linux/arch/tile/kernel/hardwall.c
Chris Metcalf b8ace0833f arch/tile: fix hardwall for tilegx and generalize for idn and ipi
The hardwall drain code was not properly implemented for tilegx,
just tilepro, so you couldn't reliably restart an application that
made use of the udn.

In addition, the code was only applicable to the udn (user dynamic
network).  On tilegx there is a second user network that is available
(the "idn"), and there is support for having I/O shims deliver
user-level interrupts to applications ("ipi") which functions in a
very similar way to the inter-core permissions used for udn/idn.
So this change also generalizes the code from supporting just the udn
to supports udn/idn/ipi on tilegx.

By default we now use /dev/hardwall/{udn,idn,ipi} with separate
minor numbers for the three devices.

Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
2012-05-25 12:48:27 -04:00

1094 lines
30 KiB
C

/*
* Copyright 2010 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
#include <linux/fs.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/rwsem.h>
#include <linux/kprobes.h>
#include <linux/sched.h>
#include <linux/hardirq.h>
#include <linux/uaccess.h>
#include <linux/smp.h>
#include <linux/cdev.h>
#include <linux/compat.h>
#include <asm/hardwall.h>
#include <asm/traps.h>
#include <asm/siginfo.h>
#include <asm/irq_regs.h>
#include <arch/interrupts.h>
#include <arch/spr_def.h>
/*
* Implement a per-cpu "hardwall" resource class such as UDN or IPI.
* We use "hardwall" nomenclature throughout for historical reasons.
* The lock here controls access to the list data structure as well as
* to the items on the list.
*/
struct hardwall_type {
int index;
int is_xdn;
int is_idn;
int disabled;
const char *name;
struct list_head list;
spinlock_t lock;
struct proc_dir_entry *proc_dir;
};
enum hardwall_index {
HARDWALL_UDN = 0,
#ifndef __tilepro__
HARDWALL_IDN = 1,
HARDWALL_IPI = 2,
#endif
_HARDWALL_TYPES
};
static struct hardwall_type hardwall_types[] = {
{ /* user-space access to UDN */
0,
1,
0,
0,
"udn",
LIST_HEAD_INIT(hardwall_types[HARDWALL_UDN].list),
__SPIN_LOCK_INITIALIZER(hardwall_types[HARDWALL_UDN].lock),
NULL
},
#ifndef __tilepro__
{ /* user-space access to IDN */
1,
1,
1,
1, /* disabled pending hypervisor support */
"idn",
LIST_HEAD_INIT(hardwall_types[HARDWALL_IDN].list),
__SPIN_LOCK_INITIALIZER(hardwall_types[HARDWALL_IDN].lock),
NULL
},
{ /* access to user-space IPI */
2,
0,
0,
0,
"ipi",
LIST_HEAD_INIT(hardwall_types[HARDWALL_IPI].list),
__SPIN_LOCK_INITIALIZER(hardwall_types[HARDWALL_IPI].lock),
NULL
},
#endif
};
/*
* This data structure tracks the cpu data, etc., associated
* one-to-one with a "struct file *" from opening a hardwall device file.
* Note that the file's private data points back to this structure.
*/
struct hardwall_info {
struct list_head list; /* for hardwall_types.list */
struct list_head task_head; /* head of tasks in this hardwall */
struct hardwall_type *type; /* type of this resource */
struct cpumask cpumask; /* cpus reserved */
int id; /* integer id for this hardwall */
int teardown_in_progress; /* are we tearing this one down? */
/* Remaining fields only valid for user-network resources. */
int ulhc_x; /* upper left hand corner x coord */
int ulhc_y; /* upper left hand corner y coord */
int width; /* rectangle width */
int height; /* rectangle height */
#if CHIP_HAS_REV1_XDN()
atomic_t xdn_pending_count; /* cores in phase 1 of drain */
#endif
};
/* /proc/tile/hardwall */
static struct proc_dir_entry *hardwall_proc_dir;
/* Functions to manage files in /proc/tile/hardwall. */
static void hardwall_add_proc(struct hardwall_info *);
static void hardwall_remove_proc(struct hardwall_info *);
/* Allow disabling UDN access. */
static int __init noudn(char *str)
{
pr_info("User-space UDN access is disabled\n");
hardwall_types[HARDWALL_UDN].disabled = 1;
return 0;
}
early_param("noudn", noudn);
#ifndef __tilepro__
/* Allow disabling IDN access. */
static int __init noidn(char *str)
{
pr_info("User-space IDN access is disabled\n");
hardwall_types[HARDWALL_IDN].disabled = 1;
return 0;
}
early_param("noidn", noidn);
/* Allow disabling IPI access. */
static int __init noipi(char *str)
{
pr_info("User-space IPI access is disabled\n");
hardwall_types[HARDWALL_IPI].disabled = 1;
return 0;
}
early_param("noipi", noipi);
#endif
/*
* Low-level primitives for UDN/IDN
*/
#ifdef __tilepro__
#define mtspr_XDN(hwt, name, val) \
do { (void)(hwt); __insn_mtspr(SPR_UDN_##name, (val)); } while (0)
#define mtspr_MPL_XDN(hwt, name, val) \
do { (void)(hwt); __insn_mtspr(SPR_MPL_UDN_##name, (val)); } while (0)
#define mfspr_XDN(hwt, name) \
((void)(hwt), __insn_mfspr(SPR_UDN_##name))
#else
#define mtspr_XDN(hwt, name, val) \
do { \
if ((hwt)->is_idn) \
__insn_mtspr(SPR_IDN_##name, (val)); \
else \
__insn_mtspr(SPR_UDN_##name, (val)); \
} while (0)
#define mtspr_MPL_XDN(hwt, name, val) \
do { \
if ((hwt)->is_idn) \
__insn_mtspr(SPR_MPL_IDN_##name, (val)); \
else \
__insn_mtspr(SPR_MPL_UDN_##name, (val)); \
} while (0)
#define mfspr_XDN(hwt, name) \
((hwt)->is_idn ? __insn_mfspr(SPR_IDN_##name) : __insn_mfspr(SPR_UDN_##name))
#endif
/* Set a CPU bit if the CPU is online. */
#define cpu_online_set(cpu, dst) do { \
if (cpu_online(cpu)) \
cpumask_set_cpu(cpu, dst); \
} while (0)
/* Does the given rectangle contain the given x,y coordinate? */
static int contains(struct hardwall_info *r, int x, int y)
{
return (x >= r->ulhc_x && x < r->ulhc_x + r->width) &&
(y >= r->ulhc_y && y < r->ulhc_y + r->height);
}
/* Compute the rectangle parameters and validate the cpumask. */
static int check_rectangle(struct hardwall_info *r, struct cpumask *mask)
{
int x, y, cpu, ulhc, lrhc;
/* The first cpu is the ULHC, the last the LRHC. */
ulhc = find_first_bit(cpumask_bits(mask), nr_cpumask_bits);
lrhc = find_last_bit(cpumask_bits(mask), nr_cpumask_bits);
/* Compute the rectangle attributes from the cpus. */
r->ulhc_x = cpu_x(ulhc);
r->ulhc_y = cpu_y(ulhc);
r->width = cpu_x(lrhc) - r->ulhc_x + 1;
r->height = cpu_y(lrhc) - r->ulhc_y + 1;
/* Width and height must be positive */
if (r->width <= 0 || r->height <= 0)
return -EINVAL;
/* Confirm that the cpumask is exactly the rectangle. */
for (y = 0, cpu = 0; y < smp_height; ++y)
for (x = 0; x < smp_width; ++x, ++cpu)
if (cpumask_test_cpu(cpu, mask) != contains(r, x, y))
return -EINVAL;
/*
* Note that offline cpus can't be drained when this user network
* rectangle eventually closes. We used to detect this
* situation and print a warning, but it annoyed users and
* they ignored it anyway, so now we just return without a
* warning.
*/
return 0;
}
/*
* Hardware management of hardwall setup, teardown, trapping,
* and enabling/disabling PL0 access to the networks.
*/
/* Bit field values to mask together for writes to SPR_XDN_DIRECTION_PROTECT */
enum direction_protect {
N_PROTECT = (1 << 0),
E_PROTECT = (1 << 1),
S_PROTECT = (1 << 2),
W_PROTECT = (1 << 3),
C_PROTECT = (1 << 4),
};
static inline int xdn_which_interrupt(struct hardwall_type *hwt)
{
#ifndef __tilepro__
if (hwt->is_idn)
return INT_IDN_FIREWALL;
#endif
return INT_UDN_FIREWALL;
}
static void enable_firewall_interrupts(struct hardwall_type *hwt)
{
arch_local_irq_unmask_now(xdn_which_interrupt(hwt));
}
static void disable_firewall_interrupts(struct hardwall_type *hwt)
{
arch_local_irq_mask_now(xdn_which_interrupt(hwt));
}
/* Set up hardwall on this cpu based on the passed hardwall_info. */
static void hardwall_setup_func(void *info)
{
struct hardwall_info *r = info;
struct hardwall_type *hwt = r->type;
int cpu = smp_processor_id();
int x = cpu % smp_width;
int y = cpu / smp_width;
int bits = 0;
if (x == r->ulhc_x)
bits |= W_PROTECT;
if (x == r->ulhc_x + r->width - 1)
bits |= E_PROTECT;
if (y == r->ulhc_y)
bits |= N_PROTECT;
if (y == r->ulhc_y + r->height - 1)
bits |= S_PROTECT;
BUG_ON(bits == 0);
mtspr_XDN(hwt, DIRECTION_PROTECT, bits);
enable_firewall_interrupts(hwt);
}
/* Set up all cpus on edge of rectangle to enable/disable hardwall SPRs. */
static void hardwall_protect_rectangle(struct hardwall_info *r)
{
int x, y, cpu, delta;
struct cpumask rect_cpus;
cpumask_clear(&rect_cpus);
/* First include the top and bottom edges */
cpu = r->ulhc_y * smp_width + r->ulhc_x;
delta = (r->height - 1) * smp_width;
for (x = 0; x < r->width; ++x, ++cpu) {
cpu_online_set(cpu, &rect_cpus);
cpu_online_set(cpu + delta, &rect_cpus);
}
/* Then the left and right edges */
cpu -= r->width;
delta = r->width - 1;
for (y = 0; y < r->height; ++y, cpu += smp_width) {
cpu_online_set(cpu, &rect_cpus);
cpu_online_set(cpu + delta, &rect_cpus);
}
/* Then tell all the cpus to set up their protection SPR */
on_each_cpu_mask(&rect_cpus, hardwall_setup_func, r, 1);
}
void __kprobes do_hardwall_trap(struct pt_regs* regs, int fault_num)
{
struct hardwall_info *rect;
struct hardwall_type *hwt;
struct task_struct *p;
struct siginfo info;
int cpu = smp_processor_id();
int found_processes;
unsigned long flags;
struct pt_regs *old_regs = set_irq_regs(regs);
irq_enter();
/* Figure out which network trapped. */
switch (fault_num) {
#ifndef __tilepro__
case INT_IDN_FIREWALL:
hwt = &hardwall_types[HARDWALL_IDN];
break;
#endif
case INT_UDN_FIREWALL:
hwt = &hardwall_types[HARDWALL_UDN];
break;
default:
BUG();
}
BUG_ON(hwt->disabled);
/* This tile trapped a network access; find the rectangle. */
spin_lock_irqsave(&hwt->lock, flags);
list_for_each_entry(rect, &hwt->list, list) {
if (cpumask_test_cpu(cpu, &rect->cpumask))
break;
}
/*
* It shouldn't be possible not to find this cpu on the
* rectangle list, since only cpus in rectangles get hardwalled.
* The hardwall is only removed after the user network is drained.
*/
BUG_ON(&rect->list == &hwt->list);
/*
* If we already started teardown on this hardwall, don't worry;
* the abort signal has been sent and we are just waiting for things
* to quiesce.
*/
if (rect->teardown_in_progress) {
pr_notice("cpu %d: detected %s hardwall violation %#lx"
" while teardown already in progress\n",
cpu, hwt->name,
(long)mfspr_XDN(hwt, DIRECTION_PROTECT));
goto done;
}
/*
* Kill off any process that is activated in this rectangle.
* We bypass security to deliver the signal, since it must be
* one of the activated processes that generated the user network
* message that caused this trap, and all the activated
* processes shared a single open file so are pretty tightly
* bound together from a security point of view to begin with.
*/
rect->teardown_in_progress = 1;
wmb(); /* Ensure visibility of rectangle before notifying processes. */
pr_notice("cpu %d: detected %s hardwall violation %#lx...\n",
cpu, hwt->name, (long)mfspr_XDN(hwt, DIRECTION_PROTECT));
info.si_signo = SIGILL;
info.si_errno = 0;
info.si_code = ILL_HARDWALL;
found_processes = 0;
list_for_each_entry(p, &rect->task_head,
thread.hardwall[hwt->index].list) {
BUG_ON(p->thread.hardwall[hwt->index].info != rect);
if (!(p->flags & PF_EXITING)) {
found_processes = 1;
pr_notice("hardwall: killing %d\n", p->pid);
do_send_sig_info(info.si_signo, &info, p, false);
}
}
if (!found_processes)
pr_notice("hardwall: no associated processes!\n");
done:
spin_unlock_irqrestore(&hwt->lock, flags);
/*
* We have to disable firewall interrupts now, or else when we
* return from this handler, we will simply re-interrupt back to
* it. However, we can't clear the protection bits, since we
* haven't yet drained the network, and that would allow packets
* to cross out of the hardwall region.
*/
disable_firewall_interrupts(hwt);
irq_exit();
set_irq_regs(old_regs);
}
/* Allow access from user space to the user network. */
void grant_hardwall_mpls(struct hardwall_type *hwt)
{
#ifndef __tilepro__
if (!hwt->is_xdn) {
__insn_mtspr(SPR_MPL_IPI_0_SET_0, 1);
return;
}
#endif
mtspr_MPL_XDN(hwt, ACCESS_SET_0, 1);
mtspr_MPL_XDN(hwt, AVAIL_SET_0, 1);
mtspr_MPL_XDN(hwt, COMPLETE_SET_0, 1);
mtspr_MPL_XDN(hwt, TIMER_SET_0, 1);
#if !CHIP_HAS_REV1_XDN()
mtspr_MPL_XDN(hwt, REFILL_SET_0, 1);
mtspr_MPL_XDN(hwt, CA_SET_0, 1);
#endif
}
/* Deny access from user space to the user network. */
void restrict_hardwall_mpls(struct hardwall_type *hwt)
{
#ifndef __tilepro__
if (!hwt->is_xdn) {
__insn_mtspr(SPR_MPL_IPI_0_SET_1, 1);
return;
}
#endif
mtspr_MPL_XDN(hwt, ACCESS_SET_1, 1);
mtspr_MPL_XDN(hwt, AVAIL_SET_1, 1);
mtspr_MPL_XDN(hwt, COMPLETE_SET_1, 1);
mtspr_MPL_XDN(hwt, TIMER_SET_1, 1);
#if !CHIP_HAS_REV1_XDN()
mtspr_MPL_XDN(hwt, REFILL_SET_1, 1);
mtspr_MPL_XDN(hwt, CA_SET_1, 1);
#endif
}
/* Restrict or deny as necessary for the task we're switching to. */
void hardwall_switch_tasks(struct task_struct *prev,
struct task_struct *next)
{
int i;
for (i = 0; i < HARDWALL_TYPES; ++i) {
if (prev->thread.hardwall[i].info != NULL) {
if (next->thread.hardwall[i].info == NULL)
restrict_hardwall_mpls(&hardwall_types[i]);
} else if (next->thread.hardwall[i].info != NULL) {
grant_hardwall_mpls(&hardwall_types[i]);
}
}
}
/* Does this task have the right to IPI the given cpu? */
int hardwall_ipi_valid(int cpu)
{
#ifdef __tilegx__
struct hardwall_info *info =
current->thread.hardwall[HARDWALL_IPI].info;
return info && cpumask_test_cpu(cpu, &info->cpumask);
#else
return 0;
#endif
}
/*
* Code to create, activate, deactivate, and destroy hardwall resources.
*/
/* Create a hardwall for the given resource */
static struct hardwall_info *hardwall_create(struct hardwall_type *hwt,
size_t size,
const unsigned char __user *bits)
{
struct hardwall_info *iter, *info;
struct cpumask mask;
unsigned long flags;
int rc;
/* Reject crazy sizes out of hand, a la sys_mbind(). */
if (size > PAGE_SIZE)
return ERR_PTR(-EINVAL);
/* Copy whatever fits into a cpumask. */
if (copy_from_user(&mask, bits, min(sizeof(struct cpumask), size)))
return ERR_PTR(-EFAULT);
/*
* If the size was short, clear the rest of the mask;
* otherwise validate that the rest of the user mask was zero
* (we don't try hard to be efficient when validating huge masks).
*/
if (size < sizeof(struct cpumask)) {
memset((char *)&mask + size, 0, sizeof(struct cpumask) - size);
} else if (size > sizeof(struct cpumask)) {
size_t i;
for (i = sizeof(struct cpumask); i < size; ++i) {
char c;
if (get_user(c, &bits[i]))
return ERR_PTR(-EFAULT);
if (c)
return ERR_PTR(-EINVAL);
}
}
/* Allocate a new hardwall_info optimistically. */
info = kmalloc(sizeof(struct hardwall_info),
GFP_KERNEL | __GFP_ZERO);
if (info == NULL)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&info->task_head);
info->type = hwt;
/* Compute the rectangle size and validate that it's plausible. */
cpumask_copy(&info->cpumask, &mask);
info->id = find_first_bit(cpumask_bits(&mask), nr_cpumask_bits);
if (hwt->is_xdn) {
rc = check_rectangle(info, &mask);
if (rc != 0) {
kfree(info);
return ERR_PTR(rc);
}
}
/* Confirm it doesn't overlap and add it to the list. */
spin_lock_irqsave(&hwt->lock, flags);
list_for_each_entry(iter, &hwt->list, list) {
if (cpumask_intersects(&iter->cpumask, &info->cpumask)) {
spin_unlock_irqrestore(&hwt->lock, flags);
kfree(info);
return ERR_PTR(-EBUSY);
}
}
list_add_tail(&info->list, &hwt->list);
spin_unlock_irqrestore(&hwt->lock, flags);
/* Set up appropriate hardwalling on all affected cpus. */
if (hwt->is_xdn)
hardwall_protect_rectangle(info);
/* Create a /proc/tile/hardwall entry. */
hardwall_add_proc(info);
return info;
}
/* Activate a given hardwall on this cpu for this process. */
static int hardwall_activate(struct hardwall_info *info)
{
int cpu;
unsigned long flags;
struct task_struct *p = current;
struct thread_struct *ts = &p->thread;
struct hardwall_type *hwt;
/* Require a hardwall. */
if (info == NULL)
return -ENODATA;
/* Not allowed to activate a hardwall that is being torn down. */
if (info->teardown_in_progress)
return -EINVAL;
/*
* Get our affinity; if we're not bound to this tile uniquely,
* we can't access the network registers.
*/
if (cpumask_weight(&p->cpus_allowed) != 1)
return -EPERM;
/* Make sure we are bound to a cpu assigned to this resource. */
cpu = smp_processor_id();
BUG_ON(cpumask_first(&p->cpus_allowed) != cpu);
if (!cpumask_test_cpu(cpu, &info->cpumask))
return -EINVAL;
/* If we are already bound to this hardwall, it's a no-op. */
hwt = info->type;
if (ts->hardwall[hwt->index].info) {
BUG_ON(ts->hardwall[hwt->index].info != info);
return 0;
}
/* Success! This process gets to use the resource on this cpu. */
ts->hardwall[hwt->index].info = info;
spin_lock_irqsave(&hwt->lock, flags);
list_add(&ts->hardwall[hwt->index].list, &info->task_head);
spin_unlock_irqrestore(&hwt->lock, flags);
grant_hardwall_mpls(hwt);
printk(KERN_DEBUG "Pid %d (%s) activated for %s hardwall: cpu %d\n",
p->pid, p->comm, hwt->name, cpu);
return 0;
}
/*
* Deactivate a task's hardwall. Must hold lock for hardwall_type.
* This method may be called from free_task(), so we don't want to
* rely on too many fields of struct task_struct still being valid.
* We assume the cpus_allowed, pid, and comm fields are still valid.
*/
static void _hardwall_deactivate(struct hardwall_type *hwt,
struct task_struct *task)
{
struct thread_struct *ts = &task->thread;
if (cpumask_weight(&task->cpus_allowed) != 1) {
pr_err("pid %d (%s) releasing %s hardwall with"
" an affinity mask containing %d cpus!\n",
task->pid, task->comm, hwt->name,
cpumask_weight(&task->cpus_allowed));
BUG();
}
BUG_ON(ts->hardwall[hwt->index].info == NULL);
ts->hardwall[hwt->index].info = NULL;
list_del(&ts->hardwall[hwt->index].list);
if (task == current)
restrict_hardwall_mpls(hwt);
}
/* Deactivate a task's hardwall. */
static int hardwall_deactivate(struct hardwall_type *hwt,
struct task_struct *task)
{
unsigned long flags;
int activated;
spin_lock_irqsave(&hwt->lock, flags);
activated = (task->thread.hardwall[hwt->index].info != NULL);
if (activated)
_hardwall_deactivate(hwt, task);
spin_unlock_irqrestore(&hwt->lock, flags);
if (!activated)
return -EINVAL;
printk(KERN_DEBUG "Pid %d (%s) deactivated for %s hardwall: cpu %d\n",
task->pid, task->comm, hwt->name, smp_processor_id());
return 0;
}
void hardwall_deactivate_all(struct task_struct *task)
{
int i;
for (i = 0; i < HARDWALL_TYPES; ++i)
if (task->thread.hardwall[i].info)
hardwall_deactivate(&hardwall_types[i], task);
}
/* Stop the switch before draining the network. */
static void stop_xdn_switch(void *arg)
{
#if !CHIP_HAS_REV1_XDN()
/* Freeze the switch and the demux. */
__insn_mtspr(SPR_UDN_SP_FREEZE,
SPR_UDN_SP_FREEZE__SP_FRZ_MASK |
SPR_UDN_SP_FREEZE__DEMUX_FRZ_MASK |
SPR_UDN_SP_FREEZE__NON_DEST_EXT_MASK);
#else
/*
* Drop all packets bound for the core or off the edge.
* We rely on the normal hardwall protection setup code
* to have set the low four bits to trigger firewall interrupts,
* and shift those bits up to trigger "drop on send" semantics,
* plus adding "drop on send to core" for all switches.
* In practice it seems the switches latch the DIRECTION_PROTECT
* SPR so they won't start dropping if they're already
* delivering the last message to the core, but it doesn't
* hurt to enable it here.
*/
struct hardwall_type *hwt = arg;
unsigned long protect = mfspr_XDN(hwt, DIRECTION_PROTECT);
mtspr_XDN(hwt, DIRECTION_PROTECT, (protect | C_PROTECT) << 5);
#endif
}
static void empty_xdn_demuxes(struct hardwall_type *hwt)
{
#ifndef __tilepro__
if (hwt->is_idn) {
while (__insn_mfspr(SPR_IDN_DATA_AVAIL) & (1 << 0))
(void) __tile_idn0_receive();
while (__insn_mfspr(SPR_IDN_DATA_AVAIL) & (1 << 1))
(void) __tile_idn1_receive();
return;
}
#endif
while (__insn_mfspr(SPR_UDN_DATA_AVAIL) & (1 << 0))
(void) __tile_udn0_receive();
while (__insn_mfspr(SPR_UDN_DATA_AVAIL) & (1 << 1))
(void) __tile_udn1_receive();
while (__insn_mfspr(SPR_UDN_DATA_AVAIL) & (1 << 2))
(void) __tile_udn2_receive();
while (__insn_mfspr(SPR_UDN_DATA_AVAIL) & (1 << 3))
(void) __tile_udn3_receive();
}
/* Drain all the state from a stopped switch. */
static void drain_xdn_switch(void *arg)
{
struct hardwall_info *info = arg;
struct hardwall_type *hwt = info->type;
#if CHIP_HAS_REV1_XDN()
/*
* The switches have been configured to drop any messages
* destined for cores (or off the edge of the rectangle).
* But the current message may continue to be delivered,
* so we wait until all the cores have finished any pending
* messages before we stop draining.
*/
int pending = mfspr_XDN(hwt, PENDING);
while (pending--) {
empty_xdn_demuxes(hwt);
if (hwt->is_idn)
__tile_idn_send(0);
else
__tile_udn_send(0);
}
atomic_dec(&info->xdn_pending_count);
while (atomic_read(&info->xdn_pending_count))
empty_xdn_demuxes(hwt);
#else
int i;
int from_tile_words, ca_count;
/* Empty out the 5 switch point fifos. */
for (i = 0; i < 5; i++) {
int words, j;
__insn_mtspr(SPR_UDN_SP_FIFO_SEL, i);
words = __insn_mfspr(SPR_UDN_SP_STATE) & 0xF;
for (j = 0; j < words; j++)
(void) __insn_mfspr(SPR_UDN_SP_FIFO_DATA);
BUG_ON((__insn_mfspr(SPR_UDN_SP_STATE) & 0xF) != 0);
}
/* Dump out the 3 word fifo at top. */
from_tile_words = (__insn_mfspr(SPR_UDN_DEMUX_STATUS) >> 10) & 0x3;
for (i = 0; i < from_tile_words; i++)
(void) __insn_mfspr(SPR_UDN_DEMUX_WRITE_FIFO);
/* Empty out demuxes. */
empty_xdn_demuxes(hwt);
/* Empty out catch all. */
ca_count = __insn_mfspr(SPR_UDN_DEMUX_CA_COUNT);
for (i = 0; i < ca_count; i++)
(void) __insn_mfspr(SPR_UDN_CA_DATA);
BUG_ON(__insn_mfspr(SPR_UDN_DEMUX_CA_COUNT) != 0);
/* Clear demux logic. */
__insn_mtspr(SPR_UDN_DEMUX_CTL, 1);
/*
* Write switch state; experimentation indicates that 0xc3000
* is an idle switch point.
*/
for (i = 0; i < 5; i++) {
__insn_mtspr(SPR_UDN_SP_FIFO_SEL, i);
__insn_mtspr(SPR_UDN_SP_STATE, 0xc3000);
}
#endif
}
/* Reset random XDN state registers at boot up and during hardwall teardown. */
static void reset_xdn_network_state(struct hardwall_type *hwt)
{
if (hwt->disabled)
return;
/* Clear out other random registers so we have a clean slate. */
mtspr_XDN(hwt, DIRECTION_PROTECT, 0);
mtspr_XDN(hwt, AVAIL_EN, 0);
mtspr_XDN(hwt, DEADLOCK_TIMEOUT, 0);
#if !CHIP_HAS_REV1_XDN()
/* Reset UDN coordinates to their standard value */
{
unsigned int cpu = smp_processor_id();
unsigned int x = cpu % smp_width;
unsigned int y = cpu / smp_width;
__insn_mtspr(SPR_UDN_TILE_COORD, (x << 18) | (y << 7));
}
/* Set demux tags to predefined values and enable them. */
__insn_mtspr(SPR_UDN_TAG_VALID, 0xf);
__insn_mtspr(SPR_UDN_TAG_0, (1 << 0));
__insn_mtspr(SPR_UDN_TAG_1, (1 << 1));
__insn_mtspr(SPR_UDN_TAG_2, (1 << 2));
__insn_mtspr(SPR_UDN_TAG_3, (1 << 3));
/* Set other rev0 random registers to a clean state. */
__insn_mtspr(SPR_UDN_REFILL_EN, 0);
__insn_mtspr(SPR_UDN_DEMUX_QUEUE_SEL, 0);
__insn_mtspr(SPR_UDN_SP_FIFO_SEL, 0);
/* Start the switch and demux. */
__insn_mtspr(SPR_UDN_SP_FREEZE, 0);
#endif
}
void reset_network_state(void)
{
reset_xdn_network_state(&hardwall_types[HARDWALL_UDN]);
#ifndef __tilepro__
reset_xdn_network_state(&hardwall_types[HARDWALL_IDN]);
#endif
}
/* Restart an XDN switch after draining. */
static void restart_xdn_switch(void *arg)
{
struct hardwall_type *hwt = arg;
#if CHIP_HAS_REV1_XDN()
/* One last drain step to avoid races with injection and draining. */
empty_xdn_demuxes(hwt);
#endif
reset_xdn_network_state(hwt);
/* Disable firewall interrupts. */
disable_firewall_interrupts(hwt);
}
/* Last reference to a hardwall is gone, so clear the network. */
static void hardwall_destroy(struct hardwall_info *info)
{
struct task_struct *task;
struct hardwall_type *hwt;
unsigned long flags;
/* Make sure this file actually represents a hardwall. */
if (info == NULL)
return;
/*
* Deactivate any remaining tasks. It's possible to race with
* some other thread that is exiting and hasn't yet called
* deactivate (when freeing its thread_info), so we carefully
* deactivate any remaining tasks before freeing the
* hardwall_info object itself.
*/
hwt = info->type;
info->teardown_in_progress = 1;
spin_lock_irqsave(&hwt->lock, flags);
list_for_each_entry(task, &info->task_head,
thread.hardwall[hwt->index].list)
_hardwall_deactivate(hwt, task);
spin_unlock_irqrestore(&hwt->lock, flags);
if (hwt->is_xdn) {
/* Configure the switches for draining the user network. */
printk(KERN_DEBUG
"Clearing %s hardwall rectangle %dx%d %d,%d\n",
hwt->name, info->width, info->height,
info->ulhc_x, info->ulhc_y);
on_each_cpu_mask(&info->cpumask, stop_xdn_switch, hwt, 1);
/* Drain the network. */
#if CHIP_HAS_REV1_XDN()
atomic_set(&info->xdn_pending_count,
cpumask_weight(&info->cpumask));
on_each_cpu_mask(&info->cpumask, drain_xdn_switch, info, 0);
#else
on_each_cpu_mask(&info->cpumask, drain_xdn_switch, info, 1);
#endif
/* Restart switch and disable firewall. */
on_each_cpu_mask(&info->cpumask, restart_xdn_switch, hwt, 1);
}
/* Remove the /proc/tile/hardwall entry. */
hardwall_remove_proc(info);
/* Now free the hardwall from the list. */
spin_lock_irqsave(&hwt->lock, flags);
BUG_ON(!list_empty(&info->task_head));
list_del(&info->list);
spin_unlock_irqrestore(&hwt->lock, flags);
kfree(info);
}
static int hardwall_proc_show(struct seq_file *sf, void *v)
{
struct hardwall_info *info = sf->private;
char buf[256];
int rc = cpulist_scnprintf(buf, sizeof(buf), &info->cpumask);
buf[rc++] = '\n';
seq_write(sf, buf, rc);
return 0;
}
static int hardwall_proc_open(struct inode *inode,
struct file *file)
{
return single_open(file, hardwall_proc_show, PDE(inode)->data);
}
static const struct file_operations hardwall_proc_fops = {
.open = hardwall_proc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static void hardwall_add_proc(struct hardwall_info *info)
{
char buf[64];
snprintf(buf, sizeof(buf), "%d", info->id);
proc_create_data(buf, 0444, info->type->proc_dir,
&hardwall_proc_fops, info);
}
static void hardwall_remove_proc(struct hardwall_info *info)
{
char buf[64];
snprintf(buf, sizeof(buf), "%d", info->id);
remove_proc_entry(buf, info->type->proc_dir);
}
int proc_pid_hardwall(struct task_struct *task, char *buffer)
{
int i;
int n = 0;
for (i = 0; i < HARDWALL_TYPES; ++i) {
struct hardwall_info *info = task->thread.hardwall[i].info;
if (info)
n += sprintf(&buffer[n], "%s: %d\n",
info->type->name, info->id);
}
return n;
}
void proc_tile_hardwall_init(struct proc_dir_entry *root)
{
int i;
for (i = 0; i < HARDWALL_TYPES; ++i) {
struct hardwall_type *hwt = &hardwall_types[i];
if (hwt->disabled)
continue;
if (hardwall_proc_dir == NULL)
hardwall_proc_dir = proc_mkdir("hardwall", root);
hwt->proc_dir = proc_mkdir(hwt->name, hardwall_proc_dir);
}
}
/*
* Character device support via ioctl/close.
*/
static long hardwall_ioctl(struct file *file, unsigned int a, unsigned long b)
{
struct hardwall_info *info = file->private_data;
int minor = iminor(file->f_mapping->host);
struct hardwall_type* hwt;
if (_IOC_TYPE(a) != HARDWALL_IOCTL_BASE)
return -EINVAL;
BUILD_BUG_ON(HARDWALL_TYPES != _HARDWALL_TYPES);
BUILD_BUG_ON(HARDWALL_TYPES !=
sizeof(hardwall_types)/sizeof(hardwall_types[0]));
if (minor < 0 || minor >= HARDWALL_TYPES)
return -EINVAL;
hwt = &hardwall_types[minor];
WARN_ON(info && hwt != info->type);
switch (_IOC_NR(a)) {
case _HARDWALL_CREATE:
if (hwt->disabled)
return -ENOSYS;
if (info != NULL)
return -EALREADY;
info = hardwall_create(hwt, _IOC_SIZE(a),
(const unsigned char __user *)b);
if (IS_ERR(info))
return PTR_ERR(info);
file->private_data = info;
return 0;
case _HARDWALL_ACTIVATE:
return hardwall_activate(info);
case _HARDWALL_DEACTIVATE:
if (current->thread.hardwall[hwt->index].info != info)
return -EINVAL;
return hardwall_deactivate(hwt, current);
case _HARDWALL_GET_ID:
return info ? info->id : -EINVAL;
default:
return -EINVAL;
}
}
#ifdef CONFIG_COMPAT
static long hardwall_compat_ioctl(struct file *file,
unsigned int a, unsigned long b)
{
/* Sign-extend the argument so it can be used as a pointer. */
return hardwall_ioctl(file, a, (unsigned long)compat_ptr(b));
}
#endif
/* The user process closed the file; revoke access to user networks. */
static int hardwall_flush(struct file *file, fl_owner_t owner)
{
struct hardwall_info *info = file->private_data;
struct task_struct *task, *tmp;
unsigned long flags;
if (info) {
/*
* NOTE: if multiple threads are activated on this hardwall
* file, the other threads will continue having access to the
* user network until they are context-switched out and back
* in again.
*
* NOTE: A NULL files pointer means the task is being torn
* down, so in that case we also deactivate it.
*/
struct hardwall_type *hwt = info->type;
spin_lock_irqsave(&hwt->lock, flags);
list_for_each_entry_safe(task, tmp, &info->task_head,
thread.hardwall[hwt->index].list) {
if (task->files == owner || task->files == NULL)
_hardwall_deactivate(hwt, task);
}
spin_unlock_irqrestore(&hwt->lock, flags);
}
return 0;
}
/* This hardwall is gone, so destroy it. */
static int hardwall_release(struct inode *inode, struct file *file)
{
hardwall_destroy(file->private_data);
return 0;
}
static const struct file_operations dev_hardwall_fops = {
.open = nonseekable_open,
.unlocked_ioctl = hardwall_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = hardwall_compat_ioctl,
#endif
.flush = hardwall_flush,
.release = hardwall_release,
};
static struct cdev hardwall_dev;
static int __init dev_hardwall_init(void)
{
int rc;
dev_t dev;
rc = alloc_chrdev_region(&dev, 0, HARDWALL_TYPES, "hardwall");
if (rc < 0)
return rc;
cdev_init(&hardwall_dev, &dev_hardwall_fops);
rc = cdev_add(&hardwall_dev, dev, HARDWALL_TYPES);
if (rc < 0)
return rc;
return 0;
}
late_initcall(dev_hardwall_init);