|
* current_pt_regs()->flags may not match the current task's
|
|
* intended IOPL. We need to switch it manually.
|
|
*/
|
|
if (unlikely(static_cpu_has(X86_FEATURE_XENPV) &&
|
|
prev->iopl != next->iopl))
|
|
xen_set_iopl_mask(next->iopl);
|
|
#endif
|
|
|
|
if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
|
|
/*
|
|
* AMD CPUs have a misfeature: SYSRET sets the SS selector but
|
|
* does not update the cached descriptor. As a result, if we
|
|
* do SYSRET while SS is NULL, we'll end up in user mode with
|
|
* SS apparently equal to __USER_DS but actually unusable.
|
|
*
|
|
* The straightforward workaround would be to fix it up just
|
|
* before SYSRET, but that would slow down the system call
|
|
* fast paths. Instead, we ensure that SS is never NULL in
|
|
* system call context. We do this by replacing NULL SS
|
|
* selectors at every context switch. SYSCALL sets up a valid
|
|
* SS, so the only way to get NULL is to re-enter the kernel
|
|
* from CPL 3 through an interrupt. Since that can't happen
|
|
* in the same task as a running syscall, we are guaranteed to
|
|
* context switch between every interrupt vector entry and a
|
|
* subsequent SYSRET.
|
|
*
|
|
* We read SS first because SS reads are much faster than
|
|
* writes. Out of caution, we force SS to __KERNEL_DS even if
|
|
* it previously had a different non-NULL value.
|
|
*/
|
|
unsigned short ss_sel;
|
|
savesegment(ss, ss_sel);
|
|
if (ss_sel != __KERNEL_DS)
|
|
loadsegment(ss, __KERNEL_DS);
|
|
}
|
|
|
|
/* Load the Intel cache allocation PQR MSR. */
|
|
intel_rdt_sched_in();
|
|
|
|
return prev_p;
|
|
}
|
|
|
|
void set_personality_64bit(void)
|
|
{
|
|
/* inherit personality from parent */
|
|
|
|
/* Make sure to be in 64bit mode */
|
|
clear_thread_flag(TIF_IA32);
|
|
clear_thread_flag(TIF_ADDR32);
|
|
clear_thread_flag(TIF_X32);
|
|
|
|
/* Ensure the corresponding mm is not marked. */
|
|
if (current->mm)
|
|
current->mm->context.ia32_compat = 0;
|
|
|
|
/* TBD: overwrites user setup. Should have two bits.
|
|
But 64bit processes have always behaved this way,
|
|
so it's not too bad. The main problem is just that
|
|
32bit childs are affected again. */
|
|
current->personality &= ~READ_IMPLIES_EXEC;
|
|
}
|
|
|
|
void set_personality_ia32(bool x32)
|
|
{
|
|
/* inherit personality from parent */
|
|
|
|
/* Make sure to be in 32bit mode */
|
|
set_thread_flag(TIF_ADDR32);
|
|
|
|
/* Mark the associated mm as containing 32-bit tasks. */
|
|
if (x32) {
|
|
clear_thread_flag(TIF_IA32);
|
|
set_thread_flag(TIF_X32);
|
|
if (current->mm)
|
|
current->mm->context.ia32_compat = TIF_X32;
|
|
current->personality &= ~READ_IMPLIES_EXEC;
|
|
/* in_compat_syscall() uses the presence of the x32
|
|
syscall bit flag to determine compat status */
|
|
current->thread.status &= ~TS_COMPAT;
|
|
} else {
|
|
set_thread_flag(TIF_IA32);
|
|
clear_thread_flag(TIF_X32);
|
|
if (current->mm)
|
|
current->mm->context.ia32_compat = TIF_IA32;
|
|
current->personality |= force_personality32;
|
|
/* Prepare the first "return" to user space */
|
|
current->thread.status |= TS_COMPAT;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(set_personality_ia32);
|
|
|
|
#ifdef CONFIG_CHECKPOINT_RESTORE
|
|
static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr)
|
|
{
|
|
int ret;
|
|
|
|
ret = map_vdso_once(image, addr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return (long)image->size;
|
|
}
|
|
#endif
|
|
|
|
long do_arch_prctl(struct task_struct *task, int code, unsigned long addr)
|
|
{
|
|
int ret = 0;
|
|
int doit = task == current;
|
|
int cpu;
|
|
|
|
switch (code) {
|
|
case ARCH_SET_GS:
|
|
if (addr >= TASK_SIZE_MAX)
|
|
return -EPERM;
|
|
cpu = get_cpu();
|
|
task->thread.gsindex = 0;
|
|
task->thread.gsbase = addr;
|
|
if (doit) {
|
|
load_gs_index(0);
|
|
ret = wrmsrl_safe(MSR_KERNEL_GS_BASE, addr);
|
|
}
|
|
put_cpu();
|
|
break;
|
|
case ARCH_SET_FS:
|
|
/* Not strictly needed for fs, but do it for symmetry
|
|
with gs */
|
|
if (addr >= TASK_SIZE_MAX)
|
|
return -EPERM;
|
|
cpu = get_cpu();
|
|
task->thread.fsindex = 0;
|
|
task->thread.fsbase = addr;
|
|
if (doit) {
|
|
/* set the selector to 0 to not confuse __switch_to */
|
|
loadsegment(fs, 0);
|
|
ret = wrmsrl_safe(MSR_FS_BASE, addr);
|
|
}
|
|
put_cpu();
|
|
break;
|
|
case ARCH_GET_FS: {
|
|
unsigned long base;
|
|
if (doit)
|
|
rdmsrl(MSR_FS_BASE, base);
|
|
else
|
|
base = task->thread.fsbase;
|
|
ret = put_user(base, (unsigned long __user *)addr);
|
|
break;
|
|
}
|
|
case ARCH_GET_GS: {
|
|
unsigned long base;
|
|
if (doit)
|
|
rdmsrl(MSR_KERNEL_GS_BASE, base);
|
|
else
|
|
base = task->thread.gsbase;
|
|
ret = put_user(base, (unsigned long __user *)addr);
|
|
break;
|
|
}
|
|
|
|
#ifdef CONFIG_CHECKPOINT_RESTORE
|
|
# ifdef CONFIG_X86_X32_ABI
|
|
case ARCH_MAP_VDSO_X32:
|
|
return prctl_map_vdso(&vdso_image_x32, addr);
|
|
# endif
|
|
# if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
|
|
case ARCH_MAP_VDSO_32:
|
|
return prctl_map_vdso(&vdso_image_32, addr);
|
|
# endif
|
|
case ARCH_MAP_VDSO_64:
|
|
return prctl_map_vdso(&vdso_image_64, addr);
|
|
#endif
|
|
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
long sys_arch_prctl(int code, unsigned long addr)
|
|
{
|
|
return do_arch_prctl(current, code, addr);
|
|
}
|
|
|
|
unsigned long KSTK_ESP(struct task_struct *task)
|
|
{
|
|
return task_pt_regs(task)->sp;
|
|
}
|