5cad24d835
This fixes a race condition that may occur whenever ST micro busy end interrupt is raised just after being unmasked but before leaving mmci interrupt context. A dead-lock has been found if connecting mmci ST Micro variant whose amba id is 0x10480180 to some new eMMC that supports internal caches. Whenever mmci driver enables cache control by programming eMMC's EXT_CSD register, block driver may request to flush the eMMC internal caches causing mmci driver to send a MMC_SWITCH command to the card with FLUSH_CACHE operation. And because busy end interrupt may be mistakenly cleared while not yet processed, this mmc request may never complete. As a result, mmcqd task may be stuck forever. Here is an instance caught by lockup detector which shows that mmcqd task was hung while waiting for mmc_flush_cache command to complete: .. [ 240.251595] INFO: task mmcqd/1:52 blocked for more than 120 seconds. [ 240.257973] Not tainted 4.1.13-00510-g9d91424 #2 [ 240.263109] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 240.270955] mmcqd/1 D c047504c 0 52 2 0x00000000 [ 240.277359] [<c047504c>] (__schedule) from [<c04754a0>] (schedule+0x40/0x98) [ 240.284418] [<c04754a0>] (schedule) from [<c0477d40>] (schedule_timeout+0x148/0x188) [ 240.292191] [<c0477d40>] (schedule_timeout) from [<c0476040>] (wait_for_common+0xa4/0x170) [ 240.300491] [<c0476040>] (wait_for_common) from [<c02efc1c>] (mmc_wait_for_req_done+0x4c/0x13c) [ 240.309224] [<c02efc1c>] (mmc_wait_for_req_done) from [<c02efd90>] (mmc_wait_for_cmd+0x64/0x84) [ 240.317953] [<c02efd90>] (mmc_wait_for_cmd) from [<c02f5b14>] (__mmc_switch+0xa4/0x2a8) [ 240.325964] [<c02f5b14>] (__mmc_switch) from [<c02f5d40>] (mmc_switch+0x28/0x30) [ 240.333389] [<c02f5d40>] (mmc_switch) from [<c02f0984>] (mmc_flush_cache+0x54/0x80) [ 240.341073] [<c02f0984>] (mmc_flush_cache) from [<c02ff0c4>] (mmc_blk_issue_rq+0x114/0x4e8) [ 240.349459] [<c02ff0c4>] (mmc_blk_issue_rq) from [<c03008d4>] (mmc_queue_thread+0xc0/0x180) [ 240.357844] [<c03008d4>] (mmc_queue_thread) from [<c003cf90>] (kthread+0xdc/0xf4) [ 240.365339] [<c003cf90>] (kthread) from [<c0010068>] (ret_from_fork+0x14/0x2c) .. .. [ 240.664311] INFO: task partprobe:564 blocked for more than 120 seconds. [ 240.670943] Not tainted 4.1.13-00510-g9d91424 #2 [ 240.676078] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 240.683922] partprobe D c047504c 0 564 486 0x00000000 [ 240.690318] [<c047504c>] (__schedule) from [<c04754a0>] (schedule+0x40/0x98) [ 240.697396] [<c04754a0>] (schedule) from [<c0477d40>] (schedule_timeout+0x148/0x188) [ 240.705149] [<c0477d40>] (schedule_timeout) from [<c0476040>] (wait_for_common+0xa4/0x170) [ 240.713446] [<c0476040>] (wait_for_common) from [<c01f3300>] (submit_bio_wait+0x58/0x64) [ 240.721571] [<c01f3300>] (submit_bio_wait) from [<c01fbbd8>] (blkdev_issue_flush+0x60/0x88) [ 240.729957] [<c01fbbd8>] (blkdev_issue_flush) from [<c010ff84>] (blkdev_fsync+0x34/0x44) [ 240.738083] [<c010ff84>] (blkdev_fsync) from [<c0109594>] (do_fsync+0x3c/0x64) [ 240.745319] [<c0109594>] (do_fsync) from [<c000ffc0>] (ret_fast_syscall+0x0/0x3c) .. Here is the detailed sequence showing when this issue may happen: 1) At probe time, mmci device is initialized and card busy detection based on DAT[0] monitoring is enabled. 2) Later during run time, since card reported to support internal caches, a MMCI_SWITCH command is sent to eMMC device with FLUSH_CACHE operation. On receiving this command, eMMC may enter busy state (for a relatively short time in the case of the dead-lock). 3) Then mmci interrupt is raised and mmci_irq() is called: MMCISTATUS register is read and is equal to 0x01000440. So the following status bits are set: - MCI_CMDRESPEND (= 6) - MCI_DATABLOCKEND (= 10) - MCI_ST_CARDBUSY (= 24) Since MMCIMASK0 register is 0x3FF, status variable is set to 0x00000040 and BIT MCI_CMDRESPEND is cleared by writing MMCICLEAR register. Then mmci_cmd_irq() is called. Considering the following conditions: - host->busy_status is 0, - this is a "busy response", - reading again MMCISTATUS register gives 0x1000400, MMCIMASK0 is updated to unmask MCI_ST_BUSYEND bit. Thus, MMCIMASK0 is set to 0x010003FF and host->busy_status is set to wait for busy end completion. Back again in status loop of mmci_irq(), we quickly go through mmci_data_irq() as there are no data in that case. And we finally go through following test at the end of while(status) loop: /* * Don't poll for busy completion in irq context. */ if (host->variant->busy_detect && host->busy_status) status &= ~host->variant->busy_detect_flag; Because status variable is not yet null (is equal to 0x40), we do not leave interrupt context yet but we loop again into while(status) loop. So we run across following steps: a) MMCISTATUS register is read again and this time is equal to 0x01000400. So that following bits are set: - MCI_DATABLOCKEND (= 10) - MCI_ST_CARDBUSY (= 24) Since MMCIMASK0 register is equal to 0x010003FF: b) status variable is set to 0x01000000. c) MCI_ST_CARDBUSY bit is cleared by writing MMCICLEAR register. Then, mmci_cmd_irq() is called one more time. Since host->busy_status is set and that MCI_ST_CARDBUSY is set in status variable, we just return from this function. Back again in mmci_irq(), status variable is set to 0 and we finally leave the while(status) loop. As a result we leave interrupt context, waiting for busy end interrupt event. Now, consider that busy end completion is raised IN BETWEEN steps 3.a) and 3.c). In such a case, we may mistakenly clear busy end interrupt at step 3.c) while it has not yet been processed. This will result in mmc command to wait forever for a busy end completion that will never happen. To fix the problem, this patch implements the following changes: Considering that the mmci seems to be triggering the IRQ on both edges while monitoring DAT0 for busy completion and that same status bit is used to monitor start and end of busy detection, special care must be taken to make sure that both start and end interrupts are always cleared one after the other. 1) Clearing of card busy bit is moved in mmc_cmd_irq() function where unmasking of busy end bit is effectively handled. 2) Just before unmasking busy end event, busy start event is cleared by writing card busy bit in MMCICLEAR register. 3) Finally, once we are no more busy with a command, busy end event is cleared writing again card busy bit in MMCICLEAR register. This patch has been tested with the ST Accordo5 machine, not yet supported upstream but relies on the mmci driver. Signed-off-by: Sarang Mairal <sarang.mairal@garmin.com> Signed-off-by: Jean-Nicolas Graux <jean-nicolas.graux@st.com> Reviewed-by: Linus Walleij <linus.walleij@linaro.org> Tested-by: Ulf Hansson <ulf.hansson@linaro.org> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
1980 lines
50 KiB
C
1980 lines
50 KiB
C
/*
|
|
* linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
|
|
*
|
|
* Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
|
|
* Copyright (C) 2010 ST-Ericsson SA
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/init.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/device.h>
|
|
#include <linux/io.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/err.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/log2.h>
|
|
#include <linux/mmc/pm.h>
|
|
#include <linux/mmc/host.h>
|
|
#include <linux/mmc/card.h>
|
|
#include <linux/mmc/slot-gpio.h>
|
|
#include <linux/amba/bus.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/gpio.h>
|
|
#include <linux/of_gpio.h>
|
|
#include <linux/regulator/consumer.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/amba/mmci.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/types.h>
|
|
#include <linux/pinctrl/consumer.h>
|
|
|
|
#include <asm/div64.h>
|
|
#include <asm/io.h>
|
|
|
|
#include "mmci.h"
|
|
#include "mmci_qcom_dml.h"
|
|
|
|
#define DRIVER_NAME "mmci-pl18x"
|
|
|
|
static unsigned int fmax = 515633;
|
|
|
|
/**
|
|
* struct variant_data - MMCI variant-specific quirks
|
|
* @clkreg: default value for MCICLOCK register
|
|
* @clkreg_enable: enable value for MMCICLOCK register
|
|
* @clkreg_8bit_bus_enable: enable value for 8 bit bus
|
|
* @clkreg_neg_edge_enable: enable value for inverted data/cmd output
|
|
* @datalength_bits: number of bits in the MMCIDATALENGTH register
|
|
* @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
|
|
* is asserted (likewise for RX)
|
|
* @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
|
|
* is asserted (likewise for RX)
|
|
* @data_cmd_enable: enable value for data commands.
|
|
* @st_sdio: enable ST specific SDIO logic
|
|
* @st_clkdiv: true if using a ST-specific clock divider algorithm
|
|
* @datactrl_mask_ddrmode: ddr mode mask in datactrl register.
|
|
* @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
|
|
* @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
|
|
* register
|
|
* @datactrl_mask_sdio: SDIO enable mask in datactrl register
|
|
* @pwrreg_powerup: power up value for MMCIPOWER register
|
|
* @f_max: maximum clk frequency supported by the controller.
|
|
* @signal_direction: input/out direction of bus signals can be indicated
|
|
* @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
|
|
* @busy_detect: true if the variant supports busy detection on DAT0.
|
|
* @busy_dpsm_flag: bitmask enabling busy detection in the DPSM
|
|
* @busy_detect_flag: bitmask identifying the bit in the MMCISTATUS register
|
|
* indicating that the card is busy
|
|
* @busy_detect_mask: bitmask identifying the bit in the MMCIMASK0 to mask for
|
|
* getting busy end detection interrupts
|
|
* @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
|
|
* @explicit_mclk_control: enable explicit mclk control in driver.
|
|
* @qcom_fifo: enables qcom specific fifo pio read logic.
|
|
* @qcom_dml: enables qcom specific dma glue for dma transfers.
|
|
* @reversed_irq_handling: handle data irq before cmd irq.
|
|
*/
|
|
struct variant_data {
|
|
unsigned int clkreg;
|
|
unsigned int clkreg_enable;
|
|
unsigned int clkreg_8bit_bus_enable;
|
|
unsigned int clkreg_neg_edge_enable;
|
|
unsigned int datalength_bits;
|
|
unsigned int fifosize;
|
|
unsigned int fifohalfsize;
|
|
unsigned int data_cmd_enable;
|
|
unsigned int datactrl_mask_ddrmode;
|
|
unsigned int datactrl_mask_sdio;
|
|
bool st_sdio;
|
|
bool st_clkdiv;
|
|
bool blksz_datactrl16;
|
|
bool blksz_datactrl4;
|
|
u32 pwrreg_powerup;
|
|
u32 f_max;
|
|
bool signal_direction;
|
|
bool pwrreg_clkgate;
|
|
bool busy_detect;
|
|
u32 busy_dpsm_flag;
|
|
u32 busy_detect_flag;
|
|
u32 busy_detect_mask;
|
|
bool pwrreg_nopower;
|
|
bool explicit_mclk_control;
|
|
bool qcom_fifo;
|
|
bool qcom_dml;
|
|
bool reversed_irq_handling;
|
|
};
|
|
|
|
static struct variant_data variant_arm = {
|
|
.fifosize = 16 * 4,
|
|
.fifohalfsize = 8 * 4,
|
|
.datalength_bits = 16,
|
|
.pwrreg_powerup = MCI_PWR_UP,
|
|
.f_max = 100000000,
|
|
.reversed_irq_handling = true,
|
|
};
|
|
|
|
static struct variant_data variant_arm_extended_fifo = {
|
|
.fifosize = 128 * 4,
|
|
.fifohalfsize = 64 * 4,
|
|
.datalength_bits = 16,
|
|
.pwrreg_powerup = MCI_PWR_UP,
|
|
.f_max = 100000000,
|
|
};
|
|
|
|
static struct variant_data variant_arm_extended_fifo_hwfc = {
|
|
.fifosize = 128 * 4,
|
|
.fifohalfsize = 64 * 4,
|
|
.clkreg_enable = MCI_ARM_HWFCEN,
|
|
.datalength_bits = 16,
|
|
.pwrreg_powerup = MCI_PWR_UP,
|
|
.f_max = 100000000,
|
|
};
|
|
|
|
static struct variant_data variant_u300 = {
|
|
.fifosize = 16 * 4,
|
|
.fifohalfsize = 8 * 4,
|
|
.clkreg_enable = MCI_ST_U300_HWFCEN,
|
|
.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
|
|
.datalength_bits = 16,
|
|
.datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
|
|
.st_sdio = true,
|
|
.pwrreg_powerup = MCI_PWR_ON,
|
|
.f_max = 100000000,
|
|
.signal_direction = true,
|
|
.pwrreg_clkgate = true,
|
|
.pwrreg_nopower = true,
|
|
};
|
|
|
|
static struct variant_data variant_nomadik = {
|
|
.fifosize = 16 * 4,
|
|
.fifohalfsize = 8 * 4,
|
|
.clkreg = MCI_CLK_ENABLE,
|
|
.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
|
|
.datalength_bits = 24,
|
|
.datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
|
|
.st_sdio = true,
|
|
.st_clkdiv = true,
|
|
.pwrreg_powerup = MCI_PWR_ON,
|
|
.f_max = 100000000,
|
|
.signal_direction = true,
|
|
.pwrreg_clkgate = true,
|
|
.pwrreg_nopower = true,
|
|
};
|
|
|
|
static struct variant_data variant_ux500 = {
|
|
.fifosize = 30 * 4,
|
|
.fifohalfsize = 8 * 4,
|
|
.clkreg = MCI_CLK_ENABLE,
|
|
.clkreg_enable = MCI_ST_UX500_HWFCEN,
|
|
.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
|
|
.clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
|
|
.datalength_bits = 24,
|
|
.datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
|
|
.st_sdio = true,
|
|
.st_clkdiv = true,
|
|
.pwrreg_powerup = MCI_PWR_ON,
|
|
.f_max = 100000000,
|
|
.signal_direction = true,
|
|
.pwrreg_clkgate = true,
|
|
.busy_detect = true,
|
|
.busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE,
|
|
.busy_detect_flag = MCI_ST_CARDBUSY,
|
|
.busy_detect_mask = MCI_ST_BUSYENDMASK,
|
|
.pwrreg_nopower = true,
|
|
};
|
|
|
|
static struct variant_data variant_ux500v2 = {
|
|
.fifosize = 30 * 4,
|
|
.fifohalfsize = 8 * 4,
|
|
.clkreg = MCI_CLK_ENABLE,
|
|
.clkreg_enable = MCI_ST_UX500_HWFCEN,
|
|
.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
|
|
.clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
|
|
.datactrl_mask_ddrmode = MCI_DPSM_ST_DDRMODE,
|
|
.datalength_bits = 24,
|
|
.datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
|
|
.st_sdio = true,
|
|
.st_clkdiv = true,
|
|
.blksz_datactrl16 = true,
|
|
.pwrreg_powerup = MCI_PWR_ON,
|
|
.f_max = 100000000,
|
|
.signal_direction = true,
|
|
.pwrreg_clkgate = true,
|
|
.busy_detect = true,
|
|
.busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE,
|
|
.busy_detect_flag = MCI_ST_CARDBUSY,
|
|
.busy_detect_mask = MCI_ST_BUSYENDMASK,
|
|
.pwrreg_nopower = true,
|
|
};
|
|
|
|
static struct variant_data variant_qcom = {
|
|
.fifosize = 16 * 4,
|
|
.fifohalfsize = 8 * 4,
|
|
.clkreg = MCI_CLK_ENABLE,
|
|
.clkreg_enable = MCI_QCOM_CLK_FLOWENA |
|
|
MCI_QCOM_CLK_SELECT_IN_FBCLK,
|
|
.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
|
|
.datactrl_mask_ddrmode = MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
|
|
.data_cmd_enable = MCI_CPSM_QCOM_DATCMD,
|
|
.blksz_datactrl4 = true,
|
|
.datalength_bits = 24,
|
|
.pwrreg_powerup = MCI_PWR_UP,
|
|
.f_max = 208000000,
|
|
.explicit_mclk_control = true,
|
|
.qcom_fifo = true,
|
|
.qcom_dml = true,
|
|
};
|
|
|
|
/* Busy detection for the ST Micro variant */
|
|
static int mmci_card_busy(struct mmc_host *mmc)
|
|
{
|
|
struct mmci_host *host = mmc_priv(mmc);
|
|
unsigned long flags;
|
|
int busy = 0;
|
|
|
|
spin_lock_irqsave(&host->lock, flags);
|
|
if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
|
|
busy = 1;
|
|
spin_unlock_irqrestore(&host->lock, flags);
|
|
|
|
return busy;
|
|
}
|
|
|
|
/*
|
|
* Validate mmc prerequisites
|
|
*/
|
|
static int mmci_validate_data(struct mmci_host *host,
|
|
struct mmc_data *data)
|
|
{
|
|
if (!data)
|
|
return 0;
|
|
|
|
if (!is_power_of_2(data->blksz)) {
|
|
dev_err(mmc_dev(host->mmc),
|
|
"unsupported block size (%d bytes)\n", data->blksz);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void mmci_reg_delay(struct mmci_host *host)
|
|
{
|
|
/*
|
|
* According to the spec, at least three feedback clock cycles
|
|
* of max 52 MHz must pass between two writes to the MMCICLOCK reg.
|
|
* Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
|
|
* Worst delay time during card init is at 100 kHz => 30 us.
|
|
* Worst delay time when up and running is at 25 MHz => 120 ns.
|
|
*/
|
|
if (host->cclk < 25000000)
|
|
udelay(30);
|
|
else
|
|
ndelay(120);
|
|
}
|
|
|
|
/*
|
|
* This must be called with host->lock held
|
|
*/
|
|
static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
|
|
{
|
|
if (host->clk_reg != clk) {
|
|
host->clk_reg = clk;
|
|
writel(clk, host->base + MMCICLOCK);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This must be called with host->lock held
|
|
*/
|
|
static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
|
|
{
|
|
if (host->pwr_reg != pwr) {
|
|
host->pwr_reg = pwr;
|
|
writel(pwr, host->base + MMCIPOWER);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This must be called with host->lock held
|
|
*/
|
|
static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
|
|
{
|
|
/* Keep busy mode in DPSM if enabled */
|
|
datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
|
|
|
|
if (host->datactrl_reg != datactrl) {
|
|
host->datactrl_reg = datactrl;
|
|
writel(datactrl, host->base + MMCIDATACTRL);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This must be called with host->lock held
|
|
*/
|
|
static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
|
|
{
|
|
struct variant_data *variant = host->variant;
|
|
u32 clk = variant->clkreg;
|
|
|
|
/* Make sure cclk reflects the current calculated clock */
|
|
host->cclk = 0;
|
|
|
|
if (desired) {
|
|
if (variant->explicit_mclk_control) {
|
|
host->cclk = host->mclk;
|
|
} else if (desired >= host->mclk) {
|
|
clk = MCI_CLK_BYPASS;
|
|
if (variant->st_clkdiv)
|
|
clk |= MCI_ST_UX500_NEG_EDGE;
|
|
host->cclk = host->mclk;
|
|
} else if (variant->st_clkdiv) {
|
|
/*
|
|
* DB8500 TRM says f = mclk / (clkdiv + 2)
|
|
* => clkdiv = (mclk / f) - 2
|
|
* Round the divider up so we don't exceed the max
|
|
* frequency
|
|
*/
|
|
clk = DIV_ROUND_UP(host->mclk, desired) - 2;
|
|
if (clk >= 256)
|
|
clk = 255;
|
|
host->cclk = host->mclk / (clk + 2);
|
|
} else {
|
|
/*
|
|
* PL180 TRM says f = mclk / (2 * (clkdiv + 1))
|
|
* => clkdiv = mclk / (2 * f) - 1
|
|
*/
|
|
clk = host->mclk / (2 * desired) - 1;
|
|
if (clk >= 256)
|
|
clk = 255;
|
|
host->cclk = host->mclk / (2 * (clk + 1));
|
|
}
|
|
|
|
clk |= variant->clkreg_enable;
|
|
clk |= MCI_CLK_ENABLE;
|
|
/* This hasn't proven to be worthwhile */
|
|
/* clk |= MCI_CLK_PWRSAVE; */
|
|
}
|
|
|
|
/* Set actual clock for debug */
|
|
host->mmc->actual_clock = host->cclk;
|
|
|
|
if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
|
|
clk |= MCI_4BIT_BUS;
|
|
if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
|
|
clk |= variant->clkreg_8bit_bus_enable;
|
|
|
|
if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
|
|
host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
|
|
clk |= variant->clkreg_neg_edge_enable;
|
|
|
|
mmci_write_clkreg(host, clk);
|
|
}
|
|
|
|
static void
|
|
mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
|
|
{
|
|
writel(0, host->base + MMCICOMMAND);
|
|
|
|
BUG_ON(host->data);
|
|
|
|
host->mrq = NULL;
|
|
host->cmd = NULL;
|
|
|
|
mmc_request_done(host->mmc, mrq);
|
|
}
|
|
|
|
static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
|
|
{
|
|
void __iomem *base = host->base;
|
|
|
|
if (host->singleirq) {
|
|
unsigned int mask0 = readl(base + MMCIMASK0);
|
|
|
|
mask0 &= ~MCI_IRQ1MASK;
|
|
mask0 |= mask;
|
|
|
|
writel(mask0, base + MMCIMASK0);
|
|
}
|
|
|
|
writel(mask, base + MMCIMASK1);
|
|
}
|
|
|
|
static void mmci_stop_data(struct mmci_host *host)
|
|
{
|
|
mmci_write_datactrlreg(host, 0);
|
|
mmci_set_mask1(host, 0);
|
|
host->data = NULL;
|
|
}
|
|
|
|
static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
|
|
{
|
|
unsigned int flags = SG_MITER_ATOMIC;
|
|
|
|
if (data->flags & MMC_DATA_READ)
|
|
flags |= SG_MITER_TO_SG;
|
|
else
|
|
flags |= SG_MITER_FROM_SG;
|
|
|
|
sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
|
|
}
|
|
|
|
/*
|
|
* All the DMA operation mode stuff goes inside this ifdef.
|
|
* This assumes that you have a generic DMA device interface,
|
|
* no custom DMA interfaces are supported.
|
|
*/
|
|
#ifdef CONFIG_DMA_ENGINE
|
|
static void mmci_dma_setup(struct mmci_host *host)
|
|
{
|
|
const char *rxname, *txname;
|
|
struct variant_data *variant = host->variant;
|
|
|
|
host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
|
|
host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
|
|
|
|
/* initialize pre request cookie */
|
|
host->next_data.cookie = 1;
|
|
|
|
/*
|
|
* If only an RX channel is specified, the driver will
|
|
* attempt to use it bidirectionally, however if it is
|
|
* is specified but cannot be located, DMA will be disabled.
|
|
*/
|
|
if (host->dma_rx_channel && !host->dma_tx_channel)
|
|
host->dma_tx_channel = host->dma_rx_channel;
|
|
|
|
if (host->dma_rx_channel)
|
|
rxname = dma_chan_name(host->dma_rx_channel);
|
|
else
|
|
rxname = "none";
|
|
|
|
if (host->dma_tx_channel)
|
|
txname = dma_chan_name(host->dma_tx_channel);
|
|
else
|
|
txname = "none";
|
|
|
|
dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
|
|
rxname, txname);
|
|
|
|
/*
|
|
* Limit the maximum segment size in any SG entry according to
|
|
* the parameters of the DMA engine device.
|
|
*/
|
|
if (host->dma_tx_channel) {
|
|
struct device *dev = host->dma_tx_channel->device->dev;
|
|
unsigned int max_seg_size = dma_get_max_seg_size(dev);
|
|
|
|
if (max_seg_size < host->mmc->max_seg_size)
|
|
host->mmc->max_seg_size = max_seg_size;
|
|
}
|
|
if (host->dma_rx_channel) {
|
|
struct device *dev = host->dma_rx_channel->device->dev;
|
|
unsigned int max_seg_size = dma_get_max_seg_size(dev);
|
|
|
|
if (max_seg_size < host->mmc->max_seg_size)
|
|
host->mmc->max_seg_size = max_seg_size;
|
|
}
|
|
|
|
if (variant->qcom_dml && host->dma_rx_channel && host->dma_tx_channel)
|
|
if (dml_hw_init(host, host->mmc->parent->of_node))
|
|
variant->qcom_dml = false;
|
|
}
|
|
|
|
/*
|
|
* This is used in or so inline it
|
|
* so it can be discarded.
|
|
*/
|
|
static inline void mmci_dma_release(struct mmci_host *host)
|
|
{
|
|
if (host->dma_rx_channel)
|
|
dma_release_channel(host->dma_rx_channel);
|
|
if (host->dma_tx_channel)
|
|
dma_release_channel(host->dma_tx_channel);
|
|
host->dma_rx_channel = host->dma_tx_channel = NULL;
|
|
}
|
|
|
|
static void mmci_dma_data_error(struct mmci_host *host)
|
|
{
|
|
dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
|
|
dmaengine_terminate_all(host->dma_current);
|
|
host->dma_current = NULL;
|
|
host->dma_desc_current = NULL;
|
|
host->data->host_cookie = 0;
|
|
}
|
|
|
|
static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
|
|
{
|
|
struct dma_chan *chan;
|
|
enum dma_data_direction dir;
|
|
|
|
if (data->flags & MMC_DATA_READ) {
|
|
dir = DMA_FROM_DEVICE;
|
|
chan = host->dma_rx_channel;
|
|
} else {
|
|
dir = DMA_TO_DEVICE;
|
|
chan = host->dma_tx_channel;
|
|
}
|
|
|
|
dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
|
|
}
|
|
|
|
static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
|
|
{
|
|
u32 status;
|
|
int i;
|
|
|
|
/* Wait up to 1ms for the DMA to complete */
|
|
for (i = 0; ; i++) {
|
|
status = readl(host->base + MMCISTATUS);
|
|
if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
|
|
break;
|
|
udelay(10);
|
|
}
|
|
|
|
/*
|
|
* Check to see whether we still have some data left in the FIFO -
|
|
* this catches DMA controllers which are unable to monitor the
|
|
* DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
|
|
* contiguous buffers. On TX, we'll get a FIFO underrun error.
|
|
*/
|
|
if (status & MCI_RXDATAAVLBLMASK) {
|
|
mmci_dma_data_error(host);
|
|
if (!data->error)
|
|
data->error = -EIO;
|
|
}
|
|
|
|
if (!data->host_cookie)
|
|
mmci_dma_unmap(host, data);
|
|
|
|
/*
|
|
* Use of DMA with scatter-gather is impossible.
|
|
* Give up with DMA and switch back to PIO mode.
|
|
*/
|
|
if (status & MCI_RXDATAAVLBLMASK) {
|
|
dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
|
|
mmci_dma_release(host);
|
|
}
|
|
|
|
host->dma_current = NULL;
|
|
host->dma_desc_current = NULL;
|
|
}
|
|
|
|
/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
|
|
static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
|
|
struct dma_chan **dma_chan,
|
|
struct dma_async_tx_descriptor **dma_desc)
|
|
{
|
|
struct variant_data *variant = host->variant;
|
|
struct dma_slave_config conf = {
|
|
.src_addr = host->phybase + MMCIFIFO,
|
|
.dst_addr = host->phybase + MMCIFIFO,
|
|
.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
|
|
.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
|
|
.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
|
|
.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
|
|
.device_fc = false,
|
|
};
|
|
struct dma_chan *chan;
|
|
struct dma_device *device;
|
|
struct dma_async_tx_descriptor *desc;
|
|
enum dma_data_direction buffer_dirn;
|
|
int nr_sg;
|
|
unsigned long flags = DMA_CTRL_ACK;
|
|
|
|
if (data->flags & MMC_DATA_READ) {
|
|
conf.direction = DMA_DEV_TO_MEM;
|
|
buffer_dirn = DMA_FROM_DEVICE;
|
|
chan = host->dma_rx_channel;
|
|
} else {
|
|
conf.direction = DMA_MEM_TO_DEV;
|
|
buffer_dirn = DMA_TO_DEVICE;
|
|
chan = host->dma_tx_channel;
|
|
}
|
|
|
|
/* If there's no DMA channel, fall back to PIO */
|
|
if (!chan)
|
|
return -EINVAL;
|
|
|
|
/* If less than or equal to the fifo size, don't bother with DMA */
|
|
if (data->blksz * data->blocks <= variant->fifosize)
|
|
return -EINVAL;
|
|
|
|
device = chan->device;
|
|
nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
|
|
if (nr_sg == 0)
|
|
return -EINVAL;
|
|
|
|
if (host->variant->qcom_dml)
|
|
flags |= DMA_PREP_INTERRUPT;
|
|
|
|
dmaengine_slave_config(chan, &conf);
|
|
desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
|
|
conf.direction, flags);
|
|
if (!desc)
|
|
goto unmap_exit;
|
|
|
|
*dma_chan = chan;
|
|
*dma_desc = desc;
|
|
|
|
return 0;
|
|
|
|
unmap_exit:
|
|
dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static inline int mmci_dma_prep_data(struct mmci_host *host,
|
|
struct mmc_data *data)
|
|
{
|
|
/* Check if next job is already prepared. */
|
|
if (host->dma_current && host->dma_desc_current)
|
|
return 0;
|
|
|
|
/* No job were prepared thus do it now. */
|
|
return __mmci_dma_prep_data(host, data, &host->dma_current,
|
|
&host->dma_desc_current);
|
|
}
|
|
|
|
static inline int mmci_dma_prep_next(struct mmci_host *host,
|
|
struct mmc_data *data)
|
|
{
|
|
struct mmci_host_next *nd = &host->next_data;
|
|
return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
|
|
}
|
|
|
|
static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
|
|
{
|
|
int ret;
|
|
struct mmc_data *data = host->data;
|
|
|
|
ret = mmci_dma_prep_data(host, host->data);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Okay, go for it. */
|
|
dev_vdbg(mmc_dev(host->mmc),
|
|
"Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
|
|
data->sg_len, data->blksz, data->blocks, data->flags);
|
|
dmaengine_submit(host->dma_desc_current);
|
|
dma_async_issue_pending(host->dma_current);
|
|
|
|
if (host->variant->qcom_dml)
|
|
dml_start_xfer(host, data);
|
|
|
|
datactrl |= MCI_DPSM_DMAENABLE;
|
|
|
|
/* Trigger the DMA transfer */
|
|
mmci_write_datactrlreg(host, datactrl);
|
|
|
|
/*
|
|
* Let the MMCI say when the data is ended and it's time
|
|
* to fire next DMA request. When that happens, MMCI will
|
|
* call mmci_data_end()
|
|
*/
|
|
writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
|
|
host->base + MMCIMASK0);
|
|
return 0;
|
|
}
|
|
|
|
static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
|
|
{
|
|
struct mmci_host_next *next = &host->next_data;
|
|
|
|
WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
|
|
WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
|
|
|
|
host->dma_desc_current = next->dma_desc;
|
|
host->dma_current = next->dma_chan;
|
|
next->dma_desc = NULL;
|
|
next->dma_chan = NULL;
|
|
}
|
|
|
|
static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
|
|
{
|
|
struct mmci_host *host = mmc_priv(mmc);
|
|
struct mmc_data *data = mrq->data;
|
|
struct mmci_host_next *nd = &host->next_data;
|
|
|
|
if (!data)
|
|
return;
|
|
|
|
BUG_ON(data->host_cookie);
|
|
|
|
if (mmci_validate_data(host, data))
|
|
return;
|
|
|
|
if (!mmci_dma_prep_next(host, data))
|
|
data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
|
|
}
|
|
|
|
static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
|
|
int err)
|
|
{
|
|
struct mmci_host *host = mmc_priv(mmc);
|
|
struct mmc_data *data = mrq->data;
|
|
|
|
if (!data || !data->host_cookie)
|
|
return;
|
|
|
|
mmci_dma_unmap(host, data);
|
|
|
|
if (err) {
|
|
struct mmci_host_next *next = &host->next_data;
|
|
struct dma_chan *chan;
|
|
if (data->flags & MMC_DATA_READ)
|
|
chan = host->dma_rx_channel;
|
|
else
|
|
chan = host->dma_tx_channel;
|
|
dmaengine_terminate_all(chan);
|
|
|
|
if (host->dma_desc_current == next->dma_desc)
|
|
host->dma_desc_current = NULL;
|
|
|
|
if (host->dma_current == next->dma_chan)
|
|
host->dma_current = NULL;
|
|
|
|
next->dma_desc = NULL;
|
|
next->dma_chan = NULL;
|
|
data->host_cookie = 0;
|
|
}
|
|
}
|
|
|
|
#else
|
|
/* Blank functions if the DMA engine is not available */
|
|
static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
|
|
{
|
|
}
|
|
static inline void mmci_dma_setup(struct mmci_host *host)
|
|
{
|
|
}
|
|
|
|
static inline void mmci_dma_release(struct mmci_host *host)
|
|
{
|
|
}
|
|
|
|
static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
|
|
{
|
|
}
|
|
|
|
static inline void mmci_dma_finalize(struct mmci_host *host,
|
|
struct mmc_data *data)
|
|
{
|
|
}
|
|
|
|
static inline void mmci_dma_data_error(struct mmci_host *host)
|
|
{
|
|
}
|
|
|
|
static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
|
|
#define mmci_pre_request NULL
|
|
#define mmci_post_request NULL
|
|
|
|
#endif
|
|
|
|
static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
|
|
{
|
|
struct variant_data *variant = host->variant;
|
|
unsigned int datactrl, timeout, irqmask;
|
|
unsigned long long clks;
|
|
void __iomem *base;
|
|
int blksz_bits;
|
|
|
|
dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
|
|
data->blksz, data->blocks, data->flags);
|
|
|
|
host->data = data;
|
|
host->size = data->blksz * data->blocks;
|
|
data->bytes_xfered = 0;
|
|
|
|
clks = (unsigned long long)data->timeout_ns * host->cclk;
|
|
do_div(clks, NSEC_PER_SEC);
|
|
|
|
timeout = data->timeout_clks + (unsigned int)clks;
|
|
|
|
base = host->base;
|
|
writel(timeout, base + MMCIDATATIMER);
|
|
writel(host->size, base + MMCIDATALENGTH);
|
|
|
|
blksz_bits = ffs(data->blksz) - 1;
|
|
BUG_ON(1 << blksz_bits != data->blksz);
|
|
|
|
if (variant->blksz_datactrl16)
|
|
datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
|
|
else if (variant->blksz_datactrl4)
|
|
datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
|
|
else
|
|
datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
|
|
|
|
if (data->flags & MMC_DATA_READ)
|
|
datactrl |= MCI_DPSM_DIRECTION;
|
|
|
|
if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
|
|
u32 clk;
|
|
|
|
datactrl |= variant->datactrl_mask_sdio;
|
|
|
|
/*
|
|
* The ST Micro variant for SDIO small write transfers
|
|
* needs to have clock H/W flow control disabled,
|
|
* otherwise the transfer will not start. The threshold
|
|
* depends on the rate of MCLK.
|
|
*/
|
|
if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
|
|
(host->size < 8 ||
|
|
(host->size <= 8 && host->mclk > 50000000)))
|
|
clk = host->clk_reg & ~variant->clkreg_enable;
|
|
else
|
|
clk = host->clk_reg | variant->clkreg_enable;
|
|
|
|
mmci_write_clkreg(host, clk);
|
|
}
|
|
|
|
if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
|
|
host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
|
|
datactrl |= variant->datactrl_mask_ddrmode;
|
|
|
|
/*
|
|
* Attempt to use DMA operation mode, if this
|
|
* should fail, fall back to PIO mode
|
|
*/
|
|
if (!mmci_dma_start_data(host, datactrl))
|
|
return;
|
|
|
|
/* IRQ mode, map the SG list for CPU reading/writing */
|
|
mmci_init_sg(host, data);
|
|
|
|
if (data->flags & MMC_DATA_READ) {
|
|
irqmask = MCI_RXFIFOHALFFULLMASK;
|
|
|
|
/*
|
|
* If we have less than the fifo 'half-full' threshold to
|
|
* transfer, trigger a PIO interrupt as soon as any data
|
|
* is available.
|
|
*/
|
|
if (host->size < variant->fifohalfsize)
|
|
irqmask |= MCI_RXDATAAVLBLMASK;
|
|
} else {
|
|
/*
|
|
* We don't actually need to include "FIFO empty" here
|
|
* since its implicit in "FIFO half empty".
|
|
*/
|
|
irqmask = MCI_TXFIFOHALFEMPTYMASK;
|
|
}
|
|
|
|
mmci_write_datactrlreg(host, datactrl);
|
|
writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
|
|
mmci_set_mask1(host, irqmask);
|
|
}
|
|
|
|
static void
|
|
mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
|
|
{
|
|
void __iomem *base = host->base;
|
|
|
|
dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
|
|
cmd->opcode, cmd->arg, cmd->flags);
|
|
|
|
if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
|
|
writel(0, base + MMCICOMMAND);
|
|
mmci_reg_delay(host);
|
|
}
|
|
|
|
c |= cmd->opcode | MCI_CPSM_ENABLE;
|
|
if (cmd->flags & MMC_RSP_PRESENT) {
|
|
if (cmd->flags & MMC_RSP_136)
|
|
c |= MCI_CPSM_LONGRSP;
|
|
c |= MCI_CPSM_RESPONSE;
|
|
}
|
|
if (/*interrupt*/0)
|
|
c |= MCI_CPSM_INTERRUPT;
|
|
|
|
if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
|
|
c |= host->variant->data_cmd_enable;
|
|
|
|
host->cmd = cmd;
|
|
|
|
writel(cmd->arg, base + MMCIARGUMENT);
|
|
writel(c, base + MMCICOMMAND);
|
|
}
|
|
|
|
static void
|
|
mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
|
|
unsigned int status)
|
|
{
|
|
/* Make sure we have data to handle */
|
|
if (!data)
|
|
return;
|
|
|
|
/* First check for errors */
|
|
if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
|
|
MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
|
|
u32 remain, success;
|
|
|
|
/* Terminate the DMA transfer */
|
|
if (dma_inprogress(host)) {
|
|
mmci_dma_data_error(host);
|
|
mmci_dma_unmap(host, data);
|
|
}
|
|
|
|
/*
|
|
* Calculate how far we are into the transfer. Note that
|
|
* the data counter gives the number of bytes transferred
|
|
* on the MMC bus, not on the host side. On reads, this
|
|
* can be as much as a FIFO-worth of data ahead. This
|
|
* matters for FIFO overruns only.
|
|
*/
|
|
remain = readl(host->base + MMCIDATACNT);
|
|
success = data->blksz * data->blocks - remain;
|
|
|
|
dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
|
|
status, success);
|
|
if (status & MCI_DATACRCFAIL) {
|
|
/* Last block was not successful */
|
|
success -= 1;
|
|
data->error = -EILSEQ;
|
|
} else if (status & MCI_DATATIMEOUT) {
|
|
data->error = -ETIMEDOUT;
|
|
} else if (status & MCI_STARTBITERR) {
|
|
data->error = -ECOMM;
|
|
} else if (status & MCI_TXUNDERRUN) {
|
|
data->error = -EIO;
|
|
} else if (status & MCI_RXOVERRUN) {
|
|
if (success > host->variant->fifosize)
|
|
success -= host->variant->fifosize;
|
|
else
|
|
success = 0;
|
|
data->error = -EIO;
|
|
}
|
|
data->bytes_xfered = round_down(success, data->blksz);
|
|
}
|
|
|
|
if (status & MCI_DATABLOCKEND)
|
|
dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
|
|
|
|
if (status & MCI_DATAEND || data->error) {
|
|
if (dma_inprogress(host))
|
|
mmci_dma_finalize(host, data);
|
|
mmci_stop_data(host);
|
|
|
|
if (!data->error)
|
|
/* The error clause is handled above, success! */
|
|
data->bytes_xfered = data->blksz * data->blocks;
|
|
|
|
if (!data->stop || host->mrq->sbc) {
|
|
mmci_request_end(host, data->mrq);
|
|
} else {
|
|
mmci_start_command(host, data->stop, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
|
|
unsigned int status)
|
|
{
|
|
void __iomem *base = host->base;
|
|
bool sbc;
|
|
|
|
if (!cmd)
|
|
return;
|
|
|
|
sbc = (cmd == host->mrq->sbc);
|
|
|
|
/*
|
|
* We need to be one of these interrupts to be considered worth
|
|
* handling. Note that we tag on any latent IRQs postponed
|
|
* due to waiting for busy status.
|
|
*/
|
|
if (!((status|host->busy_status) &
|
|
(MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND)))
|
|
return;
|
|
|
|
/*
|
|
* ST Micro variant: handle busy detection.
|
|
*/
|
|
if (host->variant->busy_detect) {
|
|
bool busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
|
|
|
|
/* We are busy with a command, return */
|
|
if (host->busy_status &&
|
|
(status & host->variant->busy_detect_flag))
|
|
return;
|
|
|
|
/*
|
|
* We were not busy, but we now got a busy response on
|
|
* something that was not an error, and we double-check
|
|
* that the special busy status bit is still set before
|
|
* proceeding.
|
|
*/
|
|
if (!host->busy_status && busy_resp &&
|
|
!(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
|
|
(readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
|
|
|
|
/* Clear the busy start IRQ */
|
|
writel(host->variant->busy_detect_mask,
|
|
host->base + MMCICLEAR);
|
|
|
|
/* Unmask the busy end IRQ */
|
|
writel(readl(base + MMCIMASK0) |
|
|
host->variant->busy_detect_mask,
|
|
base + MMCIMASK0);
|
|
/*
|
|
* Now cache the last response status code (until
|
|
* the busy bit goes low), and return.
|
|
*/
|
|
host->busy_status =
|
|
status & (MCI_CMDSENT|MCI_CMDRESPEND);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* At this point we are not busy with a command, we have
|
|
* not received a new busy request, clear and mask the busy
|
|
* end IRQ and fall through to process the IRQ.
|
|
*/
|
|
if (host->busy_status) {
|
|
|
|
writel(host->variant->busy_detect_mask,
|
|
host->base + MMCICLEAR);
|
|
|
|
writel(readl(base + MMCIMASK0) &
|
|
~host->variant->busy_detect_mask,
|
|
base + MMCIMASK0);
|
|
host->busy_status = 0;
|
|
}
|
|
}
|
|
|
|
host->cmd = NULL;
|
|
|
|
if (status & MCI_CMDTIMEOUT) {
|
|
cmd->error = -ETIMEDOUT;
|
|
} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
|
|
cmd->error = -EILSEQ;
|
|
} else {
|
|
cmd->resp[0] = readl(base + MMCIRESPONSE0);
|
|
cmd->resp[1] = readl(base + MMCIRESPONSE1);
|
|
cmd->resp[2] = readl(base + MMCIRESPONSE2);
|
|
cmd->resp[3] = readl(base + MMCIRESPONSE3);
|
|
}
|
|
|
|
if ((!sbc && !cmd->data) || cmd->error) {
|
|
if (host->data) {
|
|
/* Terminate the DMA transfer */
|
|
if (dma_inprogress(host)) {
|
|
mmci_dma_data_error(host);
|
|
mmci_dma_unmap(host, host->data);
|
|
}
|
|
mmci_stop_data(host);
|
|
}
|
|
mmci_request_end(host, host->mrq);
|
|
} else if (sbc) {
|
|
mmci_start_command(host, host->mrq->cmd, 0);
|
|
} else if (!(cmd->data->flags & MMC_DATA_READ)) {
|
|
mmci_start_data(host, cmd->data);
|
|
}
|
|
}
|
|
|
|
static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
|
|
{
|
|
return remain - (readl(host->base + MMCIFIFOCNT) << 2);
|
|
}
|
|
|
|
static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
|
|
{
|
|
/*
|
|
* on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
|
|
* from the fifo range should be used
|
|
*/
|
|
if (status & MCI_RXFIFOHALFFULL)
|
|
return host->variant->fifohalfsize;
|
|
else if (status & MCI_RXDATAAVLBL)
|
|
return 4;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
|
|
{
|
|
void __iomem *base = host->base;
|
|
char *ptr = buffer;
|
|
u32 status = readl(host->base + MMCISTATUS);
|
|
int host_remain = host->size;
|
|
|
|
do {
|
|
int count = host->get_rx_fifocnt(host, status, host_remain);
|
|
|
|
if (count > remain)
|
|
count = remain;
|
|
|
|
if (count <= 0)
|
|
break;
|
|
|
|
/*
|
|
* SDIO especially may want to send something that is
|
|
* not divisible by 4 (as opposed to card sectors
|
|
* etc). Therefore make sure to always read the last bytes
|
|
* while only doing full 32-bit reads towards the FIFO.
|
|
*/
|
|
if (unlikely(count & 0x3)) {
|
|
if (count < 4) {
|
|
unsigned char buf[4];
|
|
ioread32_rep(base + MMCIFIFO, buf, 1);
|
|
memcpy(ptr, buf, count);
|
|
} else {
|
|
ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
|
|
count &= ~0x3;
|
|
}
|
|
} else {
|
|
ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
|
|
}
|
|
|
|
ptr += count;
|
|
remain -= count;
|
|
host_remain -= count;
|
|
|
|
if (remain == 0)
|
|
break;
|
|
|
|
status = readl(base + MMCISTATUS);
|
|
} while (status & MCI_RXDATAAVLBL);
|
|
|
|
return ptr - buffer;
|
|
}
|
|
|
|
static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
|
|
{
|
|
struct variant_data *variant = host->variant;
|
|
void __iomem *base = host->base;
|
|
char *ptr = buffer;
|
|
|
|
do {
|
|
unsigned int count, maxcnt;
|
|
|
|
maxcnt = status & MCI_TXFIFOEMPTY ?
|
|
variant->fifosize : variant->fifohalfsize;
|
|
count = min(remain, maxcnt);
|
|
|
|
/*
|
|
* SDIO especially may want to send something that is
|
|
* not divisible by 4 (as opposed to card sectors
|
|
* etc), and the FIFO only accept full 32-bit writes.
|
|
* So compensate by adding +3 on the count, a single
|
|
* byte become a 32bit write, 7 bytes will be two
|
|
* 32bit writes etc.
|
|
*/
|
|
iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
|
|
|
|
ptr += count;
|
|
remain -= count;
|
|
|
|
if (remain == 0)
|
|
break;
|
|
|
|
status = readl(base + MMCISTATUS);
|
|
} while (status & MCI_TXFIFOHALFEMPTY);
|
|
|
|
return ptr - buffer;
|
|
}
|
|
|
|
/*
|
|
* PIO data transfer IRQ handler.
|
|
*/
|
|
static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
|
|
{
|
|
struct mmci_host *host = dev_id;
|
|
struct sg_mapping_iter *sg_miter = &host->sg_miter;
|
|
struct variant_data *variant = host->variant;
|
|
void __iomem *base = host->base;
|
|
unsigned long flags;
|
|
u32 status;
|
|
|
|
status = readl(base + MMCISTATUS);
|
|
|
|
dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
|
|
|
|
local_irq_save(flags);
|
|
|
|
do {
|
|
unsigned int remain, len;
|
|
char *buffer;
|
|
|
|
/*
|
|
* For write, we only need to test the half-empty flag
|
|
* here - if the FIFO is completely empty, then by
|
|
* definition it is more than half empty.
|
|
*
|
|
* For read, check for data available.
|
|
*/
|
|
if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
|
|
break;
|
|
|
|
if (!sg_miter_next(sg_miter))
|
|
break;
|
|
|
|
buffer = sg_miter->addr;
|
|
remain = sg_miter->length;
|
|
|
|
len = 0;
|
|
if (status & MCI_RXACTIVE)
|
|
len = mmci_pio_read(host, buffer, remain);
|
|
if (status & MCI_TXACTIVE)
|
|
len = mmci_pio_write(host, buffer, remain, status);
|
|
|
|
sg_miter->consumed = len;
|
|
|
|
host->size -= len;
|
|
remain -= len;
|
|
|
|
if (remain)
|
|
break;
|
|
|
|
status = readl(base + MMCISTATUS);
|
|
} while (1);
|
|
|
|
sg_miter_stop(sg_miter);
|
|
|
|
local_irq_restore(flags);
|
|
|
|
/*
|
|
* If we have less than the fifo 'half-full' threshold to transfer,
|
|
* trigger a PIO interrupt as soon as any data is available.
|
|
*/
|
|
if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
|
|
mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
|
|
|
|
/*
|
|
* If we run out of data, disable the data IRQs; this
|
|
* prevents a race where the FIFO becomes empty before
|
|
* the chip itself has disabled the data path, and
|
|
* stops us racing with our data end IRQ.
|
|
*/
|
|
if (host->size == 0) {
|
|
mmci_set_mask1(host, 0);
|
|
writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* Handle completion of command and data transfers.
|
|
*/
|
|
static irqreturn_t mmci_irq(int irq, void *dev_id)
|
|
{
|
|
struct mmci_host *host = dev_id;
|
|
u32 status;
|
|
int ret = 0;
|
|
|
|
spin_lock(&host->lock);
|
|
|
|
do {
|
|
status = readl(host->base + MMCISTATUS);
|
|
|
|
if (host->singleirq) {
|
|
if (status & readl(host->base + MMCIMASK1))
|
|
mmci_pio_irq(irq, dev_id);
|
|
|
|
status &= ~MCI_IRQ1MASK;
|
|
}
|
|
|
|
/*
|
|
* We intentionally clear the MCI_ST_CARDBUSY IRQ (if it's
|
|
* enabled) in mmci_cmd_irq() function where ST Micro busy
|
|
* detection variant is handled. Considering the HW seems to be
|
|
* triggering the IRQ on both edges while monitoring DAT0 for
|
|
* busy completion and that same status bit is used to monitor
|
|
* start and end of busy detection, special care must be taken
|
|
* to make sure that both start and end interrupts are always
|
|
* cleared one after the other.
|
|
*/
|
|
status &= readl(host->base + MMCIMASK0);
|
|
if (host->variant->busy_detect)
|
|
writel(status & ~host->variant->busy_detect_mask,
|
|
host->base + MMCICLEAR);
|
|
else
|
|
writel(status, host->base + MMCICLEAR);
|
|
|
|
dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
|
|
|
|
if (host->variant->reversed_irq_handling) {
|
|
mmci_data_irq(host, host->data, status);
|
|
mmci_cmd_irq(host, host->cmd, status);
|
|
} else {
|
|
mmci_cmd_irq(host, host->cmd, status);
|
|
mmci_data_irq(host, host->data, status);
|
|
}
|
|
|
|
/*
|
|
* Don't poll for busy completion in irq context.
|
|
*/
|
|
if (host->variant->busy_detect && host->busy_status)
|
|
status &= ~host->variant->busy_detect_flag;
|
|
|
|
ret = 1;
|
|
} while (status);
|
|
|
|
spin_unlock(&host->lock);
|
|
|
|
return IRQ_RETVAL(ret);
|
|
}
|
|
|
|
static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
|
|
{
|
|
struct mmci_host *host = mmc_priv(mmc);
|
|
unsigned long flags;
|
|
|
|
WARN_ON(host->mrq != NULL);
|
|
|
|
mrq->cmd->error = mmci_validate_data(host, mrq->data);
|
|
if (mrq->cmd->error) {
|
|
mmc_request_done(mmc, mrq);
|
|
return;
|
|
}
|
|
|
|
spin_lock_irqsave(&host->lock, flags);
|
|
|
|
host->mrq = mrq;
|
|
|
|
if (mrq->data)
|
|
mmci_get_next_data(host, mrq->data);
|
|
|
|
if (mrq->data && mrq->data->flags & MMC_DATA_READ)
|
|
mmci_start_data(host, mrq->data);
|
|
|
|
if (mrq->sbc)
|
|
mmci_start_command(host, mrq->sbc, 0);
|
|
else
|
|
mmci_start_command(host, mrq->cmd, 0);
|
|
|
|
spin_unlock_irqrestore(&host->lock, flags);
|
|
}
|
|
|
|
static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
|
|
{
|
|
struct mmci_host *host = mmc_priv(mmc);
|
|
struct variant_data *variant = host->variant;
|
|
u32 pwr = 0;
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
if (host->plat->ios_handler &&
|
|
host->plat->ios_handler(mmc_dev(mmc), ios))
|
|
dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
|
|
|
|
switch (ios->power_mode) {
|
|
case MMC_POWER_OFF:
|
|
if (!IS_ERR(mmc->supply.vmmc))
|
|
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
|
|
|
|
if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
|
|
regulator_disable(mmc->supply.vqmmc);
|
|
host->vqmmc_enabled = false;
|
|
}
|
|
|
|
break;
|
|
case MMC_POWER_UP:
|
|
if (!IS_ERR(mmc->supply.vmmc))
|
|
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
|
|
|
|
/*
|
|
* The ST Micro variant doesn't have the PL180s MCI_PWR_UP
|
|
* and instead uses MCI_PWR_ON so apply whatever value is
|
|
* configured in the variant data.
|
|
*/
|
|
pwr |= variant->pwrreg_powerup;
|
|
|
|
break;
|
|
case MMC_POWER_ON:
|
|
if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
|
|
ret = regulator_enable(mmc->supply.vqmmc);
|
|
if (ret < 0)
|
|
dev_err(mmc_dev(mmc),
|
|
"failed to enable vqmmc regulator\n");
|
|
else
|
|
host->vqmmc_enabled = true;
|
|
}
|
|
|
|
pwr |= MCI_PWR_ON;
|
|
break;
|
|
}
|
|
|
|
if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
|
|
/*
|
|
* The ST Micro variant has some additional bits
|
|
* indicating signal direction for the signals in
|
|
* the SD/MMC bus and feedback-clock usage.
|
|
*/
|
|
pwr |= host->pwr_reg_add;
|
|
|
|
if (ios->bus_width == MMC_BUS_WIDTH_4)
|
|
pwr &= ~MCI_ST_DATA74DIREN;
|
|
else if (ios->bus_width == MMC_BUS_WIDTH_1)
|
|
pwr &= (~MCI_ST_DATA74DIREN &
|
|
~MCI_ST_DATA31DIREN &
|
|
~MCI_ST_DATA2DIREN);
|
|
}
|
|
|
|
if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
|
|
if (host->hw_designer != AMBA_VENDOR_ST)
|
|
pwr |= MCI_ROD;
|
|
else {
|
|
/*
|
|
* The ST Micro variant use the ROD bit for something
|
|
* else and only has OD (Open Drain).
|
|
*/
|
|
pwr |= MCI_OD;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If clock = 0 and the variant requires the MMCIPOWER to be used for
|
|
* gating the clock, the MCI_PWR_ON bit is cleared.
|
|
*/
|
|
if (!ios->clock && variant->pwrreg_clkgate)
|
|
pwr &= ~MCI_PWR_ON;
|
|
|
|
if (host->variant->explicit_mclk_control &&
|
|
ios->clock != host->clock_cache) {
|
|
ret = clk_set_rate(host->clk, ios->clock);
|
|
if (ret < 0)
|
|
dev_err(mmc_dev(host->mmc),
|
|
"Error setting clock rate (%d)\n", ret);
|
|
else
|
|
host->mclk = clk_get_rate(host->clk);
|
|
}
|
|
host->clock_cache = ios->clock;
|
|
|
|
spin_lock_irqsave(&host->lock, flags);
|
|
|
|
mmci_set_clkreg(host, ios->clock);
|
|
mmci_write_pwrreg(host, pwr);
|
|
mmci_reg_delay(host);
|
|
|
|
spin_unlock_irqrestore(&host->lock, flags);
|
|
}
|
|
|
|
static int mmci_get_cd(struct mmc_host *mmc)
|
|
{
|
|
struct mmci_host *host = mmc_priv(mmc);
|
|
struct mmci_platform_data *plat = host->plat;
|
|
unsigned int status = mmc_gpio_get_cd(mmc);
|
|
|
|
if (status == -ENOSYS) {
|
|
if (!plat->status)
|
|
return 1; /* Assume always present */
|
|
|
|
status = plat->status(mmc_dev(host->mmc));
|
|
}
|
|
return status;
|
|
}
|
|
|
|
static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (!IS_ERR(mmc->supply.vqmmc)) {
|
|
|
|
switch (ios->signal_voltage) {
|
|
case MMC_SIGNAL_VOLTAGE_330:
|
|
ret = regulator_set_voltage(mmc->supply.vqmmc,
|
|
2700000, 3600000);
|
|
break;
|
|
case MMC_SIGNAL_VOLTAGE_180:
|
|
ret = regulator_set_voltage(mmc->supply.vqmmc,
|
|
1700000, 1950000);
|
|
break;
|
|
case MMC_SIGNAL_VOLTAGE_120:
|
|
ret = regulator_set_voltage(mmc->supply.vqmmc,
|
|
1100000, 1300000);
|
|
break;
|
|
}
|
|
|
|
if (ret)
|
|
dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct mmc_host_ops mmci_ops = {
|
|
.request = mmci_request,
|
|
.pre_req = mmci_pre_request,
|
|
.post_req = mmci_post_request,
|
|
.set_ios = mmci_set_ios,
|
|
.get_ro = mmc_gpio_get_ro,
|
|
.get_cd = mmci_get_cd,
|
|
.start_signal_voltage_switch = mmci_sig_volt_switch,
|
|
};
|
|
|
|
static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
|
|
{
|
|
struct mmci_host *host = mmc_priv(mmc);
|
|
int ret = mmc_of_parse(mmc);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (of_get_property(np, "st,sig-dir-dat0", NULL))
|
|
host->pwr_reg_add |= MCI_ST_DATA0DIREN;
|
|
if (of_get_property(np, "st,sig-dir-dat2", NULL))
|
|
host->pwr_reg_add |= MCI_ST_DATA2DIREN;
|
|
if (of_get_property(np, "st,sig-dir-dat31", NULL))
|
|
host->pwr_reg_add |= MCI_ST_DATA31DIREN;
|
|
if (of_get_property(np, "st,sig-dir-dat74", NULL))
|
|
host->pwr_reg_add |= MCI_ST_DATA74DIREN;
|
|
if (of_get_property(np, "st,sig-dir-cmd", NULL))
|
|
host->pwr_reg_add |= MCI_ST_CMDDIREN;
|
|
if (of_get_property(np, "st,sig-pin-fbclk", NULL))
|
|
host->pwr_reg_add |= MCI_ST_FBCLKEN;
|
|
|
|
if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
|
|
mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
|
|
if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
|
|
mmc->caps |= MMC_CAP_SD_HIGHSPEED;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mmci_probe(struct amba_device *dev,
|
|
const struct amba_id *id)
|
|
{
|
|
struct mmci_platform_data *plat = dev->dev.platform_data;
|
|
struct device_node *np = dev->dev.of_node;
|
|
struct variant_data *variant = id->data;
|
|
struct mmci_host *host;
|
|
struct mmc_host *mmc;
|
|
int ret;
|
|
|
|
/* Must have platform data or Device Tree. */
|
|
if (!plat && !np) {
|
|
dev_err(&dev->dev, "No plat data or DT found\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!plat) {
|
|
plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
|
|
if (!plat)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
|
|
if (!mmc)
|
|
return -ENOMEM;
|
|
|
|
ret = mmci_of_parse(np, mmc);
|
|
if (ret)
|
|
goto host_free;
|
|
|
|
host = mmc_priv(mmc);
|
|
host->mmc = mmc;
|
|
|
|
host->hw_designer = amba_manf(dev);
|
|
host->hw_revision = amba_rev(dev);
|
|
dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
|
|
dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
|
|
|
|
host->clk = devm_clk_get(&dev->dev, NULL);
|
|
if (IS_ERR(host->clk)) {
|
|
ret = PTR_ERR(host->clk);
|
|
goto host_free;
|
|
}
|
|
|
|
ret = clk_prepare_enable(host->clk);
|
|
if (ret)
|
|
goto host_free;
|
|
|
|
if (variant->qcom_fifo)
|
|
host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
|
|
else
|
|
host->get_rx_fifocnt = mmci_get_rx_fifocnt;
|
|
|
|
host->plat = plat;
|
|
host->variant = variant;
|
|
host->mclk = clk_get_rate(host->clk);
|
|
/*
|
|
* According to the spec, mclk is max 100 MHz,
|
|
* so we try to adjust the clock down to this,
|
|
* (if possible).
|
|
*/
|
|
if (host->mclk > variant->f_max) {
|
|
ret = clk_set_rate(host->clk, variant->f_max);
|
|
if (ret < 0)
|
|
goto clk_disable;
|
|
host->mclk = clk_get_rate(host->clk);
|
|
dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
|
|
host->mclk);
|
|
}
|
|
|
|
host->phybase = dev->res.start;
|
|
host->base = devm_ioremap_resource(&dev->dev, &dev->res);
|
|
if (IS_ERR(host->base)) {
|
|
ret = PTR_ERR(host->base);
|
|
goto clk_disable;
|
|
}
|
|
|
|
/*
|
|
* The ARM and ST versions of the block have slightly different
|
|
* clock divider equations which means that the minimum divider
|
|
* differs too.
|
|
* on Qualcomm like controllers get the nearest minimum clock to 100Khz
|
|
*/
|
|
if (variant->st_clkdiv)
|
|
mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
|
|
else if (variant->explicit_mclk_control)
|
|
mmc->f_min = clk_round_rate(host->clk, 100000);
|
|
else
|
|
mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
|
|
/*
|
|
* If no maximum operating frequency is supplied, fall back to use
|
|
* the module parameter, which has a (low) default value in case it
|
|
* is not specified. Either value must not exceed the clock rate into
|
|
* the block, of course.
|
|
*/
|
|
if (mmc->f_max)
|
|
mmc->f_max = variant->explicit_mclk_control ?
|
|
min(variant->f_max, mmc->f_max) :
|
|
min(host->mclk, mmc->f_max);
|
|
else
|
|
mmc->f_max = variant->explicit_mclk_control ?
|
|
fmax : min(host->mclk, fmax);
|
|
|
|
|
|
dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
|
|
|
|
/* Get regulators and the supported OCR mask */
|
|
ret = mmc_regulator_get_supply(mmc);
|
|
if (ret == -EPROBE_DEFER)
|
|
goto clk_disable;
|
|
|
|
if (!mmc->ocr_avail)
|
|
mmc->ocr_avail = plat->ocr_mask;
|
|
else if (plat->ocr_mask)
|
|
dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
|
|
|
|
/* DT takes precedence over platform data. */
|
|
if (!np) {
|
|
if (!plat->cd_invert)
|
|
mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
|
|
mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
|
|
}
|
|
|
|
/* We support these capabilities. */
|
|
mmc->caps |= MMC_CAP_CMD23;
|
|
|
|
/*
|
|
* Enable busy detection.
|
|
*/
|
|
if (variant->busy_detect) {
|
|
mmci_ops.card_busy = mmci_card_busy;
|
|
/*
|
|
* Not all variants have a flag to enable busy detection
|
|
* in the DPSM, but if they do, set it here.
|
|
*/
|
|
if (variant->busy_dpsm_flag)
|
|
mmci_write_datactrlreg(host,
|
|
host->variant->busy_dpsm_flag);
|
|
mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
|
|
mmc->max_busy_timeout = 0;
|
|
}
|
|
|
|
mmc->ops = &mmci_ops;
|
|
|
|
/* We support these PM capabilities. */
|
|
mmc->pm_caps |= MMC_PM_KEEP_POWER;
|
|
|
|
/*
|
|
* We can do SGIO
|
|
*/
|
|
mmc->max_segs = NR_SG;
|
|
|
|
/*
|
|
* Since only a certain number of bits are valid in the data length
|
|
* register, we must ensure that we don't exceed 2^num-1 bytes in a
|
|
* single request.
|
|
*/
|
|
mmc->max_req_size = (1 << variant->datalength_bits) - 1;
|
|
|
|
/*
|
|
* Set the maximum segment size. Since we aren't doing DMA
|
|
* (yet) we are only limited by the data length register.
|
|
*/
|
|
mmc->max_seg_size = mmc->max_req_size;
|
|
|
|
/*
|
|
* Block size can be up to 2048 bytes, but must be a power of two.
|
|
*/
|
|
mmc->max_blk_size = 1 << 11;
|
|
|
|
/*
|
|
* Limit the number of blocks transferred so that we don't overflow
|
|
* the maximum request size.
|
|
*/
|
|
mmc->max_blk_count = mmc->max_req_size >> 11;
|
|
|
|
spin_lock_init(&host->lock);
|
|
|
|
writel(0, host->base + MMCIMASK0);
|
|
writel(0, host->base + MMCIMASK1);
|
|
writel(0xfff, host->base + MMCICLEAR);
|
|
|
|
/*
|
|
* If:
|
|
* - not using DT but using a descriptor table, or
|
|
* - using a table of descriptors ALONGSIDE DT, or
|
|
* look up these descriptors named "cd" and "wp" right here, fail
|
|
* silently of these do not exist and proceed to try platform data
|
|
*/
|
|
if (!np) {
|
|
ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
|
|
if (ret < 0) {
|
|
if (ret == -EPROBE_DEFER)
|
|
goto clk_disable;
|
|
else if (gpio_is_valid(plat->gpio_cd)) {
|
|
ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
|
|
if (ret)
|
|
goto clk_disable;
|
|
}
|
|
}
|
|
|
|
ret = mmc_gpiod_request_ro(mmc, "wp", 0, false, 0, NULL);
|
|
if (ret < 0) {
|
|
if (ret == -EPROBE_DEFER)
|
|
goto clk_disable;
|
|
else if (gpio_is_valid(plat->gpio_wp)) {
|
|
ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
|
|
if (ret)
|
|
goto clk_disable;
|
|
}
|
|
}
|
|
}
|
|
|
|
ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
|
|
DRIVER_NAME " (cmd)", host);
|
|
if (ret)
|
|
goto clk_disable;
|
|
|
|
if (!dev->irq[1])
|
|
host->singleirq = true;
|
|
else {
|
|
ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
|
|
IRQF_SHARED, DRIVER_NAME " (pio)", host);
|
|
if (ret)
|
|
goto clk_disable;
|
|
}
|
|
|
|
writel(MCI_IRQENABLE, host->base + MMCIMASK0);
|
|
|
|
amba_set_drvdata(dev, mmc);
|
|
|
|
dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
|
|
mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
|
|
amba_rev(dev), (unsigned long long)dev->res.start,
|
|
dev->irq[0], dev->irq[1]);
|
|
|
|
mmci_dma_setup(host);
|
|
|
|
pm_runtime_set_autosuspend_delay(&dev->dev, 50);
|
|
pm_runtime_use_autosuspend(&dev->dev);
|
|
|
|
mmc_add_host(mmc);
|
|
|
|
pm_runtime_put(&dev->dev);
|
|
return 0;
|
|
|
|
clk_disable:
|
|
clk_disable_unprepare(host->clk);
|
|
host_free:
|
|
mmc_free_host(mmc);
|
|
return ret;
|
|
}
|
|
|
|
static int mmci_remove(struct amba_device *dev)
|
|
{
|
|
struct mmc_host *mmc = amba_get_drvdata(dev);
|
|
|
|
if (mmc) {
|
|
struct mmci_host *host = mmc_priv(mmc);
|
|
|
|
/*
|
|
* Undo pm_runtime_put() in probe. We use the _sync
|
|
* version here so that we can access the primecell.
|
|
*/
|
|
pm_runtime_get_sync(&dev->dev);
|
|
|
|
mmc_remove_host(mmc);
|
|
|
|
writel(0, host->base + MMCIMASK0);
|
|
writel(0, host->base + MMCIMASK1);
|
|
|
|
writel(0, host->base + MMCICOMMAND);
|
|
writel(0, host->base + MMCIDATACTRL);
|
|
|
|
mmci_dma_release(host);
|
|
clk_disable_unprepare(host->clk);
|
|
mmc_free_host(mmc);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
static void mmci_save(struct mmci_host *host)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&host->lock, flags);
|
|
|
|
writel(0, host->base + MMCIMASK0);
|
|
if (host->variant->pwrreg_nopower) {
|
|
writel(0, host->base + MMCIDATACTRL);
|
|
writel(0, host->base + MMCIPOWER);
|
|
writel(0, host->base + MMCICLOCK);
|
|
}
|
|
mmci_reg_delay(host);
|
|
|
|
spin_unlock_irqrestore(&host->lock, flags);
|
|
}
|
|
|
|
static void mmci_restore(struct mmci_host *host)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&host->lock, flags);
|
|
|
|
if (host->variant->pwrreg_nopower) {
|
|
writel(host->clk_reg, host->base + MMCICLOCK);
|
|
writel(host->datactrl_reg, host->base + MMCIDATACTRL);
|
|
writel(host->pwr_reg, host->base + MMCIPOWER);
|
|
}
|
|
writel(MCI_IRQENABLE, host->base + MMCIMASK0);
|
|
mmci_reg_delay(host);
|
|
|
|
spin_unlock_irqrestore(&host->lock, flags);
|
|
}
|
|
|
|
static int mmci_runtime_suspend(struct device *dev)
|
|
{
|
|
struct amba_device *adev = to_amba_device(dev);
|
|
struct mmc_host *mmc = amba_get_drvdata(adev);
|
|
|
|
if (mmc) {
|
|
struct mmci_host *host = mmc_priv(mmc);
|
|
pinctrl_pm_select_sleep_state(dev);
|
|
mmci_save(host);
|
|
clk_disable_unprepare(host->clk);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mmci_runtime_resume(struct device *dev)
|
|
{
|
|
struct amba_device *adev = to_amba_device(dev);
|
|
struct mmc_host *mmc = amba_get_drvdata(adev);
|
|
|
|
if (mmc) {
|
|
struct mmci_host *host = mmc_priv(mmc);
|
|
clk_prepare_enable(host->clk);
|
|
mmci_restore(host);
|
|
pinctrl_pm_select_default_state(dev);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static const struct dev_pm_ops mmci_dev_pm_ops = {
|
|
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
|
|
pm_runtime_force_resume)
|
|
SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
|
|
};
|
|
|
|
static struct amba_id mmci_ids[] = {
|
|
{
|
|
.id = 0x00041180,
|
|
.mask = 0xff0fffff,
|
|
.data = &variant_arm,
|
|
},
|
|
{
|
|
.id = 0x01041180,
|
|
.mask = 0xff0fffff,
|
|
.data = &variant_arm_extended_fifo,
|
|
},
|
|
{
|
|
.id = 0x02041180,
|
|
.mask = 0xff0fffff,
|
|
.data = &variant_arm_extended_fifo_hwfc,
|
|
},
|
|
{
|
|
.id = 0x00041181,
|
|
.mask = 0x000fffff,
|
|
.data = &variant_arm,
|
|
},
|
|
/* ST Micro variants */
|
|
{
|
|
.id = 0x00180180,
|
|
.mask = 0x00ffffff,
|
|
.data = &variant_u300,
|
|
},
|
|
{
|
|
.id = 0x10180180,
|
|
.mask = 0xf0ffffff,
|
|
.data = &variant_nomadik,
|
|
},
|
|
{
|
|
.id = 0x00280180,
|
|
.mask = 0x00ffffff,
|
|
.data = &variant_nomadik,
|
|
},
|
|
{
|
|
.id = 0x00480180,
|
|
.mask = 0xf0ffffff,
|
|
.data = &variant_ux500,
|
|
},
|
|
{
|
|
.id = 0x10480180,
|
|
.mask = 0xf0ffffff,
|
|
.data = &variant_ux500v2,
|
|
},
|
|
/* Qualcomm variants */
|
|
{
|
|
.id = 0x00051180,
|
|
.mask = 0x000fffff,
|
|
.data = &variant_qcom,
|
|
},
|
|
{ 0, 0 },
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(amba, mmci_ids);
|
|
|
|
static struct amba_driver mmci_driver = {
|
|
.drv = {
|
|
.name = DRIVER_NAME,
|
|
.pm = &mmci_dev_pm_ops,
|
|
},
|
|
.probe = mmci_probe,
|
|
.remove = mmci_remove,
|
|
.id_table = mmci_ids,
|
|
};
|
|
|
|
module_amba_driver(mmci_driver);
|
|
|
|
module_param(fmax, uint, 0444);
|
|
|
|
MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
|
|
MODULE_LICENSE("GPL");
|