91a27b2a75
getname() is intended to copy pathname strings from userspace into a kernel buffer. The result is just a string in kernel space. It would however be quite helpful to be able to attach some ancillary info to the string. For instance, we could attach some audit-related info to reduce the amount of audit-related processing needed. When auditing is enabled, we could also call getname() on the string more than once and not need to recopy it from userspace. This patchset converts the getname()/putname() interfaces to return a struct instead of a string. For now, the struct just tracks the string in kernel space and the original userland pointer for it. Later, we'll add other information to the struct as it becomes convenient. Signed-off-by: Jeff Layton <jlayton@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
343 lines
7.9 KiB
C
343 lines
7.9 KiB
C
/*
|
|
* arch/xtensa/kernel/process.c
|
|
*
|
|
* Xtensa Processor version.
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* Copyright (C) 2001 - 2005 Tensilica Inc.
|
|
*
|
|
* Joe Taylor <joe@tensilica.com, joetylr@yahoo.com>
|
|
* Chris Zankel <chris@zankel.net>
|
|
* Marc Gauthier <marc@tensilica.com, marc@alumni.uwaterloo.ca>
|
|
* Kevin Chea
|
|
*/
|
|
|
|
#include <linux/errno.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/unistd.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/elf.h>
|
|
#include <linux/init.h>
|
|
#include <linux/prctl.h>
|
|
#include <linux/init_task.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mqueue.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/rcupdate.h>
|
|
|
|
#include <asm/pgtable.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/io.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/platform.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/irq.h>
|
|
#include <linux/atomic.h>
|
|
#include <asm/asm-offsets.h>
|
|
#include <asm/regs.h>
|
|
|
|
extern void ret_from_fork(void);
|
|
|
|
struct task_struct *current_set[NR_CPUS] = {&init_task, };
|
|
|
|
void (*pm_power_off)(void) = NULL;
|
|
EXPORT_SYMBOL(pm_power_off);
|
|
|
|
|
|
#if XTENSA_HAVE_COPROCESSORS
|
|
|
|
void coprocessor_release_all(struct thread_info *ti)
|
|
{
|
|
unsigned long cpenable;
|
|
int i;
|
|
|
|
/* Make sure we don't switch tasks during this operation. */
|
|
|
|
preempt_disable();
|
|
|
|
/* Walk through all cp owners and release it for the requested one. */
|
|
|
|
cpenable = ti->cpenable;
|
|
|
|
for (i = 0; i < XCHAL_CP_MAX; i++) {
|
|
if (coprocessor_owner[i] == ti) {
|
|
coprocessor_owner[i] = 0;
|
|
cpenable &= ~(1 << i);
|
|
}
|
|
}
|
|
|
|
ti->cpenable = cpenable;
|
|
coprocessor_clear_cpenable();
|
|
|
|
preempt_enable();
|
|
}
|
|
|
|
void coprocessor_flush_all(struct thread_info *ti)
|
|
{
|
|
unsigned long cpenable;
|
|
int i;
|
|
|
|
preempt_disable();
|
|
|
|
cpenable = ti->cpenable;
|
|
|
|
for (i = 0; i < XCHAL_CP_MAX; i++) {
|
|
if ((cpenable & 1) != 0 && coprocessor_owner[i] == ti)
|
|
coprocessor_flush(ti, i);
|
|
cpenable >>= 1;
|
|
}
|
|
|
|
preempt_enable();
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
/*
|
|
* Powermanagement idle function, if any is provided by the platform.
|
|
*/
|
|
|
|
void cpu_idle(void)
|
|
{
|
|
local_irq_enable();
|
|
|
|
/* endless idle loop with no priority at all */
|
|
while (1) {
|
|
rcu_idle_enter();
|
|
while (!need_resched())
|
|
platform_idle();
|
|
rcu_idle_exit();
|
|
schedule_preempt_disabled();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This is called when the thread calls exit().
|
|
*/
|
|
void exit_thread(void)
|
|
{
|
|
#if XTENSA_HAVE_COPROCESSORS
|
|
coprocessor_release_all(current_thread_info());
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Flush thread state. This is called when a thread does an execve()
|
|
* Note that we flush coprocessor registers for the case execve fails.
|
|
*/
|
|
void flush_thread(void)
|
|
{
|
|
#if XTENSA_HAVE_COPROCESSORS
|
|
struct thread_info *ti = current_thread_info();
|
|
coprocessor_flush_all(ti);
|
|
coprocessor_release_all(ti);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* this gets called so that we can store coprocessor state into memory and
|
|
* copy the current task into the new thread.
|
|
*/
|
|
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
|
|
{
|
|
#if XTENSA_HAVE_COPROCESSORS
|
|
coprocessor_flush_all(task_thread_info(src));
|
|
#endif
|
|
*dst = *src;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Copy thread.
|
|
*
|
|
* The stack layout for the new thread looks like this:
|
|
*
|
|
* +------------------------+ <- sp in childregs (= tos)
|
|
* | childregs |
|
|
* +------------------------+ <- thread.sp = sp in dummy-frame
|
|
* | dummy-frame | (saved in dummy-frame spill-area)
|
|
* +------------------------+
|
|
*
|
|
* We create a dummy frame to return to ret_from_fork:
|
|
* a0 points to ret_from_fork (simulating a call4)
|
|
* sp points to itself (thread.sp)
|
|
* a2, a3 are unused.
|
|
*
|
|
* Note: This is a pristine frame, so we don't need any spill region on top of
|
|
* childregs.
|
|
*/
|
|
|
|
int copy_thread(unsigned long clone_flags, unsigned long usp,
|
|
unsigned long unused,
|
|
struct task_struct * p, struct pt_regs * regs)
|
|
{
|
|
struct pt_regs *childregs;
|
|
struct thread_info *ti;
|
|
unsigned long tos;
|
|
int user_mode = user_mode(regs);
|
|
|
|
/* Set up new TSS. */
|
|
tos = (unsigned long)task_stack_page(p) + THREAD_SIZE;
|
|
if (user_mode)
|
|
childregs = (struct pt_regs*)(tos - PT_USER_SIZE);
|
|
else
|
|
childregs = (struct pt_regs*)tos - 1;
|
|
|
|
*childregs = *regs;
|
|
|
|
/* Create a call4 dummy-frame: a0 = 0, a1 = childregs. */
|
|
*((int*)childregs - 3) = (unsigned long)childregs;
|
|
*((int*)childregs - 4) = 0;
|
|
|
|
childregs->areg[1] = tos;
|
|
childregs->areg[2] = 0;
|
|
p->set_child_tid = p->clear_child_tid = NULL;
|
|
p->thread.ra = MAKE_RA_FOR_CALL((unsigned long)ret_from_fork, 0x1);
|
|
p->thread.sp = (unsigned long)childregs;
|
|
|
|
if (user_mode(regs)) {
|
|
|
|
int len = childregs->wmask & ~0xf;
|
|
childregs->areg[1] = usp;
|
|
memcpy(&childregs->areg[XCHAL_NUM_AREGS - len/4],
|
|
®s->areg[XCHAL_NUM_AREGS - len/4], len);
|
|
// FIXME: we need to set THREADPTR in thread_info...
|
|
if (clone_flags & CLONE_SETTLS)
|
|
childregs->areg[2] = childregs->areg[6];
|
|
|
|
} else {
|
|
/* In kernel space, we start a new thread with a new stack. */
|
|
childregs->wmask = 1;
|
|
}
|
|
|
|
#if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
|
|
ti = task_thread_info(p);
|
|
ti->cpenable = 0;
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* These bracket the sleeping functions..
|
|
*/
|
|
|
|
unsigned long get_wchan(struct task_struct *p)
|
|
{
|
|
unsigned long sp, pc;
|
|
unsigned long stack_page = (unsigned long) task_stack_page(p);
|
|
int count = 0;
|
|
|
|
if (!p || p == current || p->state == TASK_RUNNING)
|
|
return 0;
|
|
|
|
sp = p->thread.sp;
|
|
pc = MAKE_PC_FROM_RA(p->thread.ra, p->thread.sp);
|
|
|
|
do {
|
|
if (sp < stack_page + sizeof(struct task_struct) ||
|
|
sp >= (stack_page + THREAD_SIZE) ||
|
|
pc == 0)
|
|
return 0;
|
|
if (!in_sched_functions(pc))
|
|
return pc;
|
|
|
|
/* Stack layout: sp-4: ra, sp-3: sp' */
|
|
|
|
pc = MAKE_PC_FROM_RA(*(unsigned long*)sp - 4, sp);
|
|
sp = *(unsigned long *)sp - 3;
|
|
} while (count++ < 16);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* xtensa_gregset_t and 'struct pt_regs' are vastly different formats
|
|
* of processor registers. Besides different ordering,
|
|
* xtensa_gregset_t contains non-live register information that
|
|
* 'struct pt_regs' does not. Exception handling (primarily) uses
|
|
* 'struct pt_regs'. Core files and ptrace use xtensa_gregset_t.
|
|
*
|
|
*/
|
|
|
|
void xtensa_elf_core_copy_regs (xtensa_gregset_t *elfregs, struct pt_regs *regs)
|
|
{
|
|
unsigned long wb, ws, wm;
|
|
int live, last;
|
|
|
|
wb = regs->windowbase;
|
|
ws = regs->windowstart;
|
|
wm = regs->wmask;
|
|
ws = ((ws >> wb) | (ws << (WSBITS - wb))) & ((1 << WSBITS) - 1);
|
|
|
|
/* Don't leak any random bits. */
|
|
|
|
memset(elfregs, 0, sizeof(*elfregs));
|
|
|
|
/* Note: PS.EXCM is not set while user task is running; its
|
|
* being set in regs->ps is for exception handling convenience.
|
|
*/
|
|
|
|
elfregs->pc = regs->pc;
|
|
elfregs->ps = (regs->ps & ~(1 << PS_EXCM_BIT));
|
|
elfregs->lbeg = regs->lbeg;
|
|
elfregs->lend = regs->lend;
|
|
elfregs->lcount = regs->lcount;
|
|
elfregs->sar = regs->sar;
|
|
elfregs->windowstart = ws;
|
|
|
|
live = (wm & 2) ? 4 : (wm & 4) ? 8 : (wm & 8) ? 12 : 16;
|
|
last = XCHAL_NUM_AREGS - (wm >> 4) * 4;
|
|
memcpy(elfregs->a, regs->areg, live * 4);
|
|
memcpy(elfregs->a + last, regs->areg + last, (wm >> 4) * 16);
|
|
}
|
|
|
|
int dump_fpu(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
asmlinkage
|
|
long xtensa_clone(unsigned long clone_flags, unsigned long newsp,
|
|
void __user *parent_tid, void *child_tls,
|
|
void __user *child_tid, long a5,
|
|
struct pt_regs *regs)
|
|
{
|
|
if (!newsp)
|
|
newsp = regs->areg[1];
|
|
return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
|
|
}
|
|
|
|
/*
|
|
* xtensa_execve() executes a new program.
|
|
*/
|
|
|
|
asmlinkage
|
|
long xtensa_execve(const char __user *name,
|
|
const char __user *const __user *argv,
|
|
const char __user *const __user *envp,
|
|
long a3, long a4, long a5,
|
|
struct pt_regs *regs)
|
|
{
|
|
long error;
|
|
struct filename *filename;
|
|
|
|
filename = getname(name);
|
|
error = PTR_ERR(filename);
|
|
if (IS_ERR(filename))
|
|
goto out;
|
|
error = do_execve(filename->name, argv, envp, regs);
|
|
putname(filename);
|
|
out:
|
|
return error;
|
|
}
|
|
|