forked from Minki/linux
d55c5a93db
All 486+ CPUs support CMPXCHG, so remove the fallback 386 support code. Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Link: http://lkml.kernel.org/r/1354132230-21854-3-git-send-email-hpa@linux.intel.com
600 lines
19 KiB
C
600 lines
19 KiB
C
#ifndef _ASM_X86_PERCPU_H
|
|
#define _ASM_X86_PERCPU_H
|
|
|
|
#ifdef CONFIG_X86_64
|
|
#define __percpu_seg gs
|
|
#define __percpu_mov_op movq
|
|
#else
|
|
#define __percpu_seg fs
|
|
#define __percpu_mov_op movl
|
|
#endif
|
|
|
|
#ifdef __ASSEMBLY__
|
|
|
|
/*
|
|
* PER_CPU finds an address of a per-cpu variable.
|
|
*
|
|
* Args:
|
|
* var - variable name
|
|
* reg - 32bit register
|
|
*
|
|
* The resulting address is stored in the "reg" argument.
|
|
*
|
|
* Example:
|
|
* PER_CPU(cpu_gdt_descr, %ebx)
|
|
*/
|
|
#ifdef CONFIG_SMP
|
|
#define PER_CPU(var, reg) \
|
|
__percpu_mov_op %__percpu_seg:this_cpu_off, reg; \
|
|
lea var(reg), reg
|
|
#define PER_CPU_VAR(var) %__percpu_seg:var
|
|
#else /* ! SMP */
|
|
#define PER_CPU(var, reg) __percpu_mov_op $var, reg
|
|
#define PER_CPU_VAR(var) var
|
|
#endif /* SMP */
|
|
|
|
#ifdef CONFIG_X86_64_SMP
|
|
#define INIT_PER_CPU_VAR(var) init_per_cpu__##var
|
|
#else
|
|
#define INIT_PER_CPU_VAR(var) var
|
|
#endif
|
|
|
|
#else /* ...!ASSEMBLY */
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/stringify.h>
|
|
|
|
#ifdef CONFIG_SMP
|
|
#define __percpu_prefix "%%"__stringify(__percpu_seg)":"
|
|
#define __my_cpu_offset this_cpu_read(this_cpu_off)
|
|
|
|
/*
|
|
* Compared to the generic __my_cpu_offset version, the following
|
|
* saves one instruction and avoids clobbering a temp register.
|
|
*/
|
|
#define __this_cpu_ptr(ptr) \
|
|
({ \
|
|
unsigned long tcp_ptr__; \
|
|
__verify_pcpu_ptr(ptr); \
|
|
asm volatile("add " __percpu_arg(1) ", %0" \
|
|
: "=r" (tcp_ptr__) \
|
|
: "m" (this_cpu_off), "0" (ptr)); \
|
|
(typeof(*(ptr)) __kernel __force *)tcp_ptr__; \
|
|
})
|
|
#else
|
|
#define __percpu_prefix ""
|
|
#endif
|
|
|
|
#define __percpu_arg(x) __percpu_prefix "%P" #x
|
|
|
|
/*
|
|
* Initialized pointers to per-cpu variables needed for the boot
|
|
* processor need to use these macros to get the proper address
|
|
* offset from __per_cpu_load on SMP.
|
|
*
|
|
* There also must be an entry in vmlinux_64.lds.S
|
|
*/
|
|
#define DECLARE_INIT_PER_CPU(var) \
|
|
extern typeof(var) init_per_cpu_var(var)
|
|
|
|
#ifdef CONFIG_X86_64_SMP
|
|
#define init_per_cpu_var(var) init_per_cpu__##var
|
|
#else
|
|
#define init_per_cpu_var(var) var
|
|
#endif
|
|
|
|
/* For arch-specific code, we can use direct single-insn ops (they
|
|
* don't give an lvalue though). */
|
|
extern void __bad_percpu_size(void);
|
|
|
|
#define percpu_to_op(op, var, val) \
|
|
do { \
|
|
typedef typeof(var) pto_T__; \
|
|
if (0) { \
|
|
pto_T__ pto_tmp__; \
|
|
pto_tmp__ = (val); \
|
|
(void)pto_tmp__; \
|
|
} \
|
|
switch (sizeof(var)) { \
|
|
case 1: \
|
|
asm(op "b %1,"__percpu_arg(0) \
|
|
: "+m" (var) \
|
|
: "qi" ((pto_T__)(val))); \
|
|
break; \
|
|
case 2: \
|
|
asm(op "w %1,"__percpu_arg(0) \
|
|
: "+m" (var) \
|
|
: "ri" ((pto_T__)(val))); \
|
|
break; \
|
|
case 4: \
|
|
asm(op "l %1,"__percpu_arg(0) \
|
|
: "+m" (var) \
|
|
: "ri" ((pto_T__)(val))); \
|
|
break; \
|
|
case 8: \
|
|
asm(op "q %1,"__percpu_arg(0) \
|
|
: "+m" (var) \
|
|
: "re" ((pto_T__)(val))); \
|
|
break; \
|
|
default: __bad_percpu_size(); \
|
|
} \
|
|
} while (0)
|
|
|
|
/*
|
|
* Generate a percpu add to memory instruction and optimize code
|
|
* if one is added or subtracted.
|
|
*/
|
|
#define percpu_add_op(var, val) \
|
|
do { \
|
|
typedef typeof(var) pao_T__; \
|
|
const int pao_ID__ = (__builtin_constant_p(val) && \
|
|
((val) == 1 || (val) == -1)) ? (val) : 0; \
|
|
if (0) { \
|
|
pao_T__ pao_tmp__; \
|
|
pao_tmp__ = (val); \
|
|
(void)pao_tmp__; \
|
|
} \
|
|
switch (sizeof(var)) { \
|
|
case 1: \
|
|
if (pao_ID__ == 1) \
|
|
asm("incb "__percpu_arg(0) : "+m" (var)); \
|
|
else if (pao_ID__ == -1) \
|
|
asm("decb "__percpu_arg(0) : "+m" (var)); \
|
|
else \
|
|
asm("addb %1, "__percpu_arg(0) \
|
|
: "+m" (var) \
|
|
: "qi" ((pao_T__)(val))); \
|
|
break; \
|
|
case 2: \
|
|
if (pao_ID__ == 1) \
|
|
asm("incw "__percpu_arg(0) : "+m" (var)); \
|
|
else if (pao_ID__ == -1) \
|
|
asm("decw "__percpu_arg(0) : "+m" (var)); \
|
|
else \
|
|
asm("addw %1, "__percpu_arg(0) \
|
|
: "+m" (var) \
|
|
: "ri" ((pao_T__)(val))); \
|
|
break; \
|
|
case 4: \
|
|
if (pao_ID__ == 1) \
|
|
asm("incl "__percpu_arg(0) : "+m" (var)); \
|
|
else if (pao_ID__ == -1) \
|
|
asm("decl "__percpu_arg(0) : "+m" (var)); \
|
|
else \
|
|
asm("addl %1, "__percpu_arg(0) \
|
|
: "+m" (var) \
|
|
: "ri" ((pao_T__)(val))); \
|
|
break; \
|
|
case 8: \
|
|
if (pao_ID__ == 1) \
|
|
asm("incq "__percpu_arg(0) : "+m" (var)); \
|
|
else if (pao_ID__ == -1) \
|
|
asm("decq "__percpu_arg(0) : "+m" (var)); \
|
|
else \
|
|
asm("addq %1, "__percpu_arg(0) \
|
|
: "+m" (var) \
|
|
: "re" ((pao_T__)(val))); \
|
|
break; \
|
|
default: __bad_percpu_size(); \
|
|
} \
|
|
} while (0)
|
|
|
|
#define percpu_from_op(op, var, constraint) \
|
|
({ \
|
|
typeof(var) pfo_ret__; \
|
|
switch (sizeof(var)) { \
|
|
case 1: \
|
|
asm(op "b "__percpu_arg(1)",%0" \
|
|
: "=q" (pfo_ret__) \
|
|
: constraint); \
|
|
break; \
|
|
case 2: \
|
|
asm(op "w "__percpu_arg(1)",%0" \
|
|
: "=r" (pfo_ret__) \
|
|
: constraint); \
|
|
break; \
|
|
case 4: \
|
|
asm(op "l "__percpu_arg(1)",%0" \
|
|
: "=r" (pfo_ret__) \
|
|
: constraint); \
|
|
break; \
|
|
case 8: \
|
|
asm(op "q "__percpu_arg(1)",%0" \
|
|
: "=r" (pfo_ret__) \
|
|
: constraint); \
|
|
break; \
|
|
default: __bad_percpu_size(); \
|
|
} \
|
|
pfo_ret__; \
|
|
})
|
|
|
|
#define percpu_unary_op(op, var) \
|
|
({ \
|
|
switch (sizeof(var)) { \
|
|
case 1: \
|
|
asm(op "b "__percpu_arg(0) \
|
|
: "+m" (var)); \
|
|
break; \
|
|
case 2: \
|
|
asm(op "w "__percpu_arg(0) \
|
|
: "+m" (var)); \
|
|
break; \
|
|
case 4: \
|
|
asm(op "l "__percpu_arg(0) \
|
|
: "+m" (var)); \
|
|
break; \
|
|
case 8: \
|
|
asm(op "q "__percpu_arg(0) \
|
|
: "+m" (var)); \
|
|
break; \
|
|
default: __bad_percpu_size(); \
|
|
} \
|
|
})
|
|
|
|
/*
|
|
* Add return operation
|
|
*/
|
|
#define percpu_add_return_op(var, val) \
|
|
({ \
|
|
typeof(var) paro_ret__ = val; \
|
|
switch (sizeof(var)) { \
|
|
case 1: \
|
|
asm("xaddb %0, "__percpu_arg(1) \
|
|
: "+q" (paro_ret__), "+m" (var) \
|
|
: : "memory"); \
|
|
break; \
|
|
case 2: \
|
|
asm("xaddw %0, "__percpu_arg(1) \
|
|
: "+r" (paro_ret__), "+m" (var) \
|
|
: : "memory"); \
|
|
break; \
|
|
case 4: \
|
|
asm("xaddl %0, "__percpu_arg(1) \
|
|
: "+r" (paro_ret__), "+m" (var) \
|
|
: : "memory"); \
|
|
break; \
|
|
case 8: \
|
|
asm("xaddq %0, "__percpu_arg(1) \
|
|
: "+re" (paro_ret__), "+m" (var) \
|
|
: : "memory"); \
|
|
break; \
|
|
default: __bad_percpu_size(); \
|
|
} \
|
|
paro_ret__ += val; \
|
|
paro_ret__; \
|
|
})
|
|
|
|
/*
|
|
* xchg is implemented using cmpxchg without a lock prefix. xchg is
|
|
* expensive due to the implied lock prefix. The processor cannot prefetch
|
|
* cachelines if xchg is used.
|
|
*/
|
|
#define percpu_xchg_op(var, nval) \
|
|
({ \
|
|
typeof(var) pxo_ret__; \
|
|
typeof(var) pxo_new__ = (nval); \
|
|
switch (sizeof(var)) { \
|
|
case 1: \
|
|
asm("\n\tmov "__percpu_arg(1)",%%al" \
|
|
"\n1:\tcmpxchgb %2, "__percpu_arg(1) \
|
|
"\n\tjnz 1b" \
|
|
: "=&a" (pxo_ret__), "+m" (var) \
|
|
: "q" (pxo_new__) \
|
|
: "memory"); \
|
|
break; \
|
|
case 2: \
|
|
asm("\n\tmov "__percpu_arg(1)",%%ax" \
|
|
"\n1:\tcmpxchgw %2, "__percpu_arg(1) \
|
|
"\n\tjnz 1b" \
|
|
: "=&a" (pxo_ret__), "+m" (var) \
|
|
: "r" (pxo_new__) \
|
|
: "memory"); \
|
|
break; \
|
|
case 4: \
|
|
asm("\n\tmov "__percpu_arg(1)",%%eax" \
|
|
"\n1:\tcmpxchgl %2, "__percpu_arg(1) \
|
|
"\n\tjnz 1b" \
|
|
: "=&a" (pxo_ret__), "+m" (var) \
|
|
: "r" (pxo_new__) \
|
|
: "memory"); \
|
|
break; \
|
|
case 8: \
|
|
asm("\n\tmov "__percpu_arg(1)",%%rax" \
|
|
"\n1:\tcmpxchgq %2, "__percpu_arg(1) \
|
|
"\n\tjnz 1b" \
|
|
: "=&a" (pxo_ret__), "+m" (var) \
|
|
: "r" (pxo_new__) \
|
|
: "memory"); \
|
|
break; \
|
|
default: __bad_percpu_size(); \
|
|
} \
|
|
pxo_ret__; \
|
|
})
|
|
|
|
/*
|
|
* cmpxchg has no such implied lock semantics as a result it is much
|
|
* more efficient for cpu local operations.
|
|
*/
|
|
#define percpu_cmpxchg_op(var, oval, nval) \
|
|
({ \
|
|
typeof(var) pco_ret__; \
|
|
typeof(var) pco_old__ = (oval); \
|
|
typeof(var) pco_new__ = (nval); \
|
|
switch (sizeof(var)) { \
|
|
case 1: \
|
|
asm("cmpxchgb %2, "__percpu_arg(1) \
|
|
: "=a" (pco_ret__), "+m" (var) \
|
|
: "q" (pco_new__), "0" (pco_old__) \
|
|
: "memory"); \
|
|
break; \
|
|
case 2: \
|
|
asm("cmpxchgw %2, "__percpu_arg(1) \
|
|
: "=a" (pco_ret__), "+m" (var) \
|
|
: "r" (pco_new__), "0" (pco_old__) \
|
|
: "memory"); \
|
|
break; \
|
|
case 4: \
|
|
asm("cmpxchgl %2, "__percpu_arg(1) \
|
|
: "=a" (pco_ret__), "+m" (var) \
|
|
: "r" (pco_new__), "0" (pco_old__) \
|
|
: "memory"); \
|
|
break; \
|
|
case 8: \
|
|
asm("cmpxchgq %2, "__percpu_arg(1) \
|
|
: "=a" (pco_ret__), "+m" (var) \
|
|
: "r" (pco_new__), "0" (pco_old__) \
|
|
: "memory"); \
|
|
break; \
|
|
default: __bad_percpu_size(); \
|
|
} \
|
|
pco_ret__; \
|
|
})
|
|
|
|
/*
|
|
* this_cpu_read() makes gcc load the percpu variable every time it is
|
|
* accessed while this_cpu_read_stable() allows the value to be cached.
|
|
* this_cpu_read_stable() is more efficient and can be used if its value
|
|
* is guaranteed to be valid across cpus. The current users include
|
|
* get_current() and get_thread_info() both of which are actually
|
|
* per-thread variables implemented as per-cpu variables and thus
|
|
* stable for the duration of the respective task.
|
|
*/
|
|
#define this_cpu_read_stable(var) percpu_from_op("mov", var, "p" (&(var)))
|
|
|
|
#define __this_cpu_read_1(pcp) percpu_from_op("mov", (pcp), "m"(pcp))
|
|
#define __this_cpu_read_2(pcp) percpu_from_op("mov", (pcp), "m"(pcp))
|
|
#define __this_cpu_read_4(pcp) percpu_from_op("mov", (pcp), "m"(pcp))
|
|
|
|
#define __this_cpu_write_1(pcp, val) percpu_to_op("mov", (pcp), val)
|
|
#define __this_cpu_write_2(pcp, val) percpu_to_op("mov", (pcp), val)
|
|
#define __this_cpu_write_4(pcp, val) percpu_to_op("mov", (pcp), val)
|
|
#define __this_cpu_add_1(pcp, val) percpu_add_op((pcp), val)
|
|
#define __this_cpu_add_2(pcp, val) percpu_add_op((pcp), val)
|
|
#define __this_cpu_add_4(pcp, val) percpu_add_op((pcp), val)
|
|
#define __this_cpu_and_1(pcp, val) percpu_to_op("and", (pcp), val)
|
|
#define __this_cpu_and_2(pcp, val) percpu_to_op("and", (pcp), val)
|
|
#define __this_cpu_and_4(pcp, val) percpu_to_op("and", (pcp), val)
|
|
#define __this_cpu_or_1(pcp, val) percpu_to_op("or", (pcp), val)
|
|
#define __this_cpu_or_2(pcp, val) percpu_to_op("or", (pcp), val)
|
|
#define __this_cpu_or_4(pcp, val) percpu_to_op("or", (pcp), val)
|
|
#define __this_cpu_xor_1(pcp, val) percpu_to_op("xor", (pcp), val)
|
|
#define __this_cpu_xor_2(pcp, val) percpu_to_op("xor", (pcp), val)
|
|
#define __this_cpu_xor_4(pcp, val) percpu_to_op("xor", (pcp), val)
|
|
#define __this_cpu_xchg_1(pcp, val) percpu_xchg_op(pcp, val)
|
|
#define __this_cpu_xchg_2(pcp, val) percpu_xchg_op(pcp, val)
|
|
#define __this_cpu_xchg_4(pcp, val) percpu_xchg_op(pcp, val)
|
|
|
|
#define this_cpu_read_1(pcp) percpu_from_op("mov", (pcp), "m"(pcp))
|
|
#define this_cpu_read_2(pcp) percpu_from_op("mov", (pcp), "m"(pcp))
|
|
#define this_cpu_read_4(pcp) percpu_from_op("mov", (pcp), "m"(pcp))
|
|
#define this_cpu_write_1(pcp, val) percpu_to_op("mov", (pcp), val)
|
|
#define this_cpu_write_2(pcp, val) percpu_to_op("mov", (pcp), val)
|
|
#define this_cpu_write_4(pcp, val) percpu_to_op("mov", (pcp), val)
|
|
#define this_cpu_add_1(pcp, val) percpu_add_op((pcp), val)
|
|
#define this_cpu_add_2(pcp, val) percpu_add_op((pcp), val)
|
|
#define this_cpu_add_4(pcp, val) percpu_add_op((pcp), val)
|
|
#define this_cpu_and_1(pcp, val) percpu_to_op("and", (pcp), val)
|
|
#define this_cpu_and_2(pcp, val) percpu_to_op("and", (pcp), val)
|
|
#define this_cpu_and_4(pcp, val) percpu_to_op("and", (pcp), val)
|
|
#define this_cpu_or_1(pcp, val) percpu_to_op("or", (pcp), val)
|
|
#define this_cpu_or_2(pcp, val) percpu_to_op("or", (pcp), val)
|
|
#define this_cpu_or_4(pcp, val) percpu_to_op("or", (pcp), val)
|
|
#define this_cpu_xor_1(pcp, val) percpu_to_op("xor", (pcp), val)
|
|
#define this_cpu_xor_2(pcp, val) percpu_to_op("xor", (pcp), val)
|
|
#define this_cpu_xor_4(pcp, val) percpu_to_op("xor", (pcp), val)
|
|
#define this_cpu_xchg_1(pcp, nval) percpu_xchg_op(pcp, nval)
|
|
#define this_cpu_xchg_2(pcp, nval) percpu_xchg_op(pcp, nval)
|
|
#define this_cpu_xchg_4(pcp, nval) percpu_xchg_op(pcp, nval)
|
|
|
|
#define __this_cpu_add_return_1(pcp, val) percpu_add_return_op(pcp, val)
|
|
#define __this_cpu_add_return_2(pcp, val) percpu_add_return_op(pcp, val)
|
|
#define __this_cpu_add_return_4(pcp, val) percpu_add_return_op(pcp, val)
|
|
#define __this_cpu_cmpxchg_1(pcp, oval, nval) percpu_cmpxchg_op(pcp, oval, nval)
|
|
#define __this_cpu_cmpxchg_2(pcp, oval, nval) percpu_cmpxchg_op(pcp, oval, nval)
|
|
#define __this_cpu_cmpxchg_4(pcp, oval, nval) percpu_cmpxchg_op(pcp, oval, nval)
|
|
|
|
#define this_cpu_add_return_1(pcp, val) percpu_add_return_op(pcp, val)
|
|
#define this_cpu_add_return_2(pcp, val) percpu_add_return_op(pcp, val)
|
|
#define this_cpu_add_return_4(pcp, val) percpu_add_return_op(pcp, val)
|
|
#define this_cpu_cmpxchg_1(pcp, oval, nval) percpu_cmpxchg_op(pcp, oval, nval)
|
|
#define this_cpu_cmpxchg_2(pcp, oval, nval) percpu_cmpxchg_op(pcp, oval, nval)
|
|
#define this_cpu_cmpxchg_4(pcp, oval, nval) percpu_cmpxchg_op(pcp, oval, nval)
|
|
|
|
#ifdef CONFIG_X86_CMPXCHG64
|
|
#define percpu_cmpxchg8b_double(pcp1, pcp2, o1, o2, n1, n2) \
|
|
({ \
|
|
bool __ret; \
|
|
typeof(pcp1) __o1 = (o1), __n1 = (n1); \
|
|
typeof(pcp2) __o2 = (o2), __n2 = (n2); \
|
|
asm volatile("cmpxchg8b "__percpu_arg(1)"\n\tsetz %0\n\t" \
|
|
: "=a" (__ret), "+m" (pcp1), "+m" (pcp2), "+d" (__o2) \
|
|
: "b" (__n1), "c" (__n2), "a" (__o1)); \
|
|
__ret; \
|
|
})
|
|
|
|
#define __this_cpu_cmpxchg_double_4 percpu_cmpxchg8b_double
|
|
#define this_cpu_cmpxchg_double_4 percpu_cmpxchg8b_double
|
|
#endif /* CONFIG_X86_CMPXCHG64 */
|
|
|
|
/*
|
|
* Per cpu atomic 64 bit operations are only available under 64 bit.
|
|
* 32 bit must fall back to generic operations.
|
|
*/
|
|
#ifdef CONFIG_X86_64
|
|
#define __this_cpu_read_8(pcp) percpu_from_op("mov", (pcp), "m"(pcp))
|
|
#define __this_cpu_write_8(pcp, val) percpu_to_op("mov", (pcp), val)
|
|
#define __this_cpu_add_8(pcp, val) percpu_add_op((pcp), val)
|
|
#define __this_cpu_and_8(pcp, val) percpu_to_op("and", (pcp), val)
|
|
#define __this_cpu_or_8(pcp, val) percpu_to_op("or", (pcp), val)
|
|
#define __this_cpu_xor_8(pcp, val) percpu_to_op("xor", (pcp), val)
|
|
#define __this_cpu_add_return_8(pcp, val) percpu_add_return_op(pcp, val)
|
|
#define __this_cpu_xchg_8(pcp, nval) percpu_xchg_op(pcp, nval)
|
|
#define __this_cpu_cmpxchg_8(pcp, oval, nval) percpu_cmpxchg_op(pcp, oval, nval)
|
|
|
|
#define this_cpu_read_8(pcp) percpu_from_op("mov", (pcp), "m"(pcp))
|
|
#define this_cpu_write_8(pcp, val) percpu_to_op("mov", (pcp), val)
|
|
#define this_cpu_add_8(pcp, val) percpu_add_op((pcp), val)
|
|
#define this_cpu_and_8(pcp, val) percpu_to_op("and", (pcp), val)
|
|
#define this_cpu_or_8(pcp, val) percpu_to_op("or", (pcp), val)
|
|
#define this_cpu_xor_8(pcp, val) percpu_to_op("xor", (pcp), val)
|
|
#define this_cpu_add_return_8(pcp, val) percpu_add_return_op(pcp, val)
|
|
#define this_cpu_xchg_8(pcp, nval) percpu_xchg_op(pcp, nval)
|
|
#define this_cpu_cmpxchg_8(pcp, oval, nval) percpu_cmpxchg_op(pcp, oval, nval)
|
|
|
|
/*
|
|
* Pretty complex macro to generate cmpxchg16 instruction. The instruction
|
|
* is not supported on early AMD64 processors so we must be able to emulate
|
|
* it in software. The address used in the cmpxchg16 instruction must be
|
|
* aligned to a 16 byte boundary.
|
|
*/
|
|
#define percpu_cmpxchg16b_double(pcp1, pcp2, o1, o2, n1, n2) \
|
|
({ \
|
|
bool __ret; \
|
|
typeof(pcp1) __o1 = (o1), __n1 = (n1); \
|
|
typeof(pcp2) __o2 = (o2), __n2 = (n2); \
|
|
alternative_io("leaq %P1,%%rsi\n\tcall this_cpu_cmpxchg16b_emu\n\t", \
|
|
"cmpxchg16b " __percpu_arg(1) "\n\tsetz %0\n\t", \
|
|
X86_FEATURE_CX16, \
|
|
ASM_OUTPUT2("=a" (__ret), "+m" (pcp1), \
|
|
"+m" (pcp2), "+d" (__o2)), \
|
|
"b" (__n1), "c" (__n2), "a" (__o1) : "rsi"); \
|
|
__ret; \
|
|
})
|
|
|
|
#define __this_cpu_cmpxchg_double_8 percpu_cmpxchg16b_double
|
|
#define this_cpu_cmpxchg_double_8 percpu_cmpxchg16b_double
|
|
|
|
#endif
|
|
|
|
/* This is not atomic against other CPUs -- CPU preemption needs to be off */
|
|
#define x86_test_and_clear_bit_percpu(bit, var) \
|
|
({ \
|
|
int old__; \
|
|
asm volatile("btr %2,"__percpu_arg(1)"\n\tsbbl %0,%0" \
|
|
: "=r" (old__), "+m" (var) \
|
|
: "dIr" (bit)); \
|
|
old__; \
|
|
})
|
|
|
|
static __always_inline int x86_this_cpu_constant_test_bit(unsigned int nr,
|
|
const unsigned long __percpu *addr)
|
|
{
|
|
unsigned long __percpu *a = (unsigned long *)addr + nr / BITS_PER_LONG;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
return ((1UL << (nr % BITS_PER_LONG)) & __this_cpu_read_8(*a)) != 0;
|
|
#else
|
|
return ((1UL << (nr % BITS_PER_LONG)) & __this_cpu_read_4(*a)) != 0;
|
|
#endif
|
|
}
|
|
|
|
static inline int x86_this_cpu_variable_test_bit(int nr,
|
|
const unsigned long __percpu *addr)
|
|
{
|
|
int oldbit;
|
|
|
|
asm volatile("bt "__percpu_arg(2)",%1\n\t"
|
|
"sbb %0,%0"
|
|
: "=r" (oldbit)
|
|
: "m" (*(unsigned long *)addr), "Ir" (nr));
|
|
|
|
return oldbit;
|
|
}
|
|
|
|
#define x86_this_cpu_test_bit(nr, addr) \
|
|
(__builtin_constant_p((nr)) \
|
|
? x86_this_cpu_constant_test_bit((nr), (addr)) \
|
|
: x86_this_cpu_variable_test_bit((nr), (addr)))
|
|
|
|
|
|
#include <asm-generic/percpu.h>
|
|
|
|
/* We can use this directly for local CPU (faster). */
|
|
DECLARE_PER_CPU(unsigned long, this_cpu_off);
|
|
|
|
#endif /* !__ASSEMBLY__ */
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
/*
|
|
* Define the "EARLY_PER_CPU" macros. These are used for some per_cpu
|
|
* variables that are initialized and accessed before there are per_cpu
|
|
* areas allocated.
|
|
*/
|
|
|
|
#define DEFINE_EARLY_PER_CPU(_type, _name, _initvalue) \
|
|
DEFINE_PER_CPU(_type, _name) = _initvalue; \
|
|
__typeof__(_type) _name##_early_map[NR_CPUS] __initdata = \
|
|
{ [0 ... NR_CPUS-1] = _initvalue }; \
|
|
__typeof__(_type) *_name##_early_ptr __refdata = _name##_early_map
|
|
|
|
#define DEFINE_EARLY_PER_CPU_READ_MOSTLY(_type, _name, _initvalue) \
|
|
DEFINE_PER_CPU_READ_MOSTLY(_type, _name) = _initvalue; \
|
|
__typeof__(_type) _name##_early_map[NR_CPUS] __initdata = \
|
|
{ [0 ... NR_CPUS-1] = _initvalue }; \
|
|
__typeof__(_type) *_name##_early_ptr __refdata = _name##_early_map
|
|
|
|
#define EXPORT_EARLY_PER_CPU_SYMBOL(_name) \
|
|
EXPORT_PER_CPU_SYMBOL(_name)
|
|
|
|
#define DECLARE_EARLY_PER_CPU(_type, _name) \
|
|
DECLARE_PER_CPU(_type, _name); \
|
|
extern __typeof__(_type) *_name##_early_ptr; \
|
|
extern __typeof__(_type) _name##_early_map[]
|
|
|
|
#define DECLARE_EARLY_PER_CPU_READ_MOSTLY(_type, _name) \
|
|
DECLARE_PER_CPU_READ_MOSTLY(_type, _name); \
|
|
extern __typeof__(_type) *_name##_early_ptr; \
|
|
extern __typeof__(_type) _name##_early_map[]
|
|
|
|
#define early_per_cpu_ptr(_name) (_name##_early_ptr)
|
|
#define early_per_cpu_map(_name, _idx) (_name##_early_map[_idx])
|
|
#define early_per_cpu(_name, _cpu) \
|
|
*(early_per_cpu_ptr(_name) ? \
|
|
&early_per_cpu_ptr(_name)[_cpu] : \
|
|
&per_cpu(_name, _cpu))
|
|
|
|
#else /* !CONFIG_SMP */
|
|
#define DEFINE_EARLY_PER_CPU(_type, _name, _initvalue) \
|
|
DEFINE_PER_CPU(_type, _name) = _initvalue
|
|
|
|
#define DEFINE_EARLY_PER_CPU_READ_MOSTLY(_type, _name, _initvalue) \
|
|
DEFINE_PER_CPU_READ_MOSTLY(_type, _name) = _initvalue
|
|
|
|
#define EXPORT_EARLY_PER_CPU_SYMBOL(_name) \
|
|
EXPORT_PER_CPU_SYMBOL(_name)
|
|
|
|
#define DECLARE_EARLY_PER_CPU(_type, _name) \
|
|
DECLARE_PER_CPU(_type, _name)
|
|
|
|
#define DECLARE_EARLY_PER_CPU_READ_MOSTLY(_type, _name) \
|
|
DECLARE_PER_CPU_READ_MOSTLY(_type, _name)
|
|
|
|
#define early_per_cpu(_name, _cpu) per_cpu(_name, _cpu)
|
|
#define early_per_cpu_ptr(_name) NULL
|
|
/* no early_per_cpu_map() */
|
|
|
|
#endif /* !CONFIG_SMP */
|
|
|
|
#endif /* _ASM_X86_PERCPU_H */
|