forked from Minki/linux
de9e478b9d
In commit 11f1a4b975
("x86: reorganize SMAP handling in user space
accesses") I changed how the stac/clac instructions were generated
around the user space accesses, which then made it possible to do
batched accesses efficiently for user string copies etc.
However, in doing so, I completely spaced out, and didn't even think
about the 32-bit case. And nobody really even seemed to notice, because
SMAP doesn't even exist until modern Skylake processors, and you'd have
to be crazy to run 32-bit kernels on a modern CPU.
Which brings us to Andy Lutomirski.
He actually tested the 32-bit kernel on new hardware, and noticed that
it doesn't work. My bad. The trivial fix is to add the required
uaccess begin/end markers around the raw accesses in <asm/uaccess_32.h>.
I feel a bit bad about this patch, just because that header file really
should be cleaned up to avoid all the duplicated code in it, and this
commit just expands on the problem. But this just fixes the bug without
any bigger cleanup surgery.
Reported-and-tested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
220 lines
6.1 KiB
C
220 lines
6.1 KiB
C
#ifndef _ASM_X86_UACCESS_32_H
|
|
#define _ASM_X86_UACCESS_32_H
|
|
|
|
/*
|
|
* User space memory access functions
|
|
*/
|
|
#include <linux/errno.h>
|
|
#include <linux/thread_info.h>
|
|
#include <linux/string.h>
|
|
#include <asm/asm.h>
|
|
#include <asm/page.h>
|
|
|
|
unsigned long __must_check __copy_to_user_ll
|
|
(void __user *to, const void *from, unsigned long n);
|
|
unsigned long __must_check __copy_from_user_ll
|
|
(void *to, const void __user *from, unsigned long n);
|
|
unsigned long __must_check __copy_from_user_ll_nozero
|
|
(void *to, const void __user *from, unsigned long n);
|
|
unsigned long __must_check __copy_from_user_ll_nocache
|
|
(void *to, const void __user *from, unsigned long n);
|
|
unsigned long __must_check __copy_from_user_ll_nocache_nozero
|
|
(void *to, const void __user *from, unsigned long n);
|
|
|
|
/**
|
|
* __copy_to_user_inatomic: - Copy a block of data into user space, with less checking.
|
|
* @to: Destination address, in user space.
|
|
* @from: Source address, in kernel space.
|
|
* @n: Number of bytes to copy.
|
|
*
|
|
* Context: User context only.
|
|
*
|
|
* Copy data from kernel space to user space. Caller must check
|
|
* the specified block with access_ok() before calling this function.
|
|
* The caller should also make sure he pins the user space address
|
|
* so that we don't result in page fault and sleep.
|
|
*
|
|
* Here we special-case 1, 2 and 4-byte copy_*_user invocations. On a fault
|
|
* we return the initial request size (1, 2 or 4), as copy_*_user should do.
|
|
* If a store crosses a page boundary and gets a fault, the x86 will not write
|
|
* anything, so this is accurate.
|
|
*/
|
|
|
|
static __always_inline unsigned long __must_check
|
|
__copy_to_user_inatomic(void __user *to, const void *from, unsigned long n)
|
|
{
|
|
if (__builtin_constant_p(n)) {
|
|
unsigned long ret;
|
|
|
|
switch (n) {
|
|
case 1:
|
|
__uaccess_begin();
|
|
__put_user_size(*(u8 *)from, (u8 __user *)to,
|
|
1, ret, 1);
|
|
__uaccess_end();
|
|
return ret;
|
|
case 2:
|
|
__uaccess_begin();
|
|
__put_user_size(*(u16 *)from, (u16 __user *)to,
|
|
2, ret, 2);
|
|
__uaccess_end();
|
|
return ret;
|
|
case 4:
|
|
__uaccess_begin();
|
|
__put_user_size(*(u32 *)from, (u32 __user *)to,
|
|
4, ret, 4);
|
|
__uaccess_end();
|
|
return ret;
|
|
case 8:
|
|
__uaccess_begin();
|
|
__put_user_size(*(u64 *)from, (u64 __user *)to,
|
|
8, ret, 8);
|
|
__uaccess_end();
|
|
return ret;
|
|
}
|
|
}
|
|
return __copy_to_user_ll(to, from, n);
|
|
}
|
|
|
|
/**
|
|
* __copy_to_user: - Copy a block of data into user space, with less checking.
|
|
* @to: Destination address, in user space.
|
|
* @from: Source address, in kernel space.
|
|
* @n: Number of bytes to copy.
|
|
*
|
|
* Context: User context only. This function may sleep if pagefaults are
|
|
* enabled.
|
|
*
|
|
* Copy data from kernel space to user space. Caller must check
|
|
* the specified block with access_ok() before calling this function.
|
|
*
|
|
* Returns number of bytes that could not be copied.
|
|
* On success, this will be zero.
|
|
*/
|
|
static __always_inline unsigned long __must_check
|
|
__copy_to_user(void __user *to, const void *from, unsigned long n)
|
|
{
|
|
might_fault();
|
|
return __copy_to_user_inatomic(to, from, n);
|
|
}
|
|
|
|
static __always_inline unsigned long
|
|
__copy_from_user_inatomic(void *to, const void __user *from, unsigned long n)
|
|
{
|
|
/* Avoid zeroing the tail if the copy fails..
|
|
* If 'n' is constant and 1, 2, or 4, we do still zero on a failure,
|
|
* but as the zeroing behaviour is only significant when n is not
|
|
* constant, that shouldn't be a problem.
|
|
*/
|
|
if (__builtin_constant_p(n)) {
|
|
unsigned long ret;
|
|
|
|
switch (n) {
|
|
case 1:
|
|
__uaccess_begin();
|
|
__get_user_size(*(u8 *)to, from, 1, ret, 1);
|
|
__uaccess_end();
|
|
return ret;
|
|
case 2:
|
|
__uaccess_begin();
|
|
__get_user_size(*(u16 *)to, from, 2, ret, 2);
|
|
__uaccess_end();
|
|
return ret;
|
|
case 4:
|
|
__uaccess_begin();
|
|
__get_user_size(*(u32 *)to, from, 4, ret, 4);
|
|
__uaccess_end();
|
|
return ret;
|
|
}
|
|
}
|
|
return __copy_from_user_ll_nozero(to, from, n);
|
|
}
|
|
|
|
/**
|
|
* __copy_from_user: - Copy a block of data from user space, with less checking.
|
|
* @to: Destination address, in kernel space.
|
|
* @from: Source address, in user space.
|
|
* @n: Number of bytes to copy.
|
|
*
|
|
* Context: User context only. This function may sleep if pagefaults are
|
|
* enabled.
|
|
*
|
|
* Copy data from user space to kernel space. Caller must check
|
|
* the specified block with access_ok() before calling this function.
|
|
*
|
|
* Returns number of bytes that could not be copied.
|
|
* On success, this will be zero.
|
|
*
|
|
* If some data could not be copied, this function will pad the copied
|
|
* data to the requested size using zero bytes.
|
|
*
|
|
* An alternate version - __copy_from_user_inatomic() - may be called from
|
|
* atomic context and will fail rather than sleep. In this case the
|
|
* uncopied bytes will *NOT* be padded with zeros. See fs/filemap.h
|
|
* for explanation of why this is needed.
|
|
*/
|
|
static __always_inline unsigned long
|
|
__copy_from_user(void *to, const void __user *from, unsigned long n)
|
|
{
|
|
might_fault();
|
|
if (__builtin_constant_p(n)) {
|
|
unsigned long ret;
|
|
|
|
switch (n) {
|
|
case 1:
|
|
__uaccess_begin();
|
|
__get_user_size(*(u8 *)to, from, 1, ret, 1);
|
|
__uaccess_end();
|
|
return ret;
|
|
case 2:
|
|
__uaccess_begin();
|
|
__get_user_size(*(u16 *)to, from, 2, ret, 2);
|
|
__uaccess_end();
|
|
return ret;
|
|
case 4:
|
|
__uaccess_begin();
|
|
__get_user_size(*(u32 *)to, from, 4, ret, 4);
|
|
__uaccess_end();
|
|
return ret;
|
|
}
|
|
}
|
|
return __copy_from_user_ll(to, from, n);
|
|
}
|
|
|
|
static __always_inline unsigned long __copy_from_user_nocache(void *to,
|
|
const void __user *from, unsigned long n)
|
|
{
|
|
might_fault();
|
|
if (__builtin_constant_p(n)) {
|
|
unsigned long ret;
|
|
|
|
switch (n) {
|
|
case 1:
|
|
__uaccess_begin();
|
|
__get_user_size(*(u8 *)to, from, 1, ret, 1);
|
|
__uaccess_end();
|
|
return ret;
|
|
case 2:
|
|
__uaccess_begin();
|
|
__get_user_size(*(u16 *)to, from, 2, ret, 2);
|
|
__uaccess_end();
|
|
return ret;
|
|
case 4:
|
|
__uaccess_begin();
|
|
__get_user_size(*(u32 *)to, from, 4, ret, 4);
|
|
__uaccess_end();
|
|
return ret;
|
|
}
|
|
}
|
|
return __copy_from_user_ll_nocache(to, from, n);
|
|
}
|
|
|
|
static __always_inline unsigned long
|
|
__copy_from_user_inatomic_nocache(void *to, const void __user *from,
|
|
unsigned long n)
|
|
{
|
|
return __copy_from_user_ll_nocache_nozero(to, from, n);
|
|
}
|
|
|
|
#endif /* _ASM_X86_UACCESS_32_H */
|