linux/drivers/iio/adc/stm32-adc-core.c
Fabrice Gasnier 7685010fca iio: adc: stm32-adc: add missing vdda-supply
Add missing vdda-supply, analog power supply, to STM32 ADC. When vdda is
an independent supply, it needs to be properly turned on or off to supply
the ADC.

Signed-off-by: Fabrice Gasnier <fabrice.gasnier@st.com>
Fixes: 1add698802 ("iio: adc: Add support for STM32 ADC core").
Cc: <Stable@vger.kernel.org>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2019-06-22 10:37:26 +01:00

652 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* This file is part of STM32 ADC driver
*
* Copyright (C) 2016, STMicroelectronics - All Rights Reserved
* Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
*
* Inspired from: fsl-imx25-tsadc
*
*/
#include <linux/clk.h>
#include <linux/interrupt.h>
#include <linux/irqchip/chained_irq.h>
#include <linux/irqdesc.h>
#include <linux/irqdomain.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/pm_runtime.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include "stm32-adc-core.h"
/* STM32F4 - common registers for all ADC instances: 1, 2 & 3 */
#define STM32F4_ADC_CSR (STM32_ADCX_COMN_OFFSET + 0x00)
#define STM32F4_ADC_CCR (STM32_ADCX_COMN_OFFSET + 0x04)
/* STM32F4_ADC_CSR - bit fields */
#define STM32F4_EOC3 BIT(17)
#define STM32F4_EOC2 BIT(9)
#define STM32F4_EOC1 BIT(1)
/* STM32F4_ADC_CCR - bit fields */
#define STM32F4_ADC_ADCPRE_SHIFT 16
#define STM32F4_ADC_ADCPRE_MASK GENMASK(17, 16)
/* STM32H7 - common registers for all ADC instances */
#define STM32H7_ADC_CSR (STM32_ADCX_COMN_OFFSET + 0x00)
#define STM32H7_ADC_CCR (STM32_ADCX_COMN_OFFSET + 0x08)
/* STM32H7_ADC_CSR - bit fields */
#define STM32H7_EOC_SLV BIT(18)
#define STM32H7_EOC_MST BIT(2)
/* STM32H7_ADC_CCR - bit fields */
#define STM32H7_PRESC_SHIFT 18
#define STM32H7_PRESC_MASK GENMASK(21, 18)
#define STM32H7_CKMODE_SHIFT 16
#define STM32H7_CKMODE_MASK GENMASK(17, 16)
#define STM32_ADC_CORE_SLEEP_DELAY_MS 2000
/**
* stm32_adc_common_regs - stm32 common registers, compatible dependent data
* @csr: common status register offset
* @ccr: common control register offset
* @eoc1: adc1 end of conversion flag in @csr
* @eoc2: adc2 end of conversion flag in @csr
* @eoc3: adc3 end of conversion flag in @csr
*/
struct stm32_adc_common_regs {
u32 csr;
u32 ccr;
u32 eoc1_msk;
u32 eoc2_msk;
u32 eoc3_msk;
};
struct stm32_adc_priv;
/**
* stm32_adc_priv_cfg - stm32 core compatible configuration data
* @regs: common registers for all instances
* @clk_sel: clock selection routine
* @max_clk_rate_hz: maximum analog clock rate (Hz, from datasheet)
*/
struct stm32_adc_priv_cfg {
const struct stm32_adc_common_regs *regs;
int (*clk_sel)(struct platform_device *, struct stm32_adc_priv *);
u32 max_clk_rate_hz;
};
/**
* struct stm32_adc_priv - stm32 ADC core private data
* @irq: irq(s) for ADC block
* @domain: irq domain reference
* @aclk: clock reference for the analog circuitry
* @bclk: bus clock common for all ADCs, depends on part used
* @vdda: vdda analog supply reference
* @vref: regulator reference
* @cfg: compatible configuration data
* @common: common data for all ADC instances
* @ccr_bak: backup CCR in low power mode
*/
struct stm32_adc_priv {
int irq[STM32_ADC_MAX_ADCS];
struct irq_domain *domain;
struct clk *aclk;
struct clk *bclk;
struct regulator *vdda;
struct regulator *vref;
const struct stm32_adc_priv_cfg *cfg;
struct stm32_adc_common common;
u32 ccr_bak;
};
static struct stm32_adc_priv *to_stm32_adc_priv(struct stm32_adc_common *com)
{
return container_of(com, struct stm32_adc_priv, common);
}
/* STM32F4 ADC internal common clock prescaler division ratios */
static int stm32f4_pclk_div[] = {2, 4, 6, 8};
/**
* stm32f4_adc_clk_sel() - Select stm32f4 ADC common clock prescaler
* @priv: stm32 ADC core private data
* Select clock prescaler used for analog conversions, before using ADC.
*/
static int stm32f4_adc_clk_sel(struct platform_device *pdev,
struct stm32_adc_priv *priv)
{
unsigned long rate;
u32 val;
int i;
/* stm32f4 has one clk input for analog (mandatory), enforce it here */
if (!priv->aclk) {
dev_err(&pdev->dev, "No 'adc' clock found\n");
return -ENOENT;
}
rate = clk_get_rate(priv->aclk);
if (!rate) {
dev_err(&pdev->dev, "Invalid clock rate: 0\n");
return -EINVAL;
}
for (i = 0; i < ARRAY_SIZE(stm32f4_pclk_div); i++) {
if ((rate / stm32f4_pclk_div[i]) <= priv->cfg->max_clk_rate_hz)
break;
}
if (i >= ARRAY_SIZE(stm32f4_pclk_div)) {
dev_err(&pdev->dev, "adc clk selection failed\n");
return -EINVAL;
}
priv->common.rate = rate / stm32f4_pclk_div[i];
val = readl_relaxed(priv->common.base + STM32F4_ADC_CCR);
val &= ~STM32F4_ADC_ADCPRE_MASK;
val |= i << STM32F4_ADC_ADCPRE_SHIFT;
writel_relaxed(val, priv->common.base + STM32F4_ADC_CCR);
dev_dbg(&pdev->dev, "Using analog clock source at %ld kHz\n",
priv->common.rate / 1000);
return 0;
}
/**
* struct stm32h7_adc_ck_spec - specification for stm32h7 adc clock
* @ckmode: ADC clock mode, Async or sync with prescaler.
* @presc: prescaler bitfield for async clock mode
* @div: prescaler division ratio
*/
struct stm32h7_adc_ck_spec {
u32 ckmode;
u32 presc;
int div;
};
static const struct stm32h7_adc_ck_spec stm32h7_adc_ckmodes_spec[] = {
/* 00: CK_ADC[1..3]: Asynchronous clock modes */
{ 0, 0, 1 },
{ 0, 1, 2 },
{ 0, 2, 4 },
{ 0, 3, 6 },
{ 0, 4, 8 },
{ 0, 5, 10 },
{ 0, 6, 12 },
{ 0, 7, 16 },
{ 0, 8, 32 },
{ 0, 9, 64 },
{ 0, 10, 128 },
{ 0, 11, 256 },
/* HCLK used: Synchronous clock modes (1, 2 or 4 prescaler) */
{ 1, 0, 1 },
{ 2, 0, 2 },
{ 3, 0, 4 },
};
static int stm32h7_adc_clk_sel(struct platform_device *pdev,
struct stm32_adc_priv *priv)
{
u32 ckmode, presc, val;
unsigned long rate;
int i, div;
/* stm32h7 bus clock is common for all ADC instances (mandatory) */
if (!priv->bclk) {
dev_err(&pdev->dev, "No 'bus' clock found\n");
return -ENOENT;
}
/*
* stm32h7 can use either 'bus' or 'adc' clock for analog circuitry.
* So, choice is to have bus clock mandatory and adc clock optional.
* If optional 'adc' clock has been found, then try to use it first.
*/
if (priv->aclk) {
/*
* Asynchronous clock modes (e.g. ckmode == 0)
* From spec: PLL output musn't exceed max rate
*/
rate = clk_get_rate(priv->aclk);
if (!rate) {
dev_err(&pdev->dev, "Invalid adc clock rate: 0\n");
return -EINVAL;
}
for (i = 0; i < ARRAY_SIZE(stm32h7_adc_ckmodes_spec); i++) {
ckmode = stm32h7_adc_ckmodes_spec[i].ckmode;
presc = stm32h7_adc_ckmodes_spec[i].presc;
div = stm32h7_adc_ckmodes_spec[i].div;
if (ckmode)
continue;
if ((rate / div) <= priv->cfg->max_clk_rate_hz)
goto out;
}
}
/* Synchronous clock modes (e.g. ckmode is 1, 2 or 3) */
rate = clk_get_rate(priv->bclk);
if (!rate) {
dev_err(&pdev->dev, "Invalid bus clock rate: 0\n");
return -EINVAL;
}
for (i = 0; i < ARRAY_SIZE(stm32h7_adc_ckmodes_spec); i++) {
ckmode = stm32h7_adc_ckmodes_spec[i].ckmode;
presc = stm32h7_adc_ckmodes_spec[i].presc;
div = stm32h7_adc_ckmodes_spec[i].div;
if (!ckmode)
continue;
if ((rate / div) <= priv->cfg->max_clk_rate_hz)
goto out;
}
dev_err(&pdev->dev, "adc clk selection failed\n");
return -EINVAL;
out:
/* rate used later by each ADC instance to control BOOST mode */
priv->common.rate = rate / div;
/* Set common clock mode and prescaler */
val = readl_relaxed(priv->common.base + STM32H7_ADC_CCR);
val &= ~(STM32H7_CKMODE_MASK | STM32H7_PRESC_MASK);
val |= ckmode << STM32H7_CKMODE_SHIFT;
val |= presc << STM32H7_PRESC_SHIFT;
writel_relaxed(val, priv->common.base + STM32H7_ADC_CCR);
dev_dbg(&pdev->dev, "Using %s clock/%d source at %ld kHz\n",
ckmode ? "bus" : "adc", div, priv->common.rate / 1000);
return 0;
}
/* STM32F4 common registers definitions */
static const struct stm32_adc_common_regs stm32f4_adc_common_regs = {
.csr = STM32F4_ADC_CSR,
.ccr = STM32F4_ADC_CCR,
.eoc1_msk = STM32F4_EOC1,
.eoc2_msk = STM32F4_EOC2,
.eoc3_msk = STM32F4_EOC3,
};
/* STM32H7 common registers definitions */
static const struct stm32_adc_common_regs stm32h7_adc_common_regs = {
.csr = STM32H7_ADC_CSR,
.ccr = STM32H7_ADC_CCR,
.eoc1_msk = STM32H7_EOC_MST,
.eoc2_msk = STM32H7_EOC_SLV,
};
/* ADC common interrupt for all instances */
static void stm32_adc_irq_handler(struct irq_desc *desc)
{
struct stm32_adc_priv *priv = irq_desc_get_handler_data(desc);
struct irq_chip *chip = irq_desc_get_chip(desc);
u32 status;
chained_irq_enter(chip, desc);
status = readl_relaxed(priv->common.base + priv->cfg->regs->csr);
if (status & priv->cfg->regs->eoc1_msk)
generic_handle_irq(irq_find_mapping(priv->domain, 0));
if (status & priv->cfg->regs->eoc2_msk)
generic_handle_irq(irq_find_mapping(priv->domain, 1));
if (status & priv->cfg->regs->eoc3_msk)
generic_handle_irq(irq_find_mapping(priv->domain, 2));
chained_irq_exit(chip, desc);
};
static int stm32_adc_domain_map(struct irq_domain *d, unsigned int irq,
irq_hw_number_t hwirq)
{
irq_set_chip_data(irq, d->host_data);
irq_set_chip_and_handler(irq, &dummy_irq_chip, handle_level_irq);
return 0;
}
static void stm32_adc_domain_unmap(struct irq_domain *d, unsigned int irq)
{
irq_set_chip_and_handler(irq, NULL, NULL);
irq_set_chip_data(irq, NULL);
}
static const struct irq_domain_ops stm32_adc_domain_ops = {
.map = stm32_adc_domain_map,
.unmap = stm32_adc_domain_unmap,
.xlate = irq_domain_xlate_onecell,
};
static int stm32_adc_irq_probe(struct platform_device *pdev,
struct stm32_adc_priv *priv)
{
struct device_node *np = pdev->dev.of_node;
unsigned int i;
for (i = 0; i < STM32_ADC_MAX_ADCS; i++) {
priv->irq[i] = platform_get_irq(pdev, i);
if (priv->irq[i] < 0) {
/*
* At least one interrupt must be provided, make others
* optional:
* - stm32f4/h7 shares a common interrupt.
* - stm32mp1, has one line per ADC (either for ADC1,
* ADC2 or both).
*/
if (i && priv->irq[i] == -ENXIO)
continue;
dev_err(&pdev->dev, "failed to get irq\n");
return priv->irq[i];
}
}
priv->domain = irq_domain_add_simple(np, STM32_ADC_MAX_ADCS, 0,
&stm32_adc_domain_ops,
priv);
if (!priv->domain) {
dev_err(&pdev->dev, "Failed to add irq domain\n");
return -ENOMEM;
}
for (i = 0; i < STM32_ADC_MAX_ADCS; i++) {
if (priv->irq[i] < 0)
continue;
irq_set_chained_handler(priv->irq[i], stm32_adc_irq_handler);
irq_set_handler_data(priv->irq[i], priv);
}
return 0;
}
static void stm32_adc_irq_remove(struct platform_device *pdev,
struct stm32_adc_priv *priv)
{
int hwirq;
unsigned int i;
for (hwirq = 0; hwirq < STM32_ADC_MAX_ADCS; hwirq++)
irq_dispose_mapping(irq_find_mapping(priv->domain, hwirq));
irq_domain_remove(priv->domain);
for (i = 0; i < STM32_ADC_MAX_ADCS; i++) {
if (priv->irq[i] < 0)
continue;
irq_set_chained_handler(priv->irq[i], NULL);
}
}
static int stm32_adc_core_hw_start(struct device *dev)
{
struct stm32_adc_common *common = dev_get_drvdata(dev);
struct stm32_adc_priv *priv = to_stm32_adc_priv(common);
int ret;
ret = regulator_enable(priv->vdda);
if (ret < 0) {
dev_err(dev, "vdda enable failed %d\n", ret);
return ret;
}
ret = regulator_enable(priv->vref);
if (ret < 0) {
dev_err(dev, "vref enable failed\n");
goto err_vdda_disable;
}
if (priv->bclk) {
ret = clk_prepare_enable(priv->bclk);
if (ret < 0) {
dev_err(dev, "bus clk enable failed\n");
goto err_regulator_disable;
}
}
if (priv->aclk) {
ret = clk_prepare_enable(priv->aclk);
if (ret < 0) {
dev_err(dev, "adc clk enable failed\n");
goto err_bclk_disable;
}
}
writel_relaxed(priv->ccr_bak, priv->common.base + priv->cfg->regs->ccr);
return 0;
err_bclk_disable:
if (priv->bclk)
clk_disable_unprepare(priv->bclk);
err_regulator_disable:
regulator_disable(priv->vref);
err_vdda_disable:
regulator_disable(priv->vdda);
return ret;
}
static void stm32_adc_core_hw_stop(struct device *dev)
{
struct stm32_adc_common *common = dev_get_drvdata(dev);
struct stm32_adc_priv *priv = to_stm32_adc_priv(common);
/* Backup CCR that may be lost (depends on power state to achieve) */
priv->ccr_bak = readl_relaxed(priv->common.base + priv->cfg->regs->ccr);
if (priv->aclk)
clk_disable_unprepare(priv->aclk);
if (priv->bclk)
clk_disable_unprepare(priv->bclk);
regulator_disable(priv->vref);
regulator_disable(priv->vdda);
}
static int stm32_adc_probe(struct platform_device *pdev)
{
struct stm32_adc_priv *priv;
struct device *dev = &pdev->dev;
struct device_node *np = pdev->dev.of_node;
struct resource *res;
int ret;
if (!pdev->dev.of_node)
return -ENODEV;
priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
platform_set_drvdata(pdev, &priv->common);
priv->cfg = (const struct stm32_adc_priv_cfg *)
of_match_device(dev->driver->of_match_table, dev)->data;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
priv->common.base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(priv->common.base))
return PTR_ERR(priv->common.base);
priv->common.phys_base = res->start;
priv->vdda = devm_regulator_get(&pdev->dev, "vdda");
if (IS_ERR(priv->vdda)) {
ret = PTR_ERR(priv->vdda);
if (ret != -EPROBE_DEFER)
dev_err(&pdev->dev, "vdda get failed, %d\n", ret);
return ret;
}
priv->vref = devm_regulator_get(&pdev->dev, "vref");
if (IS_ERR(priv->vref)) {
ret = PTR_ERR(priv->vref);
dev_err(&pdev->dev, "vref get failed, %d\n", ret);
return ret;
}
priv->aclk = devm_clk_get(&pdev->dev, "adc");
if (IS_ERR(priv->aclk)) {
ret = PTR_ERR(priv->aclk);
if (ret != -ENOENT) {
dev_err(&pdev->dev, "Can't get 'adc' clock\n");
return ret;
}
priv->aclk = NULL;
}
priv->bclk = devm_clk_get(&pdev->dev, "bus");
if (IS_ERR(priv->bclk)) {
ret = PTR_ERR(priv->bclk);
if (ret != -ENOENT) {
dev_err(&pdev->dev, "Can't get 'bus' clock\n");
return ret;
}
priv->bclk = NULL;
}
pm_runtime_get_noresume(dev);
pm_runtime_set_active(dev);
pm_runtime_set_autosuspend_delay(dev, STM32_ADC_CORE_SLEEP_DELAY_MS);
pm_runtime_use_autosuspend(dev);
pm_runtime_enable(dev);
ret = stm32_adc_core_hw_start(dev);
if (ret)
goto err_pm_stop;
ret = regulator_get_voltage(priv->vref);
if (ret < 0) {
dev_err(&pdev->dev, "vref get voltage failed, %d\n", ret);
goto err_hw_stop;
}
priv->common.vref_mv = ret / 1000;
dev_dbg(&pdev->dev, "vref+=%dmV\n", priv->common.vref_mv);
ret = priv->cfg->clk_sel(pdev, priv);
if (ret < 0)
goto err_hw_stop;
ret = stm32_adc_irq_probe(pdev, priv);
if (ret < 0)
goto err_hw_stop;
ret = of_platform_populate(np, NULL, NULL, &pdev->dev);
if (ret < 0) {
dev_err(&pdev->dev, "failed to populate DT children\n");
goto err_irq_remove;
}
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return 0;
err_irq_remove:
stm32_adc_irq_remove(pdev, priv);
err_hw_stop:
stm32_adc_core_hw_stop(dev);
err_pm_stop:
pm_runtime_disable(dev);
pm_runtime_set_suspended(dev);
pm_runtime_put_noidle(dev);
return ret;
}
static int stm32_adc_remove(struct platform_device *pdev)
{
struct stm32_adc_common *common = platform_get_drvdata(pdev);
struct stm32_adc_priv *priv = to_stm32_adc_priv(common);
pm_runtime_get_sync(&pdev->dev);
of_platform_depopulate(&pdev->dev);
stm32_adc_irq_remove(pdev, priv);
stm32_adc_core_hw_stop(&pdev->dev);
pm_runtime_disable(&pdev->dev);
pm_runtime_set_suspended(&pdev->dev);
pm_runtime_put_noidle(&pdev->dev);
return 0;
}
#if defined(CONFIG_PM)
static int stm32_adc_core_runtime_suspend(struct device *dev)
{
stm32_adc_core_hw_stop(dev);
return 0;
}
static int stm32_adc_core_runtime_resume(struct device *dev)
{
return stm32_adc_core_hw_start(dev);
}
#endif
static const struct dev_pm_ops stm32_adc_core_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
SET_RUNTIME_PM_OPS(stm32_adc_core_runtime_suspend,
stm32_adc_core_runtime_resume,
NULL)
};
static const struct stm32_adc_priv_cfg stm32f4_adc_priv_cfg = {
.regs = &stm32f4_adc_common_regs,
.clk_sel = stm32f4_adc_clk_sel,
.max_clk_rate_hz = 36000000,
};
static const struct stm32_adc_priv_cfg stm32h7_adc_priv_cfg = {
.regs = &stm32h7_adc_common_regs,
.clk_sel = stm32h7_adc_clk_sel,
.max_clk_rate_hz = 36000000,
};
static const struct stm32_adc_priv_cfg stm32mp1_adc_priv_cfg = {
.regs = &stm32h7_adc_common_regs,
.clk_sel = stm32h7_adc_clk_sel,
.max_clk_rate_hz = 40000000,
};
static const struct of_device_id stm32_adc_of_match[] = {
{
.compatible = "st,stm32f4-adc-core",
.data = (void *)&stm32f4_adc_priv_cfg
}, {
.compatible = "st,stm32h7-adc-core",
.data = (void *)&stm32h7_adc_priv_cfg
}, {
.compatible = "st,stm32mp1-adc-core",
.data = (void *)&stm32mp1_adc_priv_cfg
}, {
},
};
MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
static struct platform_driver stm32_adc_driver = {
.probe = stm32_adc_probe,
.remove = stm32_adc_remove,
.driver = {
.name = "stm32-adc-core",
.of_match_table = stm32_adc_of_match,
.pm = &stm32_adc_core_pm_ops,
},
};
module_platform_driver(stm32_adc_driver);
MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
MODULE_DESCRIPTION("STMicroelectronics STM32 ADC core driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:stm32-adc-core");