linux/drivers/gpu/drm/i915/i915_active.c
Chris Wilson 32eb6bcfdd drm/i915: Make request allocation caches global
As kmem_caches share the same properties (size, allocation/free behaviour)
for all potential devices, we can use global caches. While this
potential has worse fragmentation behaviour (one can argue that
different devices would have different activity lifetimes, but you can
also argue that activity is temporal across the system) it is the
default behaviour of the system at large to amalgamate matching caches.

The benefit for us is much reduced pointer dancing along the frequent
allocation paths.

v2: Defer shrinking until after a global grace period for futureproofing
multiple consumers of the slab caches, similar to the current strategy
for avoiding shrinking too early.

Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190228102035.5857-1-chris@chris-wilson.co.uk
2019-02-28 11:07:56 +00:00

306 lines
7.1 KiB
C

/*
* SPDX-License-Identifier: MIT
*
* Copyright © 2019 Intel Corporation
*/
#include "i915_drv.h"
#include "i915_active.h"
#define BKL(ref) (&(ref)->i915->drm.struct_mutex)
/*
* Active refs memory management
*
* To be more economical with memory, we reap all the i915_active trees as
* they idle (when we know the active requests are inactive) and allocate the
* nodes from a local slab cache to hopefully reduce the fragmentation.
*/
static struct i915_global_active {
struct kmem_cache *slab_cache;
} global;
struct active_node {
struct i915_active_request base;
struct i915_active *ref;
struct rb_node node;
u64 timeline;
};
static void
__active_park(struct i915_active *ref)
{
struct active_node *it, *n;
rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
GEM_BUG_ON(i915_active_request_isset(&it->base));
kmem_cache_free(global.slab_cache, it);
}
ref->tree = RB_ROOT;
}
static void
__active_retire(struct i915_active *ref)
{
GEM_BUG_ON(!ref->count);
if (--ref->count)
return;
/* return the unused nodes to our slabcache */
__active_park(ref);
ref->retire(ref);
}
static void
node_retire(struct i915_active_request *base, struct i915_request *rq)
{
__active_retire(container_of(base, struct active_node, base)->ref);
}
static void
last_retire(struct i915_active_request *base, struct i915_request *rq)
{
__active_retire(container_of(base, struct i915_active, last));
}
static struct i915_active_request *
active_instance(struct i915_active *ref, u64 idx)
{
struct active_node *node;
struct rb_node **p, *parent;
struct i915_request *old;
/*
* We track the most recently used timeline to skip a rbtree search
* for the common case, under typical loads we never need the rbtree
* at all. We can reuse the last slot if it is empty, that is
* after the previous activity has been retired, or if it matches the
* current timeline.
*
* Note that we allow the timeline to be active simultaneously in
* the rbtree and the last cache. We do this to avoid having
* to search and replace the rbtree element for a new timeline, with
* the cost being that we must be aware that the ref may be retired
* twice for the same timeline (as the older rbtree element will be
* retired before the new request added to last).
*/
old = i915_active_request_raw(&ref->last, BKL(ref));
if (!old || old->fence.context == idx)
goto out;
/* Move the currently active fence into the rbtree */
idx = old->fence.context;
parent = NULL;
p = &ref->tree.rb_node;
while (*p) {
parent = *p;
node = rb_entry(parent, struct active_node, node);
if (node->timeline == idx)
goto replace;
if (node->timeline < idx)
p = &parent->rb_right;
else
p = &parent->rb_left;
}
node = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
/* kmalloc may retire the ref->last (thanks shrinker)! */
if (unlikely(!i915_active_request_raw(&ref->last, BKL(ref)))) {
kmem_cache_free(global.slab_cache, node);
goto out;
}
if (unlikely(!node))
return ERR_PTR(-ENOMEM);
i915_active_request_init(&node->base, NULL, node_retire);
node->ref = ref;
node->timeline = idx;
rb_link_node(&node->node, parent, p);
rb_insert_color(&node->node, &ref->tree);
replace:
/*
* Overwrite the previous active slot in the rbtree with last,
* leaving last zeroed. If the previous slot is still active,
* we must be careful as we now only expect to receive one retire
* callback not two, and so much undo the active counting for the
* overwritten slot.
*/
if (i915_active_request_isset(&node->base)) {
/* Retire ourselves from the old rq->active_list */
__list_del_entry(&node->base.link);
ref->count--;
GEM_BUG_ON(!ref->count);
}
GEM_BUG_ON(list_empty(&ref->last.link));
list_replace_init(&ref->last.link, &node->base.link);
node->base.request = fetch_and_zero(&ref->last.request);
out:
return &ref->last;
}
void i915_active_init(struct drm_i915_private *i915,
struct i915_active *ref,
void (*retire)(struct i915_active *ref))
{
ref->i915 = i915;
ref->retire = retire;
ref->tree = RB_ROOT;
i915_active_request_init(&ref->last, NULL, last_retire);
ref->count = 0;
}
int i915_active_ref(struct i915_active *ref,
u64 timeline,
struct i915_request *rq)
{
struct i915_active_request *active;
int err = 0;
/* Prevent reaping in case we malloc/wait while building the tree */
i915_active_acquire(ref);
active = active_instance(ref, timeline);
if (IS_ERR(active)) {
err = PTR_ERR(active);
goto out;
}
if (!i915_active_request_isset(active))
ref->count++;
__i915_active_request_set(active, rq);
GEM_BUG_ON(!ref->count);
out:
i915_active_release(ref);
return err;
}
bool i915_active_acquire(struct i915_active *ref)
{
lockdep_assert_held(BKL(ref));
return !ref->count++;
}
void i915_active_release(struct i915_active *ref)
{
lockdep_assert_held(BKL(ref));
__active_retire(ref);
}
int i915_active_wait(struct i915_active *ref)
{
struct active_node *it, *n;
int ret = 0;
if (i915_active_acquire(ref))
goto out_release;
ret = i915_active_request_retire(&ref->last, BKL(ref));
if (ret)
goto out_release;
rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
ret = i915_active_request_retire(&it->base, BKL(ref));
if (ret)
break;
}
out_release:
i915_active_release(ref);
return ret;
}
int i915_request_await_active_request(struct i915_request *rq,
struct i915_active_request *active)
{
struct i915_request *barrier =
i915_active_request_raw(active, &rq->i915->drm.struct_mutex);
return barrier ? i915_request_await_dma_fence(rq, &barrier->fence) : 0;
}
int i915_request_await_active(struct i915_request *rq, struct i915_active *ref)
{
struct active_node *it, *n;
int err = 0;
/* await allocates and so we need to avoid hitting the shrinker */
if (i915_active_acquire(ref))
goto out; /* was idle */
err = i915_request_await_active_request(rq, &ref->last);
if (err)
goto out;
rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
err = i915_request_await_active_request(rq, &it->base);
if (err)
goto out;
}
out:
i915_active_release(ref);
return err;
}
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
void i915_active_fini(struct i915_active *ref)
{
GEM_BUG_ON(i915_active_request_isset(&ref->last));
GEM_BUG_ON(!RB_EMPTY_ROOT(&ref->tree));
GEM_BUG_ON(ref->count);
}
#endif
int i915_active_request_set(struct i915_active_request *active,
struct i915_request *rq)
{
int err;
/* Must maintain ordering wrt previous active requests */
err = i915_request_await_active_request(rq, active);
if (err)
return err;
__i915_active_request_set(active, rq);
return 0;
}
void i915_active_retire_noop(struct i915_active_request *active,
struct i915_request *request)
{
/* Space left intentionally blank */
}
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/i915_active.c"
#endif
int __init i915_global_active_init(void)
{
global.slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN);
if (!global.slab_cache)
return -ENOMEM;
return 0;
}
void i915_global_active_shrink(void)
{
kmem_cache_shrink(global.slab_cache);
}
void i915_global_active_exit(void)
{
kmem_cache_destroy(global.slab_cache);
}