Convert comments that reference mmap_sem to reference mmap_lock instead. [akpm@linux-foundation.org: fix up linux-next leftovers] [akpm@linux-foundation.org: s/lockaphore/lock/, per Vlastimil] [akpm@linux-foundation.org: more linux-next fixups, per Michel] Signed-off-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Laurent Dufour <ldufour@linux.ibm.com> Cc: Liam Howlett <Liam.Howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ying Han <yinghan@google.com> Link: http://lkml.kernel.org/r/20200520052908.204642-13-walken@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			12952 lines
		
	
	
		
			307 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			12952 lines
		
	
	
		
			307 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Performance events core code:
 | |
|  *
 | |
|  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 | |
|  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 | |
|  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
 | |
|  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 | |
|  */
 | |
| 
 | |
| #include <linux/fs.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/idr.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/poll.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/hash.h>
 | |
| #include <linux/tick.h>
 | |
| #include <linux/sysfs.h>
 | |
| #include <linux/dcache.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/reboot.h>
 | |
| #include <linux/vmstat.h>
 | |
| #include <linux/device.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/hardirq.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/rculist.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/anon_inodes.h>
 | |
| #include <linux/kernel_stat.h>
 | |
| #include <linux/cgroup.h>
 | |
| #include <linux/perf_event.h>
 | |
| #include <linux/trace_events.h>
 | |
| #include <linux/hw_breakpoint.h>
 | |
| #include <linux/mm_types.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/compat.h>
 | |
| #include <linux/bpf.h>
 | |
| #include <linux/filter.h>
 | |
| #include <linux/namei.h>
 | |
| #include <linux/parser.h>
 | |
| #include <linux/sched/clock.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include <linux/proc_ns.h>
 | |
| #include <linux/mount.h>
 | |
| #include <linux/min_heap.h>
 | |
| 
 | |
| #include "internal.h"
 | |
| 
 | |
| #include <asm/irq_regs.h>
 | |
| 
 | |
| typedef int (*remote_function_f)(void *);
 | |
| 
 | |
| struct remote_function_call {
 | |
| 	struct task_struct	*p;
 | |
| 	remote_function_f	func;
 | |
| 	void			*info;
 | |
| 	int			ret;
 | |
| };
 | |
| 
 | |
| static void remote_function(void *data)
 | |
| {
 | |
| 	struct remote_function_call *tfc = data;
 | |
| 	struct task_struct *p = tfc->p;
 | |
| 
 | |
| 	if (p) {
 | |
| 		/* -EAGAIN */
 | |
| 		if (task_cpu(p) != smp_processor_id())
 | |
| 			return;
 | |
| 
 | |
| 		/*
 | |
| 		 * Now that we're on right CPU with IRQs disabled, we can test
 | |
| 		 * if we hit the right task without races.
 | |
| 		 */
 | |
| 
 | |
| 		tfc->ret = -ESRCH; /* No such (running) process */
 | |
| 		if (p != current)
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	tfc->ret = tfc->func(tfc->info);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * task_function_call - call a function on the cpu on which a task runs
 | |
|  * @p:		the task to evaluate
 | |
|  * @func:	the function to be called
 | |
|  * @info:	the function call argument
 | |
|  *
 | |
|  * Calls the function @func when the task is currently running. This might
 | |
|  * be on the current CPU, which just calls the function directly.  This will
 | |
|  * retry due to any failures in smp_call_function_single(), such as if the
 | |
|  * task_cpu() goes offline concurrently.
 | |
|  *
 | |
|  * returns @func return value or -ESRCH when the process isn't running
 | |
|  */
 | |
| static int
 | |
| task_function_call(struct task_struct *p, remote_function_f func, void *info)
 | |
| {
 | |
| 	struct remote_function_call data = {
 | |
| 		.p	= p,
 | |
| 		.func	= func,
 | |
| 		.info	= info,
 | |
| 		.ret	= -EAGAIN,
 | |
| 	};
 | |
| 	int ret;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		ret = smp_call_function_single(task_cpu(p), remote_function,
 | |
| 					       &data, 1);
 | |
| 		ret = !ret ? data.ret : -EAGAIN;
 | |
| 
 | |
| 		if (ret != -EAGAIN)
 | |
| 			break;
 | |
| 
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cpu_function_call - call a function on the cpu
 | |
|  * @func:	the function to be called
 | |
|  * @info:	the function call argument
 | |
|  *
 | |
|  * Calls the function @func on the remote cpu.
 | |
|  *
 | |
|  * returns: @func return value or -ENXIO when the cpu is offline
 | |
|  */
 | |
| static int cpu_function_call(int cpu, remote_function_f func, void *info)
 | |
| {
 | |
| 	struct remote_function_call data = {
 | |
| 		.p	= NULL,
 | |
| 		.func	= func,
 | |
| 		.info	= info,
 | |
| 		.ret	= -ENXIO, /* No such CPU */
 | |
| 	};
 | |
| 
 | |
| 	smp_call_function_single(cpu, remote_function, &data, 1);
 | |
| 
 | |
| 	return data.ret;
 | |
| }
 | |
| 
 | |
| static inline struct perf_cpu_context *
 | |
| __get_cpu_context(struct perf_event_context *ctx)
 | |
| {
 | |
| 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
 | |
| }
 | |
| 
 | |
| static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
 | |
| 			  struct perf_event_context *ctx)
 | |
| {
 | |
| 	raw_spin_lock(&cpuctx->ctx.lock);
 | |
| 	if (ctx)
 | |
| 		raw_spin_lock(&ctx->lock);
 | |
| }
 | |
| 
 | |
| static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
 | |
| 			    struct perf_event_context *ctx)
 | |
| {
 | |
| 	if (ctx)
 | |
| 		raw_spin_unlock(&ctx->lock);
 | |
| 	raw_spin_unlock(&cpuctx->ctx.lock);
 | |
| }
 | |
| 
 | |
| #define TASK_TOMBSTONE ((void *)-1L)
 | |
| 
 | |
| static bool is_kernel_event(struct perf_event *event)
 | |
| {
 | |
| 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * On task ctx scheduling...
 | |
|  *
 | |
|  * When !ctx->nr_events a task context will not be scheduled. This means
 | |
|  * we can disable the scheduler hooks (for performance) without leaving
 | |
|  * pending task ctx state.
 | |
|  *
 | |
|  * This however results in two special cases:
 | |
|  *
 | |
|  *  - removing the last event from a task ctx; this is relatively straight
 | |
|  *    forward and is done in __perf_remove_from_context.
 | |
|  *
 | |
|  *  - adding the first event to a task ctx; this is tricky because we cannot
 | |
|  *    rely on ctx->is_active and therefore cannot use event_function_call().
 | |
|  *    See perf_install_in_context().
 | |
|  *
 | |
|  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
 | |
|  */
 | |
| 
 | |
| typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
 | |
| 			struct perf_event_context *, void *);
 | |
| 
 | |
| struct event_function_struct {
 | |
| 	struct perf_event *event;
 | |
| 	event_f func;
 | |
| 	void *data;
 | |
| };
 | |
| 
 | |
| static int event_function(void *info)
 | |
| {
 | |
| 	struct event_function_struct *efs = info;
 | |
| 	struct perf_event *event = efs->event;
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 | |
| 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	lockdep_assert_irqs_disabled();
 | |
| 
 | |
| 	perf_ctx_lock(cpuctx, task_ctx);
 | |
| 	/*
 | |
| 	 * Since we do the IPI call without holding ctx->lock things can have
 | |
| 	 * changed, double check we hit the task we set out to hit.
 | |
| 	 */
 | |
| 	if (ctx->task) {
 | |
| 		if (ctx->task != current) {
 | |
| 			ret = -ESRCH;
 | |
| 			goto unlock;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We only use event_function_call() on established contexts,
 | |
| 		 * and event_function() is only ever called when active (or
 | |
| 		 * rather, we'll have bailed in task_function_call() or the
 | |
| 		 * above ctx->task != current test), therefore we must have
 | |
| 		 * ctx->is_active here.
 | |
| 		 */
 | |
| 		WARN_ON_ONCE(!ctx->is_active);
 | |
| 		/*
 | |
| 		 * And since we have ctx->is_active, cpuctx->task_ctx must
 | |
| 		 * match.
 | |
| 		 */
 | |
| 		WARN_ON_ONCE(task_ctx != ctx);
 | |
| 	} else {
 | |
| 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
 | |
| 	}
 | |
| 
 | |
| 	efs->func(event, cpuctx, ctx, efs->data);
 | |
| unlock:
 | |
| 	perf_ctx_unlock(cpuctx, task_ctx);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void event_function_call(struct perf_event *event, event_f func, void *data)
 | |
| {
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
 | |
| 	struct event_function_struct efs = {
 | |
| 		.event = event,
 | |
| 		.func = func,
 | |
| 		.data = data,
 | |
| 	};
 | |
| 
 | |
| 	if (!event->parent) {
 | |
| 		/*
 | |
| 		 * If this is a !child event, we must hold ctx::mutex to
 | |
| 		 * stabilize the the event->ctx relation. See
 | |
| 		 * perf_event_ctx_lock().
 | |
| 		 */
 | |
| 		lockdep_assert_held(&ctx->mutex);
 | |
| 	}
 | |
| 
 | |
| 	if (!task) {
 | |
| 		cpu_function_call(event->cpu, event_function, &efs);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (task == TASK_TOMBSTONE)
 | |
| 		return;
 | |
| 
 | |
| again:
 | |
| 	if (!task_function_call(task, event_function, &efs))
 | |
| 		return;
 | |
| 
 | |
| 	raw_spin_lock_irq(&ctx->lock);
 | |
| 	/*
 | |
| 	 * Reload the task pointer, it might have been changed by
 | |
| 	 * a concurrent perf_event_context_sched_out().
 | |
| 	 */
 | |
| 	task = ctx->task;
 | |
| 	if (task == TASK_TOMBSTONE) {
 | |
| 		raw_spin_unlock_irq(&ctx->lock);
 | |
| 		return;
 | |
| 	}
 | |
| 	if (ctx->is_active) {
 | |
| 		raw_spin_unlock_irq(&ctx->lock);
 | |
| 		goto again;
 | |
| 	}
 | |
| 	func(event, NULL, ctx, data);
 | |
| 	raw_spin_unlock_irq(&ctx->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Similar to event_function_call() + event_function(), but hard assumes IRQs
 | |
|  * are already disabled and we're on the right CPU.
 | |
|  */
 | |
| static void event_function_local(struct perf_event *event, event_f func, void *data)
 | |
| {
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 | |
| 	struct task_struct *task = READ_ONCE(ctx->task);
 | |
| 	struct perf_event_context *task_ctx = NULL;
 | |
| 
 | |
| 	lockdep_assert_irqs_disabled();
 | |
| 
 | |
| 	if (task) {
 | |
| 		if (task == TASK_TOMBSTONE)
 | |
| 			return;
 | |
| 
 | |
| 		task_ctx = ctx;
 | |
| 	}
 | |
| 
 | |
| 	perf_ctx_lock(cpuctx, task_ctx);
 | |
| 
 | |
| 	task = ctx->task;
 | |
| 	if (task == TASK_TOMBSTONE)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	if (task) {
 | |
| 		/*
 | |
| 		 * We must be either inactive or active and the right task,
 | |
| 		 * otherwise we're screwed, since we cannot IPI to somewhere
 | |
| 		 * else.
 | |
| 		 */
 | |
| 		if (ctx->is_active) {
 | |
| 			if (WARN_ON_ONCE(task != current))
 | |
| 				goto unlock;
 | |
| 
 | |
| 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
 | |
| 				goto unlock;
 | |
| 		}
 | |
| 	} else {
 | |
| 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
 | |
| 	}
 | |
| 
 | |
| 	func(event, cpuctx, ctx, data);
 | |
| unlock:
 | |
| 	perf_ctx_unlock(cpuctx, task_ctx);
 | |
| }
 | |
| 
 | |
| #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
 | |
| 		       PERF_FLAG_FD_OUTPUT  |\
 | |
| 		       PERF_FLAG_PID_CGROUP |\
 | |
| 		       PERF_FLAG_FD_CLOEXEC)
 | |
| 
 | |
| /*
 | |
|  * branch priv levels that need permission checks
 | |
|  */
 | |
| #define PERF_SAMPLE_BRANCH_PERM_PLM \
 | |
| 	(PERF_SAMPLE_BRANCH_KERNEL |\
 | |
| 	 PERF_SAMPLE_BRANCH_HV)
 | |
| 
 | |
| enum event_type_t {
 | |
| 	EVENT_FLEXIBLE = 0x1,
 | |
| 	EVENT_PINNED = 0x2,
 | |
| 	EVENT_TIME = 0x4,
 | |
| 	/* see ctx_resched() for details */
 | |
| 	EVENT_CPU = 0x8,
 | |
| 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * perf_sched_events : >0 events exist
 | |
|  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 | |
|  */
 | |
| 
 | |
| static void perf_sched_delayed(struct work_struct *work);
 | |
| DEFINE_STATIC_KEY_FALSE(perf_sched_events);
 | |
| static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
 | |
| static DEFINE_MUTEX(perf_sched_mutex);
 | |
| static atomic_t perf_sched_count;
 | |
| 
 | |
| static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
 | |
| static DEFINE_PER_CPU(int, perf_sched_cb_usages);
 | |
| static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
 | |
| 
 | |
| static atomic_t nr_mmap_events __read_mostly;
 | |
| static atomic_t nr_comm_events __read_mostly;
 | |
| static atomic_t nr_namespaces_events __read_mostly;
 | |
| static atomic_t nr_task_events __read_mostly;
 | |
| static atomic_t nr_freq_events __read_mostly;
 | |
| static atomic_t nr_switch_events __read_mostly;
 | |
| static atomic_t nr_ksymbol_events __read_mostly;
 | |
| static atomic_t nr_bpf_events __read_mostly;
 | |
| static atomic_t nr_cgroup_events __read_mostly;
 | |
| 
 | |
| static LIST_HEAD(pmus);
 | |
| static DEFINE_MUTEX(pmus_lock);
 | |
| static struct srcu_struct pmus_srcu;
 | |
| static cpumask_var_t perf_online_mask;
 | |
| 
 | |
| /*
 | |
|  * perf event paranoia level:
 | |
|  *  -1 - not paranoid at all
 | |
|  *   0 - disallow raw tracepoint access for unpriv
 | |
|  *   1 - disallow cpu events for unpriv
 | |
|  *   2 - disallow kernel profiling for unpriv
 | |
|  */
 | |
| int sysctl_perf_event_paranoid __read_mostly = 2;
 | |
| 
 | |
| /* Minimum for 512 kiB + 1 user control page */
 | |
| int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
 | |
| 
 | |
| /*
 | |
|  * max perf event sample rate
 | |
|  */
 | |
| #define DEFAULT_MAX_SAMPLE_RATE		100000
 | |
| #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
 | |
| #define DEFAULT_CPU_TIME_MAX_PERCENT	25
 | |
| 
 | |
| int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
 | |
| 
 | |
| static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
 | |
| static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
 | |
| 
 | |
| static int perf_sample_allowed_ns __read_mostly =
 | |
| 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
 | |
| 
 | |
| static void update_perf_cpu_limits(void)
 | |
| {
 | |
| 	u64 tmp = perf_sample_period_ns;
 | |
| 
 | |
| 	tmp *= sysctl_perf_cpu_time_max_percent;
 | |
| 	tmp = div_u64(tmp, 100);
 | |
| 	if (!tmp)
 | |
| 		tmp = 1;
 | |
| 
 | |
| 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
 | |
| }
 | |
| 
 | |
| static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
 | |
| 
 | |
| int perf_proc_update_handler(struct ctl_table *table, int write,
 | |
| 		void *buffer, size_t *lenp, loff_t *ppos)
 | |
| {
 | |
| 	int ret;
 | |
| 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
 | |
| 	/*
 | |
| 	 * If throttling is disabled don't allow the write:
 | |
| 	 */
 | |
| 	if (write && (perf_cpu == 100 || perf_cpu == 0))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 | |
| 	if (ret || !write)
 | |
| 		return ret;
 | |
| 
 | |
| 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
 | |
| 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
 | |
| 	update_perf_cpu_limits();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
 | |
| 
 | |
| int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
 | |
| 		void *buffer, size_t *lenp, loff_t *ppos)
 | |
| {
 | |
| 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 | |
| 
 | |
| 	if (ret || !write)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (sysctl_perf_cpu_time_max_percent == 100 ||
 | |
| 	    sysctl_perf_cpu_time_max_percent == 0) {
 | |
| 		printk(KERN_WARNING
 | |
| 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
 | |
| 		WRITE_ONCE(perf_sample_allowed_ns, 0);
 | |
| 	} else {
 | |
| 		update_perf_cpu_limits();
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * perf samples are done in some very critical code paths (NMIs).
 | |
|  * If they take too much CPU time, the system can lock up and not
 | |
|  * get any real work done.  This will drop the sample rate when
 | |
|  * we detect that events are taking too long.
 | |
|  */
 | |
| #define NR_ACCUMULATED_SAMPLES 128
 | |
| static DEFINE_PER_CPU(u64, running_sample_length);
 | |
| 
 | |
| static u64 __report_avg;
 | |
| static u64 __report_allowed;
 | |
| 
 | |
| static void perf_duration_warn(struct irq_work *w)
 | |
| {
 | |
| 	printk_ratelimited(KERN_INFO
 | |
| 		"perf: interrupt took too long (%lld > %lld), lowering "
 | |
| 		"kernel.perf_event_max_sample_rate to %d\n",
 | |
| 		__report_avg, __report_allowed,
 | |
| 		sysctl_perf_event_sample_rate);
 | |
| }
 | |
| 
 | |
| static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
 | |
| 
 | |
| void perf_sample_event_took(u64 sample_len_ns)
 | |
| {
 | |
| 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
 | |
| 	u64 running_len;
 | |
| 	u64 avg_len;
 | |
| 	u32 max;
 | |
| 
 | |
| 	if (max_len == 0)
 | |
| 		return;
 | |
| 
 | |
| 	/* Decay the counter by 1 average sample. */
 | |
| 	running_len = __this_cpu_read(running_sample_length);
 | |
| 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
 | |
| 	running_len += sample_len_ns;
 | |
| 	__this_cpu_write(running_sample_length, running_len);
 | |
| 
 | |
| 	/*
 | |
| 	 * Note: this will be biased artifically low until we have
 | |
| 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
 | |
| 	 * from having to maintain a count.
 | |
| 	 */
 | |
| 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
 | |
| 	if (avg_len <= max_len)
 | |
| 		return;
 | |
| 
 | |
| 	__report_avg = avg_len;
 | |
| 	__report_allowed = max_len;
 | |
| 
 | |
| 	/*
 | |
| 	 * Compute a throttle threshold 25% below the current duration.
 | |
| 	 */
 | |
| 	avg_len += avg_len / 4;
 | |
| 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
 | |
| 	if (avg_len < max)
 | |
| 		max /= (u32)avg_len;
 | |
| 	else
 | |
| 		max = 1;
 | |
| 
 | |
| 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
 | |
| 	WRITE_ONCE(max_samples_per_tick, max);
 | |
| 
 | |
| 	sysctl_perf_event_sample_rate = max * HZ;
 | |
| 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
 | |
| 
 | |
| 	if (!irq_work_queue(&perf_duration_work)) {
 | |
| 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
 | |
| 			     "kernel.perf_event_max_sample_rate to %d\n",
 | |
| 			     __report_avg, __report_allowed,
 | |
| 			     sysctl_perf_event_sample_rate);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static atomic64_t perf_event_id;
 | |
| 
 | |
| static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
 | |
| 			      enum event_type_t event_type);
 | |
| 
 | |
| static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
 | |
| 			     enum event_type_t event_type,
 | |
| 			     struct task_struct *task);
 | |
| 
 | |
| static void update_context_time(struct perf_event_context *ctx);
 | |
| static u64 perf_event_time(struct perf_event *event);
 | |
| 
 | |
| void __weak perf_event_print_debug(void)	{ }
 | |
| 
 | |
| extern __weak const char *perf_pmu_name(void)
 | |
| {
 | |
| 	return "pmu";
 | |
| }
 | |
| 
 | |
| static inline u64 perf_clock(void)
 | |
| {
 | |
| 	return local_clock();
 | |
| }
 | |
| 
 | |
| static inline u64 perf_event_clock(struct perf_event *event)
 | |
| {
 | |
| 	return event->clock();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * State based event timekeeping...
 | |
|  *
 | |
|  * The basic idea is to use event->state to determine which (if any) time
 | |
|  * fields to increment with the current delta. This means we only need to
 | |
|  * update timestamps when we change state or when they are explicitly requested
 | |
|  * (read).
 | |
|  *
 | |
|  * Event groups make things a little more complicated, but not terribly so. The
 | |
|  * rules for a group are that if the group leader is OFF the entire group is
 | |
|  * OFF, irrespecive of what the group member states are. This results in
 | |
|  * __perf_effective_state().
 | |
|  *
 | |
|  * A futher ramification is that when a group leader flips between OFF and
 | |
|  * !OFF, we need to update all group member times.
 | |
|  *
 | |
|  *
 | |
|  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
 | |
|  * need to make sure the relevant context time is updated before we try and
 | |
|  * update our timestamps.
 | |
|  */
 | |
| 
 | |
| static __always_inline enum perf_event_state
 | |
| __perf_effective_state(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event *leader = event->group_leader;
 | |
| 
 | |
| 	if (leader->state <= PERF_EVENT_STATE_OFF)
 | |
| 		return leader->state;
 | |
| 
 | |
| 	return event->state;
 | |
| }
 | |
| 
 | |
| static __always_inline void
 | |
| __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
 | |
| {
 | |
| 	enum perf_event_state state = __perf_effective_state(event);
 | |
| 	u64 delta = now - event->tstamp;
 | |
| 
 | |
| 	*enabled = event->total_time_enabled;
 | |
| 	if (state >= PERF_EVENT_STATE_INACTIVE)
 | |
| 		*enabled += delta;
 | |
| 
 | |
| 	*running = event->total_time_running;
 | |
| 	if (state >= PERF_EVENT_STATE_ACTIVE)
 | |
| 		*running += delta;
 | |
| }
 | |
| 
 | |
| static void perf_event_update_time(struct perf_event *event)
 | |
| {
 | |
| 	u64 now = perf_event_time(event);
 | |
| 
 | |
| 	__perf_update_times(event, now, &event->total_time_enabled,
 | |
| 					&event->total_time_running);
 | |
| 	event->tstamp = now;
 | |
| }
 | |
| 
 | |
| static void perf_event_update_sibling_time(struct perf_event *leader)
 | |
| {
 | |
| 	struct perf_event *sibling;
 | |
| 
 | |
| 	for_each_sibling_event(sibling, leader)
 | |
| 		perf_event_update_time(sibling);
 | |
| }
 | |
| 
 | |
| static void
 | |
| perf_event_set_state(struct perf_event *event, enum perf_event_state state)
 | |
| {
 | |
| 	if (event->state == state)
 | |
| 		return;
 | |
| 
 | |
| 	perf_event_update_time(event);
 | |
| 	/*
 | |
| 	 * If a group leader gets enabled/disabled all its siblings
 | |
| 	 * are affected too.
 | |
| 	 */
 | |
| 	if ((event->state < 0) ^ (state < 0))
 | |
| 		perf_event_update_sibling_time(event);
 | |
| 
 | |
| 	WRITE_ONCE(event->state, state);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_PERF
 | |
| 
 | |
| static inline bool
 | |
| perf_cgroup_match(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 | |
| 
 | |
| 	/* @event doesn't care about cgroup */
 | |
| 	if (!event->cgrp)
 | |
| 		return true;
 | |
| 
 | |
| 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
 | |
| 	if (!cpuctx->cgrp)
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
 | |
| 	 * also enabled for all its descendant cgroups.  If @cpuctx's
 | |
| 	 * cgroup is a descendant of @event's (the test covers identity
 | |
| 	 * case), it's a match.
 | |
| 	 */
 | |
| 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
 | |
| 				    event->cgrp->css.cgroup);
 | |
| }
 | |
| 
 | |
| static inline void perf_detach_cgroup(struct perf_event *event)
 | |
| {
 | |
| 	css_put(&event->cgrp->css);
 | |
| 	event->cgrp = NULL;
 | |
| }
 | |
| 
 | |
| static inline int is_cgroup_event(struct perf_event *event)
 | |
| {
 | |
| 	return event->cgrp != NULL;
 | |
| }
 | |
| 
 | |
| static inline u64 perf_cgroup_event_time(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_cgroup_info *t;
 | |
| 
 | |
| 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
 | |
| 	return t->time;
 | |
| }
 | |
| 
 | |
| static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
 | |
| {
 | |
| 	struct perf_cgroup_info *info;
 | |
| 	u64 now;
 | |
| 
 | |
| 	now = perf_clock();
 | |
| 
 | |
| 	info = this_cpu_ptr(cgrp->info);
 | |
| 
 | |
| 	info->time += now - info->timestamp;
 | |
| 	info->timestamp = now;
 | |
| }
 | |
| 
 | |
| static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
 | |
| {
 | |
| 	struct perf_cgroup *cgrp = cpuctx->cgrp;
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 
 | |
| 	if (cgrp) {
 | |
| 		for (css = &cgrp->css; css; css = css->parent) {
 | |
| 			cgrp = container_of(css, struct perf_cgroup, css);
 | |
| 			__update_cgrp_time(cgrp);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void update_cgrp_time_from_event(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_cgroup *cgrp;
 | |
| 
 | |
| 	/*
 | |
| 	 * ensure we access cgroup data only when needed and
 | |
| 	 * when we know the cgroup is pinned (css_get)
 | |
| 	 */
 | |
| 	if (!is_cgroup_event(event))
 | |
| 		return;
 | |
| 
 | |
| 	cgrp = perf_cgroup_from_task(current, event->ctx);
 | |
| 	/*
 | |
| 	 * Do not update time when cgroup is not active
 | |
| 	 */
 | |
| 	if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
 | |
| 		__update_cgrp_time(event->cgrp);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| perf_cgroup_set_timestamp(struct task_struct *task,
 | |
| 			  struct perf_event_context *ctx)
 | |
| {
 | |
| 	struct perf_cgroup *cgrp;
 | |
| 	struct perf_cgroup_info *info;
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 
 | |
| 	/*
 | |
| 	 * ctx->lock held by caller
 | |
| 	 * ensure we do not access cgroup data
 | |
| 	 * unless we have the cgroup pinned (css_get)
 | |
| 	 */
 | |
| 	if (!task || !ctx->nr_cgroups)
 | |
| 		return;
 | |
| 
 | |
| 	cgrp = perf_cgroup_from_task(task, ctx);
 | |
| 
 | |
| 	for (css = &cgrp->css; css; css = css->parent) {
 | |
| 		cgrp = container_of(css, struct perf_cgroup, css);
 | |
| 		info = this_cpu_ptr(cgrp->info);
 | |
| 		info->timestamp = ctx->timestamp;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
 | |
| 
 | |
| #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
 | |
| #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
 | |
| 
 | |
| /*
 | |
|  * reschedule events based on the cgroup constraint of task.
 | |
|  *
 | |
|  * mode SWOUT : schedule out everything
 | |
|  * mode SWIN : schedule in based on cgroup for next
 | |
|  */
 | |
| static void perf_cgroup_switch(struct task_struct *task, int mode)
 | |
| {
 | |
| 	struct perf_cpu_context *cpuctx;
 | |
| 	struct list_head *list;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * Disable interrupts and preemption to avoid this CPU's
 | |
| 	 * cgrp_cpuctx_entry to change under us.
 | |
| 	 */
 | |
| 	local_irq_save(flags);
 | |
| 
 | |
| 	list = this_cpu_ptr(&cgrp_cpuctx_list);
 | |
| 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
 | |
| 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
 | |
| 
 | |
| 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
 | |
| 		perf_pmu_disable(cpuctx->ctx.pmu);
 | |
| 
 | |
| 		if (mode & PERF_CGROUP_SWOUT) {
 | |
| 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
 | |
| 			/*
 | |
| 			 * must not be done before ctxswout due
 | |
| 			 * to event_filter_match() in event_sched_out()
 | |
| 			 */
 | |
| 			cpuctx->cgrp = NULL;
 | |
| 		}
 | |
| 
 | |
| 		if (mode & PERF_CGROUP_SWIN) {
 | |
| 			WARN_ON_ONCE(cpuctx->cgrp);
 | |
| 			/*
 | |
| 			 * set cgrp before ctxsw in to allow
 | |
| 			 * event_filter_match() to not have to pass
 | |
| 			 * task around
 | |
| 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
 | |
| 			 * because cgorup events are only per-cpu
 | |
| 			 */
 | |
| 			cpuctx->cgrp = perf_cgroup_from_task(task,
 | |
| 							     &cpuctx->ctx);
 | |
| 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
 | |
| 		}
 | |
| 		perf_pmu_enable(cpuctx->ctx.pmu);
 | |
| 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
 | |
| 	}
 | |
| 
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| static inline void perf_cgroup_sched_out(struct task_struct *task,
 | |
| 					 struct task_struct *next)
 | |
| {
 | |
| 	struct perf_cgroup *cgrp1;
 | |
| 	struct perf_cgroup *cgrp2 = NULL;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	/*
 | |
| 	 * we come here when we know perf_cgroup_events > 0
 | |
| 	 * we do not need to pass the ctx here because we know
 | |
| 	 * we are holding the rcu lock
 | |
| 	 */
 | |
| 	cgrp1 = perf_cgroup_from_task(task, NULL);
 | |
| 	cgrp2 = perf_cgroup_from_task(next, NULL);
 | |
| 
 | |
| 	/*
 | |
| 	 * only schedule out current cgroup events if we know
 | |
| 	 * that we are switching to a different cgroup. Otherwise,
 | |
| 	 * do no touch the cgroup events.
 | |
| 	 */
 | |
| 	if (cgrp1 != cgrp2)
 | |
| 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
 | |
| 
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| static inline void perf_cgroup_sched_in(struct task_struct *prev,
 | |
| 					struct task_struct *task)
 | |
| {
 | |
| 	struct perf_cgroup *cgrp1;
 | |
| 	struct perf_cgroup *cgrp2 = NULL;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	/*
 | |
| 	 * we come here when we know perf_cgroup_events > 0
 | |
| 	 * we do not need to pass the ctx here because we know
 | |
| 	 * we are holding the rcu lock
 | |
| 	 */
 | |
| 	cgrp1 = perf_cgroup_from_task(task, NULL);
 | |
| 	cgrp2 = perf_cgroup_from_task(prev, NULL);
 | |
| 
 | |
| 	/*
 | |
| 	 * only need to schedule in cgroup events if we are changing
 | |
| 	 * cgroup during ctxsw. Cgroup events were not scheduled
 | |
| 	 * out of ctxsw out if that was not the case.
 | |
| 	 */
 | |
| 	if (cgrp1 != cgrp2)
 | |
| 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
 | |
| 
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| static int perf_cgroup_ensure_storage(struct perf_event *event,
 | |
| 				struct cgroup_subsys_state *css)
 | |
| {
 | |
| 	struct perf_cpu_context *cpuctx;
 | |
| 	struct perf_event **storage;
 | |
| 	int cpu, heap_size, ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allow storage to have sufficent space for an iterator for each
 | |
| 	 * possibly nested cgroup plus an iterator for events with no cgroup.
 | |
| 	 */
 | |
| 	for (heap_size = 1; css; css = css->parent)
 | |
| 		heap_size++;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
 | |
| 		if (heap_size <= cpuctx->heap_size)
 | |
| 			continue;
 | |
| 
 | |
| 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
 | |
| 				       GFP_KERNEL, cpu_to_node(cpu));
 | |
| 		if (!storage) {
 | |
| 			ret = -ENOMEM;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		raw_spin_lock_irq(&cpuctx->ctx.lock);
 | |
| 		if (cpuctx->heap_size < heap_size) {
 | |
| 			swap(cpuctx->heap, storage);
 | |
| 			if (storage == cpuctx->heap_default)
 | |
| 				storage = NULL;
 | |
| 			cpuctx->heap_size = heap_size;
 | |
| 		}
 | |
| 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
 | |
| 
 | |
| 		kfree(storage);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline int perf_cgroup_connect(int fd, struct perf_event *event,
 | |
| 				      struct perf_event_attr *attr,
 | |
| 				      struct perf_event *group_leader)
 | |
| {
 | |
| 	struct perf_cgroup *cgrp;
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 	struct fd f = fdget(fd);
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (!f.file)
 | |
| 		return -EBADF;
 | |
| 
 | |
| 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
 | |
| 					 &perf_event_cgrp_subsys);
 | |
| 	if (IS_ERR(css)) {
 | |
| 		ret = PTR_ERR(css);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	ret = perf_cgroup_ensure_storage(event, css);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	cgrp = container_of(css, struct perf_cgroup, css);
 | |
| 	event->cgrp = cgrp;
 | |
| 
 | |
| 	/*
 | |
| 	 * all events in a group must monitor
 | |
| 	 * the same cgroup because a task belongs
 | |
| 	 * to only one perf cgroup at a time
 | |
| 	 */
 | |
| 	if (group_leader && group_leader->cgrp != cgrp) {
 | |
| 		perf_detach_cgroup(event);
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| out:
 | |
| 	fdput(f);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
 | |
| {
 | |
| 	struct perf_cgroup_info *t;
 | |
| 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
 | |
| 	event->shadow_ctx_time = now - t->timestamp;
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
 | |
| {
 | |
| 	struct perf_cpu_context *cpuctx;
 | |
| 
 | |
| 	if (!is_cgroup_event(event))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Because cgroup events are always per-cpu events,
 | |
| 	 * @ctx == &cpuctx->ctx.
 | |
| 	 */
 | |
| 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
 | |
| 
 | |
| 	/*
 | |
| 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
 | |
| 	 * matching the event's cgroup, we must do this for every new event,
 | |
| 	 * because if the first would mismatch, the second would not try again
 | |
| 	 * and we would leave cpuctx->cgrp unset.
 | |
| 	 */
 | |
| 	if (ctx->is_active && !cpuctx->cgrp) {
 | |
| 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
 | |
| 
 | |
| 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
 | |
| 			cpuctx->cgrp = cgrp;
 | |
| 	}
 | |
| 
 | |
| 	if (ctx->nr_cgroups++)
 | |
| 		return;
 | |
| 
 | |
| 	list_add(&cpuctx->cgrp_cpuctx_entry,
 | |
| 			per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
 | |
| {
 | |
| 	struct perf_cpu_context *cpuctx;
 | |
| 
 | |
| 	if (!is_cgroup_event(event))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Because cgroup events are always per-cpu events,
 | |
| 	 * @ctx == &cpuctx->ctx.
 | |
| 	 */
 | |
| 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
 | |
| 
 | |
| 	if (--ctx->nr_cgroups)
 | |
| 		return;
 | |
| 
 | |
| 	if (ctx->is_active && cpuctx->cgrp)
 | |
| 		cpuctx->cgrp = NULL;
 | |
| 
 | |
| 	list_del(&cpuctx->cgrp_cpuctx_entry);
 | |
| }
 | |
| 
 | |
| #else /* !CONFIG_CGROUP_PERF */
 | |
| 
 | |
| static inline bool
 | |
| perf_cgroup_match(struct perf_event *event)
 | |
| {
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static inline void perf_detach_cgroup(struct perf_event *event)
 | |
| {}
 | |
| 
 | |
| static inline int is_cgroup_event(struct perf_event *event)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void update_cgrp_time_from_event(struct perf_event *event)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void perf_cgroup_sched_out(struct task_struct *task,
 | |
| 					 struct task_struct *next)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void perf_cgroup_sched_in(struct task_struct *prev,
 | |
| 					struct task_struct *task)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
 | |
| 				      struct perf_event_attr *attr,
 | |
| 				      struct perf_event *group_leader)
 | |
| {
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| perf_cgroup_set_timestamp(struct task_struct *task,
 | |
| 			  struct perf_event_context *ctx)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline u64 perf_cgroup_event_time(struct perf_event *event)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * set default to be dependent on timer tick just
 | |
|  * like original code
 | |
|  */
 | |
| #define PERF_CPU_HRTIMER (1000 / HZ)
 | |
| /*
 | |
|  * function must be called with interrupts disabled
 | |
|  */
 | |
| static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
 | |
| {
 | |
| 	struct perf_cpu_context *cpuctx;
 | |
| 	bool rotations;
 | |
| 
 | |
| 	lockdep_assert_irqs_disabled();
 | |
| 
 | |
| 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
 | |
| 	rotations = perf_rotate_context(cpuctx);
 | |
| 
 | |
| 	raw_spin_lock(&cpuctx->hrtimer_lock);
 | |
| 	if (rotations)
 | |
| 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
 | |
| 	else
 | |
| 		cpuctx->hrtimer_active = 0;
 | |
| 	raw_spin_unlock(&cpuctx->hrtimer_lock);
 | |
| 
 | |
| 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
 | |
| }
 | |
| 
 | |
| static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
 | |
| {
 | |
| 	struct hrtimer *timer = &cpuctx->hrtimer;
 | |
| 	struct pmu *pmu = cpuctx->ctx.pmu;
 | |
| 	u64 interval;
 | |
| 
 | |
| 	/* no multiplexing needed for SW PMU */
 | |
| 	if (pmu->task_ctx_nr == perf_sw_context)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * check default is sane, if not set then force to
 | |
| 	 * default interval (1/tick)
 | |
| 	 */
 | |
| 	interval = pmu->hrtimer_interval_ms;
 | |
| 	if (interval < 1)
 | |
| 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
 | |
| 
 | |
| 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
 | |
| 
 | |
| 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
 | |
| 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
 | |
| 	timer->function = perf_mux_hrtimer_handler;
 | |
| }
 | |
| 
 | |
| static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
 | |
| {
 | |
| 	struct hrtimer *timer = &cpuctx->hrtimer;
 | |
| 	struct pmu *pmu = cpuctx->ctx.pmu;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* not for SW PMU */
 | |
| 	if (pmu->task_ctx_nr == perf_sw_context)
 | |
| 		return 0;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
 | |
| 	if (!cpuctx->hrtimer_active) {
 | |
| 		cpuctx->hrtimer_active = 1;
 | |
| 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
 | |
| 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
 | |
| 	}
 | |
| 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void perf_pmu_disable(struct pmu *pmu)
 | |
| {
 | |
| 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
 | |
| 	if (!(*count)++)
 | |
| 		pmu->pmu_disable(pmu);
 | |
| }
 | |
| 
 | |
| void perf_pmu_enable(struct pmu *pmu)
 | |
| {
 | |
| 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
 | |
| 	if (!--(*count))
 | |
| 		pmu->pmu_enable(pmu);
 | |
| }
 | |
| 
 | |
| static DEFINE_PER_CPU(struct list_head, active_ctx_list);
 | |
| 
 | |
| /*
 | |
|  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 | |
|  * perf_event_task_tick() are fully serialized because they're strictly cpu
 | |
|  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 | |
|  * disabled, while perf_event_task_tick is called from IRQ context.
 | |
|  */
 | |
| static void perf_event_ctx_activate(struct perf_event_context *ctx)
 | |
| {
 | |
| 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
 | |
| 
 | |
| 	lockdep_assert_irqs_disabled();
 | |
| 
 | |
| 	WARN_ON(!list_empty(&ctx->active_ctx_list));
 | |
| 
 | |
| 	list_add(&ctx->active_ctx_list, head);
 | |
| }
 | |
| 
 | |
| static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
 | |
| {
 | |
| 	lockdep_assert_irqs_disabled();
 | |
| 
 | |
| 	WARN_ON(list_empty(&ctx->active_ctx_list));
 | |
| 
 | |
| 	list_del_init(&ctx->active_ctx_list);
 | |
| }
 | |
| 
 | |
| static void get_ctx(struct perf_event_context *ctx)
 | |
| {
 | |
| 	refcount_inc(&ctx->refcount);
 | |
| }
 | |
| 
 | |
| static void free_ctx(struct rcu_head *head)
 | |
| {
 | |
| 	struct perf_event_context *ctx;
 | |
| 
 | |
| 	ctx = container_of(head, struct perf_event_context, rcu_head);
 | |
| 	kfree(ctx->task_ctx_data);
 | |
| 	kfree(ctx);
 | |
| }
 | |
| 
 | |
| static void put_ctx(struct perf_event_context *ctx)
 | |
| {
 | |
| 	if (refcount_dec_and_test(&ctx->refcount)) {
 | |
| 		if (ctx->parent_ctx)
 | |
| 			put_ctx(ctx->parent_ctx);
 | |
| 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
 | |
| 			put_task_struct(ctx->task);
 | |
| 		call_rcu(&ctx->rcu_head, free_ctx);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 | |
|  * perf_pmu_migrate_context() we need some magic.
 | |
|  *
 | |
|  * Those places that change perf_event::ctx will hold both
 | |
|  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 | |
|  *
 | |
|  * Lock ordering is by mutex address. There are two other sites where
 | |
|  * perf_event_context::mutex nests and those are:
 | |
|  *
 | |
|  *  - perf_event_exit_task_context()	[ child , 0 ]
 | |
|  *      perf_event_exit_event()
 | |
|  *        put_event()			[ parent, 1 ]
 | |
|  *
 | |
|  *  - perf_event_init_context()		[ parent, 0 ]
 | |
|  *      inherit_task_group()
 | |
|  *        inherit_group()
 | |
|  *          inherit_event()
 | |
|  *            perf_event_alloc()
 | |
|  *              perf_init_event()
 | |
|  *                perf_try_init_event()	[ child , 1 ]
 | |
|  *
 | |
|  * While it appears there is an obvious deadlock here -- the parent and child
 | |
|  * nesting levels are inverted between the two. This is in fact safe because
 | |
|  * life-time rules separate them. That is an exiting task cannot fork, and a
 | |
|  * spawning task cannot (yet) exit.
 | |
|  *
 | |
|  * But remember that that these are parent<->child context relations, and
 | |
|  * migration does not affect children, therefore these two orderings should not
 | |
|  * interact.
 | |
|  *
 | |
|  * The change in perf_event::ctx does not affect children (as claimed above)
 | |
|  * because the sys_perf_event_open() case will install a new event and break
 | |
|  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 | |
|  * concerned with cpuctx and that doesn't have children.
 | |
|  *
 | |
|  * The places that change perf_event::ctx will issue:
 | |
|  *
 | |
|  *   perf_remove_from_context();
 | |
|  *   synchronize_rcu();
 | |
|  *   perf_install_in_context();
 | |
|  *
 | |
|  * to affect the change. The remove_from_context() + synchronize_rcu() should
 | |
|  * quiesce the event, after which we can install it in the new location. This
 | |
|  * means that only external vectors (perf_fops, prctl) can perturb the event
 | |
|  * while in transit. Therefore all such accessors should also acquire
 | |
|  * perf_event_context::mutex to serialize against this.
 | |
|  *
 | |
|  * However; because event->ctx can change while we're waiting to acquire
 | |
|  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 | |
|  * function.
 | |
|  *
 | |
|  * Lock order:
 | |
|  *    exec_update_mutex
 | |
|  *	task_struct::perf_event_mutex
 | |
|  *	  perf_event_context::mutex
 | |
|  *	    perf_event::child_mutex;
 | |
|  *	      perf_event_context::lock
 | |
|  *	    perf_event::mmap_mutex
 | |
|  *	    mmap_lock
 | |
|  *	      perf_addr_filters_head::lock
 | |
|  *
 | |
|  *    cpu_hotplug_lock
 | |
|  *      pmus_lock
 | |
|  *	  cpuctx->mutex / perf_event_context::mutex
 | |
|  */
 | |
| static struct perf_event_context *
 | |
| perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
 | |
| {
 | |
| 	struct perf_event_context *ctx;
 | |
| 
 | |
| again:
 | |
| 	rcu_read_lock();
 | |
| 	ctx = READ_ONCE(event->ctx);
 | |
| 	if (!refcount_inc_not_zero(&ctx->refcount)) {
 | |
| 		rcu_read_unlock();
 | |
| 		goto again;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	mutex_lock_nested(&ctx->mutex, nesting);
 | |
| 	if (event->ctx != ctx) {
 | |
| 		mutex_unlock(&ctx->mutex);
 | |
| 		put_ctx(ctx);
 | |
| 		goto again;
 | |
| 	}
 | |
| 
 | |
| 	return ctx;
 | |
| }
 | |
| 
 | |
| static inline struct perf_event_context *
 | |
| perf_event_ctx_lock(struct perf_event *event)
 | |
| {
 | |
| 	return perf_event_ctx_lock_nested(event, 0);
 | |
| }
 | |
| 
 | |
| static void perf_event_ctx_unlock(struct perf_event *event,
 | |
| 				  struct perf_event_context *ctx)
 | |
| {
 | |
| 	mutex_unlock(&ctx->mutex);
 | |
| 	put_ctx(ctx);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This must be done under the ctx->lock, such as to serialize against
 | |
|  * context_equiv(), therefore we cannot call put_ctx() since that might end up
 | |
|  * calling scheduler related locks and ctx->lock nests inside those.
 | |
|  */
 | |
| static __must_check struct perf_event_context *
 | |
| unclone_ctx(struct perf_event_context *ctx)
 | |
| {
 | |
| 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
 | |
| 
 | |
| 	lockdep_assert_held(&ctx->lock);
 | |
| 
 | |
| 	if (parent_ctx)
 | |
| 		ctx->parent_ctx = NULL;
 | |
| 	ctx->generation++;
 | |
| 
 | |
| 	return parent_ctx;
 | |
| }
 | |
| 
 | |
| static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
 | |
| 				enum pid_type type)
 | |
| {
 | |
| 	u32 nr;
 | |
| 	/*
 | |
| 	 * only top level events have the pid namespace they were created in
 | |
| 	 */
 | |
| 	if (event->parent)
 | |
| 		event = event->parent;
 | |
| 
 | |
| 	nr = __task_pid_nr_ns(p, type, event->ns);
 | |
| 	/* avoid -1 if it is idle thread or runs in another ns */
 | |
| 	if (!nr && !pid_alive(p))
 | |
| 		nr = -1;
 | |
| 	return nr;
 | |
| }
 | |
| 
 | |
| static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
 | |
| {
 | |
| 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
 | |
| }
 | |
| 
 | |
| static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
 | |
| {
 | |
| 	return perf_event_pid_type(event, p, PIDTYPE_PID);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If we inherit events we want to return the parent event id
 | |
|  * to userspace.
 | |
|  */
 | |
| static u64 primary_event_id(struct perf_event *event)
 | |
| {
 | |
| 	u64 id = event->id;
 | |
| 
 | |
| 	if (event->parent)
 | |
| 		id = event->parent->id;
 | |
| 
 | |
| 	return id;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the perf_event_context for a task and lock it.
 | |
|  *
 | |
|  * This has to cope with with the fact that until it is locked,
 | |
|  * the context could get moved to another task.
 | |
|  */
 | |
| static struct perf_event_context *
 | |
| perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
 | |
| {
 | |
| 	struct perf_event_context *ctx;
 | |
| 
 | |
| retry:
 | |
| 	/*
 | |
| 	 * One of the few rules of preemptible RCU is that one cannot do
 | |
| 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
 | |
| 	 * part of the read side critical section was irqs-enabled -- see
 | |
| 	 * rcu_read_unlock_special().
 | |
| 	 *
 | |
| 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
 | |
| 	 * side critical section has interrupts disabled.
 | |
| 	 */
 | |
| 	local_irq_save(*flags);
 | |
| 	rcu_read_lock();
 | |
| 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
 | |
| 	if (ctx) {
 | |
| 		/*
 | |
| 		 * If this context is a clone of another, it might
 | |
| 		 * get swapped for another underneath us by
 | |
| 		 * perf_event_task_sched_out, though the
 | |
| 		 * rcu_read_lock() protects us from any context
 | |
| 		 * getting freed.  Lock the context and check if it
 | |
| 		 * got swapped before we could get the lock, and retry
 | |
| 		 * if so.  If we locked the right context, then it
 | |
| 		 * can't get swapped on us any more.
 | |
| 		 */
 | |
| 		raw_spin_lock(&ctx->lock);
 | |
| 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
 | |
| 			raw_spin_unlock(&ctx->lock);
 | |
| 			rcu_read_unlock();
 | |
| 			local_irq_restore(*flags);
 | |
| 			goto retry;
 | |
| 		}
 | |
| 
 | |
| 		if (ctx->task == TASK_TOMBSTONE ||
 | |
| 		    !refcount_inc_not_zero(&ctx->refcount)) {
 | |
| 			raw_spin_unlock(&ctx->lock);
 | |
| 			ctx = NULL;
 | |
| 		} else {
 | |
| 			WARN_ON_ONCE(ctx->task != task);
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	if (!ctx)
 | |
| 		local_irq_restore(*flags);
 | |
| 	return ctx;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the context for a task and increment its pin_count so it
 | |
|  * can't get swapped to another task.  This also increments its
 | |
|  * reference count so that the context can't get freed.
 | |
|  */
 | |
| static struct perf_event_context *
 | |
| perf_pin_task_context(struct task_struct *task, int ctxn)
 | |
| {
 | |
| 	struct perf_event_context *ctx;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	ctx = perf_lock_task_context(task, ctxn, &flags);
 | |
| 	if (ctx) {
 | |
| 		++ctx->pin_count;
 | |
| 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
 | |
| 	}
 | |
| 	return ctx;
 | |
| }
 | |
| 
 | |
| static void perf_unpin_context(struct perf_event_context *ctx)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&ctx->lock, flags);
 | |
| 	--ctx->pin_count;
 | |
| 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update the record of the current time in a context.
 | |
|  */
 | |
| static void update_context_time(struct perf_event_context *ctx)
 | |
| {
 | |
| 	u64 now = perf_clock();
 | |
| 
 | |
| 	ctx->time += now - ctx->timestamp;
 | |
| 	ctx->timestamp = now;
 | |
| }
 | |
| 
 | |
| static u64 perf_event_time(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 
 | |
| 	if (is_cgroup_event(event))
 | |
| 		return perf_cgroup_event_time(event);
 | |
| 
 | |
| 	return ctx ? ctx->time : 0;
 | |
| }
 | |
| 
 | |
| static enum event_type_t get_event_type(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 	enum event_type_t event_type;
 | |
| 
 | |
| 	lockdep_assert_held(&ctx->lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * It's 'group type', really, because if our group leader is
 | |
| 	 * pinned, so are we.
 | |
| 	 */
 | |
| 	if (event->group_leader != event)
 | |
| 		event = event->group_leader;
 | |
| 
 | |
| 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
 | |
| 	if (!ctx->task)
 | |
| 		event_type |= EVENT_CPU;
 | |
| 
 | |
| 	return event_type;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper function to initialize event group nodes.
 | |
|  */
 | |
| static void init_event_group(struct perf_event *event)
 | |
| {
 | |
| 	RB_CLEAR_NODE(&event->group_node);
 | |
| 	event->group_index = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Extract pinned or flexible groups from the context
 | |
|  * based on event attrs bits.
 | |
|  */
 | |
| static struct perf_event_groups *
 | |
| get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
 | |
| {
 | |
| 	if (event->attr.pinned)
 | |
| 		return &ctx->pinned_groups;
 | |
| 	else
 | |
| 		return &ctx->flexible_groups;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper function to initializes perf_event_group trees.
 | |
|  */
 | |
| static void perf_event_groups_init(struct perf_event_groups *groups)
 | |
| {
 | |
| 	groups->tree = RB_ROOT;
 | |
| 	groups->index = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compare function for event groups;
 | |
|  *
 | |
|  * Implements complex key that first sorts by CPU and then by virtual index
 | |
|  * which provides ordering when rotating groups for the same CPU.
 | |
|  */
 | |
| static bool
 | |
| perf_event_groups_less(struct perf_event *left, struct perf_event *right)
 | |
| {
 | |
| 	if (left->cpu < right->cpu)
 | |
| 		return true;
 | |
| 	if (left->cpu > right->cpu)
 | |
| 		return false;
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_PERF
 | |
| 	if (left->cgrp != right->cgrp) {
 | |
| 		if (!left->cgrp || !left->cgrp->css.cgroup) {
 | |
| 			/*
 | |
| 			 * Left has no cgroup but right does, no cgroups come
 | |
| 			 * first.
 | |
| 			 */
 | |
| 			return true;
 | |
| 		}
 | |
| 		if (!right->cgrp || !right->cgrp->css.cgroup) {
 | |
| 			/*
 | |
| 			 * Right has no cgroup but left does, no cgroups come
 | |
| 			 * first.
 | |
| 			 */
 | |
| 			return false;
 | |
| 		}
 | |
| 		/* Two dissimilar cgroups, order by id. */
 | |
| 		if (left->cgrp->css.cgroup->kn->id < right->cgrp->css.cgroup->kn->id)
 | |
| 			return true;
 | |
| 
 | |
| 		return false;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	if (left->group_index < right->group_index)
 | |
| 		return true;
 | |
| 	if (left->group_index > right->group_index)
 | |
| 		return false;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
 | |
|  * key (see perf_event_groups_less). This places it last inside the CPU
 | |
|  * subtree.
 | |
|  */
 | |
| static void
 | |
| perf_event_groups_insert(struct perf_event_groups *groups,
 | |
| 			 struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event *node_event;
 | |
| 	struct rb_node *parent;
 | |
| 	struct rb_node **node;
 | |
| 
 | |
| 	event->group_index = ++groups->index;
 | |
| 
 | |
| 	node = &groups->tree.rb_node;
 | |
| 	parent = *node;
 | |
| 
 | |
| 	while (*node) {
 | |
| 		parent = *node;
 | |
| 		node_event = container_of(*node, struct perf_event, group_node);
 | |
| 
 | |
| 		if (perf_event_groups_less(event, node_event))
 | |
| 			node = &parent->rb_left;
 | |
| 		else
 | |
| 			node = &parent->rb_right;
 | |
| 	}
 | |
| 
 | |
| 	rb_link_node(&event->group_node, parent, node);
 | |
| 	rb_insert_color(&event->group_node, &groups->tree);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper function to insert event into the pinned or flexible groups.
 | |
|  */
 | |
| static void
 | |
| add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
 | |
| {
 | |
| 	struct perf_event_groups *groups;
 | |
| 
 | |
| 	groups = get_event_groups(event, ctx);
 | |
| 	perf_event_groups_insert(groups, event);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Delete a group from a tree.
 | |
|  */
 | |
| static void
 | |
| perf_event_groups_delete(struct perf_event_groups *groups,
 | |
| 			 struct perf_event *event)
 | |
| {
 | |
| 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
 | |
| 		     RB_EMPTY_ROOT(&groups->tree));
 | |
| 
 | |
| 	rb_erase(&event->group_node, &groups->tree);
 | |
| 	init_event_group(event);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper function to delete event from its groups.
 | |
|  */
 | |
| static void
 | |
| del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
 | |
| {
 | |
| 	struct perf_event_groups *groups;
 | |
| 
 | |
| 	groups = get_event_groups(event, ctx);
 | |
| 	perf_event_groups_delete(groups, event);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the leftmost event in the cpu/cgroup subtree.
 | |
|  */
 | |
| static struct perf_event *
 | |
| perf_event_groups_first(struct perf_event_groups *groups, int cpu,
 | |
| 			struct cgroup *cgrp)
 | |
| {
 | |
| 	struct perf_event *node_event = NULL, *match = NULL;
 | |
| 	struct rb_node *node = groups->tree.rb_node;
 | |
| #ifdef CONFIG_CGROUP_PERF
 | |
| 	u64 node_cgrp_id, cgrp_id = 0;
 | |
| 
 | |
| 	if (cgrp)
 | |
| 		cgrp_id = cgrp->kn->id;
 | |
| #endif
 | |
| 
 | |
| 	while (node) {
 | |
| 		node_event = container_of(node, struct perf_event, group_node);
 | |
| 
 | |
| 		if (cpu < node_event->cpu) {
 | |
| 			node = node->rb_left;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (cpu > node_event->cpu) {
 | |
| 			node = node->rb_right;
 | |
| 			continue;
 | |
| 		}
 | |
| #ifdef CONFIG_CGROUP_PERF
 | |
| 		node_cgrp_id = 0;
 | |
| 		if (node_event->cgrp && node_event->cgrp->css.cgroup)
 | |
| 			node_cgrp_id = node_event->cgrp->css.cgroup->kn->id;
 | |
| 
 | |
| 		if (cgrp_id < node_cgrp_id) {
 | |
| 			node = node->rb_left;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (cgrp_id > node_cgrp_id) {
 | |
| 			node = node->rb_right;
 | |
| 			continue;
 | |
| 		}
 | |
| #endif
 | |
| 		match = node_event;
 | |
| 		node = node->rb_left;
 | |
| 	}
 | |
| 
 | |
| 	return match;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Like rb_entry_next_safe() for the @cpu subtree.
 | |
|  */
 | |
| static struct perf_event *
 | |
| perf_event_groups_next(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event *next;
 | |
| #ifdef CONFIG_CGROUP_PERF
 | |
| 	u64 curr_cgrp_id = 0;
 | |
| 	u64 next_cgrp_id = 0;
 | |
| #endif
 | |
| 
 | |
| 	next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
 | |
| 	if (next == NULL || next->cpu != event->cpu)
 | |
| 		return NULL;
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_PERF
 | |
| 	if (event->cgrp && event->cgrp->css.cgroup)
 | |
| 		curr_cgrp_id = event->cgrp->css.cgroup->kn->id;
 | |
| 
 | |
| 	if (next->cgrp && next->cgrp->css.cgroup)
 | |
| 		next_cgrp_id = next->cgrp->css.cgroup->kn->id;
 | |
| 
 | |
| 	if (curr_cgrp_id != next_cgrp_id)
 | |
| 		return NULL;
 | |
| #endif
 | |
| 	return next;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Iterate through the whole groups tree.
 | |
|  */
 | |
| #define perf_event_groups_for_each(event, groups)			\
 | |
| 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
 | |
| 				typeof(*event), group_node); event;	\
 | |
| 		event = rb_entry_safe(rb_next(&event->group_node),	\
 | |
| 				typeof(*event), group_node))
 | |
| 
 | |
| /*
 | |
|  * Add an event from the lists for its context.
 | |
|  * Must be called with ctx->mutex and ctx->lock held.
 | |
|  */
 | |
| static void
 | |
| list_add_event(struct perf_event *event, struct perf_event_context *ctx)
 | |
| {
 | |
| 	lockdep_assert_held(&ctx->lock);
 | |
| 
 | |
| 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
 | |
| 	event->attach_state |= PERF_ATTACH_CONTEXT;
 | |
| 
 | |
| 	event->tstamp = perf_event_time(event);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're a stand alone event or group leader, we go to the context
 | |
| 	 * list, group events are kept attached to the group so that
 | |
| 	 * perf_group_detach can, at all times, locate all siblings.
 | |
| 	 */
 | |
| 	if (event->group_leader == event) {
 | |
| 		event->group_caps = event->event_caps;
 | |
| 		add_event_to_groups(event, ctx);
 | |
| 	}
 | |
| 
 | |
| 	list_add_rcu(&event->event_entry, &ctx->event_list);
 | |
| 	ctx->nr_events++;
 | |
| 	if (event->attr.inherit_stat)
 | |
| 		ctx->nr_stat++;
 | |
| 
 | |
| 	if (event->state > PERF_EVENT_STATE_OFF)
 | |
| 		perf_cgroup_event_enable(event, ctx);
 | |
| 
 | |
| 	ctx->generation++;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize event state based on the perf_event_attr::disabled.
 | |
|  */
 | |
| static inline void perf_event__state_init(struct perf_event *event)
 | |
| {
 | |
| 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
 | |
| 					      PERF_EVENT_STATE_INACTIVE;
 | |
| }
 | |
| 
 | |
| static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
 | |
| {
 | |
| 	int entry = sizeof(u64); /* value */
 | |
| 	int size = 0;
 | |
| 	int nr = 1;
 | |
| 
 | |
| 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
 | |
| 		size += sizeof(u64);
 | |
| 
 | |
| 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
 | |
| 		size += sizeof(u64);
 | |
| 
 | |
| 	if (event->attr.read_format & PERF_FORMAT_ID)
 | |
| 		entry += sizeof(u64);
 | |
| 
 | |
| 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
 | |
| 		nr += nr_siblings;
 | |
| 		size += sizeof(u64);
 | |
| 	}
 | |
| 
 | |
| 	size += entry * nr;
 | |
| 	event->read_size = size;
 | |
| }
 | |
| 
 | |
| static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
 | |
| {
 | |
| 	struct perf_sample_data *data;
 | |
| 	u16 size = 0;
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_IP)
 | |
| 		size += sizeof(data->ip);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_ADDR)
 | |
| 		size += sizeof(data->addr);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_PERIOD)
 | |
| 		size += sizeof(data->period);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_WEIGHT)
 | |
| 		size += sizeof(data->weight);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_READ)
 | |
| 		size += event->read_size;
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_DATA_SRC)
 | |
| 		size += sizeof(data->data_src.val);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_TRANSACTION)
 | |
| 		size += sizeof(data->txn);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
 | |
| 		size += sizeof(data->phys_addr);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_CGROUP)
 | |
| 		size += sizeof(data->cgroup);
 | |
| 
 | |
| 	event->header_size = size;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called at perf_event creation and when events are attached/detached from a
 | |
|  * group.
 | |
|  */
 | |
| static void perf_event__header_size(struct perf_event *event)
 | |
| {
 | |
| 	__perf_event_read_size(event,
 | |
| 			       event->group_leader->nr_siblings);
 | |
| 	__perf_event_header_size(event, event->attr.sample_type);
 | |
| }
 | |
| 
 | |
| static void perf_event__id_header_size(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_sample_data *data;
 | |
| 	u64 sample_type = event->attr.sample_type;
 | |
| 	u16 size = 0;
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_TID)
 | |
| 		size += sizeof(data->tid_entry);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_TIME)
 | |
| 		size += sizeof(data->time);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
 | |
| 		size += sizeof(data->id);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_ID)
 | |
| 		size += sizeof(data->id);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_STREAM_ID)
 | |
| 		size += sizeof(data->stream_id);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_CPU)
 | |
| 		size += sizeof(data->cpu_entry);
 | |
| 
 | |
| 	event->id_header_size = size;
 | |
| }
 | |
| 
 | |
| static bool perf_event_validate_size(struct perf_event *event)
 | |
| {
 | |
| 	/*
 | |
| 	 * The values computed here will be over-written when we actually
 | |
| 	 * attach the event.
 | |
| 	 */
 | |
| 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
 | |
| 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
 | |
| 	perf_event__id_header_size(event);
 | |
| 
 | |
| 	/*
 | |
| 	 * Sum the lot; should not exceed the 64k limit we have on records.
 | |
| 	 * Conservative limit to allow for callchains and other variable fields.
 | |
| 	 */
 | |
| 	if (event->read_size + event->header_size +
 | |
| 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void perf_group_attach(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event *group_leader = event->group_leader, *pos;
 | |
| 
 | |
| 	lockdep_assert_held(&event->ctx->lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * We can have double attach due to group movement in perf_event_open.
 | |
| 	 */
 | |
| 	if (event->attach_state & PERF_ATTACH_GROUP)
 | |
| 		return;
 | |
| 
 | |
| 	event->attach_state |= PERF_ATTACH_GROUP;
 | |
| 
 | |
| 	if (group_leader == event)
 | |
| 		return;
 | |
| 
 | |
| 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
 | |
| 
 | |
| 	group_leader->group_caps &= event->event_caps;
 | |
| 
 | |
| 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
 | |
| 	group_leader->nr_siblings++;
 | |
| 
 | |
| 	perf_event__header_size(group_leader);
 | |
| 
 | |
| 	for_each_sibling_event(pos, group_leader)
 | |
| 		perf_event__header_size(pos);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove an event from the lists for its context.
 | |
|  * Must be called with ctx->mutex and ctx->lock held.
 | |
|  */
 | |
| static void
 | |
| list_del_event(struct perf_event *event, struct perf_event_context *ctx)
 | |
| {
 | |
| 	WARN_ON_ONCE(event->ctx != ctx);
 | |
| 	lockdep_assert_held(&ctx->lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * We can have double detach due to exit/hot-unplug + close.
 | |
| 	 */
 | |
| 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
 | |
| 		return;
 | |
| 
 | |
| 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
 | |
| 
 | |
| 	ctx->nr_events--;
 | |
| 	if (event->attr.inherit_stat)
 | |
| 		ctx->nr_stat--;
 | |
| 
 | |
| 	list_del_rcu(&event->event_entry);
 | |
| 
 | |
| 	if (event->group_leader == event)
 | |
| 		del_event_from_groups(event, ctx);
 | |
| 
 | |
| 	/*
 | |
| 	 * If event was in error state, then keep it
 | |
| 	 * that way, otherwise bogus counts will be
 | |
| 	 * returned on read(). The only way to get out
 | |
| 	 * of error state is by explicit re-enabling
 | |
| 	 * of the event
 | |
| 	 */
 | |
| 	if (event->state > PERF_EVENT_STATE_OFF) {
 | |
| 		perf_cgroup_event_disable(event, ctx);
 | |
| 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
 | |
| 	}
 | |
| 
 | |
| 	ctx->generation++;
 | |
| }
 | |
| 
 | |
| static int
 | |
| perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
 | |
| {
 | |
| 	if (!has_aux(aux_event))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!event->pmu->aux_output_match)
 | |
| 		return 0;
 | |
| 
 | |
| 	return event->pmu->aux_output_match(aux_event);
 | |
| }
 | |
| 
 | |
| static void put_event(struct perf_event *event);
 | |
| static void event_sched_out(struct perf_event *event,
 | |
| 			    struct perf_cpu_context *cpuctx,
 | |
| 			    struct perf_event_context *ctx);
 | |
| 
 | |
| static void perf_put_aux_event(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 | |
| 	struct perf_event *iter;
 | |
| 
 | |
| 	/*
 | |
| 	 * If event uses aux_event tear down the link
 | |
| 	 */
 | |
| 	if (event->aux_event) {
 | |
| 		iter = event->aux_event;
 | |
| 		event->aux_event = NULL;
 | |
| 		put_event(iter);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the event is an aux_event, tear down all links to
 | |
| 	 * it from other events.
 | |
| 	 */
 | |
| 	for_each_sibling_event(iter, event->group_leader) {
 | |
| 		if (iter->aux_event != event)
 | |
| 			continue;
 | |
| 
 | |
| 		iter->aux_event = NULL;
 | |
| 		put_event(event);
 | |
| 
 | |
| 		/*
 | |
| 		 * If it's ACTIVE, schedule it out and put it into ERROR
 | |
| 		 * state so that we don't try to schedule it again. Note
 | |
| 		 * that perf_event_enable() will clear the ERROR status.
 | |
| 		 */
 | |
| 		event_sched_out(iter, cpuctx, ctx);
 | |
| 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool perf_need_aux_event(struct perf_event *event)
 | |
| {
 | |
| 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
 | |
| }
 | |
| 
 | |
| static int perf_get_aux_event(struct perf_event *event,
 | |
| 			      struct perf_event *group_leader)
 | |
| {
 | |
| 	/*
 | |
| 	 * Our group leader must be an aux event if we want to be
 | |
| 	 * an aux_output. This way, the aux event will precede its
 | |
| 	 * aux_output events in the group, and therefore will always
 | |
| 	 * schedule first.
 | |
| 	 */
 | |
| 	if (!group_leader)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * aux_output and aux_sample_size are mutually exclusive.
 | |
| 	 */
 | |
| 	if (event->attr.aux_output && event->attr.aux_sample_size)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (event->attr.aux_output &&
 | |
| 	    !perf_aux_output_match(event, group_leader))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Link aux_outputs to their aux event; this is undone in
 | |
| 	 * perf_group_detach() by perf_put_aux_event(). When the
 | |
| 	 * group in torn down, the aux_output events loose their
 | |
| 	 * link to the aux_event and can't schedule any more.
 | |
| 	 */
 | |
| 	event->aux_event = group_leader;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static inline struct list_head *get_event_list(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 	return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
 | |
| }
 | |
| 
 | |
| static void perf_group_detach(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event *sibling, *tmp;
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 
 | |
| 	lockdep_assert_held(&ctx->lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * We can have double detach due to exit/hot-unplug + close.
 | |
| 	 */
 | |
| 	if (!(event->attach_state & PERF_ATTACH_GROUP))
 | |
| 		return;
 | |
| 
 | |
| 	event->attach_state &= ~PERF_ATTACH_GROUP;
 | |
| 
 | |
| 	perf_put_aux_event(event);
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is a sibling, remove it from its group.
 | |
| 	 */
 | |
| 	if (event->group_leader != event) {
 | |
| 		list_del_init(&event->sibling_list);
 | |
| 		event->group_leader->nr_siblings--;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If this was a group event with sibling events then
 | |
| 	 * upgrade the siblings to singleton events by adding them
 | |
| 	 * to whatever list we are on.
 | |
| 	 */
 | |
| 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
 | |
| 
 | |
| 		sibling->group_leader = sibling;
 | |
| 		list_del_init(&sibling->sibling_list);
 | |
| 
 | |
| 		/* Inherit group flags from the previous leader */
 | |
| 		sibling->group_caps = event->group_caps;
 | |
| 
 | |
| 		if (!RB_EMPTY_NODE(&event->group_node)) {
 | |
| 			add_event_to_groups(sibling, event->ctx);
 | |
| 
 | |
| 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
 | |
| 				list_add_tail(&sibling->active_list, get_event_list(sibling));
 | |
| 		}
 | |
| 
 | |
| 		WARN_ON_ONCE(sibling->ctx != event->ctx);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	perf_event__header_size(event->group_leader);
 | |
| 
 | |
| 	for_each_sibling_event(tmp, event->group_leader)
 | |
| 		perf_event__header_size(tmp);
 | |
| }
 | |
| 
 | |
| static bool is_orphaned_event(struct perf_event *event)
 | |
| {
 | |
| 	return event->state == PERF_EVENT_STATE_DEAD;
 | |
| }
 | |
| 
 | |
| static inline int __pmu_filter_match(struct perf_event *event)
 | |
| {
 | |
| 	struct pmu *pmu = event->pmu;
 | |
| 	return pmu->filter_match ? pmu->filter_match(event) : 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check whether we should attempt to schedule an event group based on
 | |
|  * PMU-specific filtering. An event group can consist of HW and SW events,
 | |
|  * potentially with a SW leader, so we must check all the filters, to
 | |
|  * determine whether a group is schedulable:
 | |
|  */
 | |
| static inline int pmu_filter_match(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event *sibling;
 | |
| 
 | |
| 	if (!__pmu_filter_match(event))
 | |
| 		return 0;
 | |
| 
 | |
| 	for_each_sibling_event(sibling, event) {
 | |
| 		if (!__pmu_filter_match(sibling))
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static inline int
 | |
| event_filter_match(struct perf_event *event)
 | |
| {
 | |
| 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
 | |
| 	       perf_cgroup_match(event) && pmu_filter_match(event);
 | |
| }
 | |
| 
 | |
| static void
 | |
| event_sched_out(struct perf_event *event,
 | |
| 		  struct perf_cpu_context *cpuctx,
 | |
| 		  struct perf_event_context *ctx)
 | |
| {
 | |
| 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
 | |
| 
 | |
| 	WARN_ON_ONCE(event->ctx != ctx);
 | |
| 	lockdep_assert_held(&ctx->lock);
 | |
| 
 | |
| 	if (event->state != PERF_EVENT_STATE_ACTIVE)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
 | |
| 	 * we can schedule events _OUT_ individually through things like
 | |
| 	 * __perf_remove_from_context().
 | |
| 	 */
 | |
| 	list_del_init(&event->active_list);
 | |
| 
 | |
| 	perf_pmu_disable(event->pmu);
 | |
| 
 | |
| 	event->pmu->del(event, 0);
 | |
| 	event->oncpu = -1;
 | |
| 
 | |
| 	if (READ_ONCE(event->pending_disable) >= 0) {
 | |
| 		WRITE_ONCE(event->pending_disable, -1);
 | |
| 		perf_cgroup_event_disable(event, ctx);
 | |
| 		state = PERF_EVENT_STATE_OFF;
 | |
| 	}
 | |
| 	perf_event_set_state(event, state);
 | |
| 
 | |
| 	if (!is_software_event(event))
 | |
| 		cpuctx->active_oncpu--;
 | |
| 	if (!--ctx->nr_active)
 | |
| 		perf_event_ctx_deactivate(ctx);
 | |
| 	if (event->attr.freq && event->attr.sample_freq)
 | |
| 		ctx->nr_freq--;
 | |
| 	if (event->attr.exclusive || !cpuctx->active_oncpu)
 | |
| 		cpuctx->exclusive = 0;
 | |
| 
 | |
| 	perf_pmu_enable(event->pmu);
 | |
| }
 | |
| 
 | |
| static void
 | |
| group_sched_out(struct perf_event *group_event,
 | |
| 		struct perf_cpu_context *cpuctx,
 | |
| 		struct perf_event_context *ctx)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 
 | |
| 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
 | |
| 		return;
 | |
| 
 | |
| 	perf_pmu_disable(ctx->pmu);
 | |
| 
 | |
| 	event_sched_out(group_event, cpuctx, ctx);
 | |
| 
 | |
| 	/*
 | |
| 	 * Schedule out siblings (if any):
 | |
| 	 */
 | |
| 	for_each_sibling_event(event, group_event)
 | |
| 		event_sched_out(event, cpuctx, ctx);
 | |
| 
 | |
| 	perf_pmu_enable(ctx->pmu);
 | |
| 
 | |
| 	if (group_event->attr.exclusive)
 | |
| 		cpuctx->exclusive = 0;
 | |
| }
 | |
| 
 | |
| #define DETACH_GROUP	0x01UL
 | |
| 
 | |
| /*
 | |
|  * Cross CPU call to remove a performance event
 | |
|  *
 | |
|  * We disable the event on the hardware level first. After that we
 | |
|  * remove it from the context list.
 | |
|  */
 | |
| static void
 | |
| __perf_remove_from_context(struct perf_event *event,
 | |
| 			   struct perf_cpu_context *cpuctx,
 | |
| 			   struct perf_event_context *ctx,
 | |
| 			   void *info)
 | |
| {
 | |
| 	unsigned long flags = (unsigned long)info;
 | |
| 
 | |
| 	if (ctx->is_active & EVENT_TIME) {
 | |
| 		update_context_time(ctx);
 | |
| 		update_cgrp_time_from_cpuctx(cpuctx);
 | |
| 	}
 | |
| 
 | |
| 	event_sched_out(event, cpuctx, ctx);
 | |
| 	if (flags & DETACH_GROUP)
 | |
| 		perf_group_detach(event);
 | |
| 	list_del_event(event, ctx);
 | |
| 
 | |
| 	if (!ctx->nr_events && ctx->is_active) {
 | |
| 		ctx->is_active = 0;
 | |
| 		ctx->rotate_necessary = 0;
 | |
| 		if (ctx->task) {
 | |
| 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
 | |
| 			cpuctx->task_ctx = NULL;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove the event from a task's (or a CPU's) list of events.
 | |
|  *
 | |
|  * If event->ctx is a cloned context, callers must make sure that
 | |
|  * every task struct that event->ctx->task could possibly point to
 | |
|  * remains valid.  This is OK when called from perf_release since
 | |
|  * that only calls us on the top-level context, which can't be a clone.
 | |
|  * When called from perf_event_exit_task, it's OK because the
 | |
|  * context has been detached from its task.
 | |
|  */
 | |
| static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
 | |
| {
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 
 | |
| 	lockdep_assert_held(&ctx->mutex);
 | |
| 
 | |
| 	event_function_call(event, __perf_remove_from_context, (void *)flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * The above event_function_call() can NO-OP when it hits
 | |
| 	 * TASK_TOMBSTONE. In that case we must already have been detached
 | |
| 	 * from the context (by perf_event_exit_event()) but the grouping
 | |
| 	 * might still be in-tact.
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
 | |
| 	if ((flags & DETACH_GROUP) &&
 | |
| 	    (event->attach_state & PERF_ATTACH_GROUP)) {
 | |
| 		/*
 | |
| 		 * Since in that case we cannot possibly be scheduled, simply
 | |
| 		 * detach now.
 | |
| 		 */
 | |
| 		raw_spin_lock_irq(&ctx->lock);
 | |
| 		perf_group_detach(event);
 | |
| 		raw_spin_unlock_irq(&ctx->lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Cross CPU call to disable a performance event
 | |
|  */
 | |
| static void __perf_event_disable(struct perf_event *event,
 | |
| 				 struct perf_cpu_context *cpuctx,
 | |
| 				 struct perf_event_context *ctx,
 | |
| 				 void *info)
 | |
| {
 | |
| 	if (event->state < PERF_EVENT_STATE_INACTIVE)
 | |
| 		return;
 | |
| 
 | |
| 	if (ctx->is_active & EVENT_TIME) {
 | |
| 		update_context_time(ctx);
 | |
| 		update_cgrp_time_from_event(event);
 | |
| 	}
 | |
| 
 | |
| 	if (event == event->group_leader)
 | |
| 		group_sched_out(event, cpuctx, ctx);
 | |
| 	else
 | |
| 		event_sched_out(event, cpuctx, ctx);
 | |
| 
 | |
| 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
 | |
| 	perf_cgroup_event_disable(event, ctx);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Disable an event.
 | |
|  *
 | |
|  * If event->ctx is a cloned context, callers must make sure that
 | |
|  * every task struct that event->ctx->task could possibly point to
 | |
|  * remains valid.  This condition is satisfied when called through
 | |
|  * perf_event_for_each_child or perf_event_for_each because they
 | |
|  * hold the top-level event's child_mutex, so any descendant that
 | |
|  * goes to exit will block in perf_event_exit_event().
 | |
|  *
 | |
|  * When called from perf_pending_event it's OK because event->ctx
 | |
|  * is the current context on this CPU and preemption is disabled,
 | |
|  * hence we can't get into perf_event_task_sched_out for this context.
 | |
|  */
 | |
| static void _perf_event_disable(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 
 | |
| 	raw_spin_lock_irq(&ctx->lock);
 | |
| 	if (event->state <= PERF_EVENT_STATE_OFF) {
 | |
| 		raw_spin_unlock_irq(&ctx->lock);
 | |
| 		return;
 | |
| 	}
 | |
| 	raw_spin_unlock_irq(&ctx->lock);
 | |
| 
 | |
| 	event_function_call(event, __perf_event_disable, NULL);
 | |
| }
 | |
| 
 | |
| void perf_event_disable_local(struct perf_event *event)
 | |
| {
 | |
| 	event_function_local(event, __perf_event_disable, NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Strictly speaking kernel users cannot create groups and therefore this
 | |
|  * interface does not need the perf_event_ctx_lock() magic.
 | |
|  */
 | |
| void perf_event_disable(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event_context *ctx;
 | |
| 
 | |
| 	ctx = perf_event_ctx_lock(event);
 | |
| 	_perf_event_disable(event);
 | |
| 	perf_event_ctx_unlock(event, ctx);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_event_disable);
 | |
| 
 | |
| void perf_event_disable_inatomic(struct perf_event *event)
 | |
| {
 | |
| 	WRITE_ONCE(event->pending_disable, smp_processor_id());
 | |
| 	/* can fail, see perf_pending_event_disable() */
 | |
| 	irq_work_queue(&event->pending);
 | |
| }
 | |
| 
 | |
| static void perf_set_shadow_time(struct perf_event *event,
 | |
| 				 struct perf_event_context *ctx)
 | |
| {
 | |
| 	/*
 | |
| 	 * use the correct time source for the time snapshot
 | |
| 	 *
 | |
| 	 * We could get by without this by leveraging the
 | |
| 	 * fact that to get to this function, the caller
 | |
| 	 * has most likely already called update_context_time()
 | |
| 	 * and update_cgrp_time_xx() and thus both timestamp
 | |
| 	 * are identical (or very close). Given that tstamp is,
 | |
| 	 * already adjusted for cgroup, we could say that:
 | |
| 	 *    tstamp - ctx->timestamp
 | |
| 	 * is equivalent to
 | |
| 	 *    tstamp - cgrp->timestamp.
 | |
| 	 *
 | |
| 	 * Then, in perf_output_read(), the calculation would
 | |
| 	 * work with no changes because:
 | |
| 	 * - event is guaranteed scheduled in
 | |
| 	 * - no scheduled out in between
 | |
| 	 * - thus the timestamp would be the same
 | |
| 	 *
 | |
| 	 * But this is a bit hairy.
 | |
| 	 *
 | |
| 	 * So instead, we have an explicit cgroup call to remain
 | |
| 	 * within the time time source all along. We believe it
 | |
| 	 * is cleaner and simpler to understand.
 | |
| 	 */
 | |
| 	if (is_cgroup_event(event))
 | |
| 		perf_cgroup_set_shadow_time(event, event->tstamp);
 | |
| 	else
 | |
| 		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
 | |
| }
 | |
| 
 | |
| #define MAX_INTERRUPTS (~0ULL)
 | |
| 
 | |
| static void perf_log_throttle(struct perf_event *event, int enable);
 | |
| static void perf_log_itrace_start(struct perf_event *event);
 | |
| 
 | |
| static int
 | |
| event_sched_in(struct perf_event *event,
 | |
| 		 struct perf_cpu_context *cpuctx,
 | |
| 		 struct perf_event_context *ctx)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	WARN_ON_ONCE(event->ctx != ctx);
 | |
| 
 | |
| 	lockdep_assert_held(&ctx->lock);
 | |
| 
 | |
| 	if (event->state <= PERF_EVENT_STATE_OFF)
 | |
| 		return 0;
 | |
| 
 | |
| 	WRITE_ONCE(event->oncpu, smp_processor_id());
 | |
| 	/*
 | |
| 	 * Order event::oncpu write to happen before the ACTIVE state is
 | |
| 	 * visible. This allows perf_event_{stop,read}() to observe the correct
 | |
| 	 * ->oncpu if it sees ACTIVE.
 | |
| 	 */
 | |
| 	smp_wmb();
 | |
| 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
 | |
| 
 | |
| 	/*
 | |
| 	 * Unthrottle events, since we scheduled we might have missed several
 | |
| 	 * ticks already, also for a heavily scheduling task there is little
 | |
| 	 * guarantee it'll get a tick in a timely manner.
 | |
| 	 */
 | |
| 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
 | |
| 		perf_log_throttle(event, 1);
 | |
| 		event->hw.interrupts = 0;
 | |
| 	}
 | |
| 
 | |
| 	perf_pmu_disable(event->pmu);
 | |
| 
 | |
| 	perf_set_shadow_time(event, ctx);
 | |
| 
 | |
| 	perf_log_itrace_start(event);
 | |
| 
 | |
| 	if (event->pmu->add(event, PERF_EF_START)) {
 | |
| 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
 | |
| 		event->oncpu = -1;
 | |
| 		ret = -EAGAIN;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (!is_software_event(event))
 | |
| 		cpuctx->active_oncpu++;
 | |
| 	if (!ctx->nr_active++)
 | |
| 		perf_event_ctx_activate(ctx);
 | |
| 	if (event->attr.freq && event->attr.sample_freq)
 | |
| 		ctx->nr_freq++;
 | |
| 
 | |
| 	if (event->attr.exclusive)
 | |
| 		cpuctx->exclusive = 1;
 | |
| 
 | |
| out:
 | |
| 	perf_pmu_enable(event->pmu);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int
 | |
| group_sched_in(struct perf_event *group_event,
 | |
| 	       struct perf_cpu_context *cpuctx,
 | |
| 	       struct perf_event_context *ctx)
 | |
| {
 | |
| 	struct perf_event *event, *partial_group = NULL;
 | |
| 	struct pmu *pmu = ctx->pmu;
 | |
| 
 | |
| 	if (group_event->state == PERF_EVENT_STATE_OFF)
 | |
| 		return 0;
 | |
| 
 | |
| 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
 | |
| 
 | |
| 	if (event_sched_in(group_event, cpuctx, ctx)) {
 | |
| 		pmu->cancel_txn(pmu);
 | |
| 		perf_mux_hrtimer_restart(cpuctx);
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Schedule in siblings as one group (if any):
 | |
| 	 */
 | |
| 	for_each_sibling_event(event, group_event) {
 | |
| 		if (event_sched_in(event, cpuctx, ctx)) {
 | |
| 			partial_group = event;
 | |
| 			goto group_error;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!pmu->commit_txn(pmu))
 | |
| 		return 0;
 | |
| 
 | |
| group_error:
 | |
| 	/*
 | |
| 	 * Groups can be scheduled in as one unit only, so undo any
 | |
| 	 * partial group before returning:
 | |
| 	 * The events up to the failed event are scheduled out normally.
 | |
| 	 */
 | |
| 	for_each_sibling_event(event, group_event) {
 | |
| 		if (event == partial_group)
 | |
| 			break;
 | |
| 
 | |
| 		event_sched_out(event, cpuctx, ctx);
 | |
| 	}
 | |
| 	event_sched_out(group_event, cpuctx, ctx);
 | |
| 
 | |
| 	pmu->cancel_txn(pmu);
 | |
| 
 | |
| 	perf_mux_hrtimer_restart(cpuctx);
 | |
| 
 | |
| 	return -EAGAIN;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Work out whether we can put this event group on the CPU now.
 | |
|  */
 | |
| static int group_can_go_on(struct perf_event *event,
 | |
| 			   struct perf_cpu_context *cpuctx,
 | |
| 			   int can_add_hw)
 | |
| {
 | |
| 	/*
 | |
| 	 * Groups consisting entirely of software events can always go on.
 | |
| 	 */
 | |
| 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
 | |
| 		return 1;
 | |
| 	/*
 | |
| 	 * If an exclusive group is already on, no other hardware
 | |
| 	 * events can go on.
 | |
| 	 */
 | |
| 	if (cpuctx->exclusive)
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * If this group is exclusive and there are already
 | |
| 	 * events on the CPU, it can't go on.
 | |
| 	 */
 | |
| 	if (event->attr.exclusive && cpuctx->active_oncpu)
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * Otherwise, try to add it if all previous groups were able
 | |
| 	 * to go on.
 | |
| 	 */
 | |
| 	return can_add_hw;
 | |
| }
 | |
| 
 | |
| static void add_event_to_ctx(struct perf_event *event,
 | |
| 			       struct perf_event_context *ctx)
 | |
| {
 | |
| 	list_add_event(event, ctx);
 | |
| 	perf_group_attach(event);
 | |
| }
 | |
| 
 | |
| static void ctx_sched_out(struct perf_event_context *ctx,
 | |
| 			  struct perf_cpu_context *cpuctx,
 | |
| 			  enum event_type_t event_type);
 | |
| static void
 | |
| ctx_sched_in(struct perf_event_context *ctx,
 | |
| 	     struct perf_cpu_context *cpuctx,
 | |
| 	     enum event_type_t event_type,
 | |
| 	     struct task_struct *task);
 | |
| 
 | |
| static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
 | |
| 			       struct perf_event_context *ctx,
 | |
| 			       enum event_type_t event_type)
 | |
| {
 | |
| 	if (!cpuctx->task_ctx)
 | |
| 		return;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
 | |
| 		return;
 | |
| 
 | |
| 	ctx_sched_out(ctx, cpuctx, event_type);
 | |
| }
 | |
| 
 | |
| static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
 | |
| 				struct perf_event_context *ctx,
 | |
| 				struct task_struct *task)
 | |
| {
 | |
| 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
 | |
| 	if (ctx)
 | |
| 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
 | |
| 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
 | |
| 	if (ctx)
 | |
| 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We want to maintain the following priority of scheduling:
 | |
|  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
 | |
|  *  - task pinned (EVENT_PINNED)
 | |
|  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
 | |
|  *  - task flexible (EVENT_FLEXIBLE).
 | |
|  *
 | |
|  * In order to avoid unscheduling and scheduling back in everything every
 | |
|  * time an event is added, only do it for the groups of equal priority and
 | |
|  * below.
 | |
|  *
 | |
|  * This can be called after a batch operation on task events, in which case
 | |
|  * event_type is a bit mask of the types of events involved. For CPU events,
 | |
|  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
 | |
|  */
 | |
| static void ctx_resched(struct perf_cpu_context *cpuctx,
 | |
| 			struct perf_event_context *task_ctx,
 | |
| 			enum event_type_t event_type)
 | |
| {
 | |
| 	enum event_type_t ctx_event_type;
 | |
| 	bool cpu_event = !!(event_type & EVENT_CPU);
 | |
| 
 | |
| 	/*
 | |
| 	 * If pinned groups are involved, flexible groups also need to be
 | |
| 	 * scheduled out.
 | |
| 	 */
 | |
| 	if (event_type & EVENT_PINNED)
 | |
| 		event_type |= EVENT_FLEXIBLE;
 | |
| 
 | |
| 	ctx_event_type = event_type & EVENT_ALL;
 | |
| 
 | |
| 	perf_pmu_disable(cpuctx->ctx.pmu);
 | |
| 	if (task_ctx)
 | |
| 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
 | |
| 
 | |
| 	/*
 | |
| 	 * Decide which cpu ctx groups to schedule out based on the types
 | |
| 	 * of events that caused rescheduling:
 | |
| 	 *  - EVENT_CPU: schedule out corresponding groups;
 | |
| 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
 | |
| 	 *  - otherwise, do nothing more.
 | |
| 	 */
 | |
| 	if (cpu_event)
 | |
| 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
 | |
| 	else if (ctx_event_type & EVENT_PINNED)
 | |
| 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
 | |
| 
 | |
| 	perf_event_sched_in(cpuctx, task_ctx, current);
 | |
| 	perf_pmu_enable(cpuctx->ctx.pmu);
 | |
| }
 | |
| 
 | |
| void perf_pmu_resched(struct pmu *pmu)
 | |
| {
 | |
| 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
 | |
| 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
 | |
| 
 | |
| 	perf_ctx_lock(cpuctx, task_ctx);
 | |
| 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
 | |
| 	perf_ctx_unlock(cpuctx, task_ctx);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Cross CPU call to install and enable a performance event
 | |
|  *
 | |
|  * Very similar to remote_function() + event_function() but cannot assume that
 | |
|  * things like ctx->is_active and cpuctx->task_ctx are set.
 | |
|  */
 | |
| static int  __perf_install_in_context(void *info)
 | |
| {
 | |
| 	struct perf_event *event = info;
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 | |
| 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
 | |
| 	bool reprogram = true;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	raw_spin_lock(&cpuctx->ctx.lock);
 | |
| 	if (ctx->task) {
 | |
| 		raw_spin_lock(&ctx->lock);
 | |
| 		task_ctx = ctx;
 | |
| 
 | |
| 		reprogram = (ctx->task == current);
 | |
| 
 | |
| 		/*
 | |
| 		 * If the task is running, it must be running on this CPU,
 | |
| 		 * otherwise we cannot reprogram things.
 | |
| 		 *
 | |
| 		 * If its not running, we don't care, ctx->lock will
 | |
| 		 * serialize against it becoming runnable.
 | |
| 		 */
 | |
| 		if (task_curr(ctx->task) && !reprogram) {
 | |
| 			ret = -ESRCH;
 | |
| 			goto unlock;
 | |
| 		}
 | |
| 
 | |
| 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
 | |
| 	} else if (task_ctx) {
 | |
| 		raw_spin_lock(&task_ctx->lock);
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_PERF
 | |
| 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
 | |
| 		/*
 | |
| 		 * If the current cgroup doesn't match the event's
 | |
| 		 * cgroup, we should not try to schedule it.
 | |
| 		 */
 | |
| 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
 | |
| 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
 | |
| 					event->cgrp->css.cgroup);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	if (reprogram) {
 | |
| 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
 | |
| 		add_event_to_ctx(event, ctx);
 | |
| 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
 | |
| 	} else {
 | |
| 		add_event_to_ctx(event, ctx);
 | |
| 	}
 | |
| 
 | |
| unlock:
 | |
| 	perf_ctx_unlock(cpuctx, task_ctx);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static bool exclusive_event_installable(struct perf_event *event,
 | |
| 					struct perf_event_context *ctx);
 | |
| 
 | |
| /*
 | |
|  * Attach a performance event to a context.
 | |
|  *
 | |
|  * Very similar to event_function_call, see comment there.
 | |
|  */
 | |
| static void
 | |
| perf_install_in_context(struct perf_event_context *ctx,
 | |
| 			struct perf_event *event,
 | |
| 			int cpu)
 | |
| {
 | |
| 	struct task_struct *task = READ_ONCE(ctx->task);
 | |
| 
 | |
| 	lockdep_assert_held(&ctx->mutex);
 | |
| 
 | |
| 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
 | |
| 
 | |
| 	if (event->cpu != -1)
 | |
| 		event->cpu = cpu;
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensures that if we can observe event->ctx, both the event and ctx
 | |
| 	 * will be 'complete'. See perf_iterate_sb_cpu().
 | |
| 	 */
 | |
| 	smp_store_release(&event->ctx, ctx);
 | |
| 
 | |
| 	/*
 | |
| 	 * perf_event_attr::disabled events will not run and can be initialized
 | |
| 	 * without IPI. Except when this is the first event for the context, in
 | |
| 	 * that case we need the magic of the IPI to set ctx->is_active.
 | |
| 	 *
 | |
| 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
 | |
| 	 * event will issue the IPI and reprogram the hardware.
 | |
| 	 */
 | |
| 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
 | |
| 		raw_spin_lock_irq(&ctx->lock);
 | |
| 		if (ctx->task == TASK_TOMBSTONE) {
 | |
| 			raw_spin_unlock_irq(&ctx->lock);
 | |
| 			return;
 | |
| 		}
 | |
| 		add_event_to_ctx(event, ctx);
 | |
| 		raw_spin_unlock_irq(&ctx->lock);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (!task) {
 | |
| 		cpu_function_call(cpu, __perf_install_in_context, event);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Should not happen, we validate the ctx is still alive before calling.
 | |
| 	 */
 | |
| 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Installing events is tricky because we cannot rely on ctx->is_active
 | |
| 	 * to be set in case this is the nr_events 0 -> 1 transition.
 | |
| 	 *
 | |
| 	 * Instead we use task_curr(), which tells us if the task is running.
 | |
| 	 * However, since we use task_curr() outside of rq::lock, we can race
 | |
| 	 * against the actual state. This means the result can be wrong.
 | |
| 	 *
 | |
| 	 * If we get a false positive, we retry, this is harmless.
 | |
| 	 *
 | |
| 	 * If we get a false negative, things are complicated. If we are after
 | |
| 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
 | |
| 	 * value must be correct. If we're before, it doesn't matter since
 | |
| 	 * perf_event_context_sched_in() will program the counter.
 | |
| 	 *
 | |
| 	 * However, this hinges on the remote context switch having observed
 | |
| 	 * our task->perf_event_ctxp[] store, such that it will in fact take
 | |
| 	 * ctx::lock in perf_event_context_sched_in().
 | |
| 	 *
 | |
| 	 * We do this by task_function_call(), if the IPI fails to hit the task
 | |
| 	 * we know any future context switch of task must see the
 | |
| 	 * perf_event_ctpx[] store.
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
 | |
| 	 * task_cpu() load, such that if the IPI then does not find the task
 | |
| 	 * running, a future context switch of that task must observe the
 | |
| 	 * store.
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| again:
 | |
| 	if (!task_function_call(task, __perf_install_in_context, event))
 | |
| 		return;
 | |
| 
 | |
| 	raw_spin_lock_irq(&ctx->lock);
 | |
| 	task = ctx->task;
 | |
| 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
 | |
| 		/*
 | |
| 		 * Cannot happen because we already checked above (which also
 | |
| 		 * cannot happen), and we hold ctx->mutex, which serializes us
 | |
| 		 * against perf_event_exit_task_context().
 | |
| 		 */
 | |
| 		raw_spin_unlock_irq(&ctx->lock);
 | |
| 		return;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * If the task is not running, ctx->lock will avoid it becoming so,
 | |
| 	 * thus we can safely install the event.
 | |
| 	 */
 | |
| 	if (task_curr(task)) {
 | |
| 		raw_spin_unlock_irq(&ctx->lock);
 | |
| 		goto again;
 | |
| 	}
 | |
| 	add_event_to_ctx(event, ctx);
 | |
| 	raw_spin_unlock_irq(&ctx->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Cross CPU call to enable a performance event
 | |
|  */
 | |
| static void __perf_event_enable(struct perf_event *event,
 | |
| 				struct perf_cpu_context *cpuctx,
 | |
| 				struct perf_event_context *ctx,
 | |
| 				void *info)
 | |
| {
 | |
| 	struct perf_event *leader = event->group_leader;
 | |
| 	struct perf_event_context *task_ctx;
 | |
| 
 | |
| 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
 | |
| 	    event->state <= PERF_EVENT_STATE_ERROR)
 | |
| 		return;
 | |
| 
 | |
| 	if (ctx->is_active)
 | |
| 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
 | |
| 
 | |
| 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
 | |
| 	perf_cgroup_event_enable(event, ctx);
 | |
| 
 | |
| 	if (!ctx->is_active)
 | |
| 		return;
 | |
| 
 | |
| 	if (!event_filter_match(event)) {
 | |
| 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the event is in a group and isn't the group leader,
 | |
| 	 * then don't put it on unless the group is on.
 | |
| 	 */
 | |
| 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
 | |
| 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	task_ctx = cpuctx->task_ctx;
 | |
| 	if (ctx->task)
 | |
| 		WARN_ON_ONCE(task_ctx != ctx);
 | |
| 
 | |
| 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Enable an event.
 | |
|  *
 | |
|  * If event->ctx is a cloned context, callers must make sure that
 | |
|  * every task struct that event->ctx->task could possibly point to
 | |
|  * remains valid.  This condition is satisfied when called through
 | |
|  * perf_event_for_each_child or perf_event_for_each as described
 | |
|  * for perf_event_disable.
 | |
|  */
 | |
| static void _perf_event_enable(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 
 | |
| 	raw_spin_lock_irq(&ctx->lock);
 | |
| 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
 | |
| 	    event->state <  PERF_EVENT_STATE_ERROR) {
 | |
| 		raw_spin_unlock_irq(&ctx->lock);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the event is in error state, clear that first.
 | |
| 	 *
 | |
| 	 * That way, if we see the event in error state below, we know that it
 | |
| 	 * has gone back into error state, as distinct from the task having
 | |
| 	 * been scheduled away before the cross-call arrived.
 | |
| 	 */
 | |
| 	if (event->state == PERF_EVENT_STATE_ERROR)
 | |
| 		event->state = PERF_EVENT_STATE_OFF;
 | |
| 	raw_spin_unlock_irq(&ctx->lock);
 | |
| 
 | |
| 	event_function_call(event, __perf_event_enable, NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * See perf_event_disable();
 | |
|  */
 | |
| void perf_event_enable(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event_context *ctx;
 | |
| 
 | |
| 	ctx = perf_event_ctx_lock(event);
 | |
| 	_perf_event_enable(event);
 | |
| 	perf_event_ctx_unlock(event, ctx);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_event_enable);
 | |
| 
 | |
| struct stop_event_data {
 | |
| 	struct perf_event	*event;
 | |
| 	unsigned int		restart;
 | |
| };
 | |
| 
 | |
| static int __perf_event_stop(void *info)
 | |
| {
 | |
| 	struct stop_event_data *sd = info;
 | |
| 	struct perf_event *event = sd->event;
 | |
| 
 | |
| 	/* if it's already INACTIVE, do nothing */
 | |
| 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* matches smp_wmb() in event_sched_in() */
 | |
| 	smp_rmb();
 | |
| 
 | |
| 	/*
 | |
| 	 * There is a window with interrupts enabled before we get here,
 | |
| 	 * so we need to check again lest we try to stop another CPU's event.
 | |
| 	 */
 | |
| 	if (READ_ONCE(event->oncpu) != smp_processor_id())
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	event->pmu->stop(event, PERF_EF_UPDATE);
 | |
| 
 | |
| 	/*
 | |
| 	 * May race with the actual stop (through perf_pmu_output_stop()),
 | |
| 	 * but it is only used for events with AUX ring buffer, and such
 | |
| 	 * events will refuse to restart because of rb::aux_mmap_count==0,
 | |
| 	 * see comments in perf_aux_output_begin().
 | |
| 	 *
 | |
| 	 * Since this is happening on an event-local CPU, no trace is lost
 | |
| 	 * while restarting.
 | |
| 	 */
 | |
| 	if (sd->restart)
 | |
| 		event->pmu->start(event, 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int perf_event_stop(struct perf_event *event, int restart)
 | |
| {
 | |
| 	struct stop_event_data sd = {
 | |
| 		.event		= event,
 | |
| 		.restart	= restart,
 | |
| 	};
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	do {
 | |
| 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
 | |
| 			return 0;
 | |
| 
 | |
| 		/* matches smp_wmb() in event_sched_in() */
 | |
| 		smp_rmb();
 | |
| 
 | |
| 		/*
 | |
| 		 * We only want to restart ACTIVE events, so if the event goes
 | |
| 		 * inactive here (event->oncpu==-1), there's nothing more to do;
 | |
| 		 * fall through with ret==-ENXIO.
 | |
| 		 */
 | |
| 		ret = cpu_function_call(READ_ONCE(event->oncpu),
 | |
| 					__perf_event_stop, &sd);
 | |
| 	} while (ret == -EAGAIN);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * In order to contain the amount of racy and tricky in the address filter
 | |
|  * configuration management, it is a two part process:
 | |
|  *
 | |
|  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
 | |
|  *      we update the addresses of corresponding vmas in
 | |
|  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
 | |
|  * (p2) when an event is scheduled in (pmu::add), it calls
 | |
|  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
 | |
|  *      if the generation has changed since the previous call.
 | |
|  *
 | |
|  * If (p1) happens while the event is active, we restart it to force (p2).
 | |
|  *
 | |
|  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
 | |
|  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
 | |
|  *     ioctl;
 | |
|  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
 | |
|  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
 | |
|  *     for reading;
 | |
|  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
 | |
|  *     of exec.
 | |
|  */
 | |
| void perf_event_addr_filters_sync(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
 | |
| 
 | |
| 	if (!has_addr_filter(event))
 | |
| 		return;
 | |
| 
 | |
| 	raw_spin_lock(&ifh->lock);
 | |
| 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
 | |
| 		event->pmu->addr_filters_sync(event);
 | |
| 		event->hw.addr_filters_gen = event->addr_filters_gen;
 | |
| 	}
 | |
| 	raw_spin_unlock(&ifh->lock);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
 | |
| 
 | |
| static int _perf_event_refresh(struct perf_event *event, int refresh)
 | |
| {
 | |
| 	/*
 | |
| 	 * not supported on inherited events
 | |
| 	 */
 | |
| 	if (event->attr.inherit || !is_sampling_event(event))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	atomic_add(refresh, &event->event_limit);
 | |
| 	_perf_event_enable(event);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * See perf_event_disable()
 | |
|  */
 | |
| int perf_event_refresh(struct perf_event *event, int refresh)
 | |
| {
 | |
| 	struct perf_event_context *ctx;
 | |
| 	int ret;
 | |
| 
 | |
| 	ctx = perf_event_ctx_lock(event);
 | |
| 	ret = _perf_event_refresh(event, refresh);
 | |
| 	perf_event_ctx_unlock(event, ctx);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_event_refresh);
 | |
| 
 | |
| static int perf_event_modify_breakpoint(struct perf_event *bp,
 | |
| 					 struct perf_event_attr *attr)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	_perf_event_disable(bp);
 | |
| 
 | |
| 	err = modify_user_hw_breakpoint_check(bp, attr, true);
 | |
| 
 | |
| 	if (!bp->attr.disabled)
 | |
| 		_perf_event_enable(bp);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int perf_event_modify_attr(struct perf_event *event,
 | |
| 				  struct perf_event_attr *attr)
 | |
| {
 | |
| 	if (event->attr.type != attr->type)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	switch (event->attr.type) {
 | |
| 	case PERF_TYPE_BREAKPOINT:
 | |
| 		return perf_event_modify_breakpoint(event, attr);
 | |
| 	default:
 | |
| 		/* Place holder for future additions. */
 | |
| 		return -EOPNOTSUPP;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void ctx_sched_out(struct perf_event_context *ctx,
 | |
| 			  struct perf_cpu_context *cpuctx,
 | |
| 			  enum event_type_t event_type)
 | |
| {
 | |
| 	struct perf_event *event, *tmp;
 | |
| 	int is_active = ctx->is_active;
 | |
| 
 | |
| 	lockdep_assert_held(&ctx->lock);
 | |
| 
 | |
| 	if (likely(!ctx->nr_events)) {
 | |
| 		/*
 | |
| 		 * See __perf_remove_from_context().
 | |
| 		 */
 | |
| 		WARN_ON_ONCE(ctx->is_active);
 | |
| 		if (ctx->task)
 | |
| 			WARN_ON_ONCE(cpuctx->task_ctx);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	ctx->is_active &= ~event_type;
 | |
| 	if (!(ctx->is_active & EVENT_ALL))
 | |
| 		ctx->is_active = 0;
 | |
| 
 | |
| 	if (ctx->task) {
 | |
| 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
 | |
| 		if (!ctx->is_active)
 | |
| 			cpuctx->task_ctx = NULL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Always update time if it was set; not only when it changes.
 | |
| 	 * Otherwise we can 'forget' to update time for any but the last
 | |
| 	 * context we sched out. For example:
 | |
| 	 *
 | |
| 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
 | |
| 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
 | |
| 	 *
 | |
| 	 * would only update time for the pinned events.
 | |
| 	 */
 | |
| 	if (is_active & EVENT_TIME) {
 | |
| 		/* update (and stop) ctx time */
 | |
| 		update_context_time(ctx);
 | |
| 		update_cgrp_time_from_cpuctx(cpuctx);
 | |
| 	}
 | |
| 
 | |
| 	is_active ^= ctx->is_active; /* changed bits */
 | |
| 
 | |
| 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
 | |
| 		return;
 | |
| 
 | |
| 	perf_pmu_disable(ctx->pmu);
 | |
| 	if (is_active & EVENT_PINNED) {
 | |
| 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
 | |
| 			group_sched_out(event, cpuctx, ctx);
 | |
| 	}
 | |
| 
 | |
| 	if (is_active & EVENT_FLEXIBLE) {
 | |
| 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
 | |
| 			group_sched_out(event, cpuctx, ctx);
 | |
| 
 | |
| 		/*
 | |
| 		 * Since we cleared EVENT_FLEXIBLE, also clear
 | |
| 		 * rotate_necessary, is will be reset by
 | |
| 		 * ctx_flexible_sched_in() when needed.
 | |
| 		 */
 | |
| 		ctx->rotate_necessary = 0;
 | |
| 	}
 | |
| 	perf_pmu_enable(ctx->pmu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Test whether two contexts are equivalent, i.e. whether they have both been
 | |
|  * cloned from the same version of the same context.
 | |
|  *
 | |
|  * Equivalence is measured using a generation number in the context that is
 | |
|  * incremented on each modification to it; see unclone_ctx(), list_add_event()
 | |
|  * and list_del_event().
 | |
|  */
 | |
| static int context_equiv(struct perf_event_context *ctx1,
 | |
| 			 struct perf_event_context *ctx2)
 | |
| {
 | |
| 	lockdep_assert_held(&ctx1->lock);
 | |
| 	lockdep_assert_held(&ctx2->lock);
 | |
| 
 | |
| 	/* Pinning disables the swap optimization */
 | |
| 	if (ctx1->pin_count || ctx2->pin_count)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* If ctx1 is the parent of ctx2 */
 | |
| 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
 | |
| 		return 1;
 | |
| 
 | |
| 	/* If ctx2 is the parent of ctx1 */
 | |
| 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
 | |
| 	 * hierarchy, see perf_event_init_context().
 | |
| 	 */
 | |
| 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
 | |
| 			ctx1->parent_gen == ctx2->parent_gen)
 | |
| 		return 1;
 | |
| 
 | |
| 	/* Unmatched */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __perf_event_sync_stat(struct perf_event *event,
 | |
| 				     struct perf_event *next_event)
 | |
| {
 | |
| 	u64 value;
 | |
| 
 | |
| 	if (!event->attr.inherit_stat)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Update the event value, we cannot use perf_event_read()
 | |
| 	 * because we're in the middle of a context switch and have IRQs
 | |
| 	 * disabled, which upsets smp_call_function_single(), however
 | |
| 	 * we know the event must be on the current CPU, therefore we
 | |
| 	 * don't need to use it.
 | |
| 	 */
 | |
| 	if (event->state == PERF_EVENT_STATE_ACTIVE)
 | |
| 		event->pmu->read(event);
 | |
| 
 | |
| 	perf_event_update_time(event);
 | |
| 
 | |
| 	/*
 | |
| 	 * In order to keep per-task stats reliable we need to flip the event
 | |
| 	 * values when we flip the contexts.
 | |
| 	 */
 | |
| 	value = local64_read(&next_event->count);
 | |
| 	value = local64_xchg(&event->count, value);
 | |
| 	local64_set(&next_event->count, value);
 | |
| 
 | |
| 	swap(event->total_time_enabled, next_event->total_time_enabled);
 | |
| 	swap(event->total_time_running, next_event->total_time_running);
 | |
| 
 | |
| 	/*
 | |
| 	 * Since we swizzled the values, update the user visible data too.
 | |
| 	 */
 | |
| 	perf_event_update_userpage(event);
 | |
| 	perf_event_update_userpage(next_event);
 | |
| }
 | |
| 
 | |
| static void perf_event_sync_stat(struct perf_event_context *ctx,
 | |
| 				   struct perf_event_context *next_ctx)
 | |
| {
 | |
| 	struct perf_event *event, *next_event;
 | |
| 
 | |
| 	if (!ctx->nr_stat)
 | |
| 		return;
 | |
| 
 | |
| 	update_context_time(ctx);
 | |
| 
 | |
| 	event = list_first_entry(&ctx->event_list,
 | |
| 				   struct perf_event, event_entry);
 | |
| 
 | |
| 	next_event = list_first_entry(&next_ctx->event_list,
 | |
| 					struct perf_event, event_entry);
 | |
| 
 | |
| 	while (&event->event_entry != &ctx->event_list &&
 | |
| 	       &next_event->event_entry != &next_ctx->event_list) {
 | |
| 
 | |
| 		__perf_event_sync_stat(event, next_event);
 | |
| 
 | |
| 		event = list_next_entry(event, event_entry);
 | |
| 		next_event = list_next_entry(next_event, event_entry);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
 | |
| 					 struct task_struct *next)
 | |
| {
 | |
| 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
 | |
| 	struct perf_event_context *next_ctx;
 | |
| 	struct perf_event_context *parent, *next_parent;
 | |
| 	struct perf_cpu_context *cpuctx;
 | |
| 	int do_switch = 1;
 | |
| 
 | |
| 	if (likely(!ctx))
 | |
| 		return;
 | |
| 
 | |
| 	cpuctx = __get_cpu_context(ctx);
 | |
| 	if (!cpuctx->task_ctx)
 | |
| 		return;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	next_ctx = next->perf_event_ctxp[ctxn];
 | |
| 	if (!next_ctx)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	parent = rcu_dereference(ctx->parent_ctx);
 | |
| 	next_parent = rcu_dereference(next_ctx->parent_ctx);
 | |
| 
 | |
| 	/* If neither context have a parent context; they cannot be clones. */
 | |
| 	if (!parent && !next_parent)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
 | |
| 		/*
 | |
| 		 * Looks like the two contexts are clones, so we might be
 | |
| 		 * able to optimize the context switch.  We lock both
 | |
| 		 * contexts and check that they are clones under the
 | |
| 		 * lock (including re-checking that neither has been
 | |
| 		 * uncloned in the meantime).  It doesn't matter which
 | |
| 		 * order we take the locks because no other cpu could
 | |
| 		 * be trying to lock both of these tasks.
 | |
| 		 */
 | |
| 		raw_spin_lock(&ctx->lock);
 | |
| 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
 | |
| 		if (context_equiv(ctx, next_ctx)) {
 | |
| 			struct pmu *pmu = ctx->pmu;
 | |
| 
 | |
| 			WRITE_ONCE(ctx->task, next);
 | |
| 			WRITE_ONCE(next_ctx->task, task);
 | |
| 
 | |
| 			/*
 | |
| 			 * PMU specific parts of task perf context can require
 | |
| 			 * additional synchronization. As an example of such
 | |
| 			 * synchronization see implementation details of Intel
 | |
| 			 * LBR call stack data profiling;
 | |
| 			 */
 | |
| 			if (pmu->swap_task_ctx)
 | |
| 				pmu->swap_task_ctx(ctx, next_ctx);
 | |
| 			else
 | |
| 				swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
 | |
| 
 | |
| 			/*
 | |
| 			 * RCU_INIT_POINTER here is safe because we've not
 | |
| 			 * modified the ctx and the above modification of
 | |
| 			 * ctx->task and ctx->task_ctx_data are immaterial
 | |
| 			 * since those values are always verified under
 | |
| 			 * ctx->lock which we're now holding.
 | |
| 			 */
 | |
| 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
 | |
| 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
 | |
| 
 | |
| 			do_switch = 0;
 | |
| 
 | |
| 			perf_event_sync_stat(ctx, next_ctx);
 | |
| 		}
 | |
| 		raw_spin_unlock(&next_ctx->lock);
 | |
| 		raw_spin_unlock(&ctx->lock);
 | |
| 	}
 | |
| unlock:
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	if (do_switch) {
 | |
| 		raw_spin_lock(&ctx->lock);
 | |
| 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
 | |
| 		raw_spin_unlock(&ctx->lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static DEFINE_PER_CPU(struct list_head, sched_cb_list);
 | |
| 
 | |
| void perf_sched_cb_dec(struct pmu *pmu)
 | |
| {
 | |
| 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
 | |
| 
 | |
| 	this_cpu_dec(perf_sched_cb_usages);
 | |
| 
 | |
| 	if (!--cpuctx->sched_cb_usage)
 | |
| 		list_del(&cpuctx->sched_cb_entry);
 | |
| }
 | |
| 
 | |
| 
 | |
| void perf_sched_cb_inc(struct pmu *pmu)
 | |
| {
 | |
| 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
 | |
| 
 | |
| 	if (!cpuctx->sched_cb_usage++)
 | |
| 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
 | |
| 
 | |
| 	this_cpu_inc(perf_sched_cb_usages);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function provides the context switch callback to the lower code
 | |
|  * layer. It is invoked ONLY when the context switch callback is enabled.
 | |
|  *
 | |
|  * This callback is relevant even to per-cpu events; for example multi event
 | |
|  * PEBS requires this to provide PID/TID information. This requires we flush
 | |
|  * all queued PEBS records before we context switch to a new task.
 | |
|  */
 | |
| static void perf_pmu_sched_task(struct task_struct *prev,
 | |
| 				struct task_struct *next,
 | |
| 				bool sched_in)
 | |
| {
 | |
| 	struct perf_cpu_context *cpuctx;
 | |
| 	struct pmu *pmu;
 | |
| 
 | |
| 	if (prev == next)
 | |
| 		return;
 | |
| 
 | |
| 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
 | |
| 		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
 | |
| 
 | |
| 		if (WARN_ON_ONCE(!pmu->sched_task))
 | |
| 			continue;
 | |
| 
 | |
| 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
 | |
| 		perf_pmu_disable(pmu);
 | |
| 
 | |
| 		pmu->sched_task(cpuctx->task_ctx, sched_in);
 | |
| 
 | |
| 		perf_pmu_enable(pmu);
 | |
| 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void perf_event_switch(struct task_struct *task,
 | |
| 			      struct task_struct *next_prev, bool sched_in);
 | |
| 
 | |
| #define for_each_task_context_nr(ctxn)					\
 | |
| 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
 | |
| 
 | |
| /*
 | |
|  * Called from scheduler to remove the events of the current task,
 | |
|  * with interrupts disabled.
 | |
|  *
 | |
|  * We stop each event and update the event value in event->count.
 | |
|  *
 | |
|  * This does not protect us against NMI, but disable()
 | |
|  * sets the disabled bit in the control field of event _before_
 | |
|  * accessing the event control register. If a NMI hits, then it will
 | |
|  * not restart the event.
 | |
|  */
 | |
| void __perf_event_task_sched_out(struct task_struct *task,
 | |
| 				 struct task_struct *next)
 | |
| {
 | |
| 	int ctxn;
 | |
| 
 | |
| 	if (__this_cpu_read(perf_sched_cb_usages))
 | |
| 		perf_pmu_sched_task(task, next, false);
 | |
| 
 | |
| 	if (atomic_read(&nr_switch_events))
 | |
| 		perf_event_switch(task, next, false);
 | |
| 
 | |
| 	for_each_task_context_nr(ctxn)
 | |
| 		perf_event_context_sched_out(task, ctxn, next);
 | |
| 
 | |
| 	/*
 | |
| 	 * if cgroup events exist on this CPU, then we need
 | |
| 	 * to check if we have to switch out PMU state.
 | |
| 	 * cgroup event are system-wide mode only
 | |
| 	 */
 | |
| 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
 | |
| 		perf_cgroup_sched_out(task, next);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called with IRQs disabled
 | |
|  */
 | |
| static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
 | |
| 			      enum event_type_t event_type)
 | |
| {
 | |
| 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
 | |
| }
 | |
| 
 | |
| static bool perf_less_group_idx(const void *l, const void *r)
 | |
| {
 | |
| 	const struct perf_event *le = *(const struct perf_event **)l;
 | |
| 	const struct perf_event *re = *(const struct perf_event **)r;
 | |
| 
 | |
| 	return le->group_index < re->group_index;
 | |
| }
 | |
| 
 | |
| static void swap_ptr(void *l, void *r)
 | |
| {
 | |
| 	void **lp = l, **rp = r;
 | |
| 
 | |
| 	swap(*lp, *rp);
 | |
| }
 | |
| 
 | |
| static const struct min_heap_callbacks perf_min_heap = {
 | |
| 	.elem_size = sizeof(struct perf_event *),
 | |
| 	.less = perf_less_group_idx,
 | |
| 	.swp = swap_ptr,
 | |
| };
 | |
| 
 | |
| static void __heap_add(struct min_heap *heap, struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event **itrs = heap->data;
 | |
| 
 | |
| 	if (event) {
 | |
| 		itrs[heap->nr] = event;
 | |
| 		heap->nr++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
 | |
| 				struct perf_event_groups *groups, int cpu,
 | |
| 				int (*func)(struct perf_event *, void *),
 | |
| 				void *data)
 | |
| {
 | |
| #ifdef CONFIG_CGROUP_PERF
 | |
| 	struct cgroup_subsys_state *css = NULL;
 | |
| #endif
 | |
| 	/* Space for per CPU and/or any CPU event iterators. */
 | |
| 	struct perf_event *itrs[2];
 | |
| 	struct min_heap event_heap;
 | |
| 	struct perf_event **evt;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (cpuctx) {
 | |
| 		event_heap = (struct min_heap){
 | |
| 			.data = cpuctx->heap,
 | |
| 			.nr = 0,
 | |
| 			.size = cpuctx->heap_size,
 | |
| 		};
 | |
| 
 | |
| 		lockdep_assert_held(&cpuctx->ctx.lock);
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_PERF
 | |
| 		if (cpuctx->cgrp)
 | |
| 			css = &cpuctx->cgrp->css;
 | |
| #endif
 | |
| 	} else {
 | |
| 		event_heap = (struct min_heap){
 | |
| 			.data = itrs,
 | |
| 			.nr = 0,
 | |
| 			.size = ARRAY_SIZE(itrs),
 | |
| 		};
 | |
| 		/* Events not within a CPU context may be on any CPU. */
 | |
| 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
 | |
| 	}
 | |
| 	evt = event_heap.data;
 | |
| 
 | |
| 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_PERF
 | |
| 	for (; css; css = css->parent)
 | |
| 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
 | |
| #endif
 | |
| 
 | |
| 	min_heapify_all(&event_heap, &perf_min_heap);
 | |
| 
 | |
| 	while (event_heap.nr) {
 | |
| 		ret = func(*evt, data);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		*evt = perf_event_groups_next(*evt);
 | |
| 		if (*evt)
 | |
| 			min_heapify(&event_heap, 0, &perf_min_heap);
 | |
| 		else
 | |
| 			min_heap_pop(&event_heap, &perf_min_heap);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int merge_sched_in(struct perf_event *event, void *data)
 | |
| {
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 | |
| 	int *can_add_hw = data;
 | |
| 
 | |
| 	if (event->state <= PERF_EVENT_STATE_OFF)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!event_filter_match(event))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (group_can_go_on(event, cpuctx, *can_add_hw)) {
 | |
| 		if (!group_sched_in(event, cpuctx, ctx))
 | |
| 			list_add_tail(&event->active_list, get_event_list(event));
 | |
| 	}
 | |
| 
 | |
| 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
 | |
| 		if (event->attr.pinned) {
 | |
| 			perf_cgroup_event_disable(event, ctx);
 | |
| 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
 | |
| 		}
 | |
| 
 | |
| 		*can_add_hw = 0;
 | |
| 		ctx->rotate_necessary = 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| ctx_pinned_sched_in(struct perf_event_context *ctx,
 | |
| 		    struct perf_cpu_context *cpuctx)
 | |
| {
 | |
| 	int can_add_hw = 1;
 | |
| 
 | |
| 	if (ctx != &cpuctx->ctx)
 | |
| 		cpuctx = NULL;
 | |
| 
 | |
| 	visit_groups_merge(cpuctx, &ctx->pinned_groups,
 | |
| 			   smp_processor_id(),
 | |
| 			   merge_sched_in, &can_add_hw);
 | |
| }
 | |
| 
 | |
| static void
 | |
| ctx_flexible_sched_in(struct perf_event_context *ctx,
 | |
| 		      struct perf_cpu_context *cpuctx)
 | |
| {
 | |
| 	int can_add_hw = 1;
 | |
| 
 | |
| 	if (ctx != &cpuctx->ctx)
 | |
| 		cpuctx = NULL;
 | |
| 
 | |
| 	visit_groups_merge(cpuctx, &ctx->flexible_groups,
 | |
| 			   smp_processor_id(),
 | |
| 			   merge_sched_in, &can_add_hw);
 | |
| }
 | |
| 
 | |
| static void
 | |
| ctx_sched_in(struct perf_event_context *ctx,
 | |
| 	     struct perf_cpu_context *cpuctx,
 | |
| 	     enum event_type_t event_type,
 | |
| 	     struct task_struct *task)
 | |
| {
 | |
| 	int is_active = ctx->is_active;
 | |
| 	u64 now;
 | |
| 
 | |
| 	lockdep_assert_held(&ctx->lock);
 | |
| 
 | |
| 	if (likely(!ctx->nr_events))
 | |
| 		return;
 | |
| 
 | |
| 	ctx->is_active |= (event_type | EVENT_TIME);
 | |
| 	if (ctx->task) {
 | |
| 		if (!is_active)
 | |
| 			cpuctx->task_ctx = ctx;
 | |
| 		else
 | |
| 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
 | |
| 	}
 | |
| 
 | |
| 	is_active ^= ctx->is_active; /* changed bits */
 | |
| 
 | |
| 	if (is_active & EVENT_TIME) {
 | |
| 		/* start ctx time */
 | |
| 		now = perf_clock();
 | |
| 		ctx->timestamp = now;
 | |
| 		perf_cgroup_set_timestamp(task, ctx);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * First go through the list and put on any pinned groups
 | |
| 	 * in order to give them the best chance of going on.
 | |
| 	 */
 | |
| 	if (is_active & EVENT_PINNED)
 | |
| 		ctx_pinned_sched_in(ctx, cpuctx);
 | |
| 
 | |
| 	/* Then walk through the lower prio flexible groups */
 | |
| 	if (is_active & EVENT_FLEXIBLE)
 | |
| 		ctx_flexible_sched_in(ctx, cpuctx);
 | |
| }
 | |
| 
 | |
| static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
 | |
| 			     enum event_type_t event_type,
 | |
| 			     struct task_struct *task)
 | |
| {
 | |
| 	struct perf_event_context *ctx = &cpuctx->ctx;
 | |
| 
 | |
| 	ctx_sched_in(ctx, cpuctx, event_type, task);
 | |
| }
 | |
| 
 | |
| static void perf_event_context_sched_in(struct perf_event_context *ctx,
 | |
| 					struct task_struct *task)
 | |
| {
 | |
| 	struct perf_cpu_context *cpuctx;
 | |
| 
 | |
| 	cpuctx = __get_cpu_context(ctx);
 | |
| 	if (cpuctx->task_ctx == ctx)
 | |
| 		return;
 | |
| 
 | |
| 	perf_ctx_lock(cpuctx, ctx);
 | |
| 	/*
 | |
| 	 * We must check ctx->nr_events while holding ctx->lock, such
 | |
| 	 * that we serialize against perf_install_in_context().
 | |
| 	 */
 | |
| 	if (!ctx->nr_events)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	perf_pmu_disable(ctx->pmu);
 | |
| 	/*
 | |
| 	 * We want to keep the following priority order:
 | |
| 	 * cpu pinned (that don't need to move), task pinned,
 | |
| 	 * cpu flexible, task flexible.
 | |
| 	 *
 | |
| 	 * However, if task's ctx is not carrying any pinned
 | |
| 	 * events, no need to flip the cpuctx's events around.
 | |
| 	 */
 | |
| 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
 | |
| 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
 | |
| 	perf_event_sched_in(cpuctx, ctx, task);
 | |
| 	perf_pmu_enable(ctx->pmu);
 | |
| 
 | |
| unlock:
 | |
| 	perf_ctx_unlock(cpuctx, ctx);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called from scheduler to add the events of the current task
 | |
|  * with interrupts disabled.
 | |
|  *
 | |
|  * We restore the event value and then enable it.
 | |
|  *
 | |
|  * This does not protect us against NMI, but enable()
 | |
|  * sets the enabled bit in the control field of event _before_
 | |
|  * accessing the event control register. If a NMI hits, then it will
 | |
|  * keep the event running.
 | |
|  */
 | |
| void __perf_event_task_sched_in(struct task_struct *prev,
 | |
| 				struct task_struct *task)
 | |
| {
 | |
| 	struct perf_event_context *ctx;
 | |
| 	int ctxn;
 | |
| 
 | |
| 	/*
 | |
| 	 * If cgroup events exist on this CPU, then we need to check if we have
 | |
| 	 * to switch in PMU state; cgroup event are system-wide mode only.
 | |
| 	 *
 | |
| 	 * Since cgroup events are CPU events, we must schedule these in before
 | |
| 	 * we schedule in the task events.
 | |
| 	 */
 | |
| 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
 | |
| 		perf_cgroup_sched_in(prev, task);
 | |
| 
 | |
| 	for_each_task_context_nr(ctxn) {
 | |
| 		ctx = task->perf_event_ctxp[ctxn];
 | |
| 		if (likely(!ctx))
 | |
| 			continue;
 | |
| 
 | |
| 		perf_event_context_sched_in(ctx, task);
 | |
| 	}
 | |
| 
 | |
| 	if (atomic_read(&nr_switch_events))
 | |
| 		perf_event_switch(task, prev, true);
 | |
| 
 | |
| 	if (__this_cpu_read(perf_sched_cb_usages))
 | |
| 		perf_pmu_sched_task(prev, task, true);
 | |
| }
 | |
| 
 | |
| static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
 | |
| {
 | |
| 	u64 frequency = event->attr.sample_freq;
 | |
| 	u64 sec = NSEC_PER_SEC;
 | |
| 	u64 divisor, dividend;
 | |
| 
 | |
| 	int count_fls, nsec_fls, frequency_fls, sec_fls;
 | |
| 
 | |
| 	count_fls = fls64(count);
 | |
| 	nsec_fls = fls64(nsec);
 | |
| 	frequency_fls = fls64(frequency);
 | |
| 	sec_fls = 30;
 | |
| 
 | |
| 	/*
 | |
| 	 * We got @count in @nsec, with a target of sample_freq HZ
 | |
| 	 * the target period becomes:
 | |
| 	 *
 | |
| 	 *             @count * 10^9
 | |
| 	 * period = -------------------
 | |
| 	 *          @nsec * sample_freq
 | |
| 	 *
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * Reduce accuracy by one bit such that @a and @b converge
 | |
| 	 * to a similar magnitude.
 | |
| 	 */
 | |
| #define REDUCE_FLS(a, b)		\
 | |
| do {					\
 | |
| 	if (a##_fls > b##_fls) {	\
 | |
| 		a >>= 1;		\
 | |
| 		a##_fls--;		\
 | |
| 	} else {			\
 | |
| 		b >>= 1;		\
 | |
| 		b##_fls--;		\
 | |
| 	}				\
 | |
| } while (0)
 | |
| 
 | |
| 	/*
 | |
| 	 * Reduce accuracy until either term fits in a u64, then proceed with
 | |
| 	 * the other, so that finally we can do a u64/u64 division.
 | |
| 	 */
 | |
| 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
 | |
| 		REDUCE_FLS(nsec, frequency);
 | |
| 		REDUCE_FLS(sec, count);
 | |
| 	}
 | |
| 
 | |
| 	if (count_fls + sec_fls > 64) {
 | |
| 		divisor = nsec * frequency;
 | |
| 
 | |
| 		while (count_fls + sec_fls > 64) {
 | |
| 			REDUCE_FLS(count, sec);
 | |
| 			divisor >>= 1;
 | |
| 		}
 | |
| 
 | |
| 		dividend = count * sec;
 | |
| 	} else {
 | |
| 		dividend = count * sec;
 | |
| 
 | |
| 		while (nsec_fls + frequency_fls > 64) {
 | |
| 			REDUCE_FLS(nsec, frequency);
 | |
| 			dividend >>= 1;
 | |
| 		}
 | |
| 
 | |
| 		divisor = nsec * frequency;
 | |
| 	}
 | |
| 
 | |
| 	if (!divisor)
 | |
| 		return dividend;
 | |
| 
 | |
| 	return div64_u64(dividend, divisor);
 | |
| }
 | |
| 
 | |
| static DEFINE_PER_CPU(int, perf_throttled_count);
 | |
| static DEFINE_PER_CPU(u64, perf_throttled_seq);
 | |
| 
 | |
| static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
 | |
| {
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 	s64 period, sample_period;
 | |
| 	s64 delta;
 | |
| 
 | |
| 	period = perf_calculate_period(event, nsec, count);
 | |
| 
 | |
| 	delta = (s64)(period - hwc->sample_period);
 | |
| 	delta = (delta + 7) / 8; /* low pass filter */
 | |
| 
 | |
| 	sample_period = hwc->sample_period + delta;
 | |
| 
 | |
| 	if (!sample_period)
 | |
| 		sample_period = 1;
 | |
| 
 | |
| 	hwc->sample_period = sample_period;
 | |
| 
 | |
| 	if (local64_read(&hwc->period_left) > 8*sample_period) {
 | |
| 		if (disable)
 | |
| 			event->pmu->stop(event, PERF_EF_UPDATE);
 | |
| 
 | |
| 		local64_set(&hwc->period_left, 0);
 | |
| 
 | |
| 		if (disable)
 | |
| 			event->pmu->start(event, PERF_EF_RELOAD);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * combine freq adjustment with unthrottling to avoid two passes over the
 | |
|  * events. At the same time, make sure, having freq events does not change
 | |
|  * the rate of unthrottling as that would introduce bias.
 | |
|  */
 | |
| static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
 | |
| 					   int needs_unthr)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 	struct hw_perf_event *hwc;
 | |
| 	u64 now, period = TICK_NSEC;
 | |
| 	s64 delta;
 | |
| 
 | |
| 	/*
 | |
| 	 * only need to iterate over all events iff:
 | |
| 	 * - context have events in frequency mode (needs freq adjust)
 | |
| 	 * - there are events to unthrottle on this cpu
 | |
| 	 */
 | |
| 	if (!(ctx->nr_freq || needs_unthr))
 | |
| 		return;
 | |
| 
 | |
| 	raw_spin_lock(&ctx->lock);
 | |
| 	perf_pmu_disable(ctx->pmu);
 | |
| 
 | |
| 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
 | |
| 		if (event->state != PERF_EVENT_STATE_ACTIVE)
 | |
| 			continue;
 | |
| 
 | |
| 		if (!event_filter_match(event))
 | |
| 			continue;
 | |
| 
 | |
| 		perf_pmu_disable(event->pmu);
 | |
| 
 | |
| 		hwc = &event->hw;
 | |
| 
 | |
| 		if (hwc->interrupts == MAX_INTERRUPTS) {
 | |
| 			hwc->interrupts = 0;
 | |
| 			perf_log_throttle(event, 1);
 | |
| 			event->pmu->start(event, 0);
 | |
| 		}
 | |
| 
 | |
| 		if (!event->attr.freq || !event->attr.sample_freq)
 | |
| 			goto next;
 | |
| 
 | |
| 		/*
 | |
| 		 * stop the event and update event->count
 | |
| 		 */
 | |
| 		event->pmu->stop(event, PERF_EF_UPDATE);
 | |
| 
 | |
| 		now = local64_read(&event->count);
 | |
| 		delta = now - hwc->freq_count_stamp;
 | |
| 		hwc->freq_count_stamp = now;
 | |
| 
 | |
| 		/*
 | |
| 		 * restart the event
 | |
| 		 * reload only if value has changed
 | |
| 		 * we have stopped the event so tell that
 | |
| 		 * to perf_adjust_period() to avoid stopping it
 | |
| 		 * twice.
 | |
| 		 */
 | |
| 		if (delta > 0)
 | |
| 			perf_adjust_period(event, period, delta, false);
 | |
| 
 | |
| 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
 | |
| 	next:
 | |
| 		perf_pmu_enable(event->pmu);
 | |
| 	}
 | |
| 
 | |
| 	perf_pmu_enable(ctx->pmu);
 | |
| 	raw_spin_unlock(&ctx->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Move @event to the tail of the @ctx's elegible events.
 | |
|  */
 | |
| static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
 | |
| {
 | |
| 	/*
 | |
| 	 * Rotate the first entry last of non-pinned groups. Rotation might be
 | |
| 	 * disabled by the inheritance code.
 | |
| 	 */
 | |
| 	if (ctx->rotate_disable)
 | |
| 		return;
 | |
| 
 | |
| 	perf_event_groups_delete(&ctx->flexible_groups, event);
 | |
| 	perf_event_groups_insert(&ctx->flexible_groups, event);
 | |
| }
 | |
| 
 | |
| /* pick an event from the flexible_groups to rotate */
 | |
| static inline struct perf_event *
 | |
| ctx_event_to_rotate(struct perf_event_context *ctx)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 
 | |
| 	/* pick the first active flexible event */
 | |
| 	event = list_first_entry_or_null(&ctx->flexible_active,
 | |
| 					 struct perf_event, active_list);
 | |
| 
 | |
| 	/* if no active flexible event, pick the first event */
 | |
| 	if (!event) {
 | |
| 		event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
 | |
| 				      typeof(*event), group_node);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
 | |
| 	 * finds there are unschedulable events, it will set it again.
 | |
| 	 */
 | |
| 	ctx->rotate_necessary = 0;
 | |
| 
 | |
| 	return event;
 | |
| }
 | |
| 
 | |
| static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
 | |
| {
 | |
| 	struct perf_event *cpu_event = NULL, *task_event = NULL;
 | |
| 	struct perf_event_context *task_ctx = NULL;
 | |
| 	int cpu_rotate, task_rotate;
 | |
| 
 | |
| 	/*
 | |
| 	 * Since we run this from IRQ context, nobody can install new
 | |
| 	 * events, thus the event count values are stable.
 | |
| 	 */
 | |
| 
 | |
| 	cpu_rotate = cpuctx->ctx.rotate_necessary;
 | |
| 	task_ctx = cpuctx->task_ctx;
 | |
| 	task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
 | |
| 
 | |
| 	if (!(cpu_rotate || task_rotate))
 | |
| 		return false;
 | |
| 
 | |
| 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
 | |
| 	perf_pmu_disable(cpuctx->ctx.pmu);
 | |
| 
 | |
| 	if (task_rotate)
 | |
| 		task_event = ctx_event_to_rotate(task_ctx);
 | |
| 	if (cpu_rotate)
 | |
| 		cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
 | |
| 
 | |
| 	/*
 | |
| 	 * As per the order given at ctx_resched() first 'pop' task flexible
 | |
| 	 * and then, if needed CPU flexible.
 | |
| 	 */
 | |
| 	if (task_event || (task_ctx && cpu_event))
 | |
| 		ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
 | |
| 	if (cpu_event)
 | |
| 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
 | |
| 
 | |
| 	if (task_event)
 | |
| 		rotate_ctx(task_ctx, task_event);
 | |
| 	if (cpu_event)
 | |
| 		rotate_ctx(&cpuctx->ctx, cpu_event);
 | |
| 
 | |
| 	perf_event_sched_in(cpuctx, task_ctx, current);
 | |
| 
 | |
| 	perf_pmu_enable(cpuctx->ctx.pmu);
 | |
| 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| void perf_event_task_tick(void)
 | |
| {
 | |
| 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
 | |
| 	struct perf_event_context *ctx, *tmp;
 | |
| 	int throttled;
 | |
| 
 | |
| 	lockdep_assert_irqs_disabled();
 | |
| 
 | |
| 	__this_cpu_inc(perf_throttled_seq);
 | |
| 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
 | |
| 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
 | |
| 
 | |
| 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
 | |
| 		perf_adjust_freq_unthr_context(ctx, throttled);
 | |
| }
 | |
| 
 | |
| static int event_enable_on_exec(struct perf_event *event,
 | |
| 				struct perf_event_context *ctx)
 | |
| {
 | |
| 	if (!event->attr.enable_on_exec)
 | |
| 		return 0;
 | |
| 
 | |
| 	event->attr.enable_on_exec = 0;
 | |
| 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
 | |
| 		return 0;
 | |
| 
 | |
| 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Enable all of a task's events that have been marked enable-on-exec.
 | |
|  * This expects task == current.
 | |
|  */
 | |
| static void perf_event_enable_on_exec(int ctxn)
 | |
| {
 | |
| 	struct perf_event_context *ctx, *clone_ctx = NULL;
 | |
| 	enum event_type_t event_type = 0;
 | |
| 	struct perf_cpu_context *cpuctx;
 | |
| 	struct perf_event *event;
 | |
| 	unsigned long flags;
 | |
| 	int enabled = 0;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	ctx = current->perf_event_ctxp[ctxn];
 | |
| 	if (!ctx || !ctx->nr_events)
 | |
| 		goto out;
 | |
| 
 | |
| 	cpuctx = __get_cpu_context(ctx);
 | |
| 	perf_ctx_lock(cpuctx, ctx);
 | |
| 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
 | |
| 	list_for_each_entry(event, &ctx->event_list, event_entry) {
 | |
| 		enabled |= event_enable_on_exec(event, ctx);
 | |
| 		event_type |= get_event_type(event);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Unclone and reschedule this context if we enabled any event.
 | |
| 	 */
 | |
| 	if (enabled) {
 | |
| 		clone_ctx = unclone_ctx(ctx);
 | |
| 		ctx_resched(cpuctx, ctx, event_type);
 | |
| 	} else {
 | |
| 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
 | |
| 	}
 | |
| 	perf_ctx_unlock(cpuctx, ctx);
 | |
| 
 | |
| out:
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	if (clone_ctx)
 | |
| 		put_ctx(clone_ctx);
 | |
| }
 | |
| 
 | |
| struct perf_read_data {
 | |
| 	struct perf_event *event;
 | |
| 	bool group;
 | |
| 	int ret;
 | |
| };
 | |
| 
 | |
| static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
 | |
| {
 | |
| 	u16 local_pkg, event_pkg;
 | |
| 
 | |
| 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
 | |
| 		int local_cpu = smp_processor_id();
 | |
| 
 | |
| 		event_pkg = topology_physical_package_id(event_cpu);
 | |
| 		local_pkg = topology_physical_package_id(local_cpu);
 | |
| 
 | |
| 		if (event_pkg == local_pkg)
 | |
| 			return local_cpu;
 | |
| 	}
 | |
| 
 | |
| 	return event_cpu;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Cross CPU call to read the hardware event
 | |
|  */
 | |
| static void __perf_event_read(void *info)
 | |
| {
 | |
| 	struct perf_read_data *data = info;
 | |
| 	struct perf_event *sub, *event = data->event;
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 | |
| 	struct pmu *pmu = event->pmu;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is a task context, we need to check whether it is
 | |
| 	 * the current task context of this cpu.  If not it has been
 | |
| 	 * scheduled out before the smp call arrived.  In that case
 | |
| 	 * event->count would have been updated to a recent sample
 | |
| 	 * when the event was scheduled out.
 | |
| 	 */
 | |
| 	if (ctx->task && cpuctx->task_ctx != ctx)
 | |
| 		return;
 | |
| 
 | |
| 	raw_spin_lock(&ctx->lock);
 | |
| 	if (ctx->is_active & EVENT_TIME) {
 | |
| 		update_context_time(ctx);
 | |
| 		update_cgrp_time_from_event(event);
 | |
| 	}
 | |
| 
 | |
| 	perf_event_update_time(event);
 | |
| 	if (data->group)
 | |
| 		perf_event_update_sibling_time(event);
 | |
| 
 | |
| 	if (event->state != PERF_EVENT_STATE_ACTIVE)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	if (!data->group) {
 | |
| 		pmu->read(event);
 | |
| 		data->ret = 0;
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
 | |
| 
 | |
| 	pmu->read(event);
 | |
| 
 | |
| 	for_each_sibling_event(sub, event) {
 | |
| 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
 | |
| 			/*
 | |
| 			 * Use sibling's PMU rather than @event's since
 | |
| 			 * sibling could be on different (eg: software) PMU.
 | |
| 			 */
 | |
| 			sub->pmu->read(sub);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	data->ret = pmu->commit_txn(pmu);
 | |
| 
 | |
| unlock:
 | |
| 	raw_spin_unlock(&ctx->lock);
 | |
| }
 | |
| 
 | |
| static inline u64 perf_event_count(struct perf_event *event)
 | |
| {
 | |
| 	return local64_read(&event->count) + atomic64_read(&event->child_count);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * NMI-safe method to read a local event, that is an event that
 | |
|  * is:
 | |
|  *   - either for the current task, or for this CPU
 | |
|  *   - does not have inherit set, for inherited task events
 | |
|  *     will not be local and we cannot read them atomically
 | |
|  *   - must not have a pmu::count method
 | |
|  */
 | |
| int perf_event_read_local(struct perf_event *event, u64 *value,
 | |
| 			  u64 *enabled, u64 *running)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Disabling interrupts avoids all counter scheduling (context
 | |
| 	 * switches, timer based rotation and IPIs).
 | |
| 	 */
 | |
| 	local_irq_save(flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * It must not be an event with inherit set, we cannot read
 | |
| 	 * all child counters from atomic context.
 | |
| 	 */
 | |
| 	if (event->attr.inherit) {
 | |
| 		ret = -EOPNOTSUPP;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* If this is a per-task event, it must be for current */
 | |
| 	if ((event->attach_state & PERF_ATTACH_TASK) &&
 | |
| 	    event->hw.target != current) {
 | |
| 		ret = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* If this is a per-CPU event, it must be for this CPU */
 | |
| 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
 | |
| 	    event->cpu != smp_processor_id()) {
 | |
| 		ret = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* If this is a pinned event it must be running on this CPU */
 | |
| 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
 | |
| 		ret = -EBUSY;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the event is currently on this CPU, its either a per-task event,
 | |
| 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
 | |
| 	 * oncpu == -1).
 | |
| 	 */
 | |
| 	if (event->oncpu == smp_processor_id())
 | |
| 		event->pmu->read(event);
 | |
| 
 | |
| 	*value = local64_read(&event->count);
 | |
| 	if (enabled || running) {
 | |
| 		u64 now = event->shadow_ctx_time + perf_clock();
 | |
| 		u64 __enabled, __running;
 | |
| 
 | |
| 		__perf_update_times(event, now, &__enabled, &__running);
 | |
| 		if (enabled)
 | |
| 			*enabled = __enabled;
 | |
| 		if (running)
 | |
| 			*running = __running;
 | |
| 	}
 | |
| out:
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int perf_event_read(struct perf_event *event, bool group)
 | |
| {
 | |
| 	enum perf_event_state state = READ_ONCE(event->state);
 | |
| 	int event_cpu, ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If event is enabled and currently active on a CPU, update the
 | |
| 	 * value in the event structure:
 | |
| 	 */
 | |
| again:
 | |
| 	if (state == PERF_EVENT_STATE_ACTIVE) {
 | |
| 		struct perf_read_data data;
 | |
| 
 | |
| 		/*
 | |
| 		 * Orders the ->state and ->oncpu loads such that if we see
 | |
| 		 * ACTIVE we must also see the right ->oncpu.
 | |
| 		 *
 | |
| 		 * Matches the smp_wmb() from event_sched_in().
 | |
| 		 */
 | |
| 		smp_rmb();
 | |
| 
 | |
| 		event_cpu = READ_ONCE(event->oncpu);
 | |
| 		if ((unsigned)event_cpu >= nr_cpu_ids)
 | |
| 			return 0;
 | |
| 
 | |
| 		data = (struct perf_read_data){
 | |
| 			.event = event,
 | |
| 			.group = group,
 | |
| 			.ret = 0,
 | |
| 		};
 | |
| 
 | |
| 		preempt_disable();
 | |
| 		event_cpu = __perf_event_read_cpu(event, event_cpu);
 | |
| 
 | |
| 		/*
 | |
| 		 * Purposely ignore the smp_call_function_single() return
 | |
| 		 * value.
 | |
| 		 *
 | |
| 		 * If event_cpu isn't a valid CPU it means the event got
 | |
| 		 * scheduled out and that will have updated the event count.
 | |
| 		 *
 | |
| 		 * Therefore, either way, we'll have an up-to-date event count
 | |
| 		 * after this.
 | |
| 		 */
 | |
| 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
 | |
| 		preempt_enable();
 | |
| 		ret = data.ret;
 | |
| 
 | |
| 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
 | |
| 		struct perf_event_context *ctx = event->ctx;
 | |
| 		unsigned long flags;
 | |
| 
 | |
| 		raw_spin_lock_irqsave(&ctx->lock, flags);
 | |
| 		state = event->state;
 | |
| 		if (state != PERF_EVENT_STATE_INACTIVE) {
 | |
| 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
 | |
| 			goto again;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * May read while context is not active (e.g., thread is
 | |
| 		 * blocked), in that case we cannot update context time
 | |
| 		 */
 | |
| 		if (ctx->is_active & EVENT_TIME) {
 | |
| 			update_context_time(ctx);
 | |
| 			update_cgrp_time_from_event(event);
 | |
| 		}
 | |
| 
 | |
| 		perf_event_update_time(event);
 | |
| 		if (group)
 | |
| 			perf_event_update_sibling_time(event);
 | |
| 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize the perf_event context in a task_struct:
 | |
|  */
 | |
| static void __perf_event_init_context(struct perf_event_context *ctx)
 | |
| {
 | |
| 	raw_spin_lock_init(&ctx->lock);
 | |
| 	mutex_init(&ctx->mutex);
 | |
| 	INIT_LIST_HEAD(&ctx->active_ctx_list);
 | |
| 	perf_event_groups_init(&ctx->pinned_groups);
 | |
| 	perf_event_groups_init(&ctx->flexible_groups);
 | |
| 	INIT_LIST_HEAD(&ctx->event_list);
 | |
| 	INIT_LIST_HEAD(&ctx->pinned_active);
 | |
| 	INIT_LIST_HEAD(&ctx->flexible_active);
 | |
| 	refcount_set(&ctx->refcount, 1);
 | |
| }
 | |
| 
 | |
| static struct perf_event_context *
 | |
| alloc_perf_context(struct pmu *pmu, struct task_struct *task)
 | |
| {
 | |
| 	struct perf_event_context *ctx;
 | |
| 
 | |
| 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
 | |
| 	if (!ctx)
 | |
| 		return NULL;
 | |
| 
 | |
| 	__perf_event_init_context(ctx);
 | |
| 	if (task)
 | |
| 		ctx->task = get_task_struct(task);
 | |
| 	ctx->pmu = pmu;
 | |
| 
 | |
| 	return ctx;
 | |
| }
 | |
| 
 | |
| static struct task_struct *
 | |
| find_lively_task_by_vpid(pid_t vpid)
 | |
| {
 | |
| 	struct task_struct *task;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	if (!vpid)
 | |
| 		task = current;
 | |
| 	else
 | |
| 		task = find_task_by_vpid(vpid);
 | |
| 	if (task)
 | |
| 		get_task_struct(task);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	if (!task)
 | |
| 		return ERR_PTR(-ESRCH);
 | |
| 
 | |
| 	return task;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns a matching context with refcount and pincount.
 | |
|  */
 | |
| static struct perf_event_context *
 | |
| find_get_context(struct pmu *pmu, struct task_struct *task,
 | |
| 		struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event_context *ctx, *clone_ctx = NULL;
 | |
| 	struct perf_cpu_context *cpuctx;
 | |
| 	void *task_ctx_data = NULL;
 | |
| 	unsigned long flags;
 | |
| 	int ctxn, err;
 | |
| 	int cpu = event->cpu;
 | |
| 
 | |
| 	if (!task) {
 | |
| 		/* Must be root to operate on a CPU event: */
 | |
| 		err = perf_allow_cpu(&event->attr);
 | |
| 		if (err)
 | |
| 			return ERR_PTR(err);
 | |
| 
 | |
| 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
 | |
| 		ctx = &cpuctx->ctx;
 | |
| 		get_ctx(ctx);
 | |
| 		++ctx->pin_count;
 | |
| 
 | |
| 		return ctx;
 | |
| 	}
 | |
| 
 | |
| 	err = -EINVAL;
 | |
| 	ctxn = pmu->task_ctx_nr;
 | |
| 	if (ctxn < 0)
 | |
| 		goto errout;
 | |
| 
 | |
| 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
 | |
| 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
 | |
| 		if (!task_ctx_data) {
 | |
| 			err = -ENOMEM;
 | |
| 			goto errout;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| retry:
 | |
| 	ctx = perf_lock_task_context(task, ctxn, &flags);
 | |
| 	if (ctx) {
 | |
| 		clone_ctx = unclone_ctx(ctx);
 | |
| 		++ctx->pin_count;
 | |
| 
 | |
| 		if (task_ctx_data && !ctx->task_ctx_data) {
 | |
| 			ctx->task_ctx_data = task_ctx_data;
 | |
| 			task_ctx_data = NULL;
 | |
| 		}
 | |
| 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
 | |
| 
 | |
| 		if (clone_ctx)
 | |
| 			put_ctx(clone_ctx);
 | |
| 	} else {
 | |
| 		ctx = alloc_perf_context(pmu, task);
 | |
| 		err = -ENOMEM;
 | |
| 		if (!ctx)
 | |
| 			goto errout;
 | |
| 
 | |
| 		if (task_ctx_data) {
 | |
| 			ctx->task_ctx_data = task_ctx_data;
 | |
| 			task_ctx_data = NULL;
 | |
| 		}
 | |
| 
 | |
| 		err = 0;
 | |
| 		mutex_lock(&task->perf_event_mutex);
 | |
| 		/*
 | |
| 		 * If it has already passed perf_event_exit_task().
 | |
| 		 * we must see PF_EXITING, it takes this mutex too.
 | |
| 		 */
 | |
| 		if (task->flags & PF_EXITING)
 | |
| 			err = -ESRCH;
 | |
| 		else if (task->perf_event_ctxp[ctxn])
 | |
| 			err = -EAGAIN;
 | |
| 		else {
 | |
| 			get_ctx(ctx);
 | |
| 			++ctx->pin_count;
 | |
| 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
 | |
| 		}
 | |
| 		mutex_unlock(&task->perf_event_mutex);
 | |
| 
 | |
| 		if (unlikely(err)) {
 | |
| 			put_ctx(ctx);
 | |
| 
 | |
| 			if (err == -EAGAIN)
 | |
| 				goto retry;
 | |
| 			goto errout;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	kfree(task_ctx_data);
 | |
| 	return ctx;
 | |
| 
 | |
| errout:
 | |
| 	kfree(task_ctx_data);
 | |
| 	return ERR_PTR(err);
 | |
| }
 | |
| 
 | |
| static void perf_event_free_filter(struct perf_event *event);
 | |
| static void perf_event_free_bpf_prog(struct perf_event *event);
 | |
| 
 | |
| static void free_event_rcu(struct rcu_head *head)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 
 | |
| 	event = container_of(head, struct perf_event, rcu_head);
 | |
| 	if (event->ns)
 | |
| 		put_pid_ns(event->ns);
 | |
| 	perf_event_free_filter(event);
 | |
| 	kfree(event);
 | |
| }
 | |
| 
 | |
| static void ring_buffer_attach(struct perf_event *event,
 | |
| 			       struct perf_buffer *rb);
 | |
| 
 | |
| static void detach_sb_event(struct perf_event *event)
 | |
| {
 | |
| 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
 | |
| 
 | |
| 	raw_spin_lock(&pel->lock);
 | |
| 	list_del_rcu(&event->sb_list);
 | |
| 	raw_spin_unlock(&pel->lock);
 | |
| }
 | |
| 
 | |
| static bool is_sb_event(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event_attr *attr = &event->attr;
 | |
| 
 | |
| 	if (event->parent)
 | |
| 		return false;
 | |
| 
 | |
| 	if (event->attach_state & PERF_ATTACH_TASK)
 | |
| 		return false;
 | |
| 
 | |
| 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
 | |
| 	    attr->comm || attr->comm_exec ||
 | |
| 	    attr->task || attr->ksymbol ||
 | |
| 	    attr->context_switch ||
 | |
| 	    attr->bpf_event)
 | |
| 		return true;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void unaccount_pmu_sb_event(struct perf_event *event)
 | |
| {
 | |
| 	if (is_sb_event(event))
 | |
| 		detach_sb_event(event);
 | |
| }
 | |
| 
 | |
| static void unaccount_event_cpu(struct perf_event *event, int cpu)
 | |
| {
 | |
| 	if (event->parent)
 | |
| 		return;
 | |
| 
 | |
| 	if (is_cgroup_event(event))
 | |
| 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NO_HZ_FULL
 | |
| static DEFINE_SPINLOCK(nr_freq_lock);
 | |
| #endif
 | |
| 
 | |
| static void unaccount_freq_event_nohz(void)
 | |
| {
 | |
| #ifdef CONFIG_NO_HZ_FULL
 | |
| 	spin_lock(&nr_freq_lock);
 | |
| 	if (atomic_dec_and_test(&nr_freq_events))
 | |
| 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
 | |
| 	spin_unlock(&nr_freq_lock);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void unaccount_freq_event(void)
 | |
| {
 | |
| 	if (tick_nohz_full_enabled())
 | |
| 		unaccount_freq_event_nohz();
 | |
| 	else
 | |
| 		atomic_dec(&nr_freq_events);
 | |
| }
 | |
| 
 | |
| static void unaccount_event(struct perf_event *event)
 | |
| {
 | |
| 	bool dec = false;
 | |
| 
 | |
| 	if (event->parent)
 | |
| 		return;
 | |
| 
 | |
| 	if (event->attach_state & PERF_ATTACH_TASK)
 | |
| 		dec = true;
 | |
| 	if (event->attr.mmap || event->attr.mmap_data)
 | |
| 		atomic_dec(&nr_mmap_events);
 | |
| 	if (event->attr.comm)
 | |
| 		atomic_dec(&nr_comm_events);
 | |
| 	if (event->attr.namespaces)
 | |
| 		atomic_dec(&nr_namespaces_events);
 | |
| 	if (event->attr.cgroup)
 | |
| 		atomic_dec(&nr_cgroup_events);
 | |
| 	if (event->attr.task)
 | |
| 		atomic_dec(&nr_task_events);
 | |
| 	if (event->attr.freq)
 | |
| 		unaccount_freq_event();
 | |
| 	if (event->attr.context_switch) {
 | |
| 		dec = true;
 | |
| 		atomic_dec(&nr_switch_events);
 | |
| 	}
 | |
| 	if (is_cgroup_event(event))
 | |
| 		dec = true;
 | |
| 	if (has_branch_stack(event))
 | |
| 		dec = true;
 | |
| 	if (event->attr.ksymbol)
 | |
| 		atomic_dec(&nr_ksymbol_events);
 | |
| 	if (event->attr.bpf_event)
 | |
| 		atomic_dec(&nr_bpf_events);
 | |
| 
 | |
| 	if (dec) {
 | |
| 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
 | |
| 			schedule_delayed_work(&perf_sched_work, HZ);
 | |
| 	}
 | |
| 
 | |
| 	unaccount_event_cpu(event, event->cpu);
 | |
| 
 | |
| 	unaccount_pmu_sb_event(event);
 | |
| }
 | |
| 
 | |
| static void perf_sched_delayed(struct work_struct *work)
 | |
| {
 | |
| 	mutex_lock(&perf_sched_mutex);
 | |
| 	if (atomic_dec_and_test(&perf_sched_count))
 | |
| 		static_branch_disable(&perf_sched_events);
 | |
| 	mutex_unlock(&perf_sched_mutex);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The following implement mutual exclusion of events on "exclusive" pmus
 | |
|  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 | |
|  * at a time, so we disallow creating events that might conflict, namely:
 | |
|  *
 | |
|  *  1) cpu-wide events in the presence of per-task events,
 | |
|  *  2) per-task events in the presence of cpu-wide events,
 | |
|  *  3) two matching events on the same context.
 | |
|  *
 | |
|  * The former two cases are handled in the allocation path (perf_event_alloc(),
 | |
|  * _free_event()), the latter -- before the first perf_install_in_context().
 | |
|  */
 | |
| static int exclusive_event_init(struct perf_event *event)
 | |
| {
 | |
| 	struct pmu *pmu = event->pmu;
 | |
| 
 | |
| 	if (!is_exclusive_pmu(pmu))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Prevent co-existence of per-task and cpu-wide events on the
 | |
| 	 * same exclusive pmu.
 | |
| 	 *
 | |
| 	 * Negative pmu::exclusive_cnt means there are cpu-wide
 | |
| 	 * events on this "exclusive" pmu, positive means there are
 | |
| 	 * per-task events.
 | |
| 	 *
 | |
| 	 * Since this is called in perf_event_alloc() path, event::ctx
 | |
| 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
 | |
| 	 * to mean "per-task event", because unlike other attach states it
 | |
| 	 * never gets cleared.
 | |
| 	 */
 | |
| 	if (event->attach_state & PERF_ATTACH_TASK) {
 | |
| 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
 | |
| 			return -EBUSY;
 | |
| 	} else {
 | |
| 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
 | |
| 			return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void exclusive_event_destroy(struct perf_event *event)
 | |
| {
 | |
| 	struct pmu *pmu = event->pmu;
 | |
| 
 | |
| 	if (!is_exclusive_pmu(pmu))
 | |
| 		return;
 | |
| 
 | |
| 	/* see comment in exclusive_event_init() */
 | |
| 	if (event->attach_state & PERF_ATTACH_TASK)
 | |
| 		atomic_dec(&pmu->exclusive_cnt);
 | |
| 	else
 | |
| 		atomic_inc(&pmu->exclusive_cnt);
 | |
| }
 | |
| 
 | |
| static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
 | |
| {
 | |
| 	if ((e1->pmu == e2->pmu) &&
 | |
| 	    (e1->cpu == e2->cpu ||
 | |
| 	     e1->cpu == -1 ||
 | |
| 	     e2->cpu == -1))
 | |
| 		return true;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool exclusive_event_installable(struct perf_event *event,
 | |
| 					struct perf_event_context *ctx)
 | |
| {
 | |
| 	struct perf_event *iter_event;
 | |
| 	struct pmu *pmu = event->pmu;
 | |
| 
 | |
| 	lockdep_assert_held(&ctx->mutex);
 | |
| 
 | |
| 	if (!is_exclusive_pmu(pmu))
 | |
| 		return true;
 | |
| 
 | |
| 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
 | |
| 		if (exclusive_event_match(iter_event, event))
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void perf_addr_filters_splice(struct perf_event *event,
 | |
| 				       struct list_head *head);
 | |
| 
 | |
| static void _free_event(struct perf_event *event)
 | |
| {
 | |
| 	irq_work_sync(&event->pending);
 | |
| 
 | |
| 	unaccount_event(event);
 | |
| 
 | |
| 	security_perf_event_free(event);
 | |
| 
 | |
| 	if (event->rb) {
 | |
| 		/*
 | |
| 		 * Can happen when we close an event with re-directed output.
 | |
| 		 *
 | |
| 		 * Since we have a 0 refcount, perf_mmap_close() will skip
 | |
| 		 * over us; possibly making our ring_buffer_put() the last.
 | |
| 		 */
 | |
| 		mutex_lock(&event->mmap_mutex);
 | |
| 		ring_buffer_attach(event, NULL);
 | |
| 		mutex_unlock(&event->mmap_mutex);
 | |
| 	}
 | |
| 
 | |
| 	if (is_cgroup_event(event))
 | |
| 		perf_detach_cgroup(event);
 | |
| 
 | |
| 	if (!event->parent) {
 | |
| 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
 | |
| 			put_callchain_buffers();
 | |
| 	}
 | |
| 
 | |
| 	perf_event_free_bpf_prog(event);
 | |
| 	perf_addr_filters_splice(event, NULL);
 | |
| 	kfree(event->addr_filter_ranges);
 | |
| 
 | |
| 	if (event->destroy)
 | |
| 		event->destroy(event);
 | |
| 
 | |
| 	/*
 | |
| 	 * Must be after ->destroy(), due to uprobe_perf_close() using
 | |
| 	 * hw.target.
 | |
| 	 */
 | |
| 	if (event->hw.target)
 | |
| 		put_task_struct(event->hw.target);
 | |
| 
 | |
| 	/*
 | |
| 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
 | |
| 	 * all task references must be cleaned up.
 | |
| 	 */
 | |
| 	if (event->ctx)
 | |
| 		put_ctx(event->ctx);
 | |
| 
 | |
| 	exclusive_event_destroy(event);
 | |
| 	module_put(event->pmu->module);
 | |
| 
 | |
| 	call_rcu(&event->rcu_head, free_event_rcu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Used to free events which have a known refcount of 1, such as in error paths
 | |
|  * where the event isn't exposed yet and inherited events.
 | |
|  */
 | |
| static void free_event(struct perf_event *event)
 | |
| {
 | |
| 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
 | |
| 				"unexpected event refcount: %ld; ptr=%p\n",
 | |
| 				atomic_long_read(&event->refcount), event)) {
 | |
| 		/* leak to avoid use-after-free */
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	_free_event(event);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove user event from the owner task.
 | |
|  */
 | |
| static void perf_remove_from_owner(struct perf_event *event)
 | |
| {
 | |
| 	struct task_struct *owner;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	/*
 | |
| 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
 | |
| 	 * observe !owner it means the list deletion is complete and we can
 | |
| 	 * indeed free this event, otherwise we need to serialize on
 | |
| 	 * owner->perf_event_mutex.
 | |
| 	 */
 | |
| 	owner = READ_ONCE(event->owner);
 | |
| 	if (owner) {
 | |
| 		/*
 | |
| 		 * Since delayed_put_task_struct() also drops the last
 | |
| 		 * task reference we can safely take a new reference
 | |
| 		 * while holding the rcu_read_lock().
 | |
| 		 */
 | |
| 		get_task_struct(owner);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	if (owner) {
 | |
| 		/*
 | |
| 		 * If we're here through perf_event_exit_task() we're already
 | |
| 		 * holding ctx->mutex which would be an inversion wrt. the
 | |
| 		 * normal lock order.
 | |
| 		 *
 | |
| 		 * However we can safely take this lock because its the child
 | |
| 		 * ctx->mutex.
 | |
| 		 */
 | |
| 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
 | |
| 
 | |
| 		/*
 | |
| 		 * We have to re-check the event->owner field, if it is cleared
 | |
| 		 * we raced with perf_event_exit_task(), acquiring the mutex
 | |
| 		 * ensured they're done, and we can proceed with freeing the
 | |
| 		 * event.
 | |
| 		 */
 | |
| 		if (event->owner) {
 | |
| 			list_del_init(&event->owner_entry);
 | |
| 			smp_store_release(&event->owner, NULL);
 | |
| 		}
 | |
| 		mutex_unlock(&owner->perf_event_mutex);
 | |
| 		put_task_struct(owner);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void put_event(struct perf_event *event)
 | |
| {
 | |
| 	if (!atomic_long_dec_and_test(&event->refcount))
 | |
| 		return;
 | |
| 
 | |
| 	_free_event(event);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Kill an event dead; while event:refcount will preserve the event
 | |
|  * object, it will not preserve its functionality. Once the last 'user'
 | |
|  * gives up the object, we'll destroy the thing.
 | |
|  */
 | |
| int perf_event_release_kernel(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 	struct perf_event *child, *tmp;
 | |
| 	LIST_HEAD(free_list);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we got here through err_file: fput(event_file); we will not have
 | |
| 	 * attached to a context yet.
 | |
| 	 */
 | |
| 	if (!ctx) {
 | |
| 		WARN_ON_ONCE(event->attach_state &
 | |
| 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
 | |
| 		goto no_ctx;
 | |
| 	}
 | |
| 
 | |
| 	if (!is_kernel_event(event))
 | |
| 		perf_remove_from_owner(event);
 | |
| 
 | |
| 	ctx = perf_event_ctx_lock(event);
 | |
| 	WARN_ON_ONCE(ctx->parent_ctx);
 | |
| 	perf_remove_from_context(event, DETACH_GROUP);
 | |
| 
 | |
| 	raw_spin_lock_irq(&ctx->lock);
 | |
| 	/*
 | |
| 	 * Mark this event as STATE_DEAD, there is no external reference to it
 | |
| 	 * anymore.
 | |
| 	 *
 | |
| 	 * Anybody acquiring event->child_mutex after the below loop _must_
 | |
| 	 * also see this, most importantly inherit_event() which will avoid
 | |
| 	 * placing more children on the list.
 | |
| 	 *
 | |
| 	 * Thus this guarantees that we will in fact observe and kill _ALL_
 | |
| 	 * child events.
 | |
| 	 */
 | |
| 	event->state = PERF_EVENT_STATE_DEAD;
 | |
| 	raw_spin_unlock_irq(&ctx->lock);
 | |
| 
 | |
| 	perf_event_ctx_unlock(event, ctx);
 | |
| 
 | |
| again:
 | |
| 	mutex_lock(&event->child_mutex);
 | |
| 	list_for_each_entry(child, &event->child_list, child_list) {
 | |
| 
 | |
| 		/*
 | |
| 		 * Cannot change, child events are not migrated, see the
 | |
| 		 * comment with perf_event_ctx_lock_nested().
 | |
| 		 */
 | |
| 		ctx = READ_ONCE(child->ctx);
 | |
| 		/*
 | |
| 		 * Since child_mutex nests inside ctx::mutex, we must jump
 | |
| 		 * through hoops. We start by grabbing a reference on the ctx.
 | |
| 		 *
 | |
| 		 * Since the event cannot get freed while we hold the
 | |
| 		 * child_mutex, the context must also exist and have a !0
 | |
| 		 * reference count.
 | |
| 		 */
 | |
| 		get_ctx(ctx);
 | |
| 
 | |
| 		/*
 | |
| 		 * Now that we have a ctx ref, we can drop child_mutex, and
 | |
| 		 * acquire ctx::mutex without fear of it going away. Then we
 | |
| 		 * can re-acquire child_mutex.
 | |
| 		 */
 | |
| 		mutex_unlock(&event->child_mutex);
 | |
| 		mutex_lock(&ctx->mutex);
 | |
| 		mutex_lock(&event->child_mutex);
 | |
| 
 | |
| 		/*
 | |
| 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
 | |
| 		 * state, if child is still the first entry, it didn't get freed
 | |
| 		 * and we can continue doing so.
 | |
| 		 */
 | |
| 		tmp = list_first_entry_or_null(&event->child_list,
 | |
| 					       struct perf_event, child_list);
 | |
| 		if (tmp == child) {
 | |
| 			perf_remove_from_context(child, DETACH_GROUP);
 | |
| 			list_move(&child->child_list, &free_list);
 | |
| 			/*
 | |
| 			 * This matches the refcount bump in inherit_event();
 | |
| 			 * this can't be the last reference.
 | |
| 			 */
 | |
| 			put_event(event);
 | |
| 		}
 | |
| 
 | |
| 		mutex_unlock(&event->child_mutex);
 | |
| 		mutex_unlock(&ctx->mutex);
 | |
| 		put_ctx(ctx);
 | |
| 		goto again;
 | |
| 	}
 | |
| 	mutex_unlock(&event->child_mutex);
 | |
| 
 | |
| 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
 | |
| 		void *var = &child->ctx->refcount;
 | |
| 
 | |
| 		list_del(&child->child_list);
 | |
| 		free_event(child);
 | |
| 
 | |
| 		/*
 | |
| 		 * Wake any perf_event_free_task() waiting for this event to be
 | |
| 		 * freed.
 | |
| 		 */
 | |
| 		smp_mb(); /* pairs with wait_var_event() */
 | |
| 		wake_up_var(var);
 | |
| 	}
 | |
| 
 | |
| no_ctx:
 | |
| 	put_event(event); /* Must be the 'last' reference */
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_event_release_kernel);
 | |
| 
 | |
| /*
 | |
|  * Called when the last reference to the file is gone.
 | |
|  */
 | |
| static int perf_release(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	perf_event_release_kernel(file->private_data);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
 | |
| {
 | |
| 	struct perf_event *child;
 | |
| 	u64 total = 0;
 | |
| 
 | |
| 	*enabled = 0;
 | |
| 	*running = 0;
 | |
| 
 | |
| 	mutex_lock(&event->child_mutex);
 | |
| 
 | |
| 	(void)perf_event_read(event, false);
 | |
| 	total += perf_event_count(event);
 | |
| 
 | |
| 	*enabled += event->total_time_enabled +
 | |
| 			atomic64_read(&event->child_total_time_enabled);
 | |
| 	*running += event->total_time_running +
 | |
| 			atomic64_read(&event->child_total_time_running);
 | |
| 
 | |
| 	list_for_each_entry(child, &event->child_list, child_list) {
 | |
| 		(void)perf_event_read(child, false);
 | |
| 		total += perf_event_count(child);
 | |
| 		*enabled += child->total_time_enabled;
 | |
| 		*running += child->total_time_running;
 | |
| 	}
 | |
| 	mutex_unlock(&event->child_mutex);
 | |
| 
 | |
| 	return total;
 | |
| }
 | |
| 
 | |
| u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
 | |
| {
 | |
| 	struct perf_event_context *ctx;
 | |
| 	u64 count;
 | |
| 
 | |
| 	ctx = perf_event_ctx_lock(event);
 | |
| 	count = __perf_event_read_value(event, enabled, running);
 | |
| 	perf_event_ctx_unlock(event, ctx);
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_event_read_value);
 | |
| 
 | |
| static int __perf_read_group_add(struct perf_event *leader,
 | |
| 					u64 read_format, u64 *values)
 | |
| {
 | |
| 	struct perf_event_context *ctx = leader->ctx;
 | |
| 	struct perf_event *sub;
 | |
| 	unsigned long flags;
 | |
| 	int n = 1; /* skip @nr */
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = perf_event_read(leader, true);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&ctx->lock, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Since we co-schedule groups, {enabled,running} times of siblings
 | |
| 	 * will be identical to those of the leader, so we only publish one
 | |
| 	 * set.
 | |
| 	 */
 | |
| 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
 | |
| 		values[n++] += leader->total_time_enabled +
 | |
| 			atomic64_read(&leader->child_total_time_enabled);
 | |
| 	}
 | |
| 
 | |
| 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
 | |
| 		values[n++] += leader->total_time_running +
 | |
| 			atomic64_read(&leader->child_total_time_running);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Write {count,id} tuples for every sibling.
 | |
| 	 */
 | |
| 	values[n++] += perf_event_count(leader);
 | |
| 	if (read_format & PERF_FORMAT_ID)
 | |
| 		values[n++] = primary_event_id(leader);
 | |
| 
 | |
| 	for_each_sibling_event(sub, leader) {
 | |
| 		values[n++] += perf_event_count(sub);
 | |
| 		if (read_format & PERF_FORMAT_ID)
 | |
| 			values[n++] = primary_event_id(sub);
 | |
| 	}
 | |
| 
 | |
| 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int perf_read_group(struct perf_event *event,
 | |
| 				   u64 read_format, char __user *buf)
 | |
| {
 | |
| 	struct perf_event *leader = event->group_leader, *child;
 | |
| 	struct perf_event_context *ctx = leader->ctx;
 | |
| 	int ret;
 | |
| 	u64 *values;
 | |
| 
 | |
| 	lockdep_assert_held(&ctx->mutex);
 | |
| 
 | |
| 	values = kzalloc(event->read_size, GFP_KERNEL);
 | |
| 	if (!values)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	values[0] = 1 + leader->nr_siblings;
 | |
| 
 | |
| 	/*
 | |
| 	 * By locking the child_mutex of the leader we effectively
 | |
| 	 * lock the child list of all siblings.. XXX explain how.
 | |
| 	 */
 | |
| 	mutex_lock(&leader->child_mutex);
 | |
| 
 | |
| 	ret = __perf_read_group_add(leader, read_format, values);
 | |
| 	if (ret)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	list_for_each_entry(child, &leader->child_list, child_list) {
 | |
| 		ret = __perf_read_group_add(child, read_format, values);
 | |
| 		if (ret)
 | |
| 			goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&leader->child_mutex);
 | |
| 
 | |
| 	ret = event->read_size;
 | |
| 	if (copy_to_user(buf, values, event->read_size))
 | |
| 		ret = -EFAULT;
 | |
| 	goto out;
 | |
| 
 | |
| unlock:
 | |
| 	mutex_unlock(&leader->child_mutex);
 | |
| out:
 | |
| 	kfree(values);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int perf_read_one(struct perf_event *event,
 | |
| 				 u64 read_format, char __user *buf)
 | |
| {
 | |
| 	u64 enabled, running;
 | |
| 	u64 values[4];
 | |
| 	int n = 0;
 | |
| 
 | |
| 	values[n++] = __perf_event_read_value(event, &enabled, &running);
 | |
| 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
 | |
| 		values[n++] = enabled;
 | |
| 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
 | |
| 		values[n++] = running;
 | |
| 	if (read_format & PERF_FORMAT_ID)
 | |
| 		values[n++] = primary_event_id(event);
 | |
| 
 | |
| 	if (copy_to_user(buf, values, n * sizeof(u64)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	return n * sizeof(u64);
 | |
| }
 | |
| 
 | |
| static bool is_event_hup(struct perf_event *event)
 | |
| {
 | |
| 	bool no_children;
 | |
| 
 | |
| 	if (event->state > PERF_EVENT_STATE_EXIT)
 | |
| 		return false;
 | |
| 
 | |
| 	mutex_lock(&event->child_mutex);
 | |
| 	no_children = list_empty(&event->child_list);
 | |
| 	mutex_unlock(&event->child_mutex);
 | |
| 	return no_children;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read the performance event - simple non blocking version for now
 | |
|  */
 | |
| static ssize_t
 | |
| __perf_read(struct perf_event *event, char __user *buf, size_t count)
 | |
| {
 | |
| 	u64 read_format = event->attr.read_format;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Return end-of-file for a read on an event that is in
 | |
| 	 * error state (i.e. because it was pinned but it couldn't be
 | |
| 	 * scheduled on to the CPU at some point).
 | |
| 	 */
 | |
| 	if (event->state == PERF_EVENT_STATE_ERROR)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (count < event->read_size)
 | |
| 		return -ENOSPC;
 | |
| 
 | |
| 	WARN_ON_ONCE(event->ctx->parent_ctx);
 | |
| 	if (read_format & PERF_FORMAT_GROUP)
 | |
| 		ret = perf_read_group(event, read_format, buf);
 | |
| 	else
 | |
| 		ret = perf_read_one(event, read_format, buf);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static ssize_t
 | |
| perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
 | |
| {
 | |
| 	struct perf_event *event = file->private_data;
 | |
| 	struct perf_event_context *ctx;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = security_perf_event_read(event);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ctx = perf_event_ctx_lock(event);
 | |
| 	ret = __perf_read(event, buf, count);
 | |
| 	perf_event_ctx_unlock(event, ctx);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static __poll_t perf_poll(struct file *file, poll_table *wait)
 | |
| {
 | |
| 	struct perf_event *event = file->private_data;
 | |
| 	struct perf_buffer *rb;
 | |
| 	__poll_t events = EPOLLHUP;
 | |
| 
 | |
| 	poll_wait(file, &event->waitq, wait);
 | |
| 
 | |
| 	if (is_event_hup(event))
 | |
| 		return events;
 | |
| 
 | |
| 	/*
 | |
| 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
 | |
| 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
 | |
| 	 */
 | |
| 	mutex_lock(&event->mmap_mutex);
 | |
| 	rb = event->rb;
 | |
| 	if (rb)
 | |
| 		events = atomic_xchg(&rb->poll, 0);
 | |
| 	mutex_unlock(&event->mmap_mutex);
 | |
| 	return events;
 | |
| }
 | |
| 
 | |
| static void _perf_event_reset(struct perf_event *event)
 | |
| {
 | |
| 	(void)perf_event_read(event, false);
 | |
| 	local64_set(&event->count, 0);
 | |
| 	perf_event_update_userpage(event);
 | |
| }
 | |
| 
 | |
| /* Assume it's not an event with inherit set. */
 | |
| u64 perf_event_pause(struct perf_event *event, bool reset)
 | |
| {
 | |
| 	struct perf_event_context *ctx;
 | |
| 	u64 count;
 | |
| 
 | |
| 	ctx = perf_event_ctx_lock(event);
 | |
| 	WARN_ON_ONCE(event->attr.inherit);
 | |
| 	_perf_event_disable(event);
 | |
| 	count = local64_read(&event->count);
 | |
| 	if (reset)
 | |
| 		local64_set(&event->count, 0);
 | |
| 	perf_event_ctx_unlock(event, ctx);
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_event_pause);
 | |
| 
 | |
| /*
 | |
|  * Holding the top-level event's child_mutex means that any
 | |
|  * descendant process that has inherited this event will block
 | |
|  * in perf_event_exit_event() if it goes to exit, thus satisfying the
 | |
|  * task existence requirements of perf_event_enable/disable.
 | |
|  */
 | |
| static void perf_event_for_each_child(struct perf_event *event,
 | |
| 					void (*func)(struct perf_event *))
 | |
| {
 | |
| 	struct perf_event *child;
 | |
| 
 | |
| 	WARN_ON_ONCE(event->ctx->parent_ctx);
 | |
| 
 | |
| 	mutex_lock(&event->child_mutex);
 | |
| 	func(event);
 | |
| 	list_for_each_entry(child, &event->child_list, child_list)
 | |
| 		func(child);
 | |
| 	mutex_unlock(&event->child_mutex);
 | |
| }
 | |
| 
 | |
| static void perf_event_for_each(struct perf_event *event,
 | |
| 				  void (*func)(struct perf_event *))
 | |
| {
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 	struct perf_event *sibling;
 | |
| 
 | |
| 	lockdep_assert_held(&ctx->mutex);
 | |
| 
 | |
| 	event = event->group_leader;
 | |
| 
 | |
| 	perf_event_for_each_child(event, func);
 | |
| 	for_each_sibling_event(sibling, event)
 | |
| 		perf_event_for_each_child(sibling, func);
 | |
| }
 | |
| 
 | |
| static void __perf_event_period(struct perf_event *event,
 | |
| 				struct perf_cpu_context *cpuctx,
 | |
| 				struct perf_event_context *ctx,
 | |
| 				void *info)
 | |
| {
 | |
| 	u64 value = *((u64 *)info);
 | |
| 	bool active;
 | |
| 
 | |
| 	if (event->attr.freq) {
 | |
| 		event->attr.sample_freq = value;
 | |
| 	} else {
 | |
| 		event->attr.sample_period = value;
 | |
| 		event->hw.sample_period = value;
 | |
| 	}
 | |
| 
 | |
| 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
 | |
| 	if (active) {
 | |
| 		perf_pmu_disable(ctx->pmu);
 | |
| 		/*
 | |
| 		 * We could be throttled; unthrottle now to avoid the tick
 | |
| 		 * trying to unthrottle while we already re-started the event.
 | |
| 		 */
 | |
| 		if (event->hw.interrupts == MAX_INTERRUPTS) {
 | |
| 			event->hw.interrupts = 0;
 | |
| 			perf_log_throttle(event, 1);
 | |
| 		}
 | |
| 		event->pmu->stop(event, PERF_EF_UPDATE);
 | |
| 	}
 | |
| 
 | |
| 	local64_set(&event->hw.period_left, 0);
 | |
| 
 | |
| 	if (active) {
 | |
| 		event->pmu->start(event, PERF_EF_RELOAD);
 | |
| 		perf_pmu_enable(ctx->pmu);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int perf_event_check_period(struct perf_event *event, u64 value)
 | |
| {
 | |
| 	return event->pmu->check_period(event, value);
 | |
| }
 | |
| 
 | |
| static int _perf_event_period(struct perf_event *event, u64 value)
 | |
| {
 | |
| 	if (!is_sampling_event(event))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!value)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (perf_event_check_period(event, value))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!event->attr.freq && (value & (1ULL << 63)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	event_function_call(event, __perf_event_period, &value);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int perf_event_period(struct perf_event *event, u64 value)
 | |
| {
 | |
| 	struct perf_event_context *ctx;
 | |
| 	int ret;
 | |
| 
 | |
| 	ctx = perf_event_ctx_lock(event);
 | |
| 	ret = _perf_event_period(event, value);
 | |
| 	perf_event_ctx_unlock(event, ctx);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_event_period);
 | |
| 
 | |
| static const struct file_operations perf_fops;
 | |
| 
 | |
| static inline int perf_fget_light(int fd, struct fd *p)
 | |
| {
 | |
| 	struct fd f = fdget(fd);
 | |
| 	if (!f.file)
 | |
| 		return -EBADF;
 | |
| 
 | |
| 	if (f.file->f_op != &perf_fops) {
 | |
| 		fdput(f);
 | |
| 		return -EBADF;
 | |
| 	}
 | |
| 	*p = f;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int perf_event_set_output(struct perf_event *event,
 | |
| 				 struct perf_event *output_event);
 | |
| static int perf_event_set_filter(struct perf_event *event, void __user *arg);
 | |
| static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
 | |
| static int perf_copy_attr(struct perf_event_attr __user *uattr,
 | |
| 			  struct perf_event_attr *attr);
 | |
| 
 | |
| static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
 | |
| {
 | |
| 	void (*func)(struct perf_event *);
 | |
| 	u32 flags = arg;
 | |
| 
 | |
| 	switch (cmd) {
 | |
| 	case PERF_EVENT_IOC_ENABLE:
 | |
| 		func = _perf_event_enable;
 | |
| 		break;
 | |
| 	case PERF_EVENT_IOC_DISABLE:
 | |
| 		func = _perf_event_disable;
 | |
| 		break;
 | |
| 	case PERF_EVENT_IOC_RESET:
 | |
| 		func = _perf_event_reset;
 | |
| 		break;
 | |
| 
 | |
| 	case PERF_EVENT_IOC_REFRESH:
 | |
| 		return _perf_event_refresh(event, arg);
 | |
| 
 | |
| 	case PERF_EVENT_IOC_PERIOD:
 | |
| 	{
 | |
| 		u64 value;
 | |
| 
 | |
| 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
 | |
| 			return -EFAULT;
 | |
| 
 | |
| 		return _perf_event_period(event, value);
 | |
| 	}
 | |
| 	case PERF_EVENT_IOC_ID:
 | |
| 	{
 | |
| 		u64 id = primary_event_id(event);
 | |
| 
 | |
| 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
 | |
| 			return -EFAULT;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	case PERF_EVENT_IOC_SET_OUTPUT:
 | |
| 	{
 | |
| 		int ret;
 | |
| 		if (arg != -1) {
 | |
| 			struct perf_event *output_event;
 | |
| 			struct fd output;
 | |
| 			ret = perf_fget_light(arg, &output);
 | |
| 			if (ret)
 | |
| 				return ret;
 | |
| 			output_event = output.file->private_data;
 | |
| 			ret = perf_event_set_output(event, output_event);
 | |
| 			fdput(output);
 | |
| 		} else {
 | |
| 			ret = perf_event_set_output(event, NULL);
 | |
| 		}
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	case PERF_EVENT_IOC_SET_FILTER:
 | |
| 		return perf_event_set_filter(event, (void __user *)arg);
 | |
| 
 | |
| 	case PERF_EVENT_IOC_SET_BPF:
 | |
| 		return perf_event_set_bpf_prog(event, arg);
 | |
| 
 | |
| 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
 | |
| 		struct perf_buffer *rb;
 | |
| 
 | |
| 		rcu_read_lock();
 | |
| 		rb = rcu_dereference(event->rb);
 | |
| 		if (!rb || !rb->nr_pages) {
 | |
| 			rcu_read_unlock();
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		rb_toggle_paused(rb, !!arg);
 | |
| 		rcu_read_unlock();
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	case PERF_EVENT_IOC_QUERY_BPF:
 | |
| 		return perf_event_query_prog_array(event, (void __user *)arg);
 | |
| 
 | |
| 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
 | |
| 		struct perf_event_attr new_attr;
 | |
| 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
 | |
| 					 &new_attr);
 | |
| 
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 
 | |
| 		return perf_event_modify_attr(event,  &new_attr);
 | |
| 	}
 | |
| 	default:
 | |
| 		return -ENOTTY;
 | |
| 	}
 | |
| 
 | |
| 	if (flags & PERF_IOC_FLAG_GROUP)
 | |
| 		perf_event_for_each(event, func);
 | |
| 	else
 | |
| 		perf_event_for_each_child(event, func);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 | |
| {
 | |
| 	struct perf_event *event = file->private_data;
 | |
| 	struct perf_event_context *ctx;
 | |
| 	long ret;
 | |
| 
 | |
| 	/* Treat ioctl like writes as it is likely a mutating operation. */
 | |
| 	ret = security_perf_event_write(event);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ctx = perf_event_ctx_lock(event);
 | |
| 	ret = _perf_ioctl(event, cmd, arg);
 | |
| 	perf_event_ctx_unlock(event, ctx);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_COMPAT
 | |
| static long perf_compat_ioctl(struct file *file, unsigned int cmd,
 | |
| 				unsigned long arg)
 | |
| {
 | |
| 	switch (_IOC_NR(cmd)) {
 | |
| 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
 | |
| 	case _IOC_NR(PERF_EVENT_IOC_ID):
 | |
| 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
 | |
| 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
 | |
| 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
 | |
| 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
 | |
| 			cmd &= ~IOCSIZE_MASK;
 | |
| 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 	return perf_ioctl(file, cmd, arg);
 | |
| }
 | |
| #else
 | |
| # define perf_compat_ioctl NULL
 | |
| #endif
 | |
| 
 | |
| int perf_event_task_enable(void)
 | |
| {
 | |
| 	struct perf_event_context *ctx;
 | |
| 	struct perf_event *event;
 | |
| 
 | |
| 	mutex_lock(¤t->perf_event_mutex);
 | |
| 	list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
 | |
| 		ctx = perf_event_ctx_lock(event);
 | |
| 		perf_event_for_each_child(event, _perf_event_enable);
 | |
| 		perf_event_ctx_unlock(event, ctx);
 | |
| 	}
 | |
| 	mutex_unlock(¤t->perf_event_mutex);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int perf_event_task_disable(void)
 | |
| {
 | |
| 	struct perf_event_context *ctx;
 | |
| 	struct perf_event *event;
 | |
| 
 | |
| 	mutex_lock(¤t->perf_event_mutex);
 | |
| 	list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
 | |
| 		ctx = perf_event_ctx_lock(event);
 | |
| 		perf_event_for_each_child(event, _perf_event_disable);
 | |
| 		perf_event_ctx_unlock(event, ctx);
 | |
| 	}
 | |
| 	mutex_unlock(¤t->perf_event_mutex);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int perf_event_index(struct perf_event *event)
 | |
| {
 | |
| 	if (event->hw.state & PERF_HES_STOPPED)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (event->state != PERF_EVENT_STATE_ACTIVE)
 | |
| 		return 0;
 | |
| 
 | |
| 	return event->pmu->event_idx(event);
 | |
| }
 | |
| 
 | |
| static void calc_timer_values(struct perf_event *event,
 | |
| 				u64 *now,
 | |
| 				u64 *enabled,
 | |
| 				u64 *running)
 | |
| {
 | |
| 	u64 ctx_time;
 | |
| 
 | |
| 	*now = perf_clock();
 | |
| 	ctx_time = event->shadow_ctx_time + *now;
 | |
| 	__perf_update_times(event, ctx_time, enabled, running);
 | |
| }
 | |
| 
 | |
| static void perf_event_init_userpage(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event_mmap_page *userpg;
 | |
| 	struct perf_buffer *rb;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	rb = rcu_dereference(event->rb);
 | |
| 	if (!rb)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	userpg = rb->user_page;
 | |
| 
 | |
| 	/* Allow new userspace to detect that bit 0 is deprecated */
 | |
| 	userpg->cap_bit0_is_deprecated = 1;
 | |
| 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
 | |
| 	userpg->data_offset = PAGE_SIZE;
 | |
| 	userpg->data_size = perf_data_size(rb);
 | |
| 
 | |
| unlock:
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| void __weak arch_perf_update_userpage(
 | |
| 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Callers need to ensure there can be no nesting of this function, otherwise
 | |
|  * the seqlock logic goes bad. We can not serialize this because the arch
 | |
|  * code calls this from NMI context.
 | |
|  */
 | |
| void perf_event_update_userpage(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event_mmap_page *userpg;
 | |
| 	struct perf_buffer *rb;
 | |
| 	u64 enabled, running, now;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	rb = rcu_dereference(event->rb);
 | |
| 	if (!rb)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * compute total_time_enabled, total_time_running
 | |
| 	 * based on snapshot values taken when the event
 | |
| 	 * was last scheduled in.
 | |
| 	 *
 | |
| 	 * we cannot simply called update_context_time()
 | |
| 	 * because of locking issue as we can be called in
 | |
| 	 * NMI context
 | |
| 	 */
 | |
| 	calc_timer_values(event, &now, &enabled, &running);
 | |
| 
 | |
| 	userpg = rb->user_page;
 | |
| 	/*
 | |
| 	 * Disable preemption to guarantee consistent time stamps are stored to
 | |
| 	 * the user page.
 | |
| 	 */
 | |
| 	preempt_disable();
 | |
| 	++userpg->lock;
 | |
| 	barrier();
 | |
| 	userpg->index = perf_event_index(event);
 | |
| 	userpg->offset = perf_event_count(event);
 | |
| 	if (userpg->index)
 | |
| 		userpg->offset -= local64_read(&event->hw.prev_count);
 | |
| 
 | |
| 	userpg->time_enabled = enabled +
 | |
| 			atomic64_read(&event->child_total_time_enabled);
 | |
| 
 | |
| 	userpg->time_running = running +
 | |
| 			atomic64_read(&event->child_total_time_running);
 | |
| 
 | |
| 	arch_perf_update_userpage(event, userpg, now);
 | |
| 
 | |
| 	barrier();
 | |
| 	++userpg->lock;
 | |
| 	preempt_enable();
 | |
| unlock:
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_event_update_userpage);
 | |
| 
 | |
| static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
 | |
| {
 | |
| 	struct perf_event *event = vmf->vma->vm_file->private_data;
 | |
| 	struct perf_buffer *rb;
 | |
| 	vm_fault_t ret = VM_FAULT_SIGBUS;
 | |
| 
 | |
| 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
 | |
| 		if (vmf->pgoff == 0)
 | |
| 			ret = 0;
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	rb = rcu_dereference(event->rb);
 | |
| 	if (!rb)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
 | |
| 		goto unlock;
 | |
| 
 | |
| 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
 | |
| 	if (!vmf->page)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	get_page(vmf->page);
 | |
| 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
 | |
| 	vmf->page->index   = vmf->pgoff;
 | |
| 
 | |
| 	ret = 0;
 | |
| unlock:
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void ring_buffer_attach(struct perf_event *event,
 | |
| 			       struct perf_buffer *rb)
 | |
| {
 | |
| 	struct perf_buffer *old_rb = NULL;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (event->rb) {
 | |
| 		/*
 | |
| 		 * Should be impossible, we set this when removing
 | |
| 		 * event->rb_entry and wait/clear when adding event->rb_entry.
 | |
| 		 */
 | |
| 		WARN_ON_ONCE(event->rcu_pending);
 | |
| 
 | |
| 		old_rb = event->rb;
 | |
| 		spin_lock_irqsave(&old_rb->event_lock, flags);
 | |
| 		list_del_rcu(&event->rb_entry);
 | |
| 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
 | |
| 
 | |
| 		event->rcu_batches = get_state_synchronize_rcu();
 | |
| 		event->rcu_pending = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (rb) {
 | |
| 		if (event->rcu_pending) {
 | |
| 			cond_synchronize_rcu(event->rcu_batches);
 | |
| 			event->rcu_pending = 0;
 | |
| 		}
 | |
| 
 | |
| 		spin_lock_irqsave(&rb->event_lock, flags);
 | |
| 		list_add_rcu(&event->rb_entry, &rb->event_list);
 | |
| 		spin_unlock_irqrestore(&rb->event_lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Avoid racing with perf_mmap_close(AUX): stop the event
 | |
| 	 * before swizzling the event::rb pointer; if it's getting
 | |
| 	 * unmapped, its aux_mmap_count will be 0 and it won't
 | |
| 	 * restart. See the comment in __perf_pmu_output_stop().
 | |
| 	 *
 | |
| 	 * Data will inevitably be lost when set_output is done in
 | |
| 	 * mid-air, but then again, whoever does it like this is
 | |
| 	 * not in for the data anyway.
 | |
| 	 */
 | |
| 	if (has_aux(event))
 | |
| 		perf_event_stop(event, 0);
 | |
| 
 | |
| 	rcu_assign_pointer(event->rb, rb);
 | |
| 
 | |
| 	if (old_rb) {
 | |
| 		ring_buffer_put(old_rb);
 | |
| 		/*
 | |
| 		 * Since we detached before setting the new rb, so that we
 | |
| 		 * could attach the new rb, we could have missed a wakeup.
 | |
| 		 * Provide it now.
 | |
| 		 */
 | |
| 		wake_up_all(&event->waitq);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void ring_buffer_wakeup(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_buffer *rb;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	rb = rcu_dereference(event->rb);
 | |
| 	if (rb) {
 | |
| 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
 | |
| 			wake_up_all(&event->waitq);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| struct perf_buffer *ring_buffer_get(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_buffer *rb;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	rb = rcu_dereference(event->rb);
 | |
| 	if (rb) {
 | |
| 		if (!refcount_inc_not_zero(&rb->refcount))
 | |
| 			rb = NULL;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return rb;
 | |
| }
 | |
| 
 | |
| void ring_buffer_put(struct perf_buffer *rb)
 | |
| {
 | |
| 	if (!refcount_dec_and_test(&rb->refcount))
 | |
| 		return;
 | |
| 
 | |
| 	WARN_ON_ONCE(!list_empty(&rb->event_list));
 | |
| 
 | |
| 	call_rcu(&rb->rcu_head, rb_free_rcu);
 | |
| }
 | |
| 
 | |
| static void perf_mmap_open(struct vm_area_struct *vma)
 | |
| {
 | |
| 	struct perf_event *event = vma->vm_file->private_data;
 | |
| 
 | |
| 	atomic_inc(&event->mmap_count);
 | |
| 	atomic_inc(&event->rb->mmap_count);
 | |
| 
 | |
| 	if (vma->vm_pgoff)
 | |
| 		atomic_inc(&event->rb->aux_mmap_count);
 | |
| 
 | |
| 	if (event->pmu->event_mapped)
 | |
| 		event->pmu->event_mapped(event, vma->vm_mm);
 | |
| }
 | |
| 
 | |
| static void perf_pmu_output_stop(struct perf_event *event);
 | |
| 
 | |
| /*
 | |
|  * A buffer can be mmap()ed multiple times; either directly through the same
 | |
|  * event, or through other events by use of perf_event_set_output().
 | |
|  *
 | |
|  * In order to undo the VM accounting done by perf_mmap() we need to destroy
 | |
|  * the buffer here, where we still have a VM context. This means we need
 | |
|  * to detach all events redirecting to us.
 | |
|  */
 | |
| static void perf_mmap_close(struct vm_area_struct *vma)
 | |
| {
 | |
| 	struct perf_event *event = vma->vm_file->private_data;
 | |
| 
 | |
| 	struct perf_buffer *rb = ring_buffer_get(event);
 | |
| 	struct user_struct *mmap_user = rb->mmap_user;
 | |
| 	int mmap_locked = rb->mmap_locked;
 | |
| 	unsigned long size = perf_data_size(rb);
 | |
| 
 | |
| 	if (event->pmu->event_unmapped)
 | |
| 		event->pmu->event_unmapped(event, vma->vm_mm);
 | |
| 
 | |
| 	/*
 | |
| 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
 | |
| 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
 | |
| 	 * serialize with perf_mmap here.
 | |
| 	 */
 | |
| 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
 | |
| 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
 | |
| 		/*
 | |
| 		 * Stop all AUX events that are writing to this buffer,
 | |
| 		 * so that we can free its AUX pages and corresponding PMU
 | |
| 		 * data. Note that after rb::aux_mmap_count dropped to zero,
 | |
| 		 * they won't start any more (see perf_aux_output_begin()).
 | |
| 		 */
 | |
| 		perf_pmu_output_stop(event);
 | |
| 
 | |
| 		/* now it's safe to free the pages */
 | |
| 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
 | |
| 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
 | |
| 
 | |
| 		/* this has to be the last one */
 | |
| 		rb_free_aux(rb);
 | |
| 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
 | |
| 
 | |
| 		mutex_unlock(&event->mmap_mutex);
 | |
| 	}
 | |
| 
 | |
| 	atomic_dec(&rb->mmap_count);
 | |
| 
 | |
| 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
 | |
| 		goto out_put;
 | |
| 
 | |
| 	ring_buffer_attach(event, NULL);
 | |
| 	mutex_unlock(&event->mmap_mutex);
 | |
| 
 | |
| 	/* If there's still other mmap()s of this buffer, we're done. */
 | |
| 	if (atomic_read(&rb->mmap_count))
 | |
| 		goto out_put;
 | |
| 
 | |
| 	/*
 | |
| 	 * No other mmap()s, detach from all other events that might redirect
 | |
| 	 * into the now unreachable buffer. Somewhat complicated by the
 | |
| 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
 | |
| 	 */
 | |
| again:
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
 | |
| 		if (!atomic_long_inc_not_zero(&event->refcount)) {
 | |
| 			/*
 | |
| 			 * This event is en-route to free_event() which will
 | |
| 			 * detach it and remove it from the list.
 | |
| 			 */
 | |
| 			continue;
 | |
| 		}
 | |
| 		rcu_read_unlock();
 | |
| 
 | |
| 		mutex_lock(&event->mmap_mutex);
 | |
| 		/*
 | |
| 		 * Check we didn't race with perf_event_set_output() which can
 | |
| 		 * swizzle the rb from under us while we were waiting to
 | |
| 		 * acquire mmap_mutex.
 | |
| 		 *
 | |
| 		 * If we find a different rb; ignore this event, a next
 | |
| 		 * iteration will no longer find it on the list. We have to
 | |
| 		 * still restart the iteration to make sure we're not now
 | |
| 		 * iterating the wrong list.
 | |
| 		 */
 | |
| 		if (event->rb == rb)
 | |
| 			ring_buffer_attach(event, NULL);
 | |
| 
 | |
| 		mutex_unlock(&event->mmap_mutex);
 | |
| 		put_event(event);
 | |
| 
 | |
| 		/*
 | |
| 		 * Restart the iteration; either we're on the wrong list or
 | |
| 		 * destroyed its integrity by doing a deletion.
 | |
| 		 */
 | |
| 		goto again;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	/*
 | |
| 	 * It could be there's still a few 0-ref events on the list; they'll
 | |
| 	 * get cleaned up by free_event() -- they'll also still have their
 | |
| 	 * ref on the rb and will free it whenever they are done with it.
 | |
| 	 *
 | |
| 	 * Aside from that, this buffer is 'fully' detached and unmapped,
 | |
| 	 * undo the VM accounting.
 | |
| 	 */
 | |
| 
 | |
| 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
 | |
| 			&mmap_user->locked_vm);
 | |
| 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
 | |
| 	free_uid(mmap_user);
 | |
| 
 | |
| out_put:
 | |
| 	ring_buffer_put(rb); /* could be last */
 | |
| }
 | |
| 
 | |
| static const struct vm_operations_struct perf_mmap_vmops = {
 | |
| 	.open		= perf_mmap_open,
 | |
| 	.close		= perf_mmap_close, /* non mergeable */
 | |
| 	.fault		= perf_mmap_fault,
 | |
| 	.page_mkwrite	= perf_mmap_fault,
 | |
| };
 | |
| 
 | |
| static int perf_mmap(struct file *file, struct vm_area_struct *vma)
 | |
| {
 | |
| 	struct perf_event *event = file->private_data;
 | |
| 	unsigned long user_locked, user_lock_limit;
 | |
| 	struct user_struct *user = current_user();
 | |
| 	struct perf_buffer *rb = NULL;
 | |
| 	unsigned long locked, lock_limit;
 | |
| 	unsigned long vma_size;
 | |
| 	unsigned long nr_pages;
 | |
| 	long user_extra = 0, extra = 0;
 | |
| 	int ret = 0, flags = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't allow mmap() of inherited per-task counters. This would
 | |
| 	 * create a performance issue due to all children writing to the
 | |
| 	 * same rb.
 | |
| 	 */
 | |
| 	if (event->cpu == -1 && event->attr.inherit)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!(vma->vm_flags & VM_SHARED))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ret = security_perf_event_read(event);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	vma_size = vma->vm_end - vma->vm_start;
 | |
| 
 | |
| 	if (vma->vm_pgoff == 0) {
 | |
| 		nr_pages = (vma_size / PAGE_SIZE) - 1;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
 | |
| 		 * mapped, all subsequent mappings should have the same size
 | |
| 		 * and offset. Must be above the normal perf buffer.
 | |
| 		 */
 | |
| 		u64 aux_offset, aux_size;
 | |
| 
 | |
| 		if (!event->rb)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		nr_pages = vma_size / PAGE_SIZE;
 | |
| 
 | |
| 		mutex_lock(&event->mmap_mutex);
 | |
| 		ret = -EINVAL;
 | |
| 
 | |
| 		rb = event->rb;
 | |
| 		if (!rb)
 | |
| 			goto aux_unlock;
 | |
| 
 | |
| 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
 | |
| 		aux_size = READ_ONCE(rb->user_page->aux_size);
 | |
| 
 | |
| 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
 | |
| 			goto aux_unlock;
 | |
| 
 | |
| 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
 | |
| 			goto aux_unlock;
 | |
| 
 | |
| 		/* already mapped with a different offset */
 | |
| 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
 | |
| 			goto aux_unlock;
 | |
| 
 | |
| 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
 | |
| 			goto aux_unlock;
 | |
| 
 | |
| 		/* already mapped with a different size */
 | |
| 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
 | |
| 			goto aux_unlock;
 | |
| 
 | |
| 		if (!is_power_of_2(nr_pages))
 | |
| 			goto aux_unlock;
 | |
| 
 | |
| 		if (!atomic_inc_not_zero(&rb->mmap_count))
 | |
| 			goto aux_unlock;
 | |
| 
 | |
| 		if (rb_has_aux(rb)) {
 | |
| 			atomic_inc(&rb->aux_mmap_count);
 | |
| 			ret = 0;
 | |
| 			goto unlock;
 | |
| 		}
 | |
| 
 | |
| 		atomic_set(&rb->aux_mmap_count, 1);
 | |
| 		user_extra = nr_pages;
 | |
| 
 | |
| 		goto accounting;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we have rb pages ensure they're a power-of-two number, so we
 | |
| 	 * can do bitmasks instead of modulo.
 | |
| 	 */
 | |
| 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	WARN_ON_ONCE(event->ctx->parent_ctx);
 | |
| again:
 | |
| 	mutex_lock(&event->mmap_mutex);
 | |
| 	if (event->rb) {
 | |
| 		if (event->rb->nr_pages != nr_pages) {
 | |
| 			ret = -EINVAL;
 | |
| 			goto unlock;
 | |
| 		}
 | |
| 
 | |
| 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
 | |
| 			/*
 | |
| 			 * Raced against perf_mmap_close() through
 | |
| 			 * perf_event_set_output(). Try again, hope for better
 | |
| 			 * luck.
 | |
| 			 */
 | |
| 			mutex_unlock(&event->mmap_mutex);
 | |
| 			goto again;
 | |
| 		}
 | |
| 
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	user_extra = nr_pages + 1;
 | |
| 
 | |
| accounting:
 | |
| 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
 | |
| 
 | |
| 	/*
 | |
| 	 * Increase the limit linearly with more CPUs:
 | |
| 	 */
 | |
| 	user_lock_limit *= num_online_cpus();
 | |
| 
 | |
| 	user_locked = atomic_long_read(&user->locked_vm);
 | |
| 
 | |
| 	/*
 | |
| 	 * sysctl_perf_event_mlock may have changed, so that
 | |
| 	 *     user->locked_vm > user_lock_limit
 | |
| 	 */
 | |
| 	if (user_locked > user_lock_limit)
 | |
| 		user_locked = user_lock_limit;
 | |
| 	user_locked += user_extra;
 | |
| 
 | |
| 	if (user_locked > user_lock_limit) {
 | |
| 		/*
 | |
| 		 * charge locked_vm until it hits user_lock_limit;
 | |
| 		 * charge the rest from pinned_vm
 | |
| 		 */
 | |
| 		extra = user_locked - user_lock_limit;
 | |
| 		user_extra -= extra;
 | |
| 	}
 | |
| 
 | |
| 	lock_limit = rlimit(RLIMIT_MEMLOCK);
 | |
| 	lock_limit >>= PAGE_SHIFT;
 | |
| 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
 | |
| 
 | |
| 	if ((locked > lock_limit) && perf_is_paranoid() &&
 | |
| 		!capable(CAP_IPC_LOCK)) {
 | |
| 		ret = -EPERM;
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	WARN_ON(!rb && event->rb);
 | |
| 
 | |
| 	if (vma->vm_flags & VM_WRITE)
 | |
| 		flags |= RING_BUFFER_WRITABLE;
 | |
| 
 | |
| 	if (!rb) {
 | |
| 		rb = rb_alloc(nr_pages,
 | |
| 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
 | |
| 			      event->cpu, flags);
 | |
| 
 | |
| 		if (!rb) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto unlock;
 | |
| 		}
 | |
| 
 | |
| 		atomic_set(&rb->mmap_count, 1);
 | |
| 		rb->mmap_user = get_current_user();
 | |
| 		rb->mmap_locked = extra;
 | |
| 
 | |
| 		ring_buffer_attach(event, rb);
 | |
| 
 | |
| 		perf_event_init_userpage(event);
 | |
| 		perf_event_update_userpage(event);
 | |
| 	} else {
 | |
| 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
 | |
| 				   event->attr.aux_watermark, flags);
 | |
| 		if (!ret)
 | |
| 			rb->aux_mmap_locked = extra;
 | |
| 	}
 | |
| 
 | |
| unlock:
 | |
| 	if (!ret) {
 | |
| 		atomic_long_add(user_extra, &user->locked_vm);
 | |
| 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
 | |
| 
 | |
| 		atomic_inc(&event->mmap_count);
 | |
| 	} else if (rb) {
 | |
| 		atomic_dec(&rb->mmap_count);
 | |
| 	}
 | |
| aux_unlock:
 | |
| 	mutex_unlock(&event->mmap_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
 | |
| 	 * vma.
 | |
| 	 */
 | |
| 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
 | |
| 	vma->vm_ops = &perf_mmap_vmops;
 | |
| 
 | |
| 	if (event->pmu->event_mapped)
 | |
| 		event->pmu->event_mapped(event, vma->vm_mm);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int perf_fasync(int fd, struct file *filp, int on)
 | |
| {
 | |
| 	struct inode *inode = file_inode(filp);
 | |
| 	struct perf_event *event = filp->private_data;
 | |
| 	int retval;
 | |
| 
 | |
| 	inode_lock(inode);
 | |
| 	retval = fasync_helper(fd, filp, on, &event->fasync);
 | |
| 	inode_unlock(inode);
 | |
| 
 | |
| 	if (retval < 0)
 | |
| 		return retval;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct file_operations perf_fops = {
 | |
| 	.llseek			= no_llseek,
 | |
| 	.release		= perf_release,
 | |
| 	.read			= perf_read,
 | |
| 	.poll			= perf_poll,
 | |
| 	.unlocked_ioctl		= perf_ioctl,
 | |
| 	.compat_ioctl		= perf_compat_ioctl,
 | |
| 	.mmap			= perf_mmap,
 | |
| 	.fasync			= perf_fasync,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Perf event wakeup
 | |
|  *
 | |
|  * If there's data, ensure we set the poll() state and publish everything
 | |
|  * to user-space before waking everybody up.
 | |
|  */
 | |
| 
 | |
| static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
 | |
| {
 | |
| 	/* only the parent has fasync state */
 | |
| 	if (event->parent)
 | |
| 		event = event->parent;
 | |
| 	return &event->fasync;
 | |
| }
 | |
| 
 | |
| void perf_event_wakeup(struct perf_event *event)
 | |
| {
 | |
| 	ring_buffer_wakeup(event);
 | |
| 
 | |
| 	if (event->pending_kill) {
 | |
| 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
 | |
| 		event->pending_kill = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void perf_pending_event_disable(struct perf_event *event)
 | |
| {
 | |
| 	int cpu = READ_ONCE(event->pending_disable);
 | |
| 
 | |
| 	if (cpu < 0)
 | |
| 		return;
 | |
| 
 | |
| 	if (cpu == smp_processor_id()) {
 | |
| 		WRITE_ONCE(event->pending_disable, -1);
 | |
| 		perf_event_disable_local(event);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 *  CPU-A			CPU-B
 | |
| 	 *
 | |
| 	 *  perf_event_disable_inatomic()
 | |
| 	 *    @pending_disable = CPU-A;
 | |
| 	 *    irq_work_queue();
 | |
| 	 *
 | |
| 	 *  sched-out
 | |
| 	 *    @pending_disable = -1;
 | |
| 	 *
 | |
| 	 *				sched-in
 | |
| 	 *				perf_event_disable_inatomic()
 | |
| 	 *				  @pending_disable = CPU-B;
 | |
| 	 *				  irq_work_queue(); // FAILS
 | |
| 	 *
 | |
| 	 *  irq_work_run()
 | |
| 	 *    perf_pending_event()
 | |
| 	 *
 | |
| 	 * But the event runs on CPU-B and wants disabling there.
 | |
| 	 */
 | |
| 	irq_work_queue_on(&event->pending, cpu);
 | |
| }
 | |
| 
 | |
| static void perf_pending_event(struct irq_work *entry)
 | |
| {
 | |
| 	struct perf_event *event = container_of(entry, struct perf_event, pending);
 | |
| 	int rctx;
 | |
| 
 | |
| 	rctx = perf_swevent_get_recursion_context();
 | |
| 	/*
 | |
| 	 * If we 'fail' here, that's OK, it means recursion is already disabled
 | |
| 	 * and we won't recurse 'further'.
 | |
| 	 */
 | |
| 
 | |
| 	perf_pending_event_disable(event);
 | |
| 
 | |
| 	if (event->pending_wakeup) {
 | |
| 		event->pending_wakeup = 0;
 | |
| 		perf_event_wakeup(event);
 | |
| 	}
 | |
| 
 | |
| 	if (rctx >= 0)
 | |
| 		perf_swevent_put_recursion_context(rctx);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We assume there is only KVM supporting the callbacks.
 | |
|  * Later on, we might change it to a list if there is
 | |
|  * another virtualization implementation supporting the callbacks.
 | |
|  */
 | |
| struct perf_guest_info_callbacks *perf_guest_cbs;
 | |
| 
 | |
| int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
 | |
| {
 | |
| 	perf_guest_cbs = cbs;
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
 | |
| 
 | |
| int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
 | |
| {
 | |
| 	perf_guest_cbs = NULL;
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
 | |
| 
 | |
| static void
 | |
| perf_output_sample_regs(struct perf_output_handle *handle,
 | |
| 			struct pt_regs *regs, u64 mask)
 | |
| {
 | |
| 	int bit;
 | |
| 	DECLARE_BITMAP(_mask, 64);
 | |
| 
 | |
| 	bitmap_from_u64(_mask, mask);
 | |
| 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
 | |
| 		u64 val;
 | |
| 
 | |
| 		val = perf_reg_value(regs, bit);
 | |
| 		perf_output_put(handle, val);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void perf_sample_regs_user(struct perf_regs *regs_user,
 | |
| 				  struct pt_regs *regs,
 | |
| 				  struct pt_regs *regs_user_copy)
 | |
| {
 | |
| 	if (user_mode(regs)) {
 | |
| 		regs_user->abi = perf_reg_abi(current);
 | |
| 		regs_user->regs = regs;
 | |
| 	} else if (!(current->flags & PF_KTHREAD)) {
 | |
| 		perf_get_regs_user(regs_user, regs, regs_user_copy);
 | |
| 	} else {
 | |
| 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
 | |
| 		regs_user->regs = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void perf_sample_regs_intr(struct perf_regs *regs_intr,
 | |
| 				  struct pt_regs *regs)
 | |
| {
 | |
| 	regs_intr->regs = regs;
 | |
| 	regs_intr->abi  = perf_reg_abi(current);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Get remaining task size from user stack pointer.
 | |
|  *
 | |
|  * It'd be better to take stack vma map and limit this more
 | |
|  * precisely, but there's no way to get it safely under interrupt,
 | |
|  * so using TASK_SIZE as limit.
 | |
|  */
 | |
| static u64 perf_ustack_task_size(struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned long addr = perf_user_stack_pointer(regs);
 | |
| 
 | |
| 	if (!addr || addr >= TASK_SIZE)
 | |
| 		return 0;
 | |
| 
 | |
| 	return TASK_SIZE - addr;
 | |
| }
 | |
| 
 | |
| static u16
 | |
| perf_sample_ustack_size(u16 stack_size, u16 header_size,
 | |
| 			struct pt_regs *regs)
 | |
| {
 | |
| 	u64 task_size;
 | |
| 
 | |
| 	/* No regs, no stack pointer, no dump. */
 | |
| 	if (!regs)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if we fit in with the requested stack size into the:
 | |
| 	 * - TASK_SIZE
 | |
| 	 *   If we don't, we limit the size to the TASK_SIZE.
 | |
| 	 *
 | |
| 	 * - remaining sample size
 | |
| 	 *   If we don't, we customize the stack size to
 | |
| 	 *   fit in to the remaining sample size.
 | |
| 	 */
 | |
| 
 | |
| 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
 | |
| 	stack_size = min(stack_size, (u16) task_size);
 | |
| 
 | |
| 	/* Current header size plus static size and dynamic size. */
 | |
| 	header_size += 2 * sizeof(u64);
 | |
| 
 | |
| 	/* Do we fit in with the current stack dump size? */
 | |
| 	if ((u16) (header_size + stack_size) < header_size) {
 | |
| 		/*
 | |
| 		 * If we overflow the maximum size for the sample,
 | |
| 		 * we customize the stack dump size to fit in.
 | |
| 		 */
 | |
| 		stack_size = USHRT_MAX - header_size - sizeof(u64);
 | |
| 		stack_size = round_up(stack_size, sizeof(u64));
 | |
| 	}
 | |
| 
 | |
| 	return stack_size;
 | |
| }
 | |
| 
 | |
| static void
 | |
| perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
 | |
| 			  struct pt_regs *regs)
 | |
| {
 | |
| 	/* Case of a kernel thread, nothing to dump */
 | |
| 	if (!regs) {
 | |
| 		u64 size = 0;
 | |
| 		perf_output_put(handle, size);
 | |
| 	} else {
 | |
| 		unsigned long sp;
 | |
| 		unsigned int rem;
 | |
| 		u64 dyn_size;
 | |
| 		mm_segment_t fs;
 | |
| 
 | |
| 		/*
 | |
| 		 * We dump:
 | |
| 		 * static size
 | |
| 		 *   - the size requested by user or the best one we can fit
 | |
| 		 *     in to the sample max size
 | |
| 		 * data
 | |
| 		 *   - user stack dump data
 | |
| 		 * dynamic size
 | |
| 		 *   - the actual dumped size
 | |
| 		 */
 | |
| 
 | |
| 		/* Static size. */
 | |
| 		perf_output_put(handle, dump_size);
 | |
| 
 | |
| 		/* Data. */
 | |
| 		sp = perf_user_stack_pointer(regs);
 | |
| 		fs = get_fs();
 | |
| 		set_fs(USER_DS);
 | |
| 		rem = __output_copy_user(handle, (void *) sp, dump_size);
 | |
| 		set_fs(fs);
 | |
| 		dyn_size = dump_size - rem;
 | |
| 
 | |
| 		perf_output_skip(handle, rem);
 | |
| 
 | |
| 		/* Dynamic size. */
 | |
| 		perf_output_put(handle, dyn_size);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static unsigned long perf_prepare_sample_aux(struct perf_event *event,
 | |
| 					  struct perf_sample_data *data,
 | |
| 					  size_t size)
 | |
| {
 | |
| 	struct perf_event *sampler = event->aux_event;
 | |
| 	struct perf_buffer *rb;
 | |
| 
 | |
| 	data->aux_size = 0;
 | |
| 
 | |
| 	if (!sampler)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
 | |
| 		goto out;
 | |
| 
 | |
| 	rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
 | |
| 	if (!rb)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is an NMI hit inside sampling code, don't take
 | |
| 	 * the sample. See also perf_aux_sample_output().
 | |
| 	 */
 | |
| 	if (READ_ONCE(rb->aux_in_sampling)) {
 | |
| 		data->aux_size = 0;
 | |
| 	} else {
 | |
| 		size = min_t(size_t, size, perf_aux_size(rb));
 | |
| 		data->aux_size = ALIGN(size, sizeof(u64));
 | |
| 	}
 | |
| 	ring_buffer_put(rb);
 | |
| 
 | |
| out:
 | |
| 	return data->aux_size;
 | |
| }
 | |
| 
 | |
| long perf_pmu_snapshot_aux(struct perf_buffer *rb,
 | |
| 			   struct perf_event *event,
 | |
| 			   struct perf_output_handle *handle,
 | |
| 			   unsigned long size)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	long ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
 | |
| 	 * paths. If we start calling them in NMI context, they may race with
 | |
| 	 * the IRQ ones, that is, for example, re-starting an event that's just
 | |
| 	 * been stopped, which is why we're using a separate callback that
 | |
| 	 * doesn't change the event state.
 | |
| 	 *
 | |
| 	 * IRQs need to be disabled to prevent IPIs from racing with us.
 | |
| 	 */
 | |
| 	local_irq_save(flags);
 | |
| 	/*
 | |
| 	 * Guard against NMI hits inside the critical section;
 | |
| 	 * see also perf_prepare_sample_aux().
 | |
| 	 */
 | |
| 	WRITE_ONCE(rb->aux_in_sampling, 1);
 | |
| 	barrier();
 | |
| 
 | |
| 	ret = event->pmu->snapshot_aux(event, handle, size);
 | |
| 
 | |
| 	barrier();
 | |
| 	WRITE_ONCE(rb->aux_in_sampling, 0);
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void perf_aux_sample_output(struct perf_event *event,
 | |
| 				   struct perf_output_handle *handle,
 | |
| 				   struct perf_sample_data *data)
 | |
| {
 | |
| 	struct perf_event *sampler = event->aux_event;
 | |
| 	struct perf_buffer *rb;
 | |
| 	unsigned long pad;
 | |
| 	long size;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
 | |
| 		return;
 | |
| 
 | |
| 	rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
 | |
| 	if (!rb)
 | |
| 		return;
 | |
| 
 | |
| 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
 | |
| 
 | |
| 	/*
 | |
| 	 * An error here means that perf_output_copy() failed (returned a
 | |
| 	 * non-zero surplus that it didn't copy), which in its current
 | |
| 	 * enlightened implementation is not possible. If that changes, we'd
 | |
| 	 * like to know.
 | |
| 	 */
 | |
| 	if (WARN_ON_ONCE(size < 0))
 | |
| 		goto out_put;
 | |
| 
 | |
| 	/*
 | |
| 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
 | |
| 	 * perf_prepare_sample_aux(), so should not be more than that.
 | |
| 	 */
 | |
| 	pad = data->aux_size - size;
 | |
| 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
 | |
| 		pad = 8;
 | |
| 
 | |
| 	if (pad) {
 | |
| 		u64 zero = 0;
 | |
| 		perf_output_copy(handle, &zero, pad);
 | |
| 	}
 | |
| 
 | |
| out_put:
 | |
| 	ring_buffer_put(rb);
 | |
| }
 | |
| 
 | |
| static void __perf_event_header__init_id(struct perf_event_header *header,
 | |
| 					 struct perf_sample_data *data,
 | |
| 					 struct perf_event *event)
 | |
| {
 | |
| 	u64 sample_type = event->attr.sample_type;
 | |
| 
 | |
| 	data->type = sample_type;
 | |
| 	header->size += event->id_header_size;
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_TID) {
 | |
| 		/* namespace issues */
 | |
| 		data->tid_entry.pid = perf_event_pid(event, current);
 | |
| 		data->tid_entry.tid = perf_event_tid(event, current);
 | |
| 	}
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_TIME)
 | |
| 		data->time = perf_event_clock(event);
 | |
| 
 | |
| 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
 | |
| 		data->id = primary_event_id(event);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_STREAM_ID)
 | |
| 		data->stream_id = event->id;
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_CPU) {
 | |
| 		data->cpu_entry.cpu	 = raw_smp_processor_id();
 | |
| 		data->cpu_entry.reserved = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void perf_event_header__init_id(struct perf_event_header *header,
 | |
| 				struct perf_sample_data *data,
 | |
| 				struct perf_event *event)
 | |
| {
 | |
| 	if (event->attr.sample_id_all)
 | |
| 		__perf_event_header__init_id(header, data, event);
 | |
| }
 | |
| 
 | |
| static void __perf_event__output_id_sample(struct perf_output_handle *handle,
 | |
| 					   struct perf_sample_data *data)
 | |
| {
 | |
| 	u64 sample_type = data->type;
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_TID)
 | |
| 		perf_output_put(handle, data->tid_entry);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_TIME)
 | |
| 		perf_output_put(handle, data->time);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_ID)
 | |
| 		perf_output_put(handle, data->id);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_STREAM_ID)
 | |
| 		perf_output_put(handle, data->stream_id);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_CPU)
 | |
| 		perf_output_put(handle, data->cpu_entry);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
 | |
| 		perf_output_put(handle, data->id);
 | |
| }
 | |
| 
 | |
| void perf_event__output_id_sample(struct perf_event *event,
 | |
| 				  struct perf_output_handle *handle,
 | |
| 				  struct perf_sample_data *sample)
 | |
| {
 | |
| 	if (event->attr.sample_id_all)
 | |
| 		__perf_event__output_id_sample(handle, sample);
 | |
| }
 | |
| 
 | |
| static void perf_output_read_one(struct perf_output_handle *handle,
 | |
| 				 struct perf_event *event,
 | |
| 				 u64 enabled, u64 running)
 | |
| {
 | |
| 	u64 read_format = event->attr.read_format;
 | |
| 	u64 values[4];
 | |
| 	int n = 0;
 | |
| 
 | |
| 	values[n++] = perf_event_count(event);
 | |
| 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
 | |
| 		values[n++] = enabled +
 | |
| 			atomic64_read(&event->child_total_time_enabled);
 | |
| 	}
 | |
| 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
 | |
| 		values[n++] = running +
 | |
| 			atomic64_read(&event->child_total_time_running);
 | |
| 	}
 | |
| 	if (read_format & PERF_FORMAT_ID)
 | |
| 		values[n++] = primary_event_id(event);
 | |
| 
 | |
| 	__output_copy(handle, values, n * sizeof(u64));
 | |
| }
 | |
| 
 | |
| static void perf_output_read_group(struct perf_output_handle *handle,
 | |
| 			    struct perf_event *event,
 | |
| 			    u64 enabled, u64 running)
 | |
| {
 | |
| 	struct perf_event *leader = event->group_leader, *sub;
 | |
| 	u64 read_format = event->attr.read_format;
 | |
| 	u64 values[5];
 | |
| 	int n = 0;
 | |
| 
 | |
| 	values[n++] = 1 + leader->nr_siblings;
 | |
| 
 | |
| 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
 | |
| 		values[n++] = enabled;
 | |
| 
 | |
| 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
 | |
| 		values[n++] = running;
 | |
| 
 | |
| 	if ((leader != event) &&
 | |
| 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
 | |
| 		leader->pmu->read(leader);
 | |
| 
 | |
| 	values[n++] = perf_event_count(leader);
 | |
| 	if (read_format & PERF_FORMAT_ID)
 | |
| 		values[n++] = primary_event_id(leader);
 | |
| 
 | |
| 	__output_copy(handle, values, n * sizeof(u64));
 | |
| 
 | |
| 	for_each_sibling_event(sub, leader) {
 | |
| 		n = 0;
 | |
| 
 | |
| 		if ((sub != event) &&
 | |
| 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
 | |
| 			sub->pmu->read(sub);
 | |
| 
 | |
| 		values[n++] = perf_event_count(sub);
 | |
| 		if (read_format & PERF_FORMAT_ID)
 | |
| 			values[n++] = primary_event_id(sub);
 | |
| 
 | |
| 		__output_copy(handle, values, n * sizeof(u64));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
 | |
| 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
 | |
| 
 | |
| /*
 | |
|  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
 | |
|  *
 | |
|  * The problem is that its both hard and excessively expensive to iterate the
 | |
|  * child list, not to mention that its impossible to IPI the children running
 | |
|  * on another CPU, from interrupt/NMI context.
 | |
|  */
 | |
| static void perf_output_read(struct perf_output_handle *handle,
 | |
| 			     struct perf_event *event)
 | |
| {
 | |
| 	u64 enabled = 0, running = 0, now;
 | |
| 	u64 read_format = event->attr.read_format;
 | |
| 
 | |
| 	/*
 | |
| 	 * compute total_time_enabled, total_time_running
 | |
| 	 * based on snapshot values taken when the event
 | |
| 	 * was last scheduled in.
 | |
| 	 *
 | |
| 	 * we cannot simply called update_context_time()
 | |
| 	 * because of locking issue as we are called in
 | |
| 	 * NMI context
 | |
| 	 */
 | |
| 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
 | |
| 		calc_timer_values(event, &now, &enabled, &running);
 | |
| 
 | |
| 	if (event->attr.read_format & PERF_FORMAT_GROUP)
 | |
| 		perf_output_read_group(handle, event, enabled, running);
 | |
| 	else
 | |
| 		perf_output_read_one(handle, event, enabled, running);
 | |
| }
 | |
| 
 | |
| static inline bool perf_sample_save_hw_index(struct perf_event *event)
 | |
| {
 | |
| 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
 | |
| }
 | |
| 
 | |
| void perf_output_sample(struct perf_output_handle *handle,
 | |
| 			struct perf_event_header *header,
 | |
| 			struct perf_sample_data *data,
 | |
| 			struct perf_event *event)
 | |
| {
 | |
| 	u64 sample_type = data->type;
 | |
| 
 | |
| 	perf_output_put(handle, *header);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
 | |
| 		perf_output_put(handle, data->id);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_IP)
 | |
| 		perf_output_put(handle, data->ip);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_TID)
 | |
| 		perf_output_put(handle, data->tid_entry);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_TIME)
 | |
| 		perf_output_put(handle, data->time);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_ADDR)
 | |
| 		perf_output_put(handle, data->addr);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_ID)
 | |
| 		perf_output_put(handle, data->id);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_STREAM_ID)
 | |
| 		perf_output_put(handle, data->stream_id);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_CPU)
 | |
| 		perf_output_put(handle, data->cpu_entry);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_PERIOD)
 | |
| 		perf_output_put(handle, data->period);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_READ)
 | |
| 		perf_output_read(handle, event);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
 | |
| 		int size = 1;
 | |
| 
 | |
| 		size += data->callchain->nr;
 | |
| 		size *= sizeof(u64);
 | |
| 		__output_copy(handle, data->callchain, size);
 | |
| 	}
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_RAW) {
 | |
| 		struct perf_raw_record *raw = data->raw;
 | |
| 
 | |
| 		if (raw) {
 | |
| 			struct perf_raw_frag *frag = &raw->frag;
 | |
| 
 | |
| 			perf_output_put(handle, raw->size);
 | |
| 			do {
 | |
| 				if (frag->copy) {
 | |
| 					__output_custom(handle, frag->copy,
 | |
| 							frag->data, frag->size);
 | |
| 				} else {
 | |
| 					__output_copy(handle, frag->data,
 | |
| 						      frag->size);
 | |
| 				}
 | |
| 				if (perf_raw_frag_last(frag))
 | |
| 					break;
 | |
| 				frag = frag->next;
 | |
| 			} while (1);
 | |
| 			if (frag->pad)
 | |
| 				__output_skip(handle, NULL, frag->pad);
 | |
| 		} else {
 | |
| 			struct {
 | |
| 				u32	size;
 | |
| 				u32	data;
 | |
| 			} raw = {
 | |
| 				.size = sizeof(u32),
 | |
| 				.data = 0,
 | |
| 			};
 | |
| 			perf_output_put(handle, raw);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
 | |
| 		if (data->br_stack) {
 | |
| 			size_t size;
 | |
| 
 | |
| 			size = data->br_stack->nr
 | |
| 			     * sizeof(struct perf_branch_entry);
 | |
| 
 | |
| 			perf_output_put(handle, data->br_stack->nr);
 | |
| 			if (perf_sample_save_hw_index(event))
 | |
| 				perf_output_put(handle, data->br_stack->hw_idx);
 | |
| 			perf_output_copy(handle, data->br_stack->entries, size);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * we always store at least the value of nr
 | |
| 			 */
 | |
| 			u64 nr = 0;
 | |
| 			perf_output_put(handle, nr);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_REGS_USER) {
 | |
| 		u64 abi = data->regs_user.abi;
 | |
| 
 | |
| 		/*
 | |
| 		 * If there are no regs to dump, notice it through
 | |
| 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
 | |
| 		 */
 | |
| 		perf_output_put(handle, abi);
 | |
| 
 | |
| 		if (abi) {
 | |
| 			u64 mask = event->attr.sample_regs_user;
 | |
| 			perf_output_sample_regs(handle,
 | |
| 						data->regs_user.regs,
 | |
| 						mask);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_STACK_USER) {
 | |
| 		perf_output_sample_ustack(handle,
 | |
| 					  data->stack_user_size,
 | |
| 					  data->regs_user.regs);
 | |
| 	}
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_WEIGHT)
 | |
| 		perf_output_put(handle, data->weight);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_DATA_SRC)
 | |
| 		perf_output_put(handle, data->data_src.val);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_TRANSACTION)
 | |
| 		perf_output_put(handle, data->txn);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
 | |
| 		u64 abi = data->regs_intr.abi;
 | |
| 		/*
 | |
| 		 * If there are no regs to dump, notice it through
 | |
| 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
 | |
| 		 */
 | |
| 		perf_output_put(handle, abi);
 | |
| 
 | |
| 		if (abi) {
 | |
| 			u64 mask = event->attr.sample_regs_intr;
 | |
| 
 | |
| 			perf_output_sample_regs(handle,
 | |
| 						data->regs_intr.regs,
 | |
| 						mask);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
 | |
| 		perf_output_put(handle, data->phys_addr);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_CGROUP)
 | |
| 		perf_output_put(handle, data->cgroup);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_AUX) {
 | |
| 		perf_output_put(handle, data->aux_size);
 | |
| 
 | |
| 		if (data->aux_size)
 | |
| 			perf_aux_sample_output(event, handle, data);
 | |
| 	}
 | |
| 
 | |
| 	if (!event->attr.watermark) {
 | |
| 		int wakeup_events = event->attr.wakeup_events;
 | |
| 
 | |
| 		if (wakeup_events) {
 | |
| 			struct perf_buffer *rb = handle->rb;
 | |
| 			int events = local_inc_return(&rb->events);
 | |
| 
 | |
| 			if (events >= wakeup_events) {
 | |
| 				local_sub(wakeup_events, &rb->events);
 | |
| 				local_inc(&rb->wakeup);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static u64 perf_virt_to_phys(u64 virt)
 | |
| {
 | |
| 	u64 phys_addr = 0;
 | |
| 	struct page *p = NULL;
 | |
| 
 | |
| 	if (!virt)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (virt >= TASK_SIZE) {
 | |
| 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
 | |
| 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
 | |
| 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
 | |
| 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Walking the pages tables for user address.
 | |
| 		 * Interrupts are disabled, so it prevents any tear down
 | |
| 		 * of the page tables.
 | |
| 		 * Try IRQ-safe get_user_page_fast_only first.
 | |
| 		 * If failed, leave phys_addr as 0.
 | |
| 		 */
 | |
| 		if (current->mm != NULL) {
 | |
| 			pagefault_disable();
 | |
| 			if (get_user_page_fast_only(virt, 0, &p))
 | |
| 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
 | |
| 			pagefault_enable();
 | |
| 		}
 | |
| 
 | |
| 		if (p)
 | |
| 			put_page(p);
 | |
| 	}
 | |
| 
 | |
| 	return phys_addr;
 | |
| }
 | |
| 
 | |
| static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
 | |
| 
 | |
| struct perf_callchain_entry *
 | |
| perf_callchain(struct perf_event *event, struct pt_regs *regs)
 | |
| {
 | |
| 	bool kernel = !event->attr.exclude_callchain_kernel;
 | |
| 	bool user   = !event->attr.exclude_callchain_user;
 | |
| 	/* Disallow cross-task user callchains. */
 | |
| 	bool crosstask = event->ctx->task && event->ctx->task != current;
 | |
| 	const u32 max_stack = event->attr.sample_max_stack;
 | |
| 	struct perf_callchain_entry *callchain;
 | |
| 
 | |
| 	if (!kernel && !user)
 | |
| 		return &__empty_callchain;
 | |
| 
 | |
| 	callchain = get_perf_callchain(regs, 0, kernel, user,
 | |
| 				       max_stack, crosstask, true);
 | |
| 	return callchain ?: &__empty_callchain;
 | |
| }
 | |
| 
 | |
| void perf_prepare_sample(struct perf_event_header *header,
 | |
| 			 struct perf_sample_data *data,
 | |
| 			 struct perf_event *event,
 | |
| 			 struct pt_regs *regs)
 | |
| {
 | |
| 	u64 sample_type = event->attr.sample_type;
 | |
| 
 | |
| 	header->type = PERF_RECORD_SAMPLE;
 | |
| 	header->size = sizeof(*header) + event->header_size;
 | |
| 
 | |
| 	header->misc = 0;
 | |
| 	header->misc |= perf_misc_flags(regs);
 | |
| 
 | |
| 	__perf_event_header__init_id(header, data, event);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_IP)
 | |
| 		data->ip = perf_instruction_pointer(regs);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
 | |
| 		int size = 1;
 | |
| 
 | |
| 		if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
 | |
| 			data->callchain = perf_callchain(event, regs);
 | |
| 
 | |
| 		size += data->callchain->nr;
 | |
| 
 | |
| 		header->size += size * sizeof(u64);
 | |
| 	}
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_RAW) {
 | |
| 		struct perf_raw_record *raw = data->raw;
 | |
| 		int size;
 | |
| 
 | |
| 		if (raw) {
 | |
| 			struct perf_raw_frag *frag = &raw->frag;
 | |
| 			u32 sum = 0;
 | |
| 
 | |
| 			do {
 | |
| 				sum += frag->size;
 | |
| 				if (perf_raw_frag_last(frag))
 | |
| 					break;
 | |
| 				frag = frag->next;
 | |
| 			} while (1);
 | |
| 
 | |
| 			size = round_up(sum + sizeof(u32), sizeof(u64));
 | |
| 			raw->size = size - sizeof(u32);
 | |
| 			frag->pad = raw->size - sum;
 | |
| 		} else {
 | |
| 			size = sizeof(u64);
 | |
| 		}
 | |
| 
 | |
| 		header->size += size;
 | |
| 	}
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
 | |
| 		int size = sizeof(u64); /* nr */
 | |
| 		if (data->br_stack) {
 | |
| 			if (perf_sample_save_hw_index(event))
 | |
| 				size += sizeof(u64);
 | |
| 
 | |
| 			size += data->br_stack->nr
 | |
| 			      * sizeof(struct perf_branch_entry);
 | |
| 		}
 | |
| 		header->size += size;
 | |
| 	}
 | |
| 
 | |
| 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
 | |
| 		perf_sample_regs_user(&data->regs_user, regs,
 | |
| 				      &data->regs_user_copy);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_REGS_USER) {
 | |
| 		/* regs dump ABI info */
 | |
| 		int size = sizeof(u64);
 | |
| 
 | |
| 		if (data->regs_user.regs) {
 | |
| 			u64 mask = event->attr.sample_regs_user;
 | |
| 			size += hweight64(mask) * sizeof(u64);
 | |
| 		}
 | |
| 
 | |
| 		header->size += size;
 | |
| 	}
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_STACK_USER) {
 | |
| 		/*
 | |
| 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
 | |
| 		 * processed as the last one or have additional check added
 | |
| 		 * in case new sample type is added, because we could eat
 | |
| 		 * up the rest of the sample size.
 | |
| 		 */
 | |
| 		u16 stack_size = event->attr.sample_stack_user;
 | |
| 		u16 size = sizeof(u64);
 | |
| 
 | |
| 		stack_size = perf_sample_ustack_size(stack_size, header->size,
 | |
| 						     data->regs_user.regs);
 | |
| 
 | |
| 		/*
 | |
| 		 * If there is something to dump, add space for the dump
 | |
| 		 * itself and for the field that tells the dynamic size,
 | |
| 		 * which is how many have been actually dumped.
 | |
| 		 */
 | |
| 		if (stack_size)
 | |
| 			size += sizeof(u64) + stack_size;
 | |
| 
 | |
| 		data->stack_user_size = stack_size;
 | |
| 		header->size += size;
 | |
| 	}
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
 | |
| 		/* regs dump ABI info */
 | |
| 		int size = sizeof(u64);
 | |
| 
 | |
| 		perf_sample_regs_intr(&data->regs_intr, regs);
 | |
| 
 | |
| 		if (data->regs_intr.regs) {
 | |
| 			u64 mask = event->attr.sample_regs_intr;
 | |
| 
 | |
| 			size += hweight64(mask) * sizeof(u64);
 | |
| 		}
 | |
| 
 | |
| 		header->size += size;
 | |
| 	}
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
 | |
| 		data->phys_addr = perf_virt_to_phys(data->addr);
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_PERF
 | |
| 	if (sample_type & PERF_SAMPLE_CGROUP) {
 | |
| 		struct cgroup *cgrp;
 | |
| 
 | |
| 		/* protected by RCU */
 | |
| 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
 | |
| 		data->cgroup = cgroup_id(cgrp);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_AUX) {
 | |
| 		u64 size;
 | |
| 
 | |
| 		header->size += sizeof(u64); /* size */
 | |
| 
 | |
| 		/*
 | |
| 		 * Given the 16bit nature of header::size, an AUX sample can
 | |
| 		 * easily overflow it, what with all the preceding sample bits.
 | |
| 		 * Make sure this doesn't happen by using up to U16_MAX bytes
 | |
| 		 * per sample in total (rounded down to 8 byte boundary).
 | |
| 		 */
 | |
| 		size = min_t(size_t, U16_MAX - header->size,
 | |
| 			     event->attr.aux_sample_size);
 | |
| 		size = rounddown(size, 8);
 | |
| 		size = perf_prepare_sample_aux(event, data, size);
 | |
| 
 | |
| 		WARN_ON_ONCE(size + header->size > U16_MAX);
 | |
| 		header->size += size;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * If you're adding more sample types here, you likely need to do
 | |
| 	 * something about the overflowing header::size, like repurpose the
 | |
| 	 * lowest 3 bits of size, which should be always zero at the moment.
 | |
| 	 * This raises a more important question, do we really need 512k sized
 | |
| 	 * samples and why, so good argumentation is in order for whatever you
 | |
| 	 * do here next.
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(header->size & 7);
 | |
| }
 | |
| 
 | |
| static __always_inline int
 | |
| __perf_event_output(struct perf_event *event,
 | |
| 		    struct perf_sample_data *data,
 | |
| 		    struct pt_regs *regs,
 | |
| 		    int (*output_begin)(struct perf_output_handle *,
 | |
| 					struct perf_event *,
 | |
| 					unsigned int))
 | |
| {
 | |
| 	struct perf_output_handle handle;
 | |
| 	struct perf_event_header header;
 | |
| 	int err;
 | |
| 
 | |
| 	/* protect the callchain buffers */
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	perf_prepare_sample(&header, data, event, regs);
 | |
| 
 | |
| 	err = output_begin(&handle, event, header.size);
 | |
| 	if (err)
 | |
| 		goto exit;
 | |
| 
 | |
| 	perf_output_sample(&handle, &header, data, event);
 | |
| 
 | |
| 	perf_output_end(&handle);
 | |
| 
 | |
| exit:
 | |
| 	rcu_read_unlock();
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| void
 | |
| perf_event_output_forward(struct perf_event *event,
 | |
| 			 struct perf_sample_data *data,
 | |
| 			 struct pt_regs *regs)
 | |
| {
 | |
| 	__perf_event_output(event, data, regs, perf_output_begin_forward);
 | |
| }
 | |
| 
 | |
| void
 | |
| perf_event_output_backward(struct perf_event *event,
 | |
| 			   struct perf_sample_data *data,
 | |
| 			   struct pt_regs *regs)
 | |
| {
 | |
| 	__perf_event_output(event, data, regs, perf_output_begin_backward);
 | |
| }
 | |
| 
 | |
| int
 | |
| perf_event_output(struct perf_event *event,
 | |
| 		  struct perf_sample_data *data,
 | |
| 		  struct pt_regs *regs)
 | |
| {
 | |
| 	return __perf_event_output(event, data, regs, perf_output_begin);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * read event_id
 | |
|  */
 | |
| 
 | |
| struct perf_read_event {
 | |
| 	struct perf_event_header	header;
 | |
| 
 | |
| 	u32				pid;
 | |
| 	u32				tid;
 | |
| };
 | |
| 
 | |
| static void
 | |
| perf_event_read_event(struct perf_event *event,
 | |
| 			struct task_struct *task)
 | |
| {
 | |
| 	struct perf_output_handle handle;
 | |
| 	struct perf_sample_data sample;
 | |
| 	struct perf_read_event read_event = {
 | |
| 		.header = {
 | |
| 			.type = PERF_RECORD_READ,
 | |
| 			.misc = 0,
 | |
| 			.size = sizeof(read_event) + event->read_size,
 | |
| 		},
 | |
| 		.pid = perf_event_pid(event, task),
 | |
| 		.tid = perf_event_tid(event, task),
 | |
| 	};
 | |
| 	int ret;
 | |
| 
 | |
| 	perf_event_header__init_id(&read_event.header, &sample, event);
 | |
| 	ret = perf_output_begin(&handle, event, read_event.header.size);
 | |
| 	if (ret)
 | |
| 		return;
 | |
| 
 | |
| 	perf_output_put(&handle, read_event);
 | |
| 	perf_output_read(&handle, event);
 | |
| 	perf_event__output_id_sample(event, &handle, &sample);
 | |
| 
 | |
| 	perf_output_end(&handle);
 | |
| }
 | |
| 
 | |
| typedef void (perf_iterate_f)(struct perf_event *event, void *data);
 | |
| 
 | |
| static void
 | |
| perf_iterate_ctx(struct perf_event_context *ctx,
 | |
| 		   perf_iterate_f output,
 | |
| 		   void *data, bool all)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 
 | |
| 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
 | |
| 		if (!all) {
 | |
| 			if (event->state < PERF_EVENT_STATE_INACTIVE)
 | |
| 				continue;
 | |
| 			if (!event_filter_match(event))
 | |
| 				continue;
 | |
| 		}
 | |
| 
 | |
| 		output(event, data);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
 | |
| {
 | |
| 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
 | |
| 	struct perf_event *event;
 | |
| 
 | |
| 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
 | |
| 		/*
 | |
| 		 * Skip events that are not fully formed yet; ensure that
 | |
| 		 * if we observe event->ctx, both event and ctx will be
 | |
| 		 * complete enough. See perf_install_in_context().
 | |
| 		 */
 | |
| 		if (!smp_load_acquire(&event->ctx))
 | |
| 			continue;
 | |
| 
 | |
| 		if (event->state < PERF_EVENT_STATE_INACTIVE)
 | |
| 			continue;
 | |
| 		if (!event_filter_match(event))
 | |
| 			continue;
 | |
| 		output(event, data);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Iterate all events that need to receive side-band events.
 | |
|  *
 | |
|  * For new callers; ensure that account_pmu_sb_event() includes
 | |
|  * your event, otherwise it might not get delivered.
 | |
|  */
 | |
| static void
 | |
| perf_iterate_sb(perf_iterate_f output, void *data,
 | |
| 	       struct perf_event_context *task_ctx)
 | |
| {
 | |
| 	struct perf_event_context *ctx;
 | |
| 	int ctxn;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	/*
 | |
| 	 * If we have task_ctx != NULL we only notify the task context itself.
 | |
| 	 * The task_ctx is set only for EXIT events before releasing task
 | |
| 	 * context.
 | |
| 	 */
 | |
| 	if (task_ctx) {
 | |
| 		perf_iterate_ctx(task_ctx, output, data, false);
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	perf_iterate_sb_cpu(output, data);
 | |
| 
 | |
| 	for_each_task_context_nr(ctxn) {
 | |
| 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
 | |
| 		if (ctx)
 | |
| 			perf_iterate_ctx(ctx, output, data, false);
 | |
| 	}
 | |
| done:
 | |
| 	preempt_enable();
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Clear all file-based filters at exec, they'll have to be
 | |
|  * re-instated when/if these objects are mmapped again.
 | |
|  */
 | |
| static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
 | |
| {
 | |
| 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
 | |
| 	struct perf_addr_filter *filter;
 | |
| 	unsigned int restart = 0, count = 0;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (!has_addr_filter(event))
 | |
| 		return;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&ifh->lock, flags);
 | |
| 	list_for_each_entry(filter, &ifh->list, entry) {
 | |
| 		if (filter->path.dentry) {
 | |
| 			event->addr_filter_ranges[count].start = 0;
 | |
| 			event->addr_filter_ranges[count].size = 0;
 | |
| 			restart++;
 | |
| 		}
 | |
| 
 | |
| 		count++;
 | |
| 	}
 | |
| 
 | |
| 	if (restart)
 | |
| 		event->addr_filters_gen++;
 | |
| 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
 | |
| 
 | |
| 	if (restart)
 | |
| 		perf_event_stop(event, 1);
 | |
| }
 | |
| 
 | |
| void perf_event_exec(void)
 | |
| {
 | |
| 	struct perf_event_context *ctx;
 | |
| 	int ctxn;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for_each_task_context_nr(ctxn) {
 | |
| 		ctx = current->perf_event_ctxp[ctxn];
 | |
| 		if (!ctx)
 | |
| 			continue;
 | |
| 
 | |
| 		perf_event_enable_on_exec(ctxn);
 | |
| 
 | |
| 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
 | |
| 				   true);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| struct remote_output {
 | |
| 	struct perf_buffer	*rb;
 | |
| 	int			err;
 | |
| };
 | |
| 
 | |
| static void __perf_event_output_stop(struct perf_event *event, void *data)
 | |
| {
 | |
| 	struct perf_event *parent = event->parent;
 | |
| 	struct remote_output *ro = data;
 | |
| 	struct perf_buffer *rb = ro->rb;
 | |
| 	struct stop_event_data sd = {
 | |
| 		.event	= event,
 | |
| 	};
 | |
| 
 | |
| 	if (!has_aux(event))
 | |
| 		return;
 | |
| 
 | |
| 	if (!parent)
 | |
| 		parent = event;
 | |
| 
 | |
| 	/*
 | |
| 	 * In case of inheritance, it will be the parent that links to the
 | |
| 	 * ring-buffer, but it will be the child that's actually using it.
 | |
| 	 *
 | |
| 	 * We are using event::rb to determine if the event should be stopped,
 | |
| 	 * however this may race with ring_buffer_attach() (through set_output),
 | |
| 	 * which will make us skip the event that actually needs to be stopped.
 | |
| 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
 | |
| 	 * its rb pointer.
 | |
| 	 */
 | |
| 	if (rcu_dereference(parent->rb) == rb)
 | |
| 		ro->err = __perf_event_stop(&sd);
 | |
| }
 | |
| 
 | |
| static int __perf_pmu_output_stop(void *info)
 | |
| {
 | |
| 	struct perf_event *event = info;
 | |
| 	struct pmu *pmu = event->ctx->pmu;
 | |
| 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
 | |
| 	struct remote_output ro = {
 | |
| 		.rb	= event->rb,
 | |
| 	};
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
 | |
| 	if (cpuctx->task_ctx)
 | |
| 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
 | |
| 				   &ro, false);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return ro.err;
 | |
| }
 | |
| 
 | |
| static void perf_pmu_output_stop(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event *iter;
 | |
| 	int err, cpu;
 | |
| 
 | |
| restart:
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
 | |
| 		/*
 | |
| 		 * For per-CPU events, we need to make sure that neither they
 | |
| 		 * nor their children are running; for cpu==-1 events it's
 | |
| 		 * sufficient to stop the event itself if it's active, since
 | |
| 		 * it can't have children.
 | |
| 		 */
 | |
| 		cpu = iter->cpu;
 | |
| 		if (cpu == -1)
 | |
| 			cpu = READ_ONCE(iter->oncpu);
 | |
| 
 | |
| 		if (cpu == -1)
 | |
| 			continue;
 | |
| 
 | |
| 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
 | |
| 		if (err == -EAGAIN) {
 | |
| 			rcu_read_unlock();
 | |
| 			goto restart;
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * task tracking -- fork/exit
 | |
|  *
 | |
|  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
 | |
|  */
 | |
| 
 | |
| struct perf_task_event {
 | |
| 	struct task_struct		*task;
 | |
| 	struct perf_event_context	*task_ctx;
 | |
| 
 | |
| 	struct {
 | |
| 		struct perf_event_header	header;
 | |
| 
 | |
| 		u32				pid;
 | |
| 		u32				ppid;
 | |
| 		u32				tid;
 | |
| 		u32				ptid;
 | |
| 		u64				time;
 | |
| 	} event_id;
 | |
| };
 | |
| 
 | |
| static int perf_event_task_match(struct perf_event *event)
 | |
| {
 | |
| 	return event->attr.comm  || event->attr.mmap ||
 | |
| 	       event->attr.mmap2 || event->attr.mmap_data ||
 | |
| 	       event->attr.task;
 | |
| }
 | |
| 
 | |
| static void perf_event_task_output(struct perf_event *event,
 | |
| 				   void *data)
 | |
| {
 | |
| 	struct perf_task_event *task_event = data;
 | |
| 	struct perf_output_handle handle;
 | |
| 	struct perf_sample_data	sample;
 | |
| 	struct task_struct *task = task_event->task;
 | |
| 	int ret, size = task_event->event_id.header.size;
 | |
| 
 | |
| 	if (!perf_event_task_match(event))
 | |
| 		return;
 | |
| 
 | |
| 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
 | |
| 
 | |
| 	ret = perf_output_begin(&handle, event,
 | |
| 				task_event->event_id.header.size);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	task_event->event_id.pid = perf_event_pid(event, task);
 | |
| 	task_event->event_id.tid = perf_event_tid(event, task);
 | |
| 
 | |
| 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
 | |
| 		task_event->event_id.ppid = perf_event_pid(event,
 | |
| 							task->real_parent);
 | |
| 		task_event->event_id.ptid = perf_event_pid(event,
 | |
| 							task->real_parent);
 | |
| 	} else {  /* PERF_RECORD_FORK */
 | |
| 		task_event->event_id.ppid = perf_event_pid(event, current);
 | |
| 		task_event->event_id.ptid = perf_event_tid(event, current);
 | |
| 	}
 | |
| 
 | |
| 	task_event->event_id.time = perf_event_clock(event);
 | |
| 
 | |
| 	perf_output_put(&handle, task_event->event_id);
 | |
| 
 | |
| 	perf_event__output_id_sample(event, &handle, &sample);
 | |
| 
 | |
| 	perf_output_end(&handle);
 | |
| out:
 | |
| 	task_event->event_id.header.size = size;
 | |
| }
 | |
| 
 | |
| static void perf_event_task(struct task_struct *task,
 | |
| 			      struct perf_event_context *task_ctx,
 | |
| 			      int new)
 | |
| {
 | |
| 	struct perf_task_event task_event;
 | |
| 
 | |
| 	if (!atomic_read(&nr_comm_events) &&
 | |
| 	    !atomic_read(&nr_mmap_events) &&
 | |
| 	    !atomic_read(&nr_task_events))
 | |
| 		return;
 | |
| 
 | |
| 	task_event = (struct perf_task_event){
 | |
| 		.task	  = task,
 | |
| 		.task_ctx = task_ctx,
 | |
| 		.event_id    = {
 | |
| 			.header = {
 | |
| 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
 | |
| 				.misc = 0,
 | |
| 				.size = sizeof(task_event.event_id),
 | |
| 			},
 | |
| 			/* .pid  */
 | |
| 			/* .ppid */
 | |
| 			/* .tid  */
 | |
| 			/* .ptid */
 | |
| 			/* .time */
 | |
| 		},
 | |
| 	};
 | |
| 
 | |
| 	perf_iterate_sb(perf_event_task_output,
 | |
| 		       &task_event,
 | |
| 		       task_ctx);
 | |
| }
 | |
| 
 | |
| void perf_event_fork(struct task_struct *task)
 | |
| {
 | |
| 	perf_event_task(task, NULL, 1);
 | |
| 	perf_event_namespaces(task);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * comm tracking
 | |
|  */
 | |
| 
 | |
| struct perf_comm_event {
 | |
| 	struct task_struct	*task;
 | |
| 	char			*comm;
 | |
| 	int			comm_size;
 | |
| 
 | |
| 	struct {
 | |
| 		struct perf_event_header	header;
 | |
| 
 | |
| 		u32				pid;
 | |
| 		u32				tid;
 | |
| 	} event_id;
 | |
| };
 | |
| 
 | |
| static int perf_event_comm_match(struct perf_event *event)
 | |
| {
 | |
| 	return event->attr.comm;
 | |
| }
 | |
| 
 | |
| static void perf_event_comm_output(struct perf_event *event,
 | |
| 				   void *data)
 | |
| {
 | |
| 	struct perf_comm_event *comm_event = data;
 | |
| 	struct perf_output_handle handle;
 | |
| 	struct perf_sample_data sample;
 | |
| 	int size = comm_event->event_id.header.size;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!perf_event_comm_match(event))
 | |
| 		return;
 | |
| 
 | |
| 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
 | |
| 	ret = perf_output_begin(&handle, event,
 | |
| 				comm_event->event_id.header.size);
 | |
| 
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
 | |
| 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
 | |
| 
 | |
| 	perf_output_put(&handle, comm_event->event_id);
 | |
| 	__output_copy(&handle, comm_event->comm,
 | |
| 				   comm_event->comm_size);
 | |
| 
 | |
| 	perf_event__output_id_sample(event, &handle, &sample);
 | |
| 
 | |
| 	perf_output_end(&handle);
 | |
| out:
 | |
| 	comm_event->event_id.header.size = size;
 | |
| }
 | |
| 
 | |
| static void perf_event_comm_event(struct perf_comm_event *comm_event)
 | |
| {
 | |
| 	char comm[TASK_COMM_LEN];
 | |
| 	unsigned int size;
 | |
| 
 | |
| 	memset(comm, 0, sizeof(comm));
 | |
| 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
 | |
| 	size = ALIGN(strlen(comm)+1, sizeof(u64));
 | |
| 
 | |
| 	comm_event->comm = comm;
 | |
| 	comm_event->comm_size = size;
 | |
| 
 | |
| 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
 | |
| 
 | |
| 	perf_iterate_sb(perf_event_comm_output,
 | |
| 		       comm_event,
 | |
| 		       NULL);
 | |
| }
 | |
| 
 | |
| void perf_event_comm(struct task_struct *task, bool exec)
 | |
| {
 | |
| 	struct perf_comm_event comm_event;
 | |
| 
 | |
| 	if (!atomic_read(&nr_comm_events))
 | |
| 		return;
 | |
| 
 | |
| 	comm_event = (struct perf_comm_event){
 | |
| 		.task	= task,
 | |
| 		/* .comm      */
 | |
| 		/* .comm_size */
 | |
| 		.event_id  = {
 | |
| 			.header = {
 | |
| 				.type = PERF_RECORD_COMM,
 | |
| 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
 | |
| 				/* .size */
 | |
| 			},
 | |
| 			/* .pid */
 | |
| 			/* .tid */
 | |
| 		},
 | |
| 	};
 | |
| 
 | |
| 	perf_event_comm_event(&comm_event);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * namespaces tracking
 | |
|  */
 | |
| 
 | |
| struct perf_namespaces_event {
 | |
| 	struct task_struct		*task;
 | |
| 
 | |
| 	struct {
 | |
| 		struct perf_event_header	header;
 | |
| 
 | |
| 		u32				pid;
 | |
| 		u32				tid;
 | |
| 		u64				nr_namespaces;
 | |
| 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
 | |
| 	} event_id;
 | |
| };
 | |
| 
 | |
| static int perf_event_namespaces_match(struct perf_event *event)
 | |
| {
 | |
| 	return event->attr.namespaces;
 | |
| }
 | |
| 
 | |
| static void perf_event_namespaces_output(struct perf_event *event,
 | |
| 					 void *data)
 | |
| {
 | |
| 	struct perf_namespaces_event *namespaces_event = data;
 | |
| 	struct perf_output_handle handle;
 | |
| 	struct perf_sample_data sample;
 | |
| 	u16 header_size = namespaces_event->event_id.header.size;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!perf_event_namespaces_match(event))
 | |
| 		return;
 | |
| 
 | |
| 	perf_event_header__init_id(&namespaces_event->event_id.header,
 | |
| 				   &sample, event);
 | |
| 	ret = perf_output_begin(&handle, event,
 | |
| 				namespaces_event->event_id.header.size);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	namespaces_event->event_id.pid = perf_event_pid(event,
 | |
| 							namespaces_event->task);
 | |
| 	namespaces_event->event_id.tid = perf_event_tid(event,
 | |
| 							namespaces_event->task);
 | |
| 
 | |
| 	perf_output_put(&handle, namespaces_event->event_id);
 | |
| 
 | |
| 	perf_event__output_id_sample(event, &handle, &sample);
 | |
| 
 | |
| 	perf_output_end(&handle);
 | |
| out:
 | |
| 	namespaces_event->event_id.header.size = header_size;
 | |
| }
 | |
| 
 | |
| static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
 | |
| 				   struct task_struct *task,
 | |
| 				   const struct proc_ns_operations *ns_ops)
 | |
| {
 | |
| 	struct path ns_path;
 | |
| 	struct inode *ns_inode;
 | |
| 	int error;
 | |
| 
 | |
| 	error = ns_get_path(&ns_path, task, ns_ops);
 | |
| 	if (!error) {
 | |
| 		ns_inode = ns_path.dentry->d_inode;
 | |
| 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
 | |
| 		ns_link_info->ino = ns_inode->i_ino;
 | |
| 		path_put(&ns_path);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void perf_event_namespaces(struct task_struct *task)
 | |
| {
 | |
| 	struct perf_namespaces_event namespaces_event;
 | |
| 	struct perf_ns_link_info *ns_link_info;
 | |
| 
 | |
| 	if (!atomic_read(&nr_namespaces_events))
 | |
| 		return;
 | |
| 
 | |
| 	namespaces_event = (struct perf_namespaces_event){
 | |
| 		.task	= task,
 | |
| 		.event_id  = {
 | |
| 			.header = {
 | |
| 				.type = PERF_RECORD_NAMESPACES,
 | |
| 				.misc = 0,
 | |
| 				.size = sizeof(namespaces_event.event_id),
 | |
| 			},
 | |
| 			/* .pid */
 | |
| 			/* .tid */
 | |
| 			.nr_namespaces = NR_NAMESPACES,
 | |
| 			/* .link_info[NR_NAMESPACES] */
 | |
| 		},
 | |
| 	};
 | |
| 
 | |
| 	ns_link_info = namespaces_event.event_id.link_info;
 | |
| 
 | |
| 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
 | |
| 			       task, &mntns_operations);
 | |
| 
 | |
| #ifdef CONFIG_USER_NS
 | |
| 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
 | |
| 			       task, &userns_operations);
 | |
| #endif
 | |
| #ifdef CONFIG_NET_NS
 | |
| 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
 | |
| 			       task, &netns_operations);
 | |
| #endif
 | |
| #ifdef CONFIG_UTS_NS
 | |
| 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
 | |
| 			       task, &utsns_operations);
 | |
| #endif
 | |
| #ifdef CONFIG_IPC_NS
 | |
| 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
 | |
| 			       task, &ipcns_operations);
 | |
| #endif
 | |
| #ifdef CONFIG_PID_NS
 | |
| 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
 | |
| 			       task, &pidns_operations);
 | |
| #endif
 | |
| #ifdef CONFIG_CGROUPS
 | |
| 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
 | |
| 			       task, &cgroupns_operations);
 | |
| #endif
 | |
| 
 | |
| 	perf_iterate_sb(perf_event_namespaces_output,
 | |
| 			&namespaces_event,
 | |
| 			NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * cgroup tracking
 | |
|  */
 | |
| #ifdef CONFIG_CGROUP_PERF
 | |
| 
 | |
| struct perf_cgroup_event {
 | |
| 	char				*path;
 | |
| 	int				path_size;
 | |
| 	struct {
 | |
| 		struct perf_event_header	header;
 | |
| 		u64				id;
 | |
| 		char				path[];
 | |
| 	} event_id;
 | |
| };
 | |
| 
 | |
| static int perf_event_cgroup_match(struct perf_event *event)
 | |
| {
 | |
| 	return event->attr.cgroup;
 | |
| }
 | |
| 
 | |
| static void perf_event_cgroup_output(struct perf_event *event, void *data)
 | |
| {
 | |
| 	struct perf_cgroup_event *cgroup_event = data;
 | |
| 	struct perf_output_handle handle;
 | |
| 	struct perf_sample_data sample;
 | |
| 	u16 header_size = cgroup_event->event_id.header.size;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!perf_event_cgroup_match(event))
 | |
| 		return;
 | |
| 
 | |
| 	perf_event_header__init_id(&cgroup_event->event_id.header,
 | |
| 				   &sample, event);
 | |
| 	ret = perf_output_begin(&handle, event,
 | |
| 				cgroup_event->event_id.header.size);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	perf_output_put(&handle, cgroup_event->event_id);
 | |
| 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
 | |
| 
 | |
| 	perf_event__output_id_sample(event, &handle, &sample);
 | |
| 
 | |
| 	perf_output_end(&handle);
 | |
| out:
 | |
| 	cgroup_event->event_id.header.size = header_size;
 | |
| }
 | |
| 
 | |
| static void perf_event_cgroup(struct cgroup *cgrp)
 | |
| {
 | |
| 	struct perf_cgroup_event cgroup_event;
 | |
| 	char path_enomem[16] = "//enomem";
 | |
| 	char *pathname;
 | |
| 	size_t size;
 | |
| 
 | |
| 	if (!atomic_read(&nr_cgroup_events))
 | |
| 		return;
 | |
| 
 | |
| 	cgroup_event = (struct perf_cgroup_event){
 | |
| 		.event_id  = {
 | |
| 			.header = {
 | |
| 				.type = PERF_RECORD_CGROUP,
 | |
| 				.misc = 0,
 | |
| 				.size = sizeof(cgroup_event.event_id),
 | |
| 			},
 | |
| 			.id = cgroup_id(cgrp),
 | |
| 		},
 | |
| 	};
 | |
| 
 | |
| 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
 | |
| 	if (pathname == NULL) {
 | |
| 		cgroup_event.path = path_enomem;
 | |
| 	} else {
 | |
| 		/* just to be sure to have enough space for alignment */
 | |
| 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
 | |
| 		cgroup_event.path = pathname;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Since our buffer works in 8 byte units we need to align our string
 | |
| 	 * size to a multiple of 8. However, we must guarantee the tail end is
 | |
| 	 * zero'd out to avoid leaking random bits to userspace.
 | |
| 	 */
 | |
| 	size = strlen(cgroup_event.path) + 1;
 | |
| 	while (!IS_ALIGNED(size, sizeof(u64)))
 | |
| 		cgroup_event.path[size++] = '\0';
 | |
| 
 | |
| 	cgroup_event.event_id.header.size += size;
 | |
| 	cgroup_event.path_size = size;
 | |
| 
 | |
| 	perf_iterate_sb(perf_event_cgroup_output,
 | |
| 			&cgroup_event,
 | |
| 			NULL);
 | |
| 
 | |
| 	kfree(pathname);
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * mmap tracking
 | |
|  */
 | |
| 
 | |
| struct perf_mmap_event {
 | |
| 	struct vm_area_struct	*vma;
 | |
| 
 | |
| 	const char		*file_name;
 | |
| 	int			file_size;
 | |
| 	int			maj, min;
 | |
| 	u64			ino;
 | |
| 	u64			ino_generation;
 | |
| 	u32			prot, flags;
 | |
| 
 | |
| 	struct {
 | |
| 		struct perf_event_header	header;
 | |
| 
 | |
| 		u32				pid;
 | |
| 		u32				tid;
 | |
| 		u64				start;
 | |
| 		u64				len;
 | |
| 		u64				pgoff;
 | |
| 	} event_id;
 | |
| };
 | |
| 
 | |
| static int perf_event_mmap_match(struct perf_event *event,
 | |
| 				 void *data)
 | |
| {
 | |
| 	struct perf_mmap_event *mmap_event = data;
 | |
| 	struct vm_area_struct *vma = mmap_event->vma;
 | |
| 	int executable = vma->vm_flags & VM_EXEC;
 | |
| 
 | |
| 	return (!executable && event->attr.mmap_data) ||
 | |
| 	       (executable && (event->attr.mmap || event->attr.mmap2));
 | |
| }
 | |
| 
 | |
| static void perf_event_mmap_output(struct perf_event *event,
 | |
| 				   void *data)
 | |
| {
 | |
| 	struct perf_mmap_event *mmap_event = data;
 | |
| 	struct perf_output_handle handle;
 | |
| 	struct perf_sample_data sample;
 | |
| 	int size = mmap_event->event_id.header.size;
 | |
| 	u32 type = mmap_event->event_id.header.type;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!perf_event_mmap_match(event, data))
 | |
| 		return;
 | |
| 
 | |
| 	if (event->attr.mmap2) {
 | |
| 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
 | |
| 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
 | |
| 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
 | |
| 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
 | |
| 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
 | |
| 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
 | |
| 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
 | |
| 	}
 | |
| 
 | |
| 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
 | |
| 	ret = perf_output_begin(&handle, event,
 | |
| 				mmap_event->event_id.header.size);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	mmap_event->event_id.pid = perf_event_pid(event, current);
 | |
| 	mmap_event->event_id.tid = perf_event_tid(event, current);
 | |
| 
 | |
| 	perf_output_put(&handle, mmap_event->event_id);
 | |
| 
 | |
| 	if (event->attr.mmap2) {
 | |
| 		perf_output_put(&handle, mmap_event->maj);
 | |
| 		perf_output_put(&handle, mmap_event->min);
 | |
| 		perf_output_put(&handle, mmap_event->ino);
 | |
| 		perf_output_put(&handle, mmap_event->ino_generation);
 | |
| 		perf_output_put(&handle, mmap_event->prot);
 | |
| 		perf_output_put(&handle, mmap_event->flags);
 | |
| 	}
 | |
| 
 | |
| 	__output_copy(&handle, mmap_event->file_name,
 | |
| 				   mmap_event->file_size);
 | |
| 
 | |
| 	perf_event__output_id_sample(event, &handle, &sample);
 | |
| 
 | |
| 	perf_output_end(&handle);
 | |
| out:
 | |
| 	mmap_event->event_id.header.size = size;
 | |
| 	mmap_event->event_id.header.type = type;
 | |
| }
 | |
| 
 | |
| static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
 | |
| {
 | |
| 	struct vm_area_struct *vma = mmap_event->vma;
 | |
| 	struct file *file = vma->vm_file;
 | |
| 	int maj = 0, min = 0;
 | |
| 	u64 ino = 0, gen = 0;
 | |
| 	u32 prot = 0, flags = 0;
 | |
| 	unsigned int size;
 | |
| 	char tmp[16];
 | |
| 	char *buf = NULL;
 | |
| 	char *name;
 | |
| 
 | |
| 	if (vma->vm_flags & VM_READ)
 | |
| 		prot |= PROT_READ;
 | |
| 	if (vma->vm_flags & VM_WRITE)
 | |
| 		prot |= PROT_WRITE;
 | |
| 	if (vma->vm_flags & VM_EXEC)
 | |
| 		prot |= PROT_EXEC;
 | |
| 
 | |
| 	if (vma->vm_flags & VM_MAYSHARE)
 | |
| 		flags = MAP_SHARED;
 | |
| 	else
 | |
| 		flags = MAP_PRIVATE;
 | |
| 
 | |
| 	if (vma->vm_flags & VM_DENYWRITE)
 | |
| 		flags |= MAP_DENYWRITE;
 | |
| 	if (vma->vm_flags & VM_MAYEXEC)
 | |
| 		flags |= MAP_EXECUTABLE;
 | |
| 	if (vma->vm_flags & VM_LOCKED)
 | |
| 		flags |= MAP_LOCKED;
 | |
| 	if (is_vm_hugetlb_page(vma))
 | |
| 		flags |= MAP_HUGETLB;
 | |
| 
 | |
| 	if (file) {
 | |
| 		struct inode *inode;
 | |
| 		dev_t dev;
 | |
| 
 | |
| 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
 | |
| 		if (!buf) {
 | |
| 			name = "//enomem";
 | |
| 			goto cpy_name;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * d_path() works from the end of the rb backwards, so we
 | |
| 		 * need to add enough zero bytes after the string to handle
 | |
| 		 * the 64bit alignment we do later.
 | |
| 		 */
 | |
| 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
 | |
| 		if (IS_ERR(name)) {
 | |
| 			name = "//toolong";
 | |
| 			goto cpy_name;
 | |
| 		}
 | |
| 		inode = file_inode(vma->vm_file);
 | |
| 		dev = inode->i_sb->s_dev;
 | |
| 		ino = inode->i_ino;
 | |
| 		gen = inode->i_generation;
 | |
| 		maj = MAJOR(dev);
 | |
| 		min = MINOR(dev);
 | |
| 
 | |
| 		goto got_name;
 | |
| 	} else {
 | |
| 		if (vma->vm_ops && vma->vm_ops->name) {
 | |
| 			name = (char *) vma->vm_ops->name(vma);
 | |
| 			if (name)
 | |
| 				goto cpy_name;
 | |
| 		}
 | |
| 
 | |
| 		name = (char *)arch_vma_name(vma);
 | |
| 		if (name)
 | |
| 			goto cpy_name;
 | |
| 
 | |
| 		if (vma->vm_start <= vma->vm_mm->start_brk &&
 | |
| 				vma->vm_end >= vma->vm_mm->brk) {
 | |
| 			name = "[heap]";
 | |
| 			goto cpy_name;
 | |
| 		}
 | |
| 		if (vma->vm_start <= vma->vm_mm->start_stack &&
 | |
| 				vma->vm_end >= vma->vm_mm->start_stack) {
 | |
| 			name = "[stack]";
 | |
| 			goto cpy_name;
 | |
| 		}
 | |
| 
 | |
| 		name = "//anon";
 | |
| 		goto cpy_name;
 | |
| 	}
 | |
| 
 | |
| cpy_name:
 | |
| 	strlcpy(tmp, name, sizeof(tmp));
 | |
| 	name = tmp;
 | |
| got_name:
 | |
| 	/*
 | |
| 	 * Since our buffer works in 8 byte units we need to align our string
 | |
| 	 * size to a multiple of 8. However, we must guarantee the tail end is
 | |
| 	 * zero'd out to avoid leaking random bits to userspace.
 | |
| 	 */
 | |
| 	size = strlen(name)+1;
 | |
| 	while (!IS_ALIGNED(size, sizeof(u64)))
 | |
| 		name[size++] = '\0';
 | |
| 
 | |
| 	mmap_event->file_name = name;
 | |
| 	mmap_event->file_size = size;
 | |
| 	mmap_event->maj = maj;
 | |
| 	mmap_event->min = min;
 | |
| 	mmap_event->ino = ino;
 | |
| 	mmap_event->ino_generation = gen;
 | |
| 	mmap_event->prot = prot;
 | |
| 	mmap_event->flags = flags;
 | |
| 
 | |
| 	if (!(vma->vm_flags & VM_EXEC))
 | |
| 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
 | |
| 
 | |
| 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
 | |
| 
 | |
| 	perf_iterate_sb(perf_event_mmap_output,
 | |
| 		       mmap_event,
 | |
| 		       NULL);
 | |
| 
 | |
| 	kfree(buf);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check whether inode and address range match filter criteria.
 | |
|  */
 | |
| static bool perf_addr_filter_match(struct perf_addr_filter *filter,
 | |
| 				     struct file *file, unsigned long offset,
 | |
| 				     unsigned long size)
 | |
| {
 | |
| 	/* d_inode(NULL) won't be equal to any mapped user-space file */
 | |
| 	if (!filter->path.dentry)
 | |
| 		return false;
 | |
| 
 | |
| 	if (d_inode(filter->path.dentry) != file_inode(file))
 | |
| 		return false;
 | |
| 
 | |
| 	if (filter->offset > offset + size)
 | |
| 		return false;
 | |
| 
 | |
| 	if (filter->offset + filter->size < offset)
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
 | |
| 					struct vm_area_struct *vma,
 | |
| 					struct perf_addr_filter_range *fr)
 | |
| {
 | |
| 	unsigned long vma_size = vma->vm_end - vma->vm_start;
 | |
| 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
 | |
| 	struct file *file = vma->vm_file;
 | |
| 
 | |
| 	if (!perf_addr_filter_match(filter, file, off, vma_size))
 | |
| 		return false;
 | |
| 
 | |
| 	if (filter->offset < off) {
 | |
| 		fr->start = vma->vm_start;
 | |
| 		fr->size = min(vma_size, filter->size - (off - filter->offset));
 | |
| 	} else {
 | |
| 		fr->start = vma->vm_start + filter->offset - off;
 | |
| 		fr->size = min(vma->vm_end - fr->start, filter->size);
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
 | |
| {
 | |
| 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
 | |
| 	struct vm_area_struct *vma = data;
 | |
| 	struct perf_addr_filter *filter;
 | |
| 	unsigned int restart = 0, count = 0;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (!has_addr_filter(event))
 | |
| 		return;
 | |
| 
 | |
| 	if (!vma->vm_file)
 | |
| 		return;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&ifh->lock, flags);
 | |
| 	list_for_each_entry(filter, &ifh->list, entry) {
 | |
| 		if (perf_addr_filter_vma_adjust(filter, vma,
 | |
| 						&event->addr_filter_ranges[count]))
 | |
| 			restart++;
 | |
| 
 | |
| 		count++;
 | |
| 	}
 | |
| 
 | |
| 	if (restart)
 | |
| 		event->addr_filters_gen++;
 | |
| 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
 | |
| 
 | |
| 	if (restart)
 | |
| 		perf_event_stop(event, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Adjust all task's events' filters to the new vma
 | |
|  */
 | |
| static void perf_addr_filters_adjust(struct vm_area_struct *vma)
 | |
| {
 | |
| 	struct perf_event_context *ctx;
 | |
| 	int ctxn;
 | |
| 
 | |
| 	/*
 | |
| 	 * Data tracing isn't supported yet and as such there is no need
 | |
| 	 * to keep track of anything that isn't related to executable code:
 | |
| 	 */
 | |
| 	if (!(vma->vm_flags & VM_EXEC))
 | |
| 		return;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for_each_task_context_nr(ctxn) {
 | |
| 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
 | |
| 		if (!ctx)
 | |
| 			continue;
 | |
| 
 | |
| 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| void perf_event_mmap(struct vm_area_struct *vma)
 | |
| {
 | |
| 	struct perf_mmap_event mmap_event;
 | |
| 
 | |
| 	if (!atomic_read(&nr_mmap_events))
 | |
| 		return;
 | |
| 
 | |
| 	mmap_event = (struct perf_mmap_event){
 | |
| 		.vma	= vma,
 | |
| 		/* .file_name */
 | |
| 		/* .file_size */
 | |
| 		.event_id  = {
 | |
| 			.header = {
 | |
| 				.type = PERF_RECORD_MMAP,
 | |
| 				.misc = PERF_RECORD_MISC_USER,
 | |
| 				/* .size */
 | |
| 			},
 | |
| 			/* .pid */
 | |
| 			/* .tid */
 | |
| 			.start  = vma->vm_start,
 | |
| 			.len    = vma->vm_end - vma->vm_start,
 | |
| 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
 | |
| 		},
 | |
| 		/* .maj (attr_mmap2 only) */
 | |
| 		/* .min (attr_mmap2 only) */
 | |
| 		/* .ino (attr_mmap2 only) */
 | |
| 		/* .ino_generation (attr_mmap2 only) */
 | |
| 		/* .prot (attr_mmap2 only) */
 | |
| 		/* .flags (attr_mmap2 only) */
 | |
| 	};
 | |
| 
 | |
| 	perf_addr_filters_adjust(vma);
 | |
| 	perf_event_mmap_event(&mmap_event);
 | |
| }
 | |
| 
 | |
| void perf_event_aux_event(struct perf_event *event, unsigned long head,
 | |
| 			  unsigned long size, u64 flags)
 | |
| {
 | |
| 	struct perf_output_handle handle;
 | |
| 	struct perf_sample_data sample;
 | |
| 	struct perf_aux_event {
 | |
| 		struct perf_event_header	header;
 | |
| 		u64				offset;
 | |
| 		u64				size;
 | |
| 		u64				flags;
 | |
| 	} rec = {
 | |
| 		.header = {
 | |
| 			.type = PERF_RECORD_AUX,
 | |
| 			.misc = 0,
 | |
| 			.size = sizeof(rec),
 | |
| 		},
 | |
| 		.offset		= head,
 | |
| 		.size		= size,
 | |
| 		.flags		= flags,
 | |
| 	};
 | |
| 	int ret;
 | |
| 
 | |
| 	perf_event_header__init_id(&rec.header, &sample, event);
 | |
| 	ret = perf_output_begin(&handle, event, rec.header.size);
 | |
| 
 | |
| 	if (ret)
 | |
| 		return;
 | |
| 
 | |
| 	perf_output_put(&handle, rec);
 | |
| 	perf_event__output_id_sample(event, &handle, &sample);
 | |
| 
 | |
| 	perf_output_end(&handle);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Lost/dropped samples logging
 | |
|  */
 | |
| void perf_log_lost_samples(struct perf_event *event, u64 lost)
 | |
| {
 | |
| 	struct perf_output_handle handle;
 | |
| 	struct perf_sample_data sample;
 | |
| 	int ret;
 | |
| 
 | |
| 	struct {
 | |
| 		struct perf_event_header	header;
 | |
| 		u64				lost;
 | |
| 	} lost_samples_event = {
 | |
| 		.header = {
 | |
| 			.type = PERF_RECORD_LOST_SAMPLES,
 | |
| 			.misc = 0,
 | |
| 			.size = sizeof(lost_samples_event),
 | |
| 		},
 | |
| 		.lost		= lost,
 | |
| 	};
 | |
| 
 | |
| 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
 | |
| 
 | |
| 	ret = perf_output_begin(&handle, event,
 | |
| 				lost_samples_event.header.size);
 | |
| 	if (ret)
 | |
| 		return;
 | |
| 
 | |
| 	perf_output_put(&handle, lost_samples_event);
 | |
| 	perf_event__output_id_sample(event, &handle, &sample);
 | |
| 	perf_output_end(&handle);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * context_switch tracking
 | |
|  */
 | |
| 
 | |
| struct perf_switch_event {
 | |
| 	struct task_struct	*task;
 | |
| 	struct task_struct	*next_prev;
 | |
| 
 | |
| 	struct {
 | |
| 		struct perf_event_header	header;
 | |
| 		u32				next_prev_pid;
 | |
| 		u32				next_prev_tid;
 | |
| 	} event_id;
 | |
| };
 | |
| 
 | |
| static int perf_event_switch_match(struct perf_event *event)
 | |
| {
 | |
| 	return event->attr.context_switch;
 | |
| }
 | |
| 
 | |
| static void perf_event_switch_output(struct perf_event *event, void *data)
 | |
| {
 | |
| 	struct perf_switch_event *se = data;
 | |
| 	struct perf_output_handle handle;
 | |
| 	struct perf_sample_data sample;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!perf_event_switch_match(event))
 | |
| 		return;
 | |
| 
 | |
| 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
 | |
| 	if (event->ctx->task) {
 | |
| 		se->event_id.header.type = PERF_RECORD_SWITCH;
 | |
| 		se->event_id.header.size = sizeof(se->event_id.header);
 | |
| 	} else {
 | |
| 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
 | |
| 		se->event_id.header.size = sizeof(se->event_id);
 | |
| 		se->event_id.next_prev_pid =
 | |
| 					perf_event_pid(event, se->next_prev);
 | |
| 		se->event_id.next_prev_tid =
 | |
| 					perf_event_tid(event, se->next_prev);
 | |
| 	}
 | |
| 
 | |
| 	perf_event_header__init_id(&se->event_id.header, &sample, event);
 | |
| 
 | |
| 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
 | |
| 	if (ret)
 | |
| 		return;
 | |
| 
 | |
| 	if (event->ctx->task)
 | |
| 		perf_output_put(&handle, se->event_id.header);
 | |
| 	else
 | |
| 		perf_output_put(&handle, se->event_id);
 | |
| 
 | |
| 	perf_event__output_id_sample(event, &handle, &sample);
 | |
| 
 | |
| 	perf_output_end(&handle);
 | |
| }
 | |
| 
 | |
| static void perf_event_switch(struct task_struct *task,
 | |
| 			      struct task_struct *next_prev, bool sched_in)
 | |
| {
 | |
| 	struct perf_switch_event switch_event;
 | |
| 
 | |
| 	/* N.B. caller checks nr_switch_events != 0 */
 | |
| 
 | |
| 	switch_event = (struct perf_switch_event){
 | |
| 		.task		= task,
 | |
| 		.next_prev	= next_prev,
 | |
| 		.event_id	= {
 | |
| 			.header = {
 | |
| 				/* .type */
 | |
| 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
 | |
| 				/* .size */
 | |
| 			},
 | |
| 			/* .next_prev_pid */
 | |
| 			/* .next_prev_tid */
 | |
| 		},
 | |
| 	};
 | |
| 
 | |
| 	if (!sched_in && task->state == TASK_RUNNING)
 | |
| 		switch_event.event_id.header.misc |=
 | |
| 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
 | |
| 
 | |
| 	perf_iterate_sb(perf_event_switch_output,
 | |
| 		       &switch_event,
 | |
| 		       NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * IRQ throttle logging
 | |
|  */
 | |
| 
 | |
| static void perf_log_throttle(struct perf_event *event, int enable)
 | |
| {
 | |
| 	struct perf_output_handle handle;
 | |
| 	struct perf_sample_data sample;
 | |
| 	int ret;
 | |
| 
 | |
| 	struct {
 | |
| 		struct perf_event_header	header;
 | |
| 		u64				time;
 | |
| 		u64				id;
 | |
| 		u64				stream_id;
 | |
| 	} throttle_event = {
 | |
| 		.header = {
 | |
| 			.type = PERF_RECORD_THROTTLE,
 | |
| 			.misc = 0,
 | |
| 			.size = sizeof(throttle_event),
 | |
| 		},
 | |
| 		.time		= perf_event_clock(event),
 | |
| 		.id		= primary_event_id(event),
 | |
| 		.stream_id	= event->id,
 | |
| 	};
 | |
| 
 | |
| 	if (enable)
 | |
| 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
 | |
| 
 | |
| 	perf_event_header__init_id(&throttle_event.header, &sample, event);
 | |
| 
 | |
| 	ret = perf_output_begin(&handle, event,
 | |
| 				throttle_event.header.size);
 | |
| 	if (ret)
 | |
| 		return;
 | |
| 
 | |
| 	perf_output_put(&handle, throttle_event);
 | |
| 	perf_event__output_id_sample(event, &handle, &sample);
 | |
| 	perf_output_end(&handle);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ksymbol register/unregister tracking
 | |
|  */
 | |
| 
 | |
| struct perf_ksymbol_event {
 | |
| 	const char	*name;
 | |
| 	int		name_len;
 | |
| 	struct {
 | |
| 		struct perf_event_header        header;
 | |
| 		u64				addr;
 | |
| 		u32				len;
 | |
| 		u16				ksym_type;
 | |
| 		u16				flags;
 | |
| 	} event_id;
 | |
| };
 | |
| 
 | |
| static int perf_event_ksymbol_match(struct perf_event *event)
 | |
| {
 | |
| 	return event->attr.ksymbol;
 | |
| }
 | |
| 
 | |
| static void perf_event_ksymbol_output(struct perf_event *event, void *data)
 | |
| {
 | |
| 	struct perf_ksymbol_event *ksymbol_event = data;
 | |
| 	struct perf_output_handle handle;
 | |
| 	struct perf_sample_data sample;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!perf_event_ksymbol_match(event))
 | |
| 		return;
 | |
| 
 | |
| 	perf_event_header__init_id(&ksymbol_event->event_id.header,
 | |
| 				   &sample, event);
 | |
| 	ret = perf_output_begin(&handle, event,
 | |
| 				ksymbol_event->event_id.header.size);
 | |
| 	if (ret)
 | |
| 		return;
 | |
| 
 | |
| 	perf_output_put(&handle, ksymbol_event->event_id);
 | |
| 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
 | |
| 	perf_event__output_id_sample(event, &handle, &sample);
 | |
| 
 | |
| 	perf_output_end(&handle);
 | |
| }
 | |
| 
 | |
| void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
 | |
| 			const char *sym)
 | |
| {
 | |
| 	struct perf_ksymbol_event ksymbol_event;
 | |
| 	char name[KSYM_NAME_LEN];
 | |
| 	u16 flags = 0;
 | |
| 	int name_len;
 | |
| 
 | |
| 	if (!atomic_read(&nr_ksymbol_events))
 | |
| 		return;
 | |
| 
 | |
| 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
 | |
| 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
 | |
| 		goto err;
 | |
| 
 | |
| 	strlcpy(name, sym, KSYM_NAME_LEN);
 | |
| 	name_len = strlen(name) + 1;
 | |
| 	while (!IS_ALIGNED(name_len, sizeof(u64)))
 | |
| 		name[name_len++] = '\0';
 | |
| 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
 | |
| 
 | |
| 	if (unregister)
 | |
| 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
 | |
| 
 | |
| 	ksymbol_event = (struct perf_ksymbol_event){
 | |
| 		.name = name,
 | |
| 		.name_len = name_len,
 | |
| 		.event_id = {
 | |
| 			.header = {
 | |
| 				.type = PERF_RECORD_KSYMBOL,
 | |
| 				.size = sizeof(ksymbol_event.event_id) +
 | |
| 					name_len,
 | |
| 			},
 | |
| 			.addr = addr,
 | |
| 			.len = len,
 | |
| 			.ksym_type = ksym_type,
 | |
| 			.flags = flags,
 | |
| 		},
 | |
| 	};
 | |
| 
 | |
| 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
 | |
| 	return;
 | |
| err:
 | |
| 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * bpf program load/unload tracking
 | |
|  */
 | |
| 
 | |
| struct perf_bpf_event {
 | |
| 	struct bpf_prog	*prog;
 | |
| 	struct {
 | |
| 		struct perf_event_header        header;
 | |
| 		u16				type;
 | |
| 		u16				flags;
 | |
| 		u32				id;
 | |
| 		u8				tag[BPF_TAG_SIZE];
 | |
| 	} event_id;
 | |
| };
 | |
| 
 | |
| static int perf_event_bpf_match(struct perf_event *event)
 | |
| {
 | |
| 	return event->attr.bpf_event;
 | |
| }
 | |
| 
 | |
| static void perf_event_bpf_output(struct perf_event *event, void *data)
 | |
| {
 | |
| 	struct perf_bpf_event *bpf_event = data;
 | |
| 	struct perf_output_handle handle;
 | |
| 	struct perf_sample_data sample;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!perf_event_bpf_match(event))
 | |
| 		return;
 | |
| 
 | |
| 	perf_event_header__init_id(&bpf_event->event_id.header,
 | |
| 				   &sample, event);
 | |
| 	ret = perf_output_begin(&handle, event,
 | |
| 				bpf_event->event_id.header.size);
 | |
| 	if (ret)
 | |
| 		return;
 | |
| 
 | |
| 	perf_output_put(&handle, bpf_event->event_id);
 | |
| 	perf_event__output_id_sample(event, &handle, &sample);
 | |
| 
 | |
| 	perf_output_end(&handle);
 | |
| }
 | |
| 
 | |
| static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
 | |
| 					 enum perf_bpf_event_type type)
 | |
| {
 | |
| 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
 | |
| 	int i;
 | |
| 
 | |
| 	if (prog->aux->func_cnt == 0) {
 | |
| 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
 | |
| 				   (u64)(unsigned long)prog->bpf_func,
 | |
| 				   prog->jited_len, unregister,
 | |
| 				   prog->aux->ksym.name);
 | |
| 	} else {
 | |
| 		for (i = 0; i < prog->aux->func_cnt; i++) {
 | |
| 			struct bpf_prog *subprog = prog->aux->func[i];
 | |
| 
 | |
| 			perf_event_ksymbol(
 | |
| 				PERF_RECORD_KSYMBOL_TYPE_BPF,
 | |
| 				(u64)(unsigned long)subprog->bpf_func,
 | |
| 				subprog->jited_len, unregister,
 | |
| 				prog->aux->ksym.name);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void perf_event_bpf_event(struct bpf_prog *prog,
 | |
| 			  enum perf_bpf_event_type type,
 | |
| 			  u16 flags)
 | |
| {
 | |
| 	struct perf_bpf_event bpf_event;
 | |
| 
 | |
| 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
 | |
| 	    type >= PERF_BPF_EVENT_MAX)
 | |
| 		return;
 | |
| 
 | |
| 	switch (type) {
 | |
| 	case PERF_BPF_EVENT_PROG_LOAD:
 | |
| 	case PERF_BPF_EVENT_PROG_UNLOAD:
 | |
| 		if (atomic_read(&nr_ksymbol_events))
 | |
| 			perf_event_bpf_emit_ksymbols(prog, type);
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (!atomic_read(&nr_bpf_events))
 | |
| 		return;
 | |
| 
 | |
| 	bpf_event = (struct perf_bpf_event){
 | |
| 		.prog = prog,
 | |
| 		.event_id = {
 | |
| 			.header = {
 | |
| 				.type = PERF_RECORD_BPF_EVENT,
 | |
| 				.size = sizeof(bpf_event.event_id),
 | |
| 			},
 | |
| 			.type = type,
 | |
| 			.flags = flags,
 | |
| 			.id = prog->aux->id,
 | |
| 		},
 | |
| 	};
 | |
| 
 | |
| 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
 | |
| 
 | |
| 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
 | |
| 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
 | |
| }
 | |
| 
 | |
| void perf_event_itrace_started(struct perf_event *event)
 | |
| {
 | |
| 	event->attach_state |= PERF_ATTACH_ITRACE;
 | |
| }
 | |
| 
 | |
| static void perf_log_itrace_start(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_output_handle handle;
 | |
| 	struct perf_sample_data sample;
 | |
| 	struct perf_aux_event {
 | |
| 		struct perf_event_header        header;
 | |
| 		u32				pid;
 | |
| 		u32				tid;
 | |
| 	} rec;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (event->parent)
 | |
| 		event = event->parent;
 | |
| 
 | |
| 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
 | |
| 	    event->attach_state & PERF_ATTACH_ITRACE)
 | |
| 		return;
 | |
| 
 | |
| 	rec.header.type	= PERF_RECORD_ITRACE_START;
 | |
| 	rec.header.misc	= 0;
 | |
| 	rec.header.size	= sizeof(rec);
 | |
| 	rec.pid	= perf_event_pid(event, current);
 | |
| 	rec.tid	= perf_event_tid(event, current);
 | |
| 
 | |
| 	perf_event_header__init_id(&rec.header, &sample, event);
 | |
| 	ret = perf_output_begin(&handle, event, rec.header.size);
 | |
| 
 | |
| 	if (ret)
 | |
| 		return;
 | |
| 
 | |
| 	perf_output_put(&handle, rec);
 | |
| 	perf_event__output_id_sample(event, &handle, &sample);
 | |
| 
 | |
| 	perf_output_end(&handle);
 | |
| }
 | |
| 
 | |
| static int
 | |
| __perf_event_account_interrupt(struct perf_event *event, int throttle)
 | |
| {
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 	int ret = 0;
 | |
| 	u64 seq;
 | |
| 
 | |
| 	seq = __this_cpu_read(perf_throttled_seq);
 | |
| 	if (seq != hwc->interrupts_seq) {
 | |
| 		hwc->interrupts_seq = seq;
 | |
| 		hwc->interrupts = 1;
 | |
| 	} else {
 | |
| 		hwc->interrupts++;
 | |
| 		if (unlikely(throttle
 | |
| 			     && hwc->interrupts >= max_samples_per_tick)) {
 | |
| 			__this_cpu_inc(perf_throttled_count);
 | |
| 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
 | |
| 			hwc->interrupts = MAX_INTERRUPTS;
 | |
| 			perf_log_throttle(event, 0);
 | |
| 			ret = 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (event->attr.freq) {
 | |
| 		u64 now = perf_clock();
 | |
| 		s64 delta = now - hwc->freq_time_stamp;
 | |
| 
 | |
| 		hwc->freq_time_stamp = now;
 | |
| 
 | |
| 		if (delta > 0 && delta < 2*TICK_NSEC)
 | |
| 			perf_adjust_period(event, delta, hwc->last_period, true);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int perf_event_account_interrupt(struct perf_event *event)
 | |
| {
 | |
| 	return __perf_event_account_interrupt(event, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Generic event overflow handling, sampling.
 | |
|  */
 | |
| 
 | |
| static int __perf_event_overflow(struct perf_event *event,
 | |
| 				   int throttle, struct perf_sample_data *data,
 | |
| 				   struct pt_regs *regs)
 | |
| {
 | |
| 	int events = atomic_read(&event->event_limit);
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Non-sampling counters might still use the PMI to fold short
 | |
| 	 * hardware counters, ignore those.
 | |
| 	 */
 | |
| 	if (unlikely(!is_sampling_event(event)))
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = __perf_event_account_interrupt(event, throttle);
 | |
| 
 | |
| 	/*
 | |
| 	 * XXX event_limit might not quite work as expected on inherited
 | |
| 	 * events
 | |
| 	 */
 | |
| 
 | |
| 	event->pending_kill = POLL_IN;
 | |
| 	if (events && atomic_dec_and_test(&event->event_limit)) {
 | |
| 		ret = 1;
 | |
| 		event->pending_kill = POLL_HUP;
 | |
| 
 | |
| 		perf_event_disable_inatomic(event);
 | |
| 	}
 | |
| 
 | |
| 	READ_ONCE(event->overflow_handler)(event, data, regs);
 | |
| 
 | |
| 	if (*perf_event_fasync(event) && event->pending_kill) {
 | |
| 		event->pending_wakeup = 1;
 | |
| 		irq_work_queue(&event->pending);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int perf_event_overflow(struct perf_event *event,
 | |
| 			  struct perf_sample_data *data,
 | |
| 			  struct pt_regs *regs)
 | |
| {
 | |
| 	return __perf_event_overflow(event, 1, data, regs);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Generic software event infrastructure
 | |
|  */
 | |
| 
 | |
| struct swevent_htable {
 | |
| 	struct swevent_hlist		*swevent_hlist;
 | |
| 	struct mutex			hlist_mutex;
 | |
| 	int				hlist_refcount;
 | |
| 
 | |
| 	/* Recursion avoidance in each contexts */
 | |
| 	int				recursion[PERF_NR_CONTEXTS];
 | |
| };
 | |
| 
 | |
| static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
 | |
| 
 | |
| /*
 | |
|  * We directly increment event->count and keep a second value in
 | |
|  * event->hw.period_left to count intervals. This period event
 | |
|  * is kept in the range [-sample_period, 0] so that we can use the
 | |
|  * sign as trigger.
 | |
|  */
 | |
| 
 | |
| u64 perf_swevent_set_period(struct perf_event *event)
 | |
| {
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 	u64 period = hwc->last_period;
 | |
| 	u64 nr, offset;
 | |
| 	s64 old, val;
 | |
| 
 | |
| 	hwc->last_period = hwc->sample_period;
 | |
| 
 | |
| again:
 | |
| 	old = val = local64_read(&hwc->period_left);
 | |
| 	if (val < 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	nr = div64_u64(period + val, period);
 | |
| 	offset = nr * period;
 | |
| 	val -= offset;
 | |
| 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
 | |
| 		goto again;
 | |
| 
 | |
| 	return nr;
 | |
| }
 | |
| 
 | |
| static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
 | |
| 				    struct perf_sample_data *data,
 | |
| 				    struct pt_regs *regs)
 | |
| {
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 	int throttle = 0;
 | |
| 
 | |
| 	if (!overflow)
 | |
| 		overflow = perf_swevent_set_period(event);
 | |
| 
 | |
| 	if (hwc->interrupts == MAX_INTERRUPTS)
 | |
| 		return;
 | |
| 
 | |
| 	for (; overflow; overflow--) {
 | |
| 		if (__perf_event_overflow(event, throttle,
 | |
| 					    data, regs)) {
 | |
| 			/*
 | |
| 			 * We inhibit the overflow from happening when
 | |
| 			 * hwc->interrupts == MAX_INTERRUPTS.
 | |
| 			 */
 | |
| 			break;
 | |
| 		}
 | |
| 		throttle = 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void perf_swevent_event(struct perf_event *event, u64 nr,
 | |
| 			       struct perf_sample_data *data,
 | |
| 			       struct pt_regs *regs)
 | |
| {
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 
 | |
| 	local64_add(nr, &event->count);
 | |
| 
 | |
| 	if (!regs)
 | |
| 		return;
 | |
| 
 | |
| 	if (!is_sampling_event(event))
 | |
| 		return;
 | |
| 
 | |
| 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
 | |
| 		data->period = nr;
 | |
| 		return perf_swevent_overflow(event, 1, data, regs);
 | |
| 	} else
 | |
| 		data->period = event->hw.last_period;
 | |
| 
 | |
| 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
 | |
| 		return perf_swevent_overflow(event, 1, data, regs);
 | |
| 
 | |
| 	if (local64_add_negative(nr, &hwc->period_left))
 | |
| 		return;
 | |
| 
 | |
| 	perf_swevent_overflow(event, 0, data, regs);
 | |
| }
 | |
| 
 | |
| static int perf_exclude_event(struct perf_event *event,
 | |
| 			      struct pt_regs *regs)
 | |
| {
 | |
| 	if (event->hw.state & PERF_HES_STOPPED)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (regs) {
 | |
| 		if (event->attr.exclude_user && user_mode(regs))
 | |
| 			return 1;
 | |
| 
 | |
| 		if (event->attr.exclude_kernel && !user_mode(regs))
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int perf_swevent_match(struct perf_event *event,
 | |
| 				enum perf_type_id type,
 | |
| 				u32 event_id,
 | |
| 				struct perf_sample_data *data,
 | |
| 				struct pt_regs *regs)
 | |
| {
 | |
| 	if (event->attr.type != type)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (event->attr.config != event_id)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (perf_exclude_event(event, regs))
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static inline u64 swevent_hash(u64 type, u32 event_id)
 | |
| {
 | |
| 	u64 val = event_id | (type << 32);
 | |
| 
 | |
| 	return hash_64(val, SWEVENT_HLIST_BITS);
 | |
| }
 | |
| 
 | |
| static inline struct hlist_head *
 | |
| __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
 | |
| {
 | |
| 	u64 hash = swevent_hash(type, event_id);
 | |
| 
 | |
| 	return &hlist->heads[hash];
 | |
| }
 | |
| 
 | |
| /* For the read side: events when they trigger */
 | |
| static inline struct hlist_head *
 | |
| find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
 | |
| {
 | |
| 	struct swevent_hlist *hlist;
 | |
| 
 | |
| 	hlist = rcu_dereference(swhash->swevent_hlist);
 | |
| 	if (!hlist)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return __find_swevent_head(hlist, type, event_id);
 | |
| }
 | |
| 
 | |
| /* For the event head insertion and removal in the hlist */
 | |
| static inline struct hlist_head *
 | |
| find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
 | |
| {
 | |
| 	struct swevent_hlist *hlist;
 | |
| 	u32 event_id = event->attr.config;
 | |
| 	u64 type = event->attr.type;
 | |
| 
 | |
| 	/*
 | |
| 	 * Event scheduling is always serialized against hlist allocation
 | |
| 	 * and release. Which makes the protected version suitable here.
 | |
| 	 * The context lock guarantees that.
 | |
| 	 */
 | |
| 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
 | |
| 					  lockdep_is_held(&event->ctx->lock));
 | |
| 	if (!hlist)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return __find_swevent_head(hlist, type, event_id);
 | |
| }
 | |
| 
 | |
| static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
 | |
| 				    u64 nr,
 | |
| 				    struct perf_sample_data *data,
 | |
| 				    struct pt_regs *regs)
 | |
| {
 | |
| 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
 | |
| 	struct perf_event *event;
 | |
| 	struct hlist_head *head;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	head = find_swevent_head_rcu(swhash, type, event_id);
 | |
| 	if (!head)
 | |
| 		goto end;
 | |
| 
 | |
| 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
 | |
| 		if (perf_swevent_match(event, type, event_id, data, regs))
 | |
| 			perf_swevent_event(event, nr, data, regs);
 | |
| 	}
 | |
| end:
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
 | |
| 
 | |
| int perf_swevent_get_recursion_context(void)
 | |
| {
 | |
| 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
 | |
| 
 | |
| 	return get_recursion_context(swhash->recursion);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
 | |
| 
 | |
| void perf_swevent_put_recursion_context(int rctx)
 | |
| {
 | |
| 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
 | |
| 
 | |
| 	put_recursion_context(swhash->recursion, rctx);
 | |
| }
 | |
| 
 | |
| void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
 | |
| {
 | |
| 	struct perf_sample_data data;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(!regs))
 | |
| 		return;
 | |
| 
 | |
| 	perf_sample_data_init(&data, addr, 0);
 | |
| 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
 | |
| }
 | |
| 
 | |
| void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
 | |
| {
 | |
| 	int rctx;
 | |
| 
 | |
| 	preempt_disable_notrace();
 | |
| 	rctx = perf_swevent_get_recursion_context();
 | |
| 	if (unlikely(rctx < 0))
 | |
| 		goto fail;
 | |
| 
 | |
| 	___perf_sw_event(event_id, nr, regs, addr);
 | |
| 
 | |
| 	perf_swevent_put_recursion_context(rctx);
 | |
| fail:
 | |
| 	preempt_enable_notrace();
 | |
| }
 | |
| 
 | |
| static void perf_swevent_read(struct perf_event *event)
 | |
| {
 | |
| }
 | |
| 
 | |
| static int perf_swevent_add(struct perf_event *event, int flags)
 | |
| {
 | |
| 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 	struct hlist_head *head;
 | |
| 
 | |
| 	if (is_sampling_event(event)) {
 | |
| 		hwc->last_period = hwc->sample_period;
 | |
| 		perf_swevent_set_period(event);
 | |
| 	}
 | |
| 
 | |
| 	hwc->state = !(flags & PERF_EF_START);
 | |
| 
 | |
| 	head = find_swevent_head(swhash, event);
 | |
| 	if (WARN_ON_ONCE(!head))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	hlist_add_head_rcu(&event->hlist_entry, head);
 | |
| 	perf_event_update_userpage(event);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void perf_swevent_del(struct perf_event *event, int flags)
 | |
| {
 | |
| 	hlist_del_rcu(&event->hlist_entry);
 | |
| }
 | |
| 
 | |
| static void perf_swevent_start(struct perf_event *event, int flags)
 | |
| {
 | |
| 	event->hw.state = 0;
 | |
| }
 | |
| 
 | |
| static void perf_swevent_stop(struct perf_event *event, int flags)
 | |
| {
 | |
| 	event->hw.state = PERF_HES_STOPPED;
 | |
| }
 | |
| 
 | |
| /* Deref the hlist from the update side */
 | |
| static inline struct swevent_hlist *
 | |
| swevent_hlist_deref(struct swevent_htable *swhash)
 | |
| {
 | |
| 	return rcu_dereference_protected(swhash->swevent_hlist,
 | |
| 					 lockdep_is_held(&swhash->hlist_mutex));
 | |
| }
 | |
| 
 | |
| static void swevent_hlist_release(struct swevent_htable *swhash)
 | |
| {
 | |
| 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
 | |
| 
 | |
| 	if (!hlist)
 | |
| 		return;
 | |
| 
 | |
| 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
 | |
| 	kfree_rcu(hlist, rcu_head);
 | |
| }
 | |
| 
 | |
| static void swevent_hlist_put_cpu(int cpu)
 | |
| {
 | |
| 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
 | |
| 
 | |
| 	mutex_lock(&swhash->hlist_mutex);
 | |
| 
 | |
| 	if (!--swhash->hlist_refcount)
 | |
| 		swevent_hlist_release(swhash);
 | |
| 
 | |
| 	mutex_unlock(&swhash->hlist_mutex);
 | |
| }
 | |
| 
 | |
| static void swevent_hlist_put(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu)
 | |
| 		swevent_hlist_put_cpu(cpu);
 | |
| }
 | |
| 
 | |
| static int swevent_hlist_get_cpu(int cpu)
 | |
| {
 | |
| 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
 | |
| 	int err = 0;
 | |
| 
 | |
| 	mutex_lock(&swhash->hlist_mutex);
 | |
| 	if (!swevent_hlist_deref(swhash) &&
 | |
| 	    cpumask_test_cpu(cpu, perf_online_mask)) {
 | |
| 		struct swevent_hlist *hlist;
 | |
| 
 | |
| 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
 | |
| 		if (!hlist) {
 | |
| 			err = -ENOMEM;
 | |
| 			goto exit;
 | |
| 		}
 | |
| 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
 | |
| 	}
 | |
| 	swhash->hlist_refcount++;
 | |
| exit:
 | |
| 	mutex_unlock(&swhash->hlist_mutex);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int swevent_hlist_get(void)
 | |
| {
 | |
| 	int err, cpu, failed_cpu;
 | |
| 
 | |
| 	mutex_lock(&pmus_lock);
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		err = swevent_hlist_get_cpu(cpu);
 | |
| 		if (err) {
 | |
| 			failed_cpu = cpu;
 | |
| 			goto fail;
 | |
| 		}
 | |
| 	}
 | |
| 	mutex_unlock(&pmus_lock);
 | |
| 	return 0;
 | |
| fail:
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		if (cpu == failed_cpu)
 | |
| 			break;
 | |
| 		swevent_hlist_put_cpu(cpu);
 | |
| 	}
 | |
| 	mutex_unlock(&pmus_lock);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
 | |
| 
 | |
| static void sw_perf_event_destroy(struct perf_event *event)
 | |
| {
 | |
| 	u64 event_id = event->attr.config;
 | |
| 
 | |
| 	WARN_ON(event->parent);
 | |
| 
 | |
| 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
 | |
| 	swevent_hlist_put();
 | |
| }
 | |
| 
 | |
| static int perf_swevent_init(struct perf_event *event)
 | |
| {
 | |
| 	u64 event_id = event->attr.config;
 | |
| 
 | |
| 	if (event->attr.type != PERF_TYPE_SOFTWARE)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	/*
 | |
| 	 * no branch sampling for software events
 | |
| 	 */
 | |
| 	if (has_branch_stack(event))
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	switch (event_id) {
 | |
| 	case PERF_COUNT_SW_CPU_CLOCK:
 | |
| 	case PERF_COUNT_SW_TASK_CLOCK:
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (event_id >= PERF_COUNT_SW_MAX)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	if (!event->parent) {
 | |
| 		int err;
 | |
| 
 | |
| 		err = swevent_hlist_get();
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 
 | |
| 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
 | |
| 		event->destroy = sw_perf_event_destroy;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct pmu perf_swevent = {
 | |
| 	.task_ctx_nr	= perf_sw_context,
 | |
| 
 | |
| 	.capabilities	= PERF_PMU_CAP_NO_NMI,
 | |
| 
 | |
| 	.event_init	= perf_swevent_init,
 | |
| 	.add		= perf_swevent_add,
 | |
| 	.del		= perf_swevent_del,
 | |
| 	.start		= perf_swevent_start,
 | |
| 	.stop		= perf_swevent_stop,
 | |
| 	.read		= perf_swevent_read,
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_EVENT_TRACING
 | |
| 
 | |
| static int perf_tp_filter_match(struct perf_event *event,
 | |
| 				struct perf_sample_data *data)
 | |
| {
 | |
| 	void *record = data->raw->frag.data;
 | |
| 
 | |
| 	/* only top level events have filters set */
 | |
| 	if (event->parent)
 | |
| 		event = event->parent;
 | |
| 
 | |
| 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int perf_tp_event_match(struct perf_event *event,
 | |
| 				struct perf_sample_data *data,
 | |
| 				struct pt_regs *regs)
 | |
| {
 | |
| 	if (event->hw.state & PERF_HES_STOPPED)
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
 | |
| 	 */
 | |
| 	if (event->attr.exclude_kernel && !user_mode(regs))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!perf_tp_filter_match(event, data))
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
 | |
| 			       struct trace_event_call *call, u64 count,
 | |
| 			       struct pt_regs *regs, struct hlist_head *head,
 | |
| 			       struct task_struct *task)
 | |
| {
 | |
| 	if (bpf_prog_array_valid(call)) {
 | |
| 		*(struct pt_regs **)raw_data = regs;
 | |
| 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
 | |
| 			perf_swevent_put_recursion_context(rctx);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
 | |
| 		      rctx, task);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
 | |
| 
 | |
| void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
 | |
| 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
 | |
| 		   struct task_struct *task)
 | |
| {
 | |
| 	struct perf_sample_data data;
 | |
| 	struct perf_event *event;
 | |
| 
 | |
| 	struct perf_raw_record raw = {
 | |
| 		.frag = {
 | |
| 			.size = entry_size,
 | |
| 			.data = record,
 | |
| 		},
 | |
| 	};
 | |
| 
 | |
| 	perf_sample_data_init(&data, 0, 0);
 | |
| 	data.raw = &raw;
 | |
| 
 | |
| 	perf_trace_buf_update(record, event_type);
 | |
| 
 | |
| 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
 | |
| 		if (perf_tp_event_match(event, &data, regs))
 | |
| 			perf_swevent_event(event, count, &data, regs);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we got specified a target task, also iterate its context and
 | |
| 	 * deliver this event there too.
 | |
| 	 */
 | |
| 	if (task && task != current) {
 | |
| 		struct perf_event_context *ctx;
 | |
| 		struct trace_entry *entry = record;
 | |
| 
 | |
| 		rcu_read_lock();
 | |
| 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
 | |
| 		if (!ctx)
 | |
| 			goto unlock;
 | |
| 
 | |
| 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
 | |
| 			if (event->cpu != smp_processor_id())
 | |
| 				continue;
 | |
| 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
 | |
| 				continue;
 | |
| 			if (event->attr.config != entry->type)
 | |
| 				continue;
 | |
| 			if (perf_tp_event_match(event, &data, regs))
 | |
| 				perf_swevent_event(event, count, &data, regs);
 | |
| 		}
 | |
| unlock:
 | |
| 		rcu_read_unlock();
 | |
| 	}
 | |
| 
 | |
| 	perf_swevent_put_recursion_context(rctx);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_tp_event);
 | |
| 
 | |
| static void tp_perf_event_destroy(struct perf_event *event)
 | |
| {
 | |
| 	perf_trace_destroy(event);
 | |
| }
 | |
| 
 | |
| static int perf_tp_event_init(struct perf_event *event)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	/*
 | |
| 	 * no branch sampling for tracepoint events
 | |
| 	 */
 | |
| 	if (has_branch_stack(event))
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	err = perf_trace_init(event);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	event->destroy = tp_perf_event_destroy;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct pmu perf_tracepoint = {
 | |
| 	.task_ctx_nr	= perf_sw_context,
 | |
| 
 | |
| 	.event_init	= perf_tp_event_init,
 | |
| 	.add		= perf_trace_add,
 | |
| 	.del		= perf_trace_del,
 | |
| 	.start		= perf_swevent_start,
 | |
| 	.stop		= perf_swevent_stop,
 | |
| 	.read		= perf_swevent_read,
 | |
| };
 | |
| 
 | |
| #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
 | |
| /*
 | |
|  * Flags in config, used by dynamic PMU kprobe and uprobe
 | |
|  * The flags should match following PMU_FORMAT_ATTR().
 | |
|  *
 | |
|  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
 | |
|  *                               if not set, create kprobe/uprobe
 | |
|  *
 | |
|  * The following values specify a reference counter (or semaphore in the
 | |
|  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
 | |
|  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
 | |
|  *
 | |
|  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
 | |
|  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
 | |
|  */
 | |
| enum perf_probe_config {
 | |
| 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
 | |
| 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
 | |
| 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
 | |
| };
 | |
| 
 | |
| PMU_FORMAT_ATTR(retprobe, "config:0");
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_KPROBE_EVENTS
 | |
| static struct attribute *kprobe_attrs[] = {
 | |
| 	&format_attr_retprobe.attr,
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static struct attribute_group kprobe_format_group = {
 | |
| 	.name = "format",
 | |
| 	.attrs = kprobe_attrs,
 | |
| };
 | |
| 
 | |
| static const struct attribute_group *kprobe_attr_groups[] = {
 | |
| 	&kprobe_format_group,
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static int perf_kprobe_event_init(struct perf_event *event);
 | |
| static struct pmu perf_kprobe = {
 | |
| 	.task_ctx_nr	= perf_sw_context,
 | |
| 	.event_init	= perf_kprobe_event_init,
 | |
| 	.add		= perf_trace_add,
 | |
| 	.del		= perf_trace_del,
 | |
| 	.start		= perf_swevent_start,
 | |
| 	.stop		= perf_swevent_stop,
 | |
| 	.read		= perf_swevent_read,
 | |
| 	.attr_groups	= kprobe_attr_groups,
 | |
| };
 | |
| 
 | |
| static int perf_kprobe_event_init(struct perf_event *event)
 | |
| {
 | |
| 	int err;
 | |
| 	bool is_retprobe;
 | |
| 
 | |
| 	if (event->attr.type != perf_kprobe.type)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	if (!perfmon_capable())
 | |
| 		return -EACCES;
 | |
| 
 | |
| 	/*
 | |
| 	 * no branch sampling for probe events
 | |
| 	 */
 | |
| 	if (has_branch_stack(event))
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
 | |
| 	err = perf_kprobe_init(event, is_retprobe);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	event->destroy = perf_kprobe_destroy;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_KPROBE_EVENTS */
 | |
| 
 | |
| #ifdef CONFIG_UPROBE_EVENTS
 | |
| PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
 | |
| 
 | |
| static struct attribute *uprobe_attrs[] = {
 | |
| 	&format_attr_retprobe.attr,
 | |
| 	&format_attr_ref_ctr_offset.attr,
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static struct attribute_group uprobe_format_group = {
 | |
| 	.name = "format",
 | |
| 	.attrs = uprobe_attrs,
 | |
| };
 | |
| 
 | |
| static const struct attribute_group *uprobe_attr_groups[] = {
 | |
| 	&uprobe_format_group,
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static int perf_uprobe_event_init(struct perf_event *event);
 | |
| static struct pmu perf_uprobe = {
 | |
| 	.task_ctx_nr	= perf_sw_context,
 | |
| 	.event_init	= perf_uprobe_event_init,
 | |
| 	.add		= perf_trace_add,
 | |
| 	.del		= perf_trace_del,
 | |
| 	.start		= perf_swevent_start,
 | |
| 	.stop		= perf_swevent_stop,
 | |
| 	.read		= perf_swevent_read,
 | |
| 	.attr_groups	= uprobe_attr_groups,
 | |
| };
 | |
| 
 | |
| static int perf_uprobe_event_init(struct perf_event *event)
 | |
| {
 | |
| 	int err;
 | |
| 	unsigned long ref_ctr_offset;
 | |
| 	bool is_retprobe;
 | |
| 
 | |
| 	if (event->attr.type != perf_uprobe.type)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	if (!perfmon_capable())
 | |
| 		return -EACCES;
 | |
| 
 | |
| 	/*
 | |
| 	 * no branch sampling for probe events
 | |
| 	 */
 | |
| 	if (has_branch_stack(event))
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
 | |
| 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
 | |
| 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	event->destroy = perf_uprobe_destroy;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_UPROBE_EVENTS */
 | |
| 
 | |
| static inline void perf_tp_register(void)
 | |
| {
 | |
| 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
 | |
| #ifdef CONFIG_KPROBE_EVENTS
 | |
| 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
 | |
| #endif
 | |
| #ifdef CONFIG_UPROBE_EVENTS
 | |
| 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void perf_event_free_filter(struct perf_event *event)
 | |
| {
 | |
| 	ftrace_profile_free_filter(event);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_BPF_SYSCALL
 | |
| static void bpf_overflow_handler(struct perf_event *event,
 | |
| 				 struct perf_sample_data *data,
 | |
| 				 struct pt_regs *regs)
 | |
| {
 | |
| 	struct bpf_perf_event_data_kern ctx = {
 | |
| 		.data = data,
 | |
| 		.event = event,
 | |
| 	};
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
 | |
| 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
 | |
| 		goto out;
 | |
| 	rcu_read_lock();
 | |
| 	ret = BPF_PROG_RUN(event->prog, &ctx);
 | |
| 	rcu_read_unlock();
 | |
| out:
 | |
| 	__this_cpu_dec(bpf_prog_active);
 | |
| 	if (!ret)
 | |
| 		return;
 | |
| 
 | |
| 	event->orig_overflow_handler(event, data, regs);
 | |
| }
 | |
| 
 | |
| static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
 | |
| {
 | |
| 	struct bpf_prog *prog;
 | |
| 
 | |
| 	if (event->overflow_handler_context)
 | |
| 		/* hw breakpoint or kernel counter */
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (event->prog)
 | |
| 		return -EEXIST;
 | |
| 
 | |
| 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
 | |
| 	if (IS_ERR(prog))
 | |
| 		return PTR_ERR(prog);
 | |
| 
 | |
| 	event->prog = prog;
 | |
| 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
 | |
| 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void perf_event_free_bpf_handler(struct perf_event *event)
 | |
| {
 | |
| 	struct bpf_prog *prog = event->prog;
 | |
| 
 | |
| 	if (!prog)
 | |
| 		return;
 | |
| 
 | |
| 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
 | |
| 	event->prog = NULL;
 | |
| 	bpf_prog_put(prog);
 | |
| }
 | |
| #else
 | |
| static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
 | |
| {
 | |
| 	return -EOPNOTSUPP;
 | |
| }
 | |
| static void perf_event_free_bpf_handler(struct perf_event *event)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * returns true if the event is a tracepoint, or a kprobe/upprobe created
 | |
|  * with perf_event_open()
 | |
|  */
 | |
| static inline bool perf_event_is_tracing(struct perf_event *event)
 | |
| {
 | |
| 	if (event->pmu == &perf_tracepoint)
 | |
| 		return true;
 | |
| #ifdef CONFIG_KPROBE_EVENTS
 | |
| 	if (event->pmu == &perf_kprobe)
 | |
| 		return true;
 | |
| #endif
 | |
| #ifdef CONFIG_UPROBE_EVENTS
 | |
| 	if (event->pmu == &perf_uprobe)
 | |
| 		return true;
 | |
| #endif
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
 | |
| {
 | |
| 	bool is_kprobe, is_tracepoint, is_syscall_tp;
 | |
| 	struct bpf_prog *prog;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!perf_event_is_tracing(event))
 | |
| 		return perf_event_set_bpf_handler(event, prog_fd);
 | |
| 
 | |
| 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
 | |
| 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
 | |
| 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
 | |
| 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
 | |
| 		/* bpf programs can only be attached to u/kprobe or tracepoint */
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	prog = bpf_prog_get(prog_fd);
 | |
| 	if (IS_ERR(prog))
 | |
| 		return PTR_ERR(prog);
 | |
| 
 | |
| 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
 | |
| 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
 | |
| 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
 | |
| 		/* valid fd, but invalid bpf program type */
 | |
| 		bpf_prog_put(prog);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Kprobe override only works for kprobes, not uprobes. */
 | |
| 	if (prog->kprobe_override &&
 | |
| 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
 | |
| 		bpf_prog_put(prog);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (is_tracepoint || is_syscall_tp) {
 | |
| 		int off = trace_event_get_offsets(event->tp_event);
 | |
| 
 | |
| 		if (prog->aux->max_ctx_offset > off) {
 | |
| 			bpf_prog_put(prog);
 | |
| 			return -EACCES;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ret = perf_event_attach_bpf_prog(event, prog);
 | |
| 	if (ret)
 | |
| 		bpf_prog_put(prog);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void perf_event_free_bpf_prog(struct perf_event *event)
 | |
| {
 | |
| 	if (!perf_event_is_tracing(event)) {
 | |
| 		perf_event_free_bpf_handler(event);
 | |
| 		return;
 | |
| 	}
 | |
| 	perf_event_detach_bpf_prog(event);
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline void perf_tp_register(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void perf_event_free_filter(struct perf_event *event)
 | |
| {
 | |
| }
 | |
| 
 | |
| static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
 | |
| {
 | |
| 	return -ENOENT;
 | |
| }
 | |
| 
 | |
| static void perf_event_free_bpf_prog(struct perf_event *event)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_EVENT_TRACING */
 | |
| 
 | |
| #ifdef CONFIG_HAVE_HW_BREAKPOINT
 | |
| void perf_bp_event(struct perf_event *bp, void *data)
 | |
| {
 | |
| 	struct perf_sample_data sample;
 | |
| 	struct pt_regs *regs = data;
 | |
| 
 | |
| 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
 | |
| 
 | |
| 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
 | |
| 		perf_swevent_event(bp, 1, &sample, regs);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Allocate a new address filter
 | |
|  */
 | |
| static struct perf_addr_filter *
 | |
| perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
 | |
| {
 | |
| 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
 | |
| 	struct perf_addr_filter *filter;
 | |
| 
 | |
| 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
 | |
| 	if (!filter)
 | |
| 		return NULL;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&filter->entry);
 | |
| 	list_add_tail(&filter->entry, filters);
 | |
| 
 | |
| 	return filter;
 | |
| }
 | |
| 
 | |
| static void free_filters_list(struct list_head *filters)
 | |
| {
 | |
| 	struct perf_addr_filter *filter, *iter;
 | |
| 
 | |
| 	list_for_each_entry_safe(filter, iter, filters, entry) {
 | |
| 		path_put(&filter->path);
 | |
| 		list_del(&filter->entry);
 | |
| 		kfree(filter);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free existing address filters and optionally install new ones
 | |
|  */
 | |
| static void perf_addr_filters_splice(struct perf_event *event,
 | |
| 				     struct list_head *head)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	LIST_HEAD(list);
 | |
| 
 | |
| 	if (!has_addr_filter(event))
 | |
| 		return;
 | |
| 
 | |
| 	/* don't bother with children, they don't have their own filters */
 | |
| 	if (event->parent)
 | |
| 		return;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
 | |
| 
 | |
| 	list_splice_init(&event->addr_filters.list, &list);
 | |
| 	if (head)
 | |
| 		list_splice(head, &event->addr_filters.list);
 | |
| 
 | |
| 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
 | |
| 
 | |
| 	free_filters_list(&list);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Scan through mm's vmas and see if one of them matches the
 | |
|  * @filter; if so, adjust filter's address range.
 | |
|  * Called with mm::mmap_lock down for reading.
 | |
|  */
 | |
| static void perf_addr_filter_apply(struct perf_addr_filter *filter,
 | |
| 				   struct mm_struct *mm,
 | |
| 				   struct perf_addr_filter_range *fr)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 
 | |
| 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
 | |
| 		if (!vma->vm_file)
 | |
| 			continue;
 | |
| 
 | |
| 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
 | |
| 			return;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update event's address range filters based on the
 | |
|  * task's existing mappings, if any.
 | |
|  */
 | |
| static void perf_event_addr_filters_apply(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
 | |
| 	struct task_struct *task = READ_ONCE(event->ctx->task);
 | |
| 	struct perf_addr_filter *filter;
 | |
| 	struct mm_struct *mm = NULL;
 | |
| 	unsigned int count = 0;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
 | |
| 	 * will stop on the parent's child_mutex that our caller is also holding
 | |
| 	 */
 | |
| 	if (task == TASK_TOMBSTONE)
 | |
| 		return;
 | |
| 
 | |
| 	if (ifh->nr_file_filters) {
 | |
| 		mm = get_task_mm(event->ctx->task);
 | |
| 		if (!mm)
 | |
| 			goto restart;
 | |
| 
 | |
| 		mmap_read_lock(mm);
 | |
| 	}
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&ifh->lock, flags);
 | |
| 	list_for_each_entry(filter, &ifh->list, entry) {
 | |
| 		if (filter->path.dentry) {
 | |
| 			/*
 | |
| 			 * Adjust base offset if the filter is associated to a
 | |
| 			 * binary that needs to be mapped:
 | |
| 			 */
 | |
| 			event->addr_filter_ranges[count].start = 0;
 | |
| 			event->addr_filter_ranges[count].size = 0;
 | |
| 
 | |
| 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
 | |
| 		} else {
 | |
| 			event->addr_filter_ranges[count].start = filter->offset;
 | |
| 			event->addr_filter_ranges[count].size  = filter->size;
 | |
| 		}
 | |
| 
 | |
| 		count++;
 | |
| 	}
 | |
| 
 | |
| 	event->addr_filters_gen++;
 | |
| 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
 | |
| 
 | |
| 	if (ifh->nr_file_filters) {
 | |
| 		mmap_read_unlock(mm);
 | |
| 
 | |
| 		mmput(mm);
 | |
| 	}
 | |
| 
 | |
| restart:
 | |
| 	perf_event_stop(event, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Address range filtering: limiting the data to certain
 | |
|  * instruction address ranges. Filters are ioctl()ed to us from
 | |
|  * userspace as ascii strings.
 | |
|  *
 | |
|  * Filter string format:
 | |
|  *
 | |
|  * ACTION RANGE_SPEC
 | |
|  * where ACTION is one of the
 | |
|  *  * "filter": limit the trace to this region
 | |
|  *  * "start": start tracing from this address
 | |
|  *  * "stop": stop tracing at this address/region;
 | |
|  * RANGE_SPEC is
 | |
|  *  * for kernel addresses: <start address>[/<size>]
 | |
|  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
 | |
|  *
 | |
|  * if <size> is not specified or is zero, the range is treated as a single
 | |
|  * address; not valid for ACTION=="filter".
 | |
|  */
 | |
| enum {
 | |
| 	IF_ACT_NONE = -1,
 | |
| 	IF_ACT_FILTER,
 | |
| 	IF_ACT_START,
 | |
| 	IF_ACT_STOP,
 | |
| 	IF_SRC_FILE,
 | |
| 	IF_SRC_KERNEL,
 | |
| 	IF_SRC_FILEADDR,
 | |
| 	IF_SRC_KERNELADDR,
 | |
| };
 | |
| 
 | |
| enum {
 | |
| 	IF_STATE_ACTION = 0,
 | |
| 	IF_STATE_SOURCE,
 | |
| 	IF_STATE_END,
 | |
| };
 | |
| 
 | |
| static const match_table_t if_tokens = {
 | |
| 	{ IF_ACT_FILTER,	"filter" },
 | |
| 	{ IF_ACT_START,		"start" },
 | |
| 	{ IF_ACT_STOP,		"stop" },
 | |
| 	{ IF_SRC_FILE,		"%u/%u@%s" },
 | |
| 	{ IF_SRC_KERNEL,	"%u/%u" },
 | |
| 	{ IF_SRC_FILEADDR,	"%u@%s" },
 | |
| 	{ IF_SRC_KERNELADDR,	"%u" },
 | |
| 	{ IF_ACT_NONE,		NULL },
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Address filter string parser
 | |
|  */
 | |
| static int
 | |
| perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
 | |
| 			     struct list_head *filters)
 | |
| {
 | |
| 	struct perf_addr_filter *filter = NULL;
 | |
| 	char *start, *orig, *filename = NULL;
 | |
| 	substring_t args[MAX_OPT_ARGS];
 | |
| 	int state = IF_STATE_ACTION, token;
 | |
| 	unsigned int kernel = 0;
 | |
| 	int ret = -EINVAL;
 | |
| 
 | |
| 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
 | |
| 	if (!fstr)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
 | |
| 		static const enum perf_addr_filter_action_t actions[] = {
 | |
| 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
 | |
| 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
 | |
| 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
 | |
| 		};
 | |
| 		ret = -EINVAL;
 | |
| 
 | |
| 		if (!*start)
 | |
| 			continue;
 | |
| 
 | |
| 		/* filter definition begins */
 | |
| 		if (state == IF_STATE_ACTION) {
 | |
| 			filter = perf_addr_filter_new(event, filters);
 | |
| 			if (!filter)
 | |
| 				goto fail;
 | |
| 		}
 | |
| 
 | |
| 		token = match_token(start, if_tokens, args);
 | |
| 		switch (token) {
 | |
| 		case IF_ACT_FILTER:
 | |
| 		case IF_ACT_START:
 | |
| 		case IF_ACT_STOP:
 | |
| 			if (state != IF_STATE_ACTION)
 | |
| 				goto fail;
 | |
| 
 | |
| 			filter->action = actions[token];
 | |
| 			state = IF_STATE_SOURCE;
 | |
| 			break;
 | |
| 
 | |
| 		case IF_SRC_KERNELADDR:
 | |
| 		case IF_SRC_KERNEL:
 | |
| 			kernel = 1;
 | |
| 			/* fall through */
 | |
| 
 | |
| 		case IF_SRC_FILEADDR:
 | |
| 		case IF_SRC_FILE:
 | |
| 			if (state != IF_STATE_SOURCE)
 | |
| 				goto fail;
 | |
| 
 | |
| 			*args[0].to = 0;
 | |
| 			ret = kstrtoul(args[0].from, 0, &filter->offset);
 | |
| 			if (ret)
 | |
| 				goto fail;
 | |
| 
 | |
| 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
 | |
| 				*args[1].to = 0;
 | |
| 				ret = kstrtoul(args[1].from, 0, &filter->size);
 | |
| 				if (ret)
 | |
| 					goto fail;
 | |
| 			}
 | |
| 
 | |
| 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
 | |
| 				int fpos = token == IF_SRC_FILE ? 2 : 1;
 | |
| 
 | |
| 				filename = match_strdup(&args[fpos]);
 | |
| 				if (!filename) {
 | |
| 					ret = -ENOMEM;
 | |
| 					goto fail;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			state = IF_STATE_END;
 | |
| 			break;
 | |
| 
 | |
| 		default:
 | |
| 			goto fail;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Filter definition is fully parsed, validate and install it.
 | |
| 		 * Make sure that it doesn't contradict itself or the event's
 | |
| 		 * attribute.
 | |
| 		 */
 | |
| 		if (state == IF_STATE_END) {
 | |
| 			ret = -EINVAL;
 | |
| 			if (kernel && event->attr.exclude_kernel)
 | |
| 				goto fail;
 | |
| 
 | |
| 			/*
 | |
| 			 * ACTION "filter" must have a non-zero length region
 | |
| 			 * specified.
 | |
| 			 */
 | |
| 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
 | |
| 			    !filter->size)
 | |
| 				goto fail;
 | |
| 
 | |
| 			if (!kernel) {
 | |
| 				if (!filename)
 | |
| 					goto fail;
 | |
| 
 | |
| 				/*
 | |
| 				 * For now, we only support file-based filters
 | |
| 				 * in per-task events; doing so for CPU-wide
 | |
| 				 * events requires additional context switching
 | |
| 				 * trickery, since same object code will be
 | |
| 				 * mapped at different virtual addresses in
 | |
| 				 * different processes.
 | |
| 				 */
 | |
| 				ret = -EOPNOTSUPP;
 | |
| 				if (!event->ctx->task)
 | |
| 					goto fail_free_name;
 | |
| 
 | |
| 				/* look up the path and grab its inode */
 | |
| 				ret = kern_path(filename, LOOKUP_FOLLOW,
 | |
| 						&filter->path);
 | |
| 				if (ret)
 | |
| 					goto fail_free_name;
 | |
| 
 | |
| 				kfree(filename);
 | |
| 				filename = NULL;
 | |
| 
 | |
| 				ret = -EINVAL;
 | |
| 				if (!filter->path.dentry ||
 | |
| 				    !S_ISREG(d_inode(filter->path.dentry)
 | |
| 					     ->i_mode))
 | |
| 					goto fail;
 | |
| 
 | |
| 				event->addr_filters.nr_file_filters++;
 | |
| 			}
 | |
| 
 | |
| 			/* ready to consume more filters */
 | |
| 			state = IF_STATE_ACTION;
 | |
| 			filter = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (state != IF_STATE_ACTION)
 | |
| 		goto fail;
 | |
| 
 | |
| 	kfree(orig);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| fail_free_name:
 | |
| 	kfree(filename);
 | |
| fail:
 | |
| 	free_filters_list(filters);
 | |
| 	kfree(orig);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int
 | |
| perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
 | |
| {
 | |
| 	LIST_HEAD(filters);
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Since this is called in perf_ioctl() path, we're already holding
 | |
| 	 * ctx::mutex.
 | |
| 	 */
 | |
| 	lockdep_assert_held(&event->ctx->mutex);
 | |
| 
 | |
| 	if (WARN_ON_ONCE(event->parent))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
 | |
| 	if (ret)
 | |
| 		goto fail_clear_files;
 | |
| 
 | |
| 	ret = event->pmu->addr_filters_validate(&filters);
 | |
| 	if (ret)
 | |
| 		goto fail_free_filters;
 | |
| 
 | |
| 	/* remove existing filters, if any */
 | |
| 	perf_addr_filters_splice(event, &filters);
 | |
| 
 | |
| 	/* install new filters */
 | |
| 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
 | |
| 
 | |
| 	return ret;
 | |
| 
 | |
| fail_free_filters:
 | |
| 	free_filters_list(&filters);
 | |
| 
 | |
| fail_clear_files:
 | |
| 	event->addr_filters.nr_file_filters = 0;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int perf_event_set_filter(struct perf_event *event, void __user *arg)
 | |
| {
 | |
| 	int ret = -EINVAL;
 | |
| 	char *filter_str;
 | |
| 
 | |
| 	filter_str = strndup_user(arg, PAGE_SIZE);
 | |
| 	if (IS_ERR(filter_str))
 | |
| 		return PTR_ERR(filter_str);
 | |
| 
 | |
| #ifdef CONFIG_EVENT_TRACING
 | |
| 	if (perf_event_is_tracing(event)) {
 | |
| 		struct perf_event_context *ctx = event->ctx;
 | |
| 
 | |
| 		/*
 | |
| 		 * Beware, here be dragons!!
 | |
| 		 *
 | |
| 		 * the tracepoint muck will deadlock against ctx->mutex, but
 | |
| 		 * the tracepoint stuff does not actually need it. So
 | |
| 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
 | |
| 		 * already have a reference on ctx.
 | |
| 		 *
 | |
| 		 * This can result in event getting moved to a different ctx,
 | |
| 		 * but that does not affect the tracepoint state.
 | |
| 		 */
 | |
| 		mutex_unlock(&ctx->mutex);
 | |
| 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
 | |
| 		mutex_lock(&ctx->mutex);
 | |
| 	} else
 | |
| #endif
 | |
| 	if (has_addr_filter(event))
 | |
| 		ret = perf_event_set_addr_filter(event, filter_str);
 | |
| 
 | |
| 	kfree(filter_str);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * hrtimer based swevent callback
 | |
|  */
 | |
| 
 | |
| static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
 | |
| {
 | |
| 	enum hrtimer_restart ret = HRTIMER_RESTART;
 | |
| 	struct perf_sample_data data;
 | |
| 	struct pt_regs *regs;
 | |
| 	struct perf_event *event;
 | |
| 	u64 period;
 | |
| 
 | |
| 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
 | |
| 
 | |
| 	if (event->state != PERF_EVENT_STATE_ACTIVE)
 | |
| 		return HRTIMER_NORESTART;
 | |
| 
 | |
| 	event->pmu->read(event);
 | |
| 
 | |
| 	perf_sample_data_init(&data, 0, event->hw.last_period);
 | |
| 	regs = get_irq_regs();
 | |
| 
 | |
| 	if (regs && !perf_exclude_event(event, regs)) {
 | |
| 		if (!(event->attr.exclude_idle && is_idle_task(current)))
 | |
| 			if (__perf_event_overflow(event, 1, &data, regs))
 | |
| 				ret = HRTIMER_NORESTART;
 | |
| 	}
 | |
| 
 | |
| 	period = max_t(u64, 10000, event->hw.sample_period);
 | |
| 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void perf_swevent_start_hrtimer(struct perf_event *event)
 | |
| {
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 	s64 period;
 | |
| 
 | |
| 	if (!is_sampling_event(event))
 | |
| 		return;
 | |
| 
 | |
| 	period = local64_read(&hwc->period_left);
 | |
| 	if (period) {
 | |
| 		if (period < 0)
 | |
| 			period = 10000;
 | |
| 
 | |
| 		local64_set(&hwc->period_left, 0);
 | |
| 	} else {
 | |
| 		period = max_t(u64, 10000, hwc->sample_period);
 | |
| 	}
 | |
| 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
 | |
| 		      HRTIMER_MODE_REL_PINNED_HARD);
 | |
| }
 | |
| 
 | |
| static void perf_swevent_cancel_hrtimer(struct perf_event *event)
 | |
| {
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 
 | |
| 	if (is_sampling_event(event)) {
 | |
| 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
 | |
| 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
 | |
| 
 | |
| 		hrtimer_cancel(&hwc->hrtimer);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void perf_swevent_init_hrtimer(struct perf_event *event)
 | |
| {
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 
 | |
| 	if (!is_sampling_event(event))
 | |
| 		return;
 | |
| 
 | |
| 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
 | |
| 	hwc->hrtimer.function = perf_swevent_hrtimer;
 | |
| 
 | |
| 	/*
 | |
| 	 * Since hrtimers have a fixed rate, we can do a static freq->period
 | |
| 	 * mapping and avoid the whole period adjust feedback stuff.
 | |
| 	 */
 | |
| 	if (event->attr.freq) {
 | |
| 		long freq = event->attr.sample_freq;
 | |
| 
 | |
| 		event->attr.sample_period = NSEC_PER_SEC / freq;
 | |
| 		hwc->sample_period = event->attr.sample_period;
 | |
| 		local64_set(&hwc->period_left, hwc->sample_period);
 | |
| 		hwc->last_period = hwc->sample_period;
 | |
| 		event->attr.freq = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Software event: cpu wall time clock
 | |
|  */
 | |
| 
 | |
| static void cpu_clock_event_update(struct perf_event *event)
 | |
| {
 | |
| 	s64 prev;
 | |
| 	u64 now;
 | |
| 
 | |
| 	now = local_clock();
 | |
| 	prev = local64_xchg(&event->hw.prev_count, now);
 | |
| 	local64_add(now - prev, &event->count);
 | |
| }
 | |
| 
 | |
| static void cpu_clock_event_start(struct perf_event *event, int flags)
 | |
| {
 | |
| 	local64_set(&event->hw.prev_count, local_clock());
 | |
| 	perf_swevent_start_hrtimer(event);
 | |
| }
 | |
| 
 | |
| static void cpu_clock_event_stop(struct perf_event *event, int flags)
 | |
| {
 | |
| 	perf_swevent_cancel_hrtimer(event);
 | |
| 	cpu_clock_event_update(event);
 | |
| }
 | |
| 
 | |
| static int cpu_clock_event_add(struct perf_event *event, int flags)
 | |
| {
 | |
| 	if (flags & PERF_EF_START)
 | |
| 		cpu_clock_event_start(event, flags);
 | |
| 	perf_event_update_userpage(event);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void cpu_clock_event_del(struct perf_event *event, int flags)
 | |
| {
 | |
| 	cpu_clock_event_stop(event, flags);
 | |
| }
 | |
| 
 | |
| static void cpu_clock_event_read(struct perf_event *event)
 | |
| {
 | |
| 	cpu_clock_event_update(event);
 | |
| }
 | |
| 
 | |
| static int cpu_clock_event_init(struct perf_event *event)
 | |
| {
 | |
| 	if (event->attr.type != PERF_TYPE_SOFTWARE)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	/*
 | |
| 	 * no branch sampling for software events
 | |
| 	 */
 | |
| 	if (has_branch_stack(event))
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	perf_swevent_init_hrtimer(event);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct pmu perf_cpu_clock = {
 | |
| 	.task_ctx_nr	= perf_sw_context,
 | |
| 
 | |
| 	.capabilities	= PERF_PMU_CAP_NO_NMI,
 | |
| 
 | |
| 	.event_init	= cpu_clock_event_init,
 | |
| 	.add		= cpu_clock_event_add,
 | |
| 	.del		= cpu_clock_event_del,
 | |
| 	.start		= cpu_clock_event_start,
 | |
| 	.stop		= cpu_clock_event_stop,
 | |
| 	.read		= cpu_clock_event_read,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Software event: task time clock
 | |
|  */
 | |
| 
 | |
| static void task_clock_event_update(struct perf_event *event, u64 now)
 | |
| {
 | |
| 	u64 prev;
 | |
| 	s64 delta;
 | |
| 
 | |
| 	prev = local64_xchg(&event->hw.prev_count, now);
 | |
| 	delta = now - prev;
 | |
| 	local64_add(delta, &event->count);
 | |
| }
 | |
| 
 | |
| static void task_clock_event_start(struct perf_event *event, int flags)
 | |
| {
 | |
| 	local64_set(&event->hw.prev_count, event->ctx->time);
 | |
| 	perf_swevent_start_hrtimer(event);
 | |
| }
 | |
| 
 | |
| static void task_clock_event_stop(struct perf_event *event, int flags)
 | |
| {
 | |
| 	perf_swevent_cancel_hrtimer(event);
 | |
| 	task_clock_event_update(event, event->ctx->time);
 | |
| }
 | |
| 
 | |
| static int task_clock_event_add(struct perf_event *event, int flags)
 | |
| {
 | |
| 	if (flags & PERF_EF_START)
 | |
| 		task_clock_event_start(event, flags);
 | |
| 	perf_event_update_userpage(event);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void task_clock_event_del(struct perf_event *event, int flags)
 | |
| {
 | |
| 	task_clock_event_stop(event, PERF_EF_UPDATE);
 | |
| }
 | |
| 
 | |
| static void task_clock_event_read(struct perf_event *event)
 | |
| {
 | |
| 	u64 now = perf_clock();
 | |
| 	u64 delta = now - event->ctx->timestamp;
 | |
| 	u64 time = event->ctx->time + delta;
 | |
| 
 | |
| 	task_clock_event_update(event, time);
 | |
| }
 | |
| 
 | |
| static int task_clock_event_init(struct perf_event *event)
 | |
| {
 | |
| 	if (event->attr.type != PERF_TYPE_SOFTWARE)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	/*
 | |
| 	 * no branch sampling for software events
 | |
| 	 */
 | |
| 	if (has_branch_stack(event))
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	perf_swevent_init_hrtimer(event);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct pmu perf_task_clock = {
 | |
| 	.task_ctx_nr	= perf_sw_context,
 | |
| 
 | |
| 	.capabilities	= PERF_PMU_CAP_NO_NMI,
 | |
| 
 | |
| 	.event_init	= task_clock_event_init,
 | |
| 	.add		= task_clock_event_add,
 | |
| 	.del		= task_clock_event_del,
 | |
| 	.start		= task_clock_event_start,
 | |
| 	.stop		= task_clock_event_stop,
 | |
| 	.read		= task_clock_event_read,
 | |
| };
 | |
| 
 | |
| static void perf_pmu_nop_void(struct pmu *pmu)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
 | |
| {
 | |
| }
 | |
| 
 | |
| static int perf_pmu_nop_int(struct pmu *pmu)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int perf_event_nop_int(struct perf_event *event, u64 value)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
 | |
| 
 | |
| static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
 | |
| {
 | |
| 	__this_cpu_write(nop_txn_flags, flags);
 | |
| 
 | |
| 	if (flags & ~PERF_PMU_TXN_ADD)
 | |
| 		return;
 | |
| 
 | |
| 	perf_pmu_disable(pmu);
 | |
| }
 | |
| 
 | |
| static int perf_pmu_commit_txn(struct pmu *pmu)
 | |
| {
 | |
| 	unsigned int flags = __this_cpu_read(nop_txn_flags);
 | |
| 
 | |
| 	__this_cpu_write(nop_txn_flags, 0);
 | |
| 
 | |
| 	if (flags & ~PERF_PMU_TXN_ADD)
 | |
| 		return 0;
 | |
| 
 | |
| 	perf_pmu_enable(pmu);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void perf_pmu_cancel_txn(struct pmu *pmu)
 | |
| {
 | |
| 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
 | |
| 
 | |
| 	__this_cpu_write(nop_txn_flags, 0);
 | |
| 
 | |
| 	if (flags & ~PERF_PMU_TXN_ADD)
 | |
| 		return;
 | |
| 
 | |
| 	perf_pmu_enable(pmu);
 | |
| }
 | |
| 
 | |
| static int perf_event_idx_default(struct perf_event *event)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Ensures all contexts with the same task_ctx_nr have the same
 | |
|  * pmu_cpu_context too.
 | |
|  */
 | |
| static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
 | |
| {
 | |
| 	struct pmu *pmu;
 | |
| 
 | |
| 	if (ctxn < 0)
 | |
| 		return NULL;
 | |
| 
 | |
| 	list_for_each_entry(pmu, &pmus, entry) {
 | |
| 		if (pmu->task_ctx_nr == ctxn)
 | |
| 			return pmu->pmu_cpu_context;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void free_pmu_context(struct pmu *pmu)
 | |
| {
 | |
| 	/*
 | |
| 	 * Static contexts such as perf_sw_context have a global lifetime
 | |
| 	 * and may be shared between different PMUs. Avoid freeing them
 | |
| 	 * when a single PMU is going away.
 | |
| 	 */
 | |
| 	if (pmu->task_ctx_nr > perf_invalid_context)
 | |
| 		return;
 | |
| 
 | |
| 	free_percpu(pmu->pmu_cpu_context);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Let userspace know that this PMU supports address range filtering:
 | |
|  */
 | |
| static ssize_t nr_addr_filters_show(struct device *dev,
 | |
| 				    struct device_attribute *attr,
 | |
| 				    char *page)
 | |
| {
 | |
| 	struct pmu *pmu = dev_get_drvdata(dev);
 | |
| 
 | |
| 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
 | |
| }
 | |
| DEVICE_ATTR_RO(nr_addr_filters);
 | |
| 
 | |
| static struct idr pmu_idr;
 | |
| 
 | |
| static ssize_t
 | |
| type_show(struct device *dev, struct device_attribute *attr, char *page)
 | |
| {
 | |
| 	struct pmu *pmu = dev_get_drvdata(dev);
 | |
| 
 | |
| 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
 | |
| }
 | |
| static DEVICE_ATTR_RO(type);
 | |
| 
 | |
| static ssize_t
 | |
| perf_event_mux_interval_ms_show(struct device *dev,
 | |
| 				struct device_attribute *attr,
 | |
| 				char *page)
 | |
| {
 | |
| 	struct pmu *pmu = dev_get_drvdata(dev);
 | |
| 
 | |
| 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
 | |
| }
 | |
| 
 | |
| static DEFINE_MUTEX(mux_interval_mutex);
 | |
| 
 | |
| static ssize_t
 | |
| perf_event_mux_interval_ms_store(struct device *dev,
 | |
| 				 struct device_attribute *attr,
 | |
| 				 const char *buf, size_t count)
 | |
| {
 | |
| 	struct pmu *pmu = dev_get_drvdata(dev);
 | |
| 	int timer, cpu, ret;
 | |
| 
 | |
| 	ret = kstrtoint(buf, 0, &timer);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (timer < 1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* same value, noting to do */
 | |
| 	if (timer == pmu->hrtimer_interval_ms)
 | |
| 		return count;
 | |
| 
 | |
| 	mutex_lock(&mux_interval_mutex);
 | |
| 	pmu->hrtimer_interval_ms = timer;
 | |
| 
 | |
| 	/* update all cpuctx for this PMU */
 | |
| 	cpus_read_lock();
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		struct perf_cpu_context *cpuctx;
 | |
| 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
 | |
| 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
 | |
| 
 | |
| 		cpu_function_call(cpu,
 | |
| 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
 | |
| 	}
 | |
| 	cpus_read_unlock();
 | |
| 	mutex_unlock(&mux_interval_mutex);
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
 | |
| 
 | |
| static struct attribute *pmu_dev_attrs[] = {
 | |
| 	&dev_attr_type.attr,
 | |
| 	&dev_attr_perf_event_mux_interval_ms.attr,
 | |
| 	NULL,
 | |
| };
 | |
| ATTRIBUTE_GROUPS(pmu_dev);
 | |
| 
 | |
| static int pmu_bus_running;
 | |
| static struct bus_type pmu_bus = {
 | |
| 	.name		= "event_source",
 | |
| 	.dev_groups	= pmu_dev_groups,
 | |
| };
 | |
| 
 | |
| static void pmu_dev_release(struct device *dev)
 | |
| {
 | |
| 	kfree(dev);
 | |
| }
 | |
| 
 | |
| static int pmu_dev_alloc(struct pmu *pmu)
 | |
| {
 | |
| 	int ret = -ENOMEM;
 | |
| 
 | |
| 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
 | |
| 	if (!pmu->dev)
 | |
| 		goto out;
 | |
| 
 | |
| 	pmu->dev->groups = pmu->attr_groups;
 | |
| 	device_initialize(pmu->dev);
 | |
| 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
 | |
| 	if (ret)
 | |
| 		goto free_dev;
 | |
| 
 | |
| 	dev_set_drvdata(pmu->dev, pmu);
 | |
| 	pmu->dev->bus = &pmu_bus;
 | |
| 	pmu->dev->release = pmu_dev_release;
 | |
| 	ret = device_add(pmu->dev);
 | |
| 	if (ret)
 | |
| 		goto free_dev;
 | |
| 
 | |
| 	/* For PMUs with address filters, throw in an extra attribute: */
 | |
| 	if (pmu->nr_addr_filters)
 | |
| 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
 | |
| 
 | |
| 	if (ret)
 | |
| 		goto del_dev;
 | |
| 
 | |
| 	if (pmu->attr_update)
 | |
| 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
 | |
| 
 | |
| 	if (ret)
 | |
| 		goto del_dev;
 | |
| 
 | |
| out:
 | |
| 	return ret;
 | |
| 
 | |
| del_dev:
 | |
| 	device_del(pmu->dev);
 | |
| 
 | |
| free_dev:
 | |
| 	put_device(pmu->dev);
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| static struct lock_class_key cpuctx_mutex;
 | |
| static struct lock_class_key cpuctx_lock;
 | |
| 
 | |
| int perf_pmu_register(struct pmu *pmu, const char *name, int type)
 | |
| {
 | |
| 	int cpu, ret, max = PERF_TYPE_MAX;
 | |
| 
 | |
| 	mutex_lock(&pmus_lock);
 | |
| 	ret = -ENOMEM;
 | |
| 	pmu->pmu_disable_count = alloc_percpu(int);
 | |
| 	if (!pmu->pmu_disable_count)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	pmu->type = -1;
 | |
| 	if (!name)
 | |
| 		goto skip_type;
 | |
| 	pmu->name = name;
 | |
| 
 | |
| 	if (type != PERF_TYPE_SOFTWARE) {
 | |
| 		if (type >= 0)
 | |
| 			max = type;
 | |
| 
 | |
| 		ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
 | |
| 		if (ret < 0)
 | |
| 			goto free_pdc;
 | |
| 
 | |
| 		WARN_ON(type >= 0 && ret != type);
 | |
| 
 | |
| 		type = ret;
 | |
| 	}
 | |
| 	pmu->type = type;
 | |
| 
 | |
| 	if (pmu_bus_running) {
 | |
| 		ret = pmu_dev_alloc(pmu);
 | |
| 		if (ret)
 | |
| 			goto free_idr;
 | |
| 	}
 | |
| 
 | |
| skip_type:
 | |
| 	if (pmu->task_ctx_nr == perf_hw_context) {
 | |
| 		static int hw_context_taken = 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * Other than systems with heterogeneous CPUs, it never makes
 | |
| 		 * sense for two PMUs to share perf_hw_context. PMUs which are
 | |
| 		 * uncore must use perf_invalid_context.
 | |
| 		 */
 | |
| 		if (WARN_ON_ONCE(hw_context_taken &&
 | |
| 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
 | |
| 			pmu->task_ctx_nr = perf_invalid_context;
 | |
| 
 | |
| 		hw_context_taken = 1;
 | |
| 	}
 | |
| 
 | |
| 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
 | |
| 	if (pmu->pmu_cpu_context)
 | |
| 		goto got_cpu_context;
 | |
| 
 | |
| 	ret = -ENOMEM;
 | |
| 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
 | |
| 	if (!pmu->pmu_cpu_context)
 | |
| 		goto free_dev;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		struct perf_cpu_context *cpuctx;
 | |
| 
 | |
| 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
 | |
| 		__perf_event_init_context(&cpuctx->ctx);
 | |
| 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
 | |
| 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
 | |
| 		cpuctx->ctx.pmu = pmu;
 | |
| 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
 | |
| 
 | |
| 		__perf_mux_hrtimer_init(cpuctx, cpu);
 | |
| 
 | |
| 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
 | |
| 		cpuctx->heap = cpuctx->heap_default;
 | |
| 	}
 | |
| 
 | |
| got_cpu_context:
 | |
| 	if (!pmu->start_txn) {
 | |
| 		if (pmu->pmu_enable) {
 | |
| 			/*
 | |
| 			 * If we have pmu_enable/pmu_disable calls, install
 | |
| 			 * transaction stubs that use that to try and batch
 | |
| 			 * hardware accesses.
 | |
| 			 */
 | |
| 			pmu->start_txn  = perf_pmu_start_txn;
 | |
| 			pmu->commit_txn = perf_pmu_commit_txn;
 | |
| 			pmu->cancel_txn = perf_pmu_cancel_txn;
 | |
| 		} else {
 | |
| 			pmu->start_txn  = perf_pmu_nop_txn;
 | |
| 			pmu->commit_txn = perf_pmu_nop_int;
 | |
| 			pmu->cancel_txn = perf_pmu_nop_void;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!pmu->pmu_enable) {
 | |
| 		pmu->pmu_enable  = perf_pmu_nop_void;
 | |
| 		pmu->pmu_disable = perf_pmu_nop_void;
 | |
| 	}
 | |
| 
 | |
| 	if (!pmu->check_period)
 | |
| 		pmu->check_period = perf_event_nop_int;
 | |
| 
 | |
| 	if (!pmu->event_idx)
 | |
| 		pmu->event_idx = perf_event_idx_default;
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
 | |
| 	 * since these cannot be in the IDR. This way the linear search
 | |
| 	 * is fast, provided a valid software event is provided.
 | |
| 	 */
 | |
| 	if (type == PERF_TYPE_SOFTWARE || !name)
 | |
| 		list_add_rcu(&pmu->entry, &pmus);
 | |
| 	else
 | |
| 		list_add_tail_rcu(&pmu->entry, &pmus);
 | |
| 
 | |
| 	atomic_set(&pmu->exclusive_cnt, 0);
 | |
| 	ret = 0;
 | |
| unlock:
 | |
| 	mutex_unlock(&pmus_lock);
 | |
| 
 | |
| 	return ret;
 | |
| 
 | |
| free_dev:
 | |
| 	device_del(pmu->dev);
 | |
| 	put_device(pmu->dev);
 | |
| 
 | |
| free_idr:
 | |
| 	if (pmu->type != PERF_TYPE_SOFTWARE)
 | |
| 		idr_remove(&pmu_idr, pmu->type);
 | |
| 
 | |
| free_pdc:
 | |
| 	free_percpu(pmu->pmu_disable_count);
 | |
| 	goto unlock;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_pmu_register);
 | |
| 
 | |
| void perf_pmu_unregister(struct pmu *pmu)
 | |
| {
 | |
| 	mutex_lock(&pmus_lock);
 | |
| 	list_del_rcu(&pmu->entry);
 | |
| 
 | |
| 	/*
 | |
| 	 * We dereference the pmu list under both SRCU and regular RCU, so
 | |
| 	 * synchronize against both of those.
 | |
| 	 */
 | |
| 	synchronize_srcu(&pmus_srcu);
 | |
| 	synchronize_rcu();
 | |
| 
 | |
| 	free_percpu(pmu->pmu_disable_count);
 | |
| 	if (pmu->type != PERF_TYPE_SOFTWARE)
 | |
| 		idr_remove(&pmu_idr, pmu->type);
 | |
| 	if (pmu_bus_running) {
 | |
| 		if (pmu->nr_addr_filters)
 | |
| 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
 | |
| 		device_del(pmu->dev);
 | |
| 		put_device(pmu->dev);
 | |
| 	}
 | |
| 	free_pmu_context(pmu);
 | |
| 	mutex_unlock(&pmus_lock);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_pmu_unregister);
 | |
| 
 | |
| static inline bool has_extended_regs(struct perf_event *event)
 | |
| {
 | |
| 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
 | |
| 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
 | |
| }
 | |
| 
 | |
| static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event_context *ctx = NULL;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!try_module_get(pmu->module))
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	/*
 | |
| 	 * A number of pmu->event_init() methods iterate the sibling_list to,
 | |
| 	 * for example, validate if the group fits on the PMU. Therefore,
 | |
| 	 * if this is a sibling event, acquire the ctx->mutex to protect
 | |
| 	 * the sibling_list.
 | |
| 	 */
 | |
| 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
 | |
| 		/*
 | |
| 		 * This ctx->mutex can nest when we're called through
 | |
| 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
 | |
| 		 */
 | |
| 		ctx = perf_event_ctx_lock_nested(event->group_leader,
 | |
| 						 SINGLE_DEPTH_NESTING);
 | |
| 		BUG_ON(!ctx);
 | |
| 	}
 | |
| 
 | |
| 	event->pmu = pmu;
 | |
| 	ret = pmu->event_init(event);
 | |
| 
 | |
| 	if (ctx)
 | |
| 		perf_event_ctx_unlock(event->group_leader, ctx);
 | |
| 
 | |
| 	if (!ret) {
 | |
| 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
 | |
| 		    has_extended_regs(event))
 | |
| 			ret = -EOPNOTSUPP;
 | |
| 
 | |
| 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
 | |
| 		    event_has_any_exclude_flag(event))
 | |
| 			ret = -EINVAL;
 | |
| 
 | |
| 		if (ret && event->destroy)
 | |
| 			event->destroy(event);
 | |
| 	}
 | |
| 
 | |
| 	if (ret)
 | |
| 		module_put(pmu->module);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct pmu *perf_init_event(struct perf_event *event)
 | |
| {
 | |
| 	int idx, type, ret;
 | |
| 	struct pmu *pmu;
 | |
| 
 | |
| 	idx = srcu_read_lock(&pmus_srcu);
 | |
| 
 | |
| 	/* Try parent's PMU first: */
 | |
| 	if (event->parent && event->parent->pmu) {
 | |
| 		pmu = event->parent->pmu;
 | |
| 		ret = perf_try_init_event(pmu, event);
 | |
| 		if (!ret)
 | |
| 			goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
 | |
| 	 * are often aliases for PERF_TYPE_RAW.
 | |
| 	 */
 | |
| 	type = event->attr.type;
 | |
| 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE)
 | |
| 		type = PERF_TYPE_RAW;
 | |
| 
 | |
| again:
 | |
| 	rcu_read_lock();
 | |
| 	pmu = idr_find(&pmu_idr, type);
 | |
| 	rcu_read_unlock();
 | |
| 	if (pmu) {
 | |
| 		ret = perf_try_init_event(pmu, event);
 | |
| 		if (ret == -ENOENT && event->attr.type != type) {
 | |
| 			type = event->attr.type;
 | |
| 			goto again;
 | |
| 		}
 | |
| 
 | |
| 		if (ret)
 | |
| 			pmu = ERR_PTR(ret);
 | |
| 
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
 | |
| 		ret = perf_try_init_event(pmu, event);
 | |
| 		if (!ret)
 | |
| 			goto unlock;
 | |
| 
 | |
| 		if (ret != -ENOENT) {
 | |
| 			pmu = ERR_PTR(ret);
 | |
| 			goto unlock;
 | |
| 		}
 | |
| 	}
 | |
| 	pmu = ERR_PTR(-ENOENT);
 | |
| unlock:
 | |
| 	srcu_read_unlock(&pmus_srcu, idx);
 | |
| 
 | |
| 	return pmu;
 | |
| }
 | |
| 
 | |
| static void attach_sb_event(struct perf_event *event)
 | |
| {
 | |
| 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
 | |
| 
 | |
| 	raw_spin_lock(&pel->lock);
 | |
| 	list_add_rcu(&event->sb_list, &pel->list);
 | |
| 	raw_spin_unlock(&pel->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We keep a list of all !task (and therefore per-cpu) events
 | |
|  * that need to receive side-band records.
 | |
|  *
 | |
|  * This avoids having to scan all the various PMU per-cpu contexts
 | |
|  * looking for them.
 | |
|  */
 | |
| static void account_pmu_sb_event(struct perf_event *event)
 | |
| {
 | |
| 	if (is_sb_event(event))
 | |
| 		attach_sb_event(event);
 | |
| }
 | |
| 
 | |
| static void account_event_cpu(struct perf_event *event, int cpu)
 | |
| {
 | |
| 	if (event->parent)
 | |
| 		return;
 | |
| 
 | |
| 	if (is_cgroup_event(event))
 | |
| 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
 | |
| }
 | |
| 
 | |
| /* Freq events need the tick to stay alive (see perf_event_task_tick). */
 | |
| static void account_freq_event_nohz(void)
 | |
| {
 | |
| #ifdef CONFIG_NO_HZ_FULL
 | |
| 	/* Lock so we don't race with concurrent unaccount */
 | |
| 	spin_lock(&nr_freq_lock);
 | |
| 	if (atomic_inc_return(&nr_freq_events) == 1)
 | |
| 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
 | |
| 	spin_unlock(&nr_freq_lock);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void account_freq_event(void)
 | |
| {
 | |
| 	if (tick_nohz_full_enabled())
 | |
| 		account_freq_event_nohz();
 | |
| 	else
 | |
| 		atomic_inc(&nr_freq_events);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void account_event(struct perf_event *event)
 | |
| {
 | |
| 	bool inc = false;
 | |
| 
 | |
| 	if (event->parent)
 | |
| 		return;
 | |
| 
 | |
| 	if (event->attach_state & PERF_ATTACH_TASK)
 | |
| 		inc = true;
 | |
| 	if (event->attr.mmap || event->attr.mmap_data)
 | |
| 		atomic_inc(&nr_mmap_events);
 | |
| 	if (event->attr.comm)
 | |
| 		atomic_inc(&nr_comm_events);
 | |
| 	if (event->attr.namespaces)
 | |
| 		atomic_inc(&nr_namespaces_events);
 | |
| 	if (event->attr.cgroup)
 | |
| 		atomic_inc(&nr_cgroup_events);
 | |
| 	if (event->attr.task)
 | |
| 		atomic_inc(&nr_task_events);
 | |
| 	if (event->attr.freq)
 | |
| 		account_freq_event();
 | |
| 	if (event->attr.context_switch) {
 | |
| 		atomic_inc(&nr_switch_events);
 | |
| 		inc = true;
 | |
| 	}
 | |
| 	if (has_branch_stack(event))
 | |
| 		inc = true;
 | |
| 	if (is_cgroup_event(event))
 | |
| 		inc = true;
 | |
| 	if (event->attr.ksymbol)
 | |
| 		atomic_inc(&nr_ksymbol_events);
 | |
| 	if (event->attr.bpf_event)
 | |
| 		atomic_inc(&nr_bpf_events);
 | |
| 
 | |
| 	if (inc) {
 | |
| 		/*
 | |
| 		 * We need the mutex here because static_branch_enable()
 | |
| 		 * must complete *before* the perf_sched_count increment
 | |
| 		 * becomes visible.
 | |
| 		 */
 | |
| 		if (atomic_inc_not_zero(&perf_sched_count))
 | |
| 			goto enabled;
 | |
| 
 | |
| 		mutex_lock(&perf_sched_mutex);
 | |
| 		if (!atomic_read(&perf_sched_count)) {
 | |
| 			static_branch_enable(&perf_sched_events);
 | |
| 			/*
 | |
| 			 * Guarantee that all CPUs observe they key change and
 | |
| 			 * call the perf scheduling hooks before proceeding to
 | |
| 			 * install events that need them.
 | |
| 			 */
 | |
| 			synchronize_rcu();
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Now that we have waited for the sync_sched(), allow further
 | |
| 		 * increments to by-pass the mutex.
 | |
| 		 */
 | |
| 		atomic_inc(&perf_sched_count);
 | |
| 		mutex_unlock(&perf_sched_mutex);
 | |
| 	}
 | |
| enabled:
 | |
| 
 | |
| 	account_event_cpu(event, event->cpu);
 | |
| 
 | |
| 	account_pmu_sb_event(event);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate and initialize an event structure
 | |
|  */
 | |
| static struct perf_event *
 | |
| perf_event_alloc(struct perf_event_attr *attr, int cpu,
 | |
| 		 struct task_struct *task,
 | |
| 		 struct perf_event *group_leader,
 | |
| 		 struct perf_event *parent_event,
 | |
| 		 perf_overflow_handler_t overflow_handler,
 | |
| 		 void *context, int cgroup_fd)
 | |
| {
 | |
| 	struct pmu *pmu;
 | |
| 	struct perf_event *event;
 | |
| 	struct hw_perf_event *hwc;
 | |
| 	long err = -EINVAL;
 | |
| 
 | |
| 	if ((unsigned)cpu >= nr_cpu_ids) {
 | |
| 		if (!task || cpu != -1)
 | |
| 			return ERR_PTR(-EINVAL);
 | |
| 	}
 | |
| 
 | |
| 	event = kzalloc(sizeof(*event), GFP_KERNEL);
 | |
| 	if (!event)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	/*
 | |
| 	 * Single events are their own group leaders, with an
 | |
| 	 * empty sibling list:
 | |
| 	 */
 | |
| 	if (!group_leader)
 | |
| 		group_leader = event;
 | |
| 
 | |
| 	mutex_init(&event->child_mutex);
 | |
| 	INIT_LIST_HEAD(&event->child_list);
 | |
| 
 | |
| 	INIT_LIST_HEAD(&event->event_entry);
 | |
| 	INIT_LIST_HEAD(&event->sibling_list);
 | |
| 	INIT_LIST_HEAD(&event->active_list);
 | |
| 	init_event_group(event);
 | |
| 	INIT_LIST_HEAD(&event->rb_entry);
 | |
| 	INIT_LIST_HEAD(&event->active_entry);
 | |
| 	INIT_LIST_HEAD(&event->addr_filters.list);
 | |
| 	INIT_HLIST_NODE(&event->hlist_entry);
 | |
| 
 | |
| 
 | |
| 	init_waitqueue_head(&event->waitq);
 | |
| 	event->pending_disable = -1;
 | |
| 	init_irq_work(&event->pending, perf_pending_event);
 | |
| 
 | |
| 	mutex_init(&event->mmap_mutex);
 | |
| 	raw_spin_lock_init(&event->addr_filters.lock);
 | |
| 
 | |
| 	atomic_long_set(&event->refcount, 1);
 | |
| 	event->cpu		= cpu;
 | |
| 	event->attr		= *attr;
 | |
| 	event->group_leader	= group_leader;
 | |
| 	event->pmu		= NULL;
 | |
| 	event->oncpu		= -1;
 | |
| 
 | |
| 	event->parent		= parent_event;
 | |
| 
 | |
| 	event->ns		= get_pid_ns(task_active_pid_ns(current));
 | |
| 	event->id		= atomic64_inc_return(&perf_event_id);
 | |
| 
 | |
| 	event->state		= PERF_EVENT_STATE_INACTIVE;
 | |
| 
 | |
| 	if (task) {
 | |
| 		event->attach_state = PERF_ATTACH_TASK;
 | |
| 		/*
 | |
| 		 * XXX pmu::event_init needs to know what task to account to
 | |
| 		 * and we cannot use the ctx information because we need the
 | |
| 		 * pmu before we get a ctx.
 | |
| 		 */
 | |
| 		event->hw.target = get_task_struct(task);
 | |
| 	}
 | |
| 
 | |
| 	event->clock = &local_clock;
 | |
| 	if (parent_event)
 | |
| 		event->clock = parent_event->clock;
 | |
| 
 | |
| 	if (!overflow_handler && parent_event) {
 | |
| 		overflow_handler = parent_event->overflow_handler;
 | |
| 		context = parent_event->overflow_handler_context;
 | |
| #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
 | |
| 		if (overflow_handler == bpf_overflow_handler) {
 | |
| 			struct bpf_prog *prog = parent_event->prog;
 | |
| 
 | |
| 			bpf_prog_inc(prog);
 | |
| 			event->prog = prog;
 | |
| 			event->orig_overflow_handler =
 | |
| 				parent_event->orig_overflow_handler;
 | |
| 		}
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	if (overflow_handler) {
 | |
| 		event->overflow_handler	= overflow_handler;
 | |
| 		event->overflow_handler_context = context;
 | |
| 	} else if (is_write_backward(event)){
 | |
| 		event->overflow_handler = perf_event_output_backward;
 | |
| 		event->overflow_handler_context = NULL;
 | |
| 	} else {
 | |
| 		event->overflow_handler = perf_event_output_forward;
 | |
| 		event->overflow_handler_context = NULL;
 | |
| 	}
 | |
| 
 | |
| 	perf_event__state_init(event);
 | |
| 
 | |
| 	pmu = NULL;
 | |
| 
 | |
| 	hwc = &event->hw;
 | |
| 	hwc->sample_period = attr->sample_period;
 | |
| 	if (attr->freq && attr->sample_freq)
 | |
| 		hwc->sample_period = 1;
 | |
| 	hwc->last_period = hwc->sample_period;
 | |
| 
 | |
| 	local64_set(&hwc->period_left, hwc->sample_period);
 | |
| 
 | |
| 	/*
 | |
| 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
 | |
| 	 * See perf_output_read().
 | |
| 	 */
 | |
| 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
 | |
| 		goto err_ns;
 | |
| 
 | |
| 	if (!has_branch_stack(event))
 | |
| 		event->attr.branch_sample_type = 0;
 | |
| 
 | |
| 	pmu = perf_init_event(event);
 | |
| 	if (IS_ERR(pmu)) {
 | |
| 		err = PTR_ERR(pmu);
 | |
| 		goto err_ns;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
 | |
| 	 * be different on other CPUs in the uncore mask.
 | |
| 	 */
 | |
| 	if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
 | |
| 		err = -EINVAL;
 | |
| 		goto err_pmu;
 | |
| 	}
 | |
| 
 | |
| 	if (event->attr.aux_output &&
 | |
| 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
 | |
| 		err = -EOPNOTSUPP;
 | |
| 		goto err_pmu;
 | |
| 	}
 | |
| 
 | |
| 	if (cgroup_fd != -1) {
 | |
| 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
 | |
| 		if (err)
 | |
| 			goto err_pmu;
 | |
| 	}
 | |
| 
 | |
| 	err = exclusive_event_init(event);
 | |
| 	if (err)
 | |
| 		goto err_pmu;
 | |
| 
 | |
| 	if (has_addr_filter(event)) {
 | |
| 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
 | |
| 						    sizeof(struct perf_addr_filter_range),
 | |
| 						    GFP_KERNEL);
 | |
| 		if (!event->addr_filter_ranges) {
 | |
| 			err = -ENOMEM;
 | |
| 			goto err_per_task;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Clone the parent's vma offsets: they are valid until exec()
 | |
| 		 * even if the mm is not shared with the parent.
 | |
| 		 */
 | |
| 		if (event->parent) {
 | |
| 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
 | |
| 
 | |
| 			raw_spin_lock_irq(&ifh->lock);
 | |
| 			memcpy(event->addr_filter_ranges,
 | |
| 			       event->parent->addr_filter_ranges,
 | |
| 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
 | |
| 			raw_spin_unlock_irq(&ifh->lock);
 | |
| 		}
 | |
| 
 | |
| 		/* force hw sync on the address filters */
 | |
| 		event->addr_filters_gen = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (!event->parent) {
 | |
| 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
 | |
| 			err = get_callchain_buffers(attr->sample_max_stack);
 | |
| 			if (err)
 | |
| 				goto err_addr_filters;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	err = security_perf_event_alloc(event);
 | |
| 	if (err)
 | |
| 		goto err_callchain_buffer;
 | |
| 
 | |
| 	/* symmetric to unaccount_event() in _free_event() */
 | |
| 	account_event(event);
 | |
| 
 | |
| 	return event;
 | |
| 
 | |
| err_callchain_buffer:
 | |
| 	if (!event->parent) {
 | |
| 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
 | |
| 			put_callchain_buffers();
 | |
| 	}
 | |
| err_addr_filters:
 | |
| 	kfree(event->addr_filter_ranges);
 | |
| 
 | |
| err_per_task:
 | |
| 	exclusive_event_destroy(event);
 | |
| 
 | |
| err_pmu:
 | |
| 	if (is_cgroup_event(event))
 | |
| 		perf_detach_cgroup(event);
 | |
| 	if (event->destroy)
 | |
| 		event->destroy(event);
 | |
| 	module_put(pmu->module);
 | |
| err_ns:
 | |
| 	if (event->ns)
 | |
| 		put_pid_ns(event->ns);
 | |
| 	if (event->hw.target)
 | |
| 		put_task_struct(event->hw.target);
 | |
| 	kfree(event);
 | |
| 
 | |
| 	return ERR_PTR(err);
 | |
| }
 | |
| 
 | |
| static int perf_copy_attr(struct perf_event_attr __user *uattr,
 | |
| 			  struct perf_event_attr *attr)
 | |
| {
 | |
| 	u32 size;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Zero the full structure, so that a short copy will be nice. */
 | |
| 	memset(attr, 0, sizeof(*attr));
 | |
| 
 | |
| 	ret = get_user(size, &uattr->size);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* ABI compatibility quirk: */
 | |
| 	if (!size)
 | |
| 		size = PERF_ATTR_SIZE_VER0;
 | |
| 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
 | |
| 		goto err_size;
 | |
| 
 | |
| 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
 | |
| 	if (ret) {
 | |
| 		if (ret == -E2BIG)
 | |
| 			goto err_size;
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	attr->size = size;
 | |
| 
 | |
| 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
 | |
| 		u64 mask = attr->branch_sample_type;
 | |
| 
 | |
| 		/* only using defined bits */
 | |
| 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		/* at least one branch bit must be set */
 | |
| 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		/* propagate priv level, when not set for branch */
 | |
| 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
 | |
| 
 | |
| 			/* exclude_kernel checked on syscall entry */
 | |
| 			if (!attr->exclude_kernel)
 | |
| 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
 | |
| 
 | |
| 			if (!attr->exclude_user)
 | |
| 				mask |= PERF_SAMPLE_BRANCH_USER;
 | |
| 
 | |
| 			if (!attr->exclude_hv)
 | |
| 				mask |= PERF_SAMPLE_BRANCH_HV;
 | |
| 			/*
 | |
| 			 * adjust user setting (for HW filter setup)
 | |
| 			 */
 | |
| 			attr->branch_sample_type = mask;
 | |
| 		}
 | |
| 		/* privileged levels capture (kernel, hv): check permissions */
 | |
| 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
 | |
| 			ret = perf_allow_kernel(attr);
 | |
| 			if (ret)
 | |
| 				return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
 | |
| 		ret = perf_reg_validate(attr->sample_regs_user);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
 | |
| 		if (!arch_perf_have_user_stack_dump())
 | |
| 			return -ENOSYS;
 | |
| 
 | |
| 		/*
 | |
| 		 * We have __u32 type for the size, but so far
 | |
| 		 * we can only use __u16 as maximum due to the
 | |
| 		 * __u16 sample size limit.
 | |
| 		 */
 | |
| 		if (attr->sample_stack_user >= USHRT_MAX)
 | |
| 			return -EINVAL;
 | |
| 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!attr->sample_max_stack)
 | |
| 		attr->sample_max_stack = sysctl_perf_event_max_stack;
 | |
| 
 | |
| 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
 | |
| 		ret = perf_reg_validate(attr->sample_regs_intr);
 | |
| 
 | |
| #ifndef CONFIG_CGROUP_PERF
 | |
| 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
 | |
| 		return -EINVAL;
 | |
| #endif
 | |
| 
 | |
| out:
 | |
| 	return ret;
 | |
| 
 | |
| err_size:
 | |
| 	put_user(sizeof(*attr), &uattr->size);
 | |
| 	ret = -E2BIG;
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| static int
 | |
| perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
 | |
| {
 | |
| 	struct perf_buffer *rb = NULL;
 | |
| 	int ret = -EINVAL;
 | |
| 
 | |
| 	if (!output_event)
 | |
| 		goto set;
 | |
| 
 | |
| 	/* don't allow circular references */
 | |
| 	if (event == output_event)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't allow cross-cpu buffers
 | |
| 	 */
 | |
| 	if (output_event->cpu != event->cpu)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * If its not a per-cpu rb, it must be the same task.
 | |
| 	 */
 | |
| 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Mixing clocks in the same buffer is trouble you don't need.
 | |
| 	 */
 | |
| 	if (output_event->clock != event->clock)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Either writing ring buffer from beginning or from end.
 | |
| 	 * Mixing is not allowed.
 | |
| 	 */
 | |
| 	if (is_write_backward(output_event) != is_write_backward(event))
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * If both events generate aux data, they must be on the same PMU
 | |
| 	 */
 | |
| 	if (has_aux(event) && has_aux(output_event) &&
 | |
| 	    event->pmu != output_event->pmu)
 | |
| 		goto out;
 | |
| 
 | |
| set:
 | |
| 	mutex_lock(&event->mmap_mutex);
 | |
| 	/* Can't redirect output if we've got an active mmap() */
 | |
| 	if (atomic_read(&event->mmap_count))
 | |
| 		goto unlock;
 | |
| 
 | |
| 	if (output_event) {
 | |
| 		/* get the rb we want to redirect to */
 | |
| 		rb = ring_buffer_get(output_event);
 | |
| 		if (!rb)
 | |
| 			goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	ring_buffer_attach(event, rb);
 | |
| 
 | |
| 	ret = 0;
 | |
| unlock:
 | |
| 	mutex_unlock(&event->mmap_mutex);
 | |
| 
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void mutex_lock_double(struct mutex *a, struct mutex *b)
 | |
| {
 | |
| 	if (b < a)
 | |
| 		swap(a, b);
 | |
| 
 | |
| 	mutex_lock(a);
 | |
| 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
 | |
| }
 | |
| 
 | |
| static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
 | |
| {
 | |
| 	bool nmi_safe = false;
 | |
| 
 | |
| 	switch (clk_id) {
 | |
| 	case CLOCK_MONOTONIC:
 | |
| 		event->clock = &ktime_get_mono_fast_ns;
 | |
| 		nmi_safe = true;
 | |
| 		break;
 | |
| 
 | |
| 	case CLOCK_MONOTONIC_RAW:
 | |
| 		event->clock = &ktime_get_raw_fast_ns;
 | |
| 		nmi_safe = true;
 | |
| 		break;
 | |
| 
 | |
| 	case CLOCK_REALTIME:
 | |
| 		event->clock = &ktime_get_real_ns;
 | |
| 		break;
 | |
| 
 | |
| 	case CLOCK_BOOTTIME:
 | |
| 		event->clock = &ktime_get_boottime_ns;
 | |
| 		break;
 | |
| 
 | |
| 	case CLOCK_TAI:
 | |
| 		event->clock = &ktime_get_clocktai_ns;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Variation on perf_event_ctx_lock_nested(), except we take two context
 | |
|  * mutexes.
 | |
|  */
 | |
| static struct perf_event_context *
 | |
| __perf_event_ctx_lock_double(struct perf_event *group_leader,
 | |
| 			     struct perf_event_context *ctx)
 | |
| {
 | |
| 	struct perf_event_context *gctx;
 | |
| 
 | |
| again:
 | |
| 	rcu_read_lock();
 | |
| 	gctx = READ_ONCE(group_leader->ctx);
 | |
| 	if (!refcount_inc_not_zero(&gctx->refcount)) {
 | |
| 		rcu_read_unlock();
 | |
| 		goto again;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
 | |
| 
 | |
| 	if (group_leader->ctx != gctx) {
 | |
| 		mutex_unlock(&ctx->mutex);
 | |
| 		mutex_unlock(&gctx->mutex);
 | |
| 		put_ctx(gctx);
 | |
| 		goto again;
 | |
| 	}
 | |
| 
 | |
| 	return gctx;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sys_perf_event_open - open a performance event, associate it to a task/cpu
 | |
|  *
 | |
|  * @attr_uptr:	event_id type attributes for monitoring/sampling
 | |
|  * @pid:		target pid
 | |
|  * @cpu:		target cpu
 | |
|  * @group_fd:		group leader event fd
 | |
|  */
 | |
| SYSCALL_DEFINE5(perf_event_open,
 | |
| 		struct perf_event_attr __user *, attr_uptr,
 | |
| 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
 | |
| {
 | |
| 	struct perf_event *group_leader = NULL, *output_event = NULL;
 | |
| 	struct perf_event *event, *sibling;
 | |
| 	struct perf_event_attr attr;
 | |
| 	struct perf_event_context *ctx, *uninitialized_var(gctx);
 | |
| 	struct file *event_file = NULL;
 | |
| 	struct fd group = {NULL, 0};
 | |
| 	struct task_struct *task = NULL;
 | |
| 	struct pmu *pmu;
 | |
| 	int event_fd;
 | |
| 	int move_group = 0;
 | |
| 	int err;
 | |
| 	int f_flags = O_RDWR;
 | |
| 	int cgroup_fd = -1;
 | |
| 
 | |
| 	/* for future expandability... */
 | |
| 	if (flags & ~PERF_FLAG_ALL)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Do we allow access to perf_event_open(2) ? */
 | |
| 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = perf_copy_attr(attr_uptr, &attr);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (!attr.exclude_kernel) {
 | |
| 		err = perf_allow_kernel(&attr);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	if (attr.namespaces) {
 | |
| 		if (!perfmon_capable())
 | |
| 			return -EACCES;
 | |
| 	}
 | |
| 
 | |
| 	if (attr.freq) {
 | |
| 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
 | |
| 			return -EINVAL;
 | |
| 	} else {
 | |
| 		if (attr.sample_period & (1ULL << 63))
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Only privileged users can get physical addresses */
 | |
| 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
 | |
| 		err = perf_allow_kernel(&attr);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	err = security_locked_down(LOCKDOWN_PERF);
 | |
| 	if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR))
 | |
| 		/* REGS_INTR can leak data, lockdown must prevent this */
 | |
| 		return err;
 | |
| 
 | |
| 	err = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * In cgroup mode, the pid argument is used to pass the fd
 | |
| 	 * opened to the cgroup directory in cgroupfs. The cpu argument
 | |
| 	 * designates the cpu on which to monitor threads from that
 | |
| 	 * cgroup.
 | |
| 	 */
 | |
| 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (flags & PERF_FLAG_FD_CLOEXEC)
 | |
| 		f_flags |= O_CLOEXEC;
 | |
| 
 | |
| 	event_fd = get_unused_fd_flags(f_flags);
 | |
| 	if (event_fd < 0)
 | |
| 		return event_fd;
 | |
| 
 | |
| 	if (group_fd != -1) {
 | |
| 		err = perf_fget_light(group_fd, &group);
 | |
| 		if (err)
 | |
| 			goto err_fd;
 | |
| 		group_leader = group.file->private_data;
 | |
| 		if (flags & PERF_FLAG_FD_OUTPUT)
 | |
| 			output_event = group_leader;
 | |
| 		if (flags & PERF_FLAG_FD_NO_GROUP)
 | |
| 			group_leader = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
 | |
| 		task = find_lively_task_by_vpid(pid);
 | |
| 		if (IS_ERR(task)) {
 | |
| 			err = PTR_ERR(task);
 | |
| 			goto err_group_fd;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (task && group_leader &&
 | |
| 	    group_leader->attr.inherit != attr.inherit) {
 | |
| 		err = -EINVAL;
 | |
| 		goto err_task;
 | |
| 	}
 | |
| 
 | |
| 	if (task) {
 | |
| 		err = mutex_lock_interruptible(&task->signal->exec_update_mutex);
 | |
| 		if (err)
 | |
| 			goto err_task;
 | |
| 
 | |
| 		/*
 | |
| 		 * Reuse ptrace permission checks for now.
 | |
| 		 *
 | |
| 		 * We must hold exec_update_mutex across this and any potential
 | |
| 		 * perf_install_in_context() call for this new event to
 | |
| 		 * serialize against exec() altering our credentials (and the
 | |
| 		 * perf_event_exit_task() that could imply).
 | |
| 		 */
 | |
| 		err = -EACCES;
 | |
| 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
 | |
| 			goto err_cred;
 | |
| 	}
 | |
| 
 | |
| 	if (flags & PERF_FLAG_PID_CGROUP)
 | |
| 		cgroup_fd = pid;
 | |
| 
 | |
| 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
 | |
| 				 NULL, NULL, cgroup_fd);
 | |
| 	if (IS_ERR(event)) {
 | |
| 		err = PTR_ERR(event);
 | |
| 		goto err_cred;
 | |
| 	}
 | |
| 
 | |
| 	if (is_sampling_event(event)) {
 | |
| 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
 | |
| 			err = -EOPNOTSUPP;
 | |
| 			goto err_alloc;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Special case software events and allow them to be part of
 | |
| 	 * any hardware group.
 | |
| 	 */
 | |
| 	pmu = event->pmu;
 | |
| 
 | |
| 	if (attr.use_clockid) {
 | |
| 		err = perf_event_set_clock(event, attr.clockid);
 | |
| 		if (err)
 | |
| 			goto err_alloc;
 | |
| 	}
 | |
| 
 | |
| 	if (pmu->task_ctx_nr == perf_sw_context)
 | |
| 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
 | |
| 
 | |
| 	if (group_leader) {
 | |
| 		if (is_software_event(event) &&
 | |
| 		    !in_software_context(group_leader)) {
 | |
| 			/*
 | |
| 			 * If the event is a sw event, but the group_leader
 | |
| 			 * is on hw context.
 | |
| 			 *
 | |
| 			 * Allow the addition of software events to hw
 | |
| 			 * groups, this is safe because software events
 | |
| 			 * never fail to schedule.
 | |
| 			 */
 | |
| 			pmu = group_leader->ctx->pmu;
 | |
| 		} else if (!is_software_event(event) &&
 | |
| 			   is_software_event(group_leader) &&
 | |
| 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
 | |
| 			/*
 | |
| 			 * In case the group is a pure software group, and we
 | |
| 			 * try to add a hardware event, move the whole group to
 | |
| 			 * the hardware context.
 | |
| 			 */
 | |
| 			move_group = 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the target context (task or percpu):
 | |
| 	 */
 | |
| 	ctx = find_get_context(pmu, task, event);
 | |
| 	if (IS_ERR(ctx)) {
 | |
| 		err = PTR_ERR(ctx);
 | |
| 		goto err_alloc;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Look up the group leader (we will attach this event to it):
 | |
| 	 */
 | |
| 	if (group_leader) {
 | |
| 		err = -EINVAL;
 | |
| 
 | |
| 		/*
 | |
| 		 * Do not allow a recursive hierarchy (this new sibling
 | |
| 		 * becoming part of another group-sibling):
 | |
| 		 */
 | |
| 		if (group_leader->group_leader != group_leader)
 | |
| 			goto err_context;
 | |
| 
 | |
| 		/* All events in a group should have the same clock */
 | |
| 		if (group_leader->clock != event->clock)
 | |
| 			goto err_context;
 | |
| 
 | |
| 		/*
 | |
| 		 * Make sure we're both events for the same CPU;
 | |
| 		 * grouping events for different CPUs is broken; since
 | |
| 		 * you can never concurrently schedule them anyhow.
 | |
| 		 */
 | |
| 		if (group_leader->cpu != event->cpu)
 | |
| 			goto err_context;
 | |
| 
 | |
| 		/*
 | |
| 		 * Make sure we're both on the same task, or both
 | |
| 		 * per-CPU events.
 | |
| 		 */
 | |
| 		if (group_leader->ctx->task != ctx->task)
 | |
| 			goto err_context;
 | |
| 
 | |
| 		/*
 | |
| 		 * Do not allow to attach to a group in a different task
 | |
| 		 * or CPU context. If we're moving SW events, we'll fix
 | |
| 		 * this up later, so allow that.
 | |
| 		 */
 | |
| 		if (!move_group && group_leader->ctx != ctx)
 | |
| 			goto err_context;
 | |
| 
 | |
| 		/*
 | |
| 		 * Only a group leader can be exclusive or pinned
 | |
| 		 */
 | |
| 		if (attr.exclusive || attr.pinned)
 | |
| 			goto err_context;
 | |
| 	}
 | |
| 
 | |
| 	if (output_event) {
 | |
| 		err = perf_event_set_output(event, output_event);
 | |
| 		if (err)
 | |
| 			goto err_context;
 | |
| 	}
 | |
| 
 | |
| 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
 | |
| 					f_flags);
 | |
| 	if (IS_ERR(event_file)) {
 | |
| 		err = PTR_ERR(event_file);
 | |
| 		event_file = NULL;
 | |
| 		goto err_context;
 | |
| 	}
 | |
| 
 | |
| 	if (move_group) {
 | |
| 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
 | |
| 
 | |
| 		if (gctx->task == TASK_TOMBSTONE) {
 | |
| 			err = -ESRCH;
 | |
| 			goto err_locked;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Check if we raced against another sys_perf_event_open() call
 | |
| 		 * moving the software group underneath us.
 | |
| 		 */
 | |
| 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
 | |
| 			/*
 | |
| 			 * If someone moved the group out from under us, check
 | |
| 			 * if this new event wound up on the same ctx, if so
 | |
| 			 * its the regular !move_group case, otherwise fail.
 | |
| 			 */
 | |
| 			if (gctx != ctx) {
 | |
| 				err = -EINVAL;
 | |
| 				goto err_locked;
 | |
| 			} else {
 | |
| 				perf_event_ctx_unlock(group_leader, gctx);
 | |
| 				move_group = 0;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Failure to create exclusive events returns -EBUSY.
 | |
| 		 */
 | |
| 		err = -EBUSY;
 | |
| 		if (!exclusive_event_installable(group_leader, ctx))
 | |
| 			goto err_locked;
 | |
| 
 | |
| 		for_each_sibling_event(sibling, group_leader) {
 | |
| 			if (!exclusive_event_installable(sibling, ctx))
 | |
| 				goto err_locked;
 | |
| 		}
 | |
| 	} else {
 | |
| 		mutex_lock(&ctx->mutex);
 | |
| 	}
 | |
| 
 | |
| 	if (ctx->task == TASK_TOMBSTONE) {
 | |
| 		err = -ESRCH;
 | |
| 		goto err_locked;
 | |
| 	}
 | |
| 
 | |
| 	if (!perf_event_validate_size(event)) {
 | |
| 		err = -E2BIG;
 | |
| 		goto err_locked;
 | |
| 	}
 | |
| 
 | |
| 	if (!task) {
 | |
| 		/*
 | |
| 		 * Check if the @cpu we're creating an event for is online.
 | |
| 		 *
 | |
| 		 * We use the perf_cpu_context::ctx::mutex to serialize against
 | |
| 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
 | |
| 		 */
 | |
| 		struct perf_cpu_context *cpuctx =
 | |
| 			container_of(ctx, struct perf_cpu_context, ctx);
 | |
| 
 | |
| 		if (!cpuctx->online) {
 | |
| 			err = -ENODEV;
 | |
| 			goto err_locked;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
 | |
| 		err = -EINVAL;
 | |
| 		goto err_locked;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Must be under the same ctx::mutex as perf_install_in_context(),
 | |
| 	 * because we need to serialize with concurrent event creation.
 | |
| 	 */
 | |
| 	if (!exclusive_event_installable(event, ctx)) {
 | |
| 		err = -EBUSY;
 | |
| 		goto err_locked;
 | |
| 	}
 | |
| 
 | |
| 	WARN_ON_ONCE(ctx->parent_ctx);
 | |
| 
 | |
| 	/*
 | |
| 	 * This is the point on no return; we cannot fail hereafter. This is
 | |
| 	 * where we start modifying current state.
 | |
| 	 */
 | |
| 
 | |
| 	if (move_group) {
 | |
| 		/*
 | |
| 		 * See perf_event_ctx_lock() for comments on the details
 | |
| 		 * of swizzling perf_event::ctx.
 | |
| 		 */
 | |
| 		perf_remove_from_context(group_leader, 0);
 | |
| 		put_ctx(gctx);
 | |
| 
 | |
| 		for_each_sibling_event(sibling, group_leader) {
 | |
| 			perf_remove_from_context(sibling, 0);
 | |
| 			put_ctx(gctx);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Wait for everybody to stop referencing the events through
 | |
| 		 * the old lists, before installing it on new lists.
 | |
| 		 */
 | |
| 		synchronize_rcu();
 | |
| 
 | |
| 		/*
 | |
| 		 * Install the group siblings before the group leader.
 | |
| 		 *
 | |
| 		 * Because a group leader will try and install the entire group
 | |
| 		 * (through the sibling list, which is still in-tact), we can
 | |
| 		 * end up with siblings installed in the wrong context.
 | |
| 		 *
 | |
| 		 * By installing siblings first we NO-OP because they're not
 | |
| 		 * reachable through the group lists.
 | |
| 		 */
 | |
| 		for_each_sibling_event(sibling, group_leader) {
 | |
| 			perf_event__state_init(sibling);
 | |
| 			perf_install_in_context(ctx, sibling, sibling->cpu);
 | |
| 			get_ctx(ctx);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Removing from the context ends up with disabled
 | |
| 		 * event. What we want here is event in the initial
 | |
| 		 * startup state, ready to be add into new context.
 | |
| 		 */
 | |
| 		perf_event__state_init(group_leader);
 | |
| 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
 | |
| 		get_ctx(ctx);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
 | |
| 	 * that we're serialized against further additions and before
 | |
| 	 * perf_install_in_context() which is the point the event is active and
 | |
| 	 * can use these values.
 | |
| 	 */
 | |
| 	perf_event__header_size(event);
 | |
| 	perf_event__id_header_size(event);
 | |
| 
 | |
| 	event->owner = current;
 | |
| 
 | |
| 	perf_install_in_context(ctx, event, event->cpu);
 | |
| 	perf_unpin_context(ctx);
 | |
| 
 | |
| 	if (move_group)
 | |
| 		perf_event_ctx_unlock(group_leader, gctx);
 | |
| 	mutex_unlock(&ctx->mutex);
 | |
| 
 | |
| 	if (task) {
 | |
| 		mutex_unlock(&task->signal->exec_update_mutex);
 | |
| 		put_task_struct(task);
 | |
| 	}
 | |
| 
 | |
| 	mutex_lock(¤t->perf_event_mutex);
 | |
| 	list_add_tail(&event->owner_entry, ¤t->perf_event_list);
 | |
| 	mutex_unlock(¤t->perf_event_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * Drop the reference on the group_event after placing the
 | |
| 	 * new event on the sibling_list. This ensures destruction
 | |
| 	 * of the group leader will find the pointer to itself in
 | |
| 	 * perf_group_detach().
 | |
| 	 */
 | |
| 	fdput(group);
 | |
| 	fd_install(event_fd, event_file);
 | |
| 	return event_fd;
 | |
| 
 | |
| err_locked:
 | |
| 	if (move_group)
 | |
| 		perf_event_ctx_unlock(group_leader, gctx);
 | |
| 	mutex_unlock(&ctx->mutex);
 | |
| /* err_file: */
 | |
| 	fput(event_file);
 | |
| err_context:
 | |
| 	perf_unpin_context(ctx);
 | |
| 	put_ctx(ctx);
 | |
| err_alloc:
 | |
| 	/*
 | |
| 	 * If event_file is set, the fput() above will have called ->release()
 | |
| 	 * and that will take care of freeing the event.
 | |
| 	 */
 | |
| 	if (!event_file)
 | |
| 		free_event(event);
 | |
| err_cred:
 | |
| 	if (task)
 | |
| 		mutex_unlock(&task->signal->exec_update_mutex);
 | |
| err_task:
 | |
| 	if (task)
 | |
| 		put_task_struct(task);
 | |
| err_group_fd:
 | |
| 	fdput(group);
 | |
| err_fd:
 | |
| 	put_unused_fd(event_fd);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * perf_event_create_kernel_counter
 | |
|  *
 | |
|  * @attr: attributes of the counter to create
 | |
|  * @cpu: cpu in which the counter is bound
 | |
|  * @task: task to profile (NULL for percpu)
 | |
|  */
 | |
| struct perf_event *
 | |
| perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
 | |
| 				 struct task_struct *task,
 | |
| 				 perf_overflow_handler_t overflow_handler,
 | |
| 				 void *context)
 | |
| {
 | |
| 	struct perf_event_context *ctx;
 | |
| 	struct perf_event *event;
 | |
| 	int err;
 | |
| 
 | |
| 	/*
 | |
| 	 * Grouping is not supported for kernel events, neither is 'AUX',
 | |
| 	 * make sure the caller's intentions are adjusted.
 | |
| 	 */
 | |
| 	if (attr->aux_output)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
 | |
| 				 overflow_handler, context, -1);
 | |
| 	if (IS_ERR(event)) {
 | |
| 		err = PTR_ERR(event);
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	/* Mark owner so we could distinguish it from user events. */
 | |
| 	event->owner = TASK_TOMBSTONE;
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the target context (task or percpu):
 | |
| 	 */
 | |
| 	ctx = find_get_context(event->pmu, task, event);
 | |
| 	if (IS_ERR(ctx)) {
 | |
| 		err = PTR_ERR(ctx);
 | |
| 		goto err_free;
 | |
| 	}
 | |
| 
 | |
| 	WARN_ON_ONCE(ctx->parent_ctx);
 | |
| 	mutex_lock(&ctx->mutex);
 | |
| 	if (ctx->task == TASK_TOMBSTONE) {
 | |
| 		err = -ESRCH;
 | |
| 		goto err_unlock;
 | |
| 	}
 | |
| 
 | |
| 	if (!task) {
 | |
| 		/*
 | |
| 		 * Check if the @cpu we're creating an event for is online.
 | |
| 		 *
 | |
| 		 * We use the perf_cpu_context::ctx::mutex to serialize against
 | |
| 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
 | |
| 		 */
 | |
| 		struct perf_cpu_context *cpuctx =
 | |
| 			container_of(ctx, struct perf_cpu_context, ctx);
 | |
| 		if (!cpuctx->online) {
 | |
| 			err = -ENODEV;
 | |
| 			goto err_unlock;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!exclusive_event_installable(event, ctx)) {
 | |
| 		err = -EBUSY;
 | |
| 		goto err_unlock;
 | |
| 	}
 | |
| 
 | |
| 	perf_install_in_context(ctx, event, event->cpu);
 | |
| 	perf_unpin_context(ctx);
 | |
| 	mutex_unlock(&ctx->mutex);
 | |
| 
 | |
| 	return event;
 | |
| 
 | |
| err_unlock:
 | |
| 	mutex_unlock(&ctx->mutex);
 | |
| 	perf_unpin_context(ctx);
 | |
| 	put_ctx(ctx);
 | |
| err_free:
 | |
| 	free_event(event);
 | |
| err:
 | |
| 	return ERR_PTR(err);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
 | |
| 
 | |
| void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
 | |
| {
 | |
| 	struct perf_event_context *src_ctx;
 | |
| 	struct perf_event_context *dst_ctx;
 | |
| 	struct perf_event *event, *tmp;
 | |
| 	LIST_HEAD(events);
 | |
| 
 | |
| 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
 | |
| 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
 | |
| 
 | |
| 	/*
 | |
| 	 * See perf_event_ctx_lock() for comments on the details
 | |
| 	 * of swizzling perf_event::ctx.
 | |
| 	 */
 | |
| 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
 | |
| 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
 | |
| 				 event_entry) {
 | |
| 		perf_remove_from_context(event, 0);
 | |
| 		unaccount_event_cpu(event, src_cpu);
 | |
| 		put_ctx(src_ctx);
 | |
| 		list_add(&event->migrate_entry, &events);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait for the events to quiesce before re-instating them.
 | |
| 	 */
 | |
| 	synchronize_rcu();
 | |
| 
 | |
| 	/*
 | |
| 	 * Re-instate events in 2 passes.
 | |
| 	 *
 | |
| 	 * Skip over group leaders and only install siblings on this first
 | |
| 	 * pass, siblings will not get enabled without a leader, however a
 | |
| 	 * leader will enable its siblings, even if those are still on the old
 | |
| 	 * context.
 | |
| 	 */
 | |
| 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
 | |
| 		if (event->group_leader == event)
 | |
| 			continue;
 | |
| 
 | |
| 		list_del(&event->migrate_entry);
 | |
| 		if (event->state >= PERF_EVENT_STATE_OFF)
 | |
| 			event->state = PERF_EVENT_STATE_INACTIVE;
 | |
| 		account_event_cpu(event, dst_cpu);
 | |
| 		perf_install_in_context(dst_ctx, event, dst_cpu);
 | |
| 		get_ctx(dst_ctx);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Once all the siblings are setup properly, install the group leaders
 | |
| 	 * to make it go.
 | |
| 	 */
 | |
| 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
 | |
| 		list_del(&event->migrate_entry);
 | |
| 		if (event->state >= PERF_EVENT_STATE_OFF)
 | |
| 			event->state = PERF_EVENT_STATE_INACTIVE;
 | |
| 		account_event_cpu(event, dst_cpu);
 | |
| 		perf_install_in_context(dst_ctx, event, dst_cpu);
 | |
| 		get_ctx(dst_ctx);
 | |
| 	}
 | |
| 	mutex_unlock(&dst_ctx->mutex);
 | |
| 	mutex_unlock(&src_ctx->mutex);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
 | |
| 
 | |
| static void sync_child_event(struct perf_event *child_event,
 | |
| 			       struct task_struct *child)
 | |
| {
 | |
| 	struct perf_event *parent_event = child_event->parent;
 | |
| 	u64 child_val;
 | |
| 
 | |
| 	if (child_event->attr.inherit_stat)
 | |
| 		perf_event_read_event(child_event, child);
 | |
| 
 | |
| 	child_val = perf_event_count(child_event);
 | |
| 
 | |
| 	/*
 | |
| 	 * Add back the child's count to the parent's count:
 | |
| 	 */
 | |
| 	atomic64_add(child_val, &parent_event->child_count);
 | |
| 	atomic64_add(child_event->total_time_enabled,
 | |
| 		     &parent_event->child_total_time_enabled);
 | |
| 	atomic64_add(child_event->total_time_running,
 | |
| 		     &parent_event->child_total_time_running);
 | |
| }
 | |
| 
 | |
| static void
 | |
| perf_event_exit_event(struct perf_event *child_event,
 | |
| 		      struct perf_event_context *child_ctx,
 | |
| 		      struct task_struct *child)
 | |
| {
 | |
| 	struct perf_event *parent_event = child_event->parent;
 | |
| 
 | |
| 	/*
 | |
| 	 * Do not destroy the 'original' grouping; because of the context
 | |
| 	 * switch optimization the original events could've ended up in a
 | |
| 	 * random child task.
 | |
| 	 *
 | |
| 	 * If we were to destroy the original group, all group related
 | |
| 	 * operations would cease to function properly after this random
 | |
| 	 * child dies.
 | |
| 	 *
 | |
| 	 * Do destroy all inherited groups, we don't care about those
 | |
| 	 * and being thorough is better.
 | |
| 	 */
 | |
| 	raw_spin_lock_irq(&child_ctx->lock);
 | |
| 	WARN_ON_ONCE(child_ctx->is_active);
 | |
| 
 | |
| 	if (parent_event)
 | |
| 		perf_group_detach(child_event);
 | |
| 	list_del_event(child_event, child_ctx);
 | |
| 	perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
 | |
| 	raw_spin_unlock_irq(&child_ctx->lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Parent events are governed by their filedesc, retain them.
 | |
| 	 */
 | |
| 	if (!parent_event) {
 | |
| 		perf_event_wakeup(child_event);
 | |
| 		return;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Child events can be cleaned up.
 | |
| 	 */
 | |
| 
 | |
| 	sync_child_event(child_event, child);
 | |
| 
 | |
| 	/*
 | |
| 	 * Remove this event from the parent's list
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
 | |
| 	mutex_lock(&parent_event->child_mutex);
 | |
| 	list_del_init(&child_event->child_list);
 | |
| 	mutex_unlock(&parent_event->child_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * Kick perf_poll() for is_event_hup().
 | |
| 	 */
 | |
| 	perf_event_wakeup(parent_event);
 | |
| 	free_event(child_event);
 | |
| 	put_event(parent_event);
 | |
| }
 | |
| 
 | |
| static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
 | |
| {
 | |
| 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
 | |
| 	struct perf_event *child_event, *next;
 | |
| 
 | |
| 	WARN_ON_ONCE(child != current);
 | |
| 
 | |
| 	child_ctx = perf_pin_task_context(child, ctxn);
 | |
| 	if (!child_ctx)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
 | |
| 	 * ctx::mutex over the entire thing. This serializes against almost
 | |
| 	 * everything that wants to access the ctx.
 | |
| 	 *
 | |
| 	 * The exception is sys_perf_event_open() /
 | |
| 	 * perf_event_create_kernel_count() which does find_get_context()
 | |
| 	 * without ctx::mutex (it cannot because of the move_group double mutex
 | |
| 	 * lock thing). See the comments in perf_install_in_context().
 | |
| 	 */
 | |
| 	mutex_lock(&child_ctx->mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * In a single ctx::lock section, de-schedule the events and detach the
 | |
| 	 * context from the task such that we cannot ever get it scheduled back
 | |
| 	 * in.
 | |
| 	 */
 | |
| 	raw_spin_lock_irq(&child_ctx->lock);
 | |
| 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
 | |
| 
 | |
| 	/*
 | |
| 	 * Now that the context is inactive, destroy the task <-> ctx relation
 | |
| 	 * and mark the context dead.
 | |
| 	 */
 | |
| 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
 | |
| 	put_ctx(child_ctx); /* cannot be last */
 | |
| 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
 | |
| 	put_task_struct(current); /* cannot be last */
 | |
| 
 | |
| 	clone_ctx = unclone_ctx(child_ctx);
 | |
| 	raw_spin_unlock_irq(&child_ctx->lock);
 | |
| 
 | |
| 	if (clone_ctx)
 | |
| 		put_ctx(clone_ctx);
 | |
| 
 | |
| 	/*
 | |
| 	 * Report the task dead after unscheduling the events so that we
 | |
| 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
 | |
| 	 * get a few PERF_RECORD_READ events.
 | |
| 	 */
 | |
| 	perf_event_task(child, child_ctx, 0);
 | |
| 
 | |
| 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
 | |
| 		perf_event_exit_event(child_event, child_ctx, child);
 | |
| 
 | |
| 	mutex_unlock(&child_ctx->mutex);
 | |
| 
 | |
| 	put_ctx(child_ctx);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When a child task exits, feed back event values to parent events.
 | |
|  *
 | |
|  * Can be called with exec_update_mutex held when called from
 | |
|  * setup_new_exec().
 | |
|  */
 | |
| void perf_event_exit_task(struct task_struct *child)
 | |
| {
 | |
| 	struct perf_event *event, *tmp;
 | |
| 	int ctxn;
 | |
| 
 | |
| 	mutex_lock(&child->perf_event_mutex);
 | |
| 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
 | |
| 				 owner_entry) {
 | |
| 		list_del_init(&event->owner_entry);
 | |
| 
 | |
| 		/*
 | |
| 		 * Ensure the list deletion is visible before we clear
 | |
| 		 * the owner, closes a race against perf_release() where
 | |
| 		 * we need to serialize on the owner->perf_event_mutex.
 | |
| 		 */
 | |
| 		smp_store_release(&event->owner, NULL);
 | |
| 	}
 | |
| 	mutex_unlock(&child->perf_event_mutex);
 | |
| 
 | |
| 	for_each_task_context_nr(ctxn)
 | |
| 		perf_event_exit_task_context(child, ctxn);
 | |
| 
 | |
| 	/*
 | |
| 	 * The perf_event_exit_task_context calls perf_event_task
 | |
| 	 * with child's task_ctx, which generates EXIT events for
 | |
| 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
 | |
| 	 * At this point we need to send EXIT events to cpu contexts.
 | |
| 	 */
 | |
| 	perf_event_task(child, NULL, 0);
 | |
| }
 | |
| 
 | |
| static void perf_free_event(struct perf_event *event,
 | |
| 			    struct perf_event_context *ctx)
 | |
| {
 | |
| 	struct perf_event *parent = event->parent;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(!parent))
 | |
| 		return;
 | |
| 
 | |
| 	mutex_lock(&parent->child_mutex);
 | |
| 	list_del_init(&event->child_list);
 | |
| 	mutex_unlock(&parent->child_mutex);
 | |
| 
 | |
| 	put_event(parent);
 | |
| 
 | |
| 	raw_spin_lock_irq(&ctx->lock);
 | |
| 	perf_group_detach(event);
 | |
| 	list_del_event(event, ctx);
 | |
| 	raw_spin_unlock_irq(&ctx->lock);
 | |
| 	free_event(event);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free a context as created by inheritance by perf_event_init_task() below,
 | |
|  * used by fork() in case of fail.
 | |
|  *
 | |
|  * Even though the task has never lived, the context and events have been
 | |
|  * exposed through the child_list, so we must take care tearing it all down.
 | |
|  */
 | |
| void perf_event_free_task(struct task_struct *task)
 | |
| {
 | |
| 	struct perf_event_context *ctx;
 | |
| 	struct perf_event *event, *tmp;
 | |
| 	int ctxn;
 | |
| 
 | |
| 	for_each_task_context_nr(ctxn) {
 | |
| 		ctx = task->perf_event_ctxp[ctxn];
 | |
| 		if (!ctx)
 | |
| 			continue;
 | |
| 
 | |
| 		mutex_lock(&ctx->mutex);
 | |
| 		raw_spin_lock_irq(&ctx->lock);
 | |
| 		/*
 | |
| 		 * Destroy the task <-> ctx relation and mark the context dead.
 | |
| 		 *
 | |
| 		 * This is important because even though the task hasn't been
 | |
| 		 * exposed yet the context has been (through child_list).
 | |
| 		 */
 | |
| 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
 | |
| 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
 | |
| 		put_task_struct(task); /* cannot be last */
 | |
| 		raw_spin_unlock_irq(&ctx->lock);
 | |
| 
 | |
| 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
 | |
| 			perf_free_event(event, ctx);
 | |
| 
 | |
| 		mutex_unlock(&ctx->mutex);
 | |
| 
 | |
| 		/*
 | |
| 		 * perf_event_release_kernel() could've stolen some of our
 | |
| 		 * child events and still have them on its free_list. In that
 | |
| 		 * case we must wait for these events to have been freed (in
 | |
| 		 * particular all their references to this task must've been
 | |
| 		 * dropped).
 | |
| 		 *
 | |
| 		 * Without this copy_process() will unconditionally free this
 | |
| 		 * task (irrespective of its reference count) and
 | |
| 		 * _free_event()'s put_task_struct(event->hw.target) will be a
 | |
| 		 * use-after-free.
 | |
| 		 *
 | |
| 		 * Wait for all events to drop their context reference.
 | |
| 		 */
 | |
| 		wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
 | |
| 		put_ctx(ctx); /* must be last */
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void perf_event_delayed_put(struct task_struct *task)
 | |
| {
 | |
| 	int ctxn;
 | |
| 
 | |
| 	for_each_task_context_nr(ctxn)
 | |
| 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
 | |
| }
 | |
| 
 | |
| struct file *perf_event_get(unsigned int fd)
 | |
| {
 | |
| 	struct file *file = fget(fd);
 | |
| 	if (!file)
 | |
| 		return ERR_PTR(-EBADF);
 | |
| 
 | |
| 	if (file->f_op != &perf_fops) {
 | |
| 		fput(file);
 | |
| 		return ERR_PTR(-EBADF);
 | |
| 	}
 | |
| 
 | |
| 	return file;
 | |
| }
 | |
| 
 | |
| const struct perf_event *perf_get_event(struct file *file)
 | |
| {
 | |
| 	if (file->f_op != &perf_fops)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	return file->private_data;
 | |
| }
 | |
| 
 | |
| const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
 | |
| {
 | |
| 	if (!event)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	return &event->attr;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Inherit an event from parent task to child task.
 | |
|  *
 | |
|  * Returns:
 | |
|  *  - valid pointer on success
 | |
|  *  - NULL for orphaned events
 | |
|  *  - IS_ERR() on error
 | |
|  */
 | |
| static struct perf_event *
 | |
| inherit_event(struct perf_event *parent_event,
 | |
| 	      struct task_struct *parent,
 | |
| 	      struct perf_event_context *parent_ctx,
 | |
| 	      struct task_struct *child,
 | |
| 	      struct perf_event *group_leader,
 | |
| 	      struct perf_event_context *child_ctx)
 | |
| {
 | |
| 	enum perf_event_state parent_state = parent_event->state;
 | |
| 	struct perf_event *child_event;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * Instead of creating recursive hierarchies of events,
 | |
| 	 * we link inherited events back to the original parent,
 | |
| 	 * which has a filp for sure, which we use as the reference
 | |
| 	 * count:
 | |
| 	 */
 | |
| 	if (parent_event->parent)
 | |
| 		parent_event = parent_event->parent;
 | |
| 
 | |
| 	child_event = perf_event_alloc(&parent_event->attr,
 | |
| 					   parent_event->cpu,
 | |
| 					   child,
 | |
| 					   group_leader, parent_event,
 | |
| 					   NULL, NULL, -1);
 | |
| 	if (IS_ERR(child_event))
 | |
| 		return child_event;
 | |
| 
 | |
| 
 | |
| 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
 | |
| 	    !child_ctx->task_ctx_data) {
 | |
| 		struct pmu *pmu = child_event->pmu;
 | |
| 
 | |
| 		child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
 | |
| 						   GFP_KERNEL);
 | |
| 		if (!child_ctx->task_ctx_data) {
 | |
| 			free_event(child_event);
 | |
| 			return ERR_PTR(-ENOMEM);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
 | |
| 	 * must be under the same lock in order to serialize against
 | |
| 	 * perf_event_release_kernel(), such that either we must observe
 | |
| 	 * is_orphaned_event() or they will observe us on the child_list.
 | |
| 	 */
 | |
| 	mutex_lock(&parent_event->child_mutex);
 | |
| 	if (is_orphaned_event(parent_event) ||
 | |
| 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
 | |
| 		mutex_unlock(&parent_event->child_mutex);
 | |
| 		/* task_ctx_data is freed with child_ctx */
 | |
| 		free_event(child_event);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	get_ctx(child_ctx);
 | |
| 
 | |
| 	/*
 | |
| 	 * Make the child state follow the state of the parent event,
 | |
| 	 * not its attr.disabled bit.  We hold the parent's mutex,
 | |
| 	 * so we won't race with perf_event_{en, dis}able_family.
 | |
| 	 */
 | |
| 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
 | |
| 		child_event->state = PERF_EVENT_STATE_INACTIVE;
 | |
| 	else
 | |
| 		child_event->state = PERF_EVENT_STATE_OFF;
 | |
| 
 | |
| 	if (parent_event->attr.freq) {
 | |
| 		u64 sample_period = parent_event->hw.sample_period;
 | |
| 		struct hw_perf_event *hwc = &child_event->hw;
 | |
| 
 | |
| 		hwc->sample_period = sample_period;
 | |
| 		hwc->last_period   = sample_period;
 | |
| 
 | |
| 		local64_set(&hwc->period_left, sample_period);
 | |
| 	}
 | |
| 
 | |
| 	child_event->ctx = child_ctx;
 | |
| 	child_event->overflow_handler = parent_event->overflow_handler;
 | |
| 	child_event->overflow_handler_context
 | |
| 		= parent_event->overflow_handler_context;
 | |
| 
 | |
| 	/*
 | |
| 	 * Precalculate sample_data sizes
 | |
| 	 */
 | |
| 	perf_event__header_size(child_event);
 | |
| 	perf_event__id_header_size(child_event);
 | |
| 
 | |
| 	/*
 | |
| 	 * Link it up in the child's context:
 | |
| 	 */
 | |
| 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
 | |
| 	add_event_to_ctx(child_event, child_ctx);
 | |
| 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Link this into the parent event's child list
 | |
| 	 */
 | |
| 	list_add_tail(&child_event->child_list, &parent_event->child_list);
 | |
| 	mutex_unlock(&parent_event->child_mutex);
 | |
| 
 | |
| 	return child_event;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Inherits an event group.
 | |
|  *
 | |
|  * This will quietly suppress orphaned events; !inherit_event() is not an error.
 | |
|  * This matches with perf_event_release_kernel() removing all child events.
 | |
|  *
 | |
|  * Returns:
 | |
|  *  - 0 on success
 | |
|  *  - <0 on error
 | |
|  */
 | |
| static int inherit_group(struct perf_event *parent_event,
 | |
| 	      struct task_struct *parent,
 | |
| 	      struct perf_event_context *parent_ctx,
 | |
| 	      struct task_struct *child,
 | |
| 	      struct perf_event_context *child_ctx)
 | |
| {
 | |
| 	struct perf_event *leader;
 | |
| 	struct perf_event *sub;
 | |
| 	struct perf_event *child_ctr;
 | |
| 
 | |
| 	leader = inherit_event(parent_event, parent, parent_ctx,
 | |
| 				 child, NULL, child_ctx);
 | |
| 	if (IS_ERR(leader))
 | |
| 		return PTR_ERR(leader);
 | |
| 	/*
 | |
| 	 * @leader can be NULL here because of is_orphaned_event(). In this
 | |
| 	 * case inherit_event() will create individual events, similar to what
 | |
| 	 * perf_group_detach() would do anyway.
 | |
| 	 */
 | |
| 	for_each_sibling_event(sub, parent_event) {
 | |
| 		child_ctr = inherit_event(sub, parent, parent_ctx,
 | |
| 					    child, leader, child_ctx);
 | |
| 		if (IS_ERR(child_ctr))
 | |
| 			return PTR_ERR(child_ctr);
 | |
| 
 | |
| 		if (sub->aux_event == parent_event && child_ctr &&
 | |
| 		    !perf_get_aux_event(child_ctr, leader))
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Creates the child task context and tries to inherit the event-group.
 | |
|  *
 | |
|  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
 | |
|  * inherited_all set when we 'fail' to inherit an orphaned event; this is
 | |
|  * consistent with perf_event_release_kernel() removing all child events.
 | |
|  *
 | |
|  * Returns:
 | |
|  *  - 0 on success
 | |
|  *  - <0 on error
 | |
|  */
 | |
| static int
 | |
| inherit_task_group(struct perf_event *event, struct task_struct *parent,
 | |
| 		   struct perf_event_context *parent_ctx,
 | |
| 		   struct task_struct *child, int ctxn,
 | |
| 		   int *inherited_all)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct perf_event_context *child_ctx;
 | |
| 
 | |
| 	if (!event->attr.inherit) {
 | |
| 		*inherited_all = 0;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	child_ctx = child->perf_event_ctxp[ctxn];
 | |
| 	if (!child_ctx) {
 | |
| 		/*
 | |
| 		 * This is executed from the parent task context, so
 | |
| 		 * inherit events that have been marked for cloning.
 | |
| 		 * First allocate and initialize a context for the
 | |
| 		 * child.
 | |
| 		 */
 | |
| 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
 | |
| 		if (!child_ctx)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		child->perf_event_ctxp[ctxn] = child_ctx;
 | |
| 	}
 | |
| 
 | |
| 	ret = inherit_group(event, parent, parent_ctx,
 | |
| 			    child, child_ctx);
 | |
| 
 | |
| 	if (ret)
 | |
| 		*inherited_all = 0;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize the perf_event context in task_struct
 | |
|  */
 | |
| static int perf_event_init_context(struct task_struct *child, int ctxn)
 | |
| {
 | |
| 	struct perf_event_context *child_ctx, *parent_ctx;
 | |
| 	struct perf_event_context *cloned_ctx;
 | |
| 	struct perf_event *event;
 | |
| 	struct task_struct *parent = current;
 | |
| 	int inherited_all = 1;
 | |
| 	unsigned long flags;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (likely(!parent->perf_event_ctxp[ctxn]))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the parent's context is a clone, pin it so it won't get
 | |
| 	 * swapped under us.
 | |
| 	 */
 | |
| 	parent_ctx = perf_pin_task_context(parent, ctxn);
 | |
| 	if (!parent_ctx)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * No need to check if parent_ctx != NULL here; since we saw
 | |
| 	 * it non-NULL earlier, the only reason for it to become NULL
 | |
| 	 * is if we exit, and since we're currently in the middle of
 | |
| 	 * a fork we can't be exiting at the same time.
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * Lock the parent list. No need to lock the child - not PID
 | |
| 	 * hashed yet and not running, so nobody can access it.
 | |
| 	 */
 | |
| 	mutex_lock(&parent_ctx->mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * We dont have to disable NMIs - we are only looking at
 | |
| 	 * the list, not manipulating it:
 | |
| 	 */
 | |
| 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
 | |
| 		ret = inherit_task_group(event, parent, parent_ctx,
 | |
| 					 child, ctxn, &inherited_all);
 | |
| 		if (ret)
 | |
| 			goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
 | |
| 	 * to allocations, but we need to prevent rotation because
 | |
| 	 * rotate_ctx() will change the list from interrupt context.
 | |
| 	 */
 | |
| 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
 | |
| 	parent_ctx->rotate_disable = 1;
 | |
| 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
 | |
| 
 | |
| 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
 | |
| 		ret = inherit_task_group(event, parent, parent_ctx,
 | |
| 					 child, ctxn, &inherited_all);
 | |
| 		if (ret)
 | |
| 			goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
 | |
| 	parent_ctx->rotate_disable = 0;
 | |
| 
 | |
| 	child_ctx = child->perf_event_ctxp[ctxn];
 | |
| 
 | |
| 	if (child_ctx && inherited_all) {
 | |
| 		/*
 | |
| 		 * Mark the child context as a clone of the parent
 | |
| 		 * context, or of whatever the parent is a clone of.
 | |
| 		 *
 | |
| 		 * Note that if the parent is a clone, the holding of
 | |
| 		 * parent_ctx->lock avoids it from being uncloned.
 | |
| 		 */
 | |
| 		cloned_ctx = parent_ctx->parent_ctx;
 | |
| 		if (cloned_ctx) {
 | |
| 			child_ctx->parent_ctx = cloned_ctx;
 | |
| 			child_ctx->parent_gen = parent_ctx->parent_gen;
 | |
| 		} else {
 | |
| 			child_ctx->parent_ctx = parent_ctx;
 | |
| 			child_ctx->parent_gen = parent_ctx->generation;
 | |
| 		}
 | |
| 		get_ctx(child_ctx->parent_ctx);
 | |
| 	}
 | |
| 
 | |
| 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
 | |
| out_unlock:
 | |
| 	mutex_unlock(&parent_ctx->mutex);
 | |
| 
 | |
| 	perf_unpin_context(parent_ctx);
 | |
| 	put_ctx(parent_ctx);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize the perf_event context in task_struct
 | |
|  */
 | |
| int perf_event_init_task(struct task_struct *child)
 | |
| {
 | |
| 	int ctxn, ret;
 | |
| 
 | |
| 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
 | |
| 	mutex_init(&child->perf_event_mutex);
 | |
| 	INIT_LIST_HEAD(&child->perf_event_list);
 | |
| 
 | |
| 	for_each_task_context_nr(ctxn) {
 | |
| 		ret = perf_event_init_context(child, ctxn);
 | |
| 		if (ret) {
 | |
| 			perf_event_free_task(child);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __init perf_event_init_all_cpus(void)
 | |
| {
 | |
| 	struct swevent_htable *swhash;
 | |
| 	int cpu;
 | |
| 
 | |
| 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		swhash = &per_cpu(swevent_htable, cpu);
 | |
| 		mutex_init(&swhash->hlist_mutex);
 | |
| 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
 | |
| 
 | |
| 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
 | |
| 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_PERF
 | |
| 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
 | |
| #endif
 | |
| 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void perf_swevent_init_cpu(unsigned int cpu)
 | |
| {
 | |
| 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
 | |
| 
 | |
| 	mutex_lock(&swhash->hlist_mutex);
 | |
| 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
 | |
| 		struct swevent_hlist *hlist;
 | |
| 
 | |
| 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
 | |
| 		WARN_ON(!hlist);
 | |
| 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
 | |
| 	}
 | |
| 	mutex_unlock(&swhash->hlist_mutex);
 | |
| }
 | |
| 
 | |
| #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
 | |
| static void __perf_event_exit_context(void *__info)
 | |
| {
 | |
| 	struct perf_event_context *ctx = __info;
 | |
| 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 | |
| 	struct perf_event *event;
 | |
| 
 | |
| 	raw_spin_lock(&ctx->lock);
 | |
| 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
 | |
| 	list_for_each_entry(event, &ctx->event_list, event_entry)
 | |
| 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
 | |
| 	raw_spin_unlock(&ctx->lock);
 | |
| }
 | |
| 
 | |
| static void perf_event_exit_cpu_context(int cpu)
 | |
| {
 | |
| 	struct perf_cpu_context *cpuctx;
 | |
| 	struct perf_event_context *ctx;
 | |
| 	struct pmu *pmu;
 | |
| 
 | |
| 	mutex_lock(&pmus_lock);
 | |
| 	list_for_each_entry(pmu, &pmus, entry) {
 | |
| 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
 | |
| 		ctx = &cpuctx->ctx;
 | |
| 
 | |
| 		mutex_lock(&ctx->mutex);
 | |
| 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
 | |
| 		cpuctx->online = 0;
 | |
| 		mutex_unlock(&ctx->mutex);
 | |
| 	}
 | |
| 	cpumask_clear_cpu(cpu, perf_online_mask);
 | |
| 	mutex_unlock(&pmus_lock);
 | |
| }
 | |
| #else
 | |
| 
 | |
| static void perf_event_exit_cpu_context(int cpu) { }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| int perf_event_init_cpu(unsigned int cpu)
 | |
| {
 | |
| 	struct perf_cpu_context *cpuctx;
 | |
| 	struct perf_event_context *ctx;
 | |
| 	struct pmu *pmu;
 | |
| 
 | |
| 	perf_swevent_init_cpu(cpu);
 | |
| 
 | |
| 	mutex_lock(&pmus_lock);
 | |
| 	cpumask_set_cpu(cpu, perf_online_mask);
 | |
| 	list_for_each_entry(pmu, &pmus, entry) {
 | |
| 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
 | |
| 		ctx = &cpuctx->ctx;
 | |
| 
 | |
| 		mutex_lock(&ctx->mutex);
 | |
| 		cpuctx->online = 1;
 | |
| 		mutex_unlock(&ctx->mutex);
 | |
| 	}
 | |
| 	mutex_unlock(&pmus_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int perf_event_exit_cpu(unsigned int cpu)
 | |
| {
 | |
| 	perf_event_exit_cpu_context(cpu);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_online_cpu(cpu)
 | |
| 		perf_event_exit_cpu(cpu);
 | |
| 
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Run the perf reboot notifier at the very last possible moment so that
 | |
|  * the generic watchdog code runs as long as possible.
 | |
|  */
 | |
| static struct notifier_block perf_reboot_notifier = {
 | |
| 	.notifier_call = perf_reboot,
 | |
| 	.priority = INT_MIN,
 | |
| };
 | |
| 
 | |
| void __init perf_event_init(void)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	idr_init(&pmu_idr);
 | |
| 
 | |
| 	perf_event_init_all_cpus();
 | |
| 	init_srcu_struct(&pmus_srcu);
 | |
| 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
 | |
| 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
 | |
| 	perf_pmu_register(&perf_task_clock, NULL, -1);
 | |
| 	perf_tp_register();
 | |
| 	perf_event_init_cpu(smp_processor_id());
 | |
| 	register_reboot_notifier(&perf_reboot_notifier);
 | |
| 
 | |
| 	ret = init_hw_breakpoint();
 | |
| 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
 | |
| 
 | |
| 	/*
 | |
| 	 * Build time assertion that we keep the data_head at the intended
 | |
| 	 * location.  IOW, validation we got the __reserved[] size right.
 | |
| 	 */
 | |
| 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
 | |
| 		     != 1024);
 | |
| }
 | |
| 
 | |
| ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
 | |
| 			      char *page)
 | |
| {
 | |
| 	struct perf_pmu_events_attr *pmu_attr =
 | |
| 		container_of(attr, struct perf_pmu_events_attr, attr);
 | |
| 
 | |
| 	if (pmu_attr->event_str)
 | |
| 		return sprintf(page, "%s\n", pmu_attr->event_str);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
 | |
| 
 | |
| static int __init perf_event_sysfs_init(void)
 | |
| {
 | |
| 	struct pmu *pmu;
 | |
| 	int ret;
 | |
| 
 | |
| 	mutex_lock(&pmus_lock);
 | |
| 
 | |
| 	ret = bus_register(&pmu_bus);
 | |
| 	if (ret)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	list_for_each_entry(pmu, &pmus, entry) {
 | |
| 		if (!pmu->name || pmu->type < 0)
 | |
| 			continue;
 | |
| 
 | |
| 		ret = pmu_dev_alloc(pmu);
 | |
| 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
 | |
| 	}
 | |
| 	pmu_bus_running = 1;
 | |
| 	ret = 0;
 | |
| 
 | |
| unlock:
 | |
| 	mutex_unlock(&pmus_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| device_initcall(perf_event_sysfs_init);
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_PERF
 | |
| static struct cgroup_subsys_state *
 | |
| perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
 | |
| {
 | |
| 	struct perf_cgroup *jc;
 | |
| 
 | |
| 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
 | |
| 	if (!jc)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	jc->info = alloc_percpu(struct perf_cgroup_info);
 | |
| 	if (!jc->info) {
 | |
| 		kfree(jc);
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	}
 | |
| 
 | |
| 	return &jc->css;
 | |
| }
 | |
| 
 | |
| static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
 | |
| {
 | |
| 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
 | |
| 
 | |
| 	free_percpu(jc->info);
 | |
| 	kfree(jc);
 | |
| }
 | |
| 
 | |
| static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
 | |
| {
 | |
| 	perf_event_cgroup(css->cgroup);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __perf_cgroup_move(void *info)
 | |
| {
 | |
| 	struct task_struct *task = info;
 | |
| 	rcu_read_lock();
 | |
| 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
 | |
| 	rcu_read_unlock();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void perf_cgroup_attach(struct cgroup_taskset *tset)
 | |
| {
 | |
| 	struct task_struct *task;
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 
 | |
| 	cgroup_taskset_for_each(task, css, tset)
 | |
| 		task_function_call(task, __perf_cgroup_move, task);
 | |
| }
 | |
| 
 | |
| struct cgroup_subsys perf_event_cgrp_subsys = {
 | |
| 	.css_alloc	= perf_cgroup_css_alloc,
 | |
| 	.css_free	= perf_cgroup_css_free,
 | |
| 	.css_online	= perf_cgroup_css_online,
 | |
| 	.attach		= perf_cgroup_attach,
 | |
| 	/*
 | |
| 	 * Implicitly enable on dfl hierarchy so that perf events can
 | |
| 	 * always be filtered by cgroup2 path as long as perf_event
 | |
| 	 * controller is not mounted on a legacy hierarchy.
 | |
| 	 */
 | |
| 	.implicit_on_dfl = true,
 | |
| 	.threaded	= true,
 | |
| };
 | |
| #endif /* CONFIG_CGROUP_PERF */
 |