linux/block/cfq-iosched.c
Vivek Goyal 1fa8f6d68b blkio: Introduce the root service tree for cfq groups
o So far we just had one cfq_group in cfq_data. To create space for more than
  one cfq_group, we need to have a service tree of groups where all the groups
  can be queued if they have active cfq queues backlogged in these.

Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-12-03 19:28:51 +01:00

3378 lines
82 KiB
C

/*
* CFQ, or complete fairness queueing, disk scheduler.
*
* Based on ideas from a previously unfinished io
* scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
*
* Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
*/
#include <linux/module.h>
#include <linux/blkdev.h>
#include <linux/elevator.h>
#include <linux/jiffies.h>
#include <linux/rbtree.h>
#include <linux/ioprio.h>
#include <linux/blktrace_api.h>
/*
* tunables
*/
/* max queue in one round of service */
static const int cfq_quantum = 4;
static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
/* maximum backwards seek, in KiB */
static const int cfq_back_max = 16 * 1024;
/* penalty of a backwards seek */
static const int cfq_back_penalty = 2;
static const int cfq_slice_sync = HZ / 10;
static int cfq_slice_async = HZ / 25;
static const int cfq_slice_async_rq = 2;
static int cfq_slice_idle = HZ / 125;
static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
static const int cfq_hist_divisor = 4;
/*
* offset from end of service tree
*/
#define CFQ_IDLE_DELAY (HZ / 5)
/*
* below this threshold, we consider thinktime immediate
*/
#define CFQ_MIN_TT (2)
/*
* Allow merged cfqqs to perform this amount of seeky I/O before
* deciding to break the queues up again.
*/
#define CFQQ_COOP_TOUT (HZ)
#define CFQ_SLICE_SCALE (5)
#define CFQ_HW_QUEUE_MIN (5)
#define RQ_CIC(rq) \
((struct cfq_io_context *) (rq)->elevator_private)
#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
static struct kmem_cache *cfq_pool;
static struct kmem_cache *cfq_ioc_pool;
static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
static struct completion *ioc_gone;
static DEFINE_SPINLOCK(ioc_gone_lock);
#define CFQ_PRIO_LISTS IOPRIO_BE_NR
#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
#define sample_valid(samples) ((samples) > 80)
#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
/*
* Most of our rbtree usage is for sorting with min extraction, so
* if we cache the leftmost node we don't have to walk down the tree
* to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
* move this into the elevator for the rq sorting as well.
*/
struct cfq_rb_root {
struct rb_root rb;
struct rb_node *left;
unsigned count;
u64 min_vdisktime;
};
#define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
/*
* Per process-grouping structure
*/
struct cfq_queue {
/* reference count */
atomic_t ref;
/* various state flags, see below */
unsigned int flags;
/* parent cfq_data */
struct cfq_data *cfqd;
/* service_tree member */
struct rb_node rb_node;
/* service_tree key */
unsigned long rb_key;
/* prio tree member */
struct rb_node p_node;
/* prio tree root we belong to, if any */
struct rb_root *p_root;
/* sorted list of pending requests */
struct rb_root sort_list;
/* if fifo isn't expired, next request to serve */
struct request *next_rq;
/* requests queued in sort_list */
int queued[2];
/* currently allocated requests */
int allocated[2];
/* fifo list of requests in sort_list */
struct list_head fifo;
unsigned long slice_end;
long slice_resid;
unsigned int slice_dispatch;
/* pending metadata requests */
int meta_pending;
/* number of requests that are on the dispatch list or inside driver */
int dispatched;
/* io prio of this group */
unsigned short ioprio, org_ioprio;
unsigned short ioprio_class, org_ioprio_class;
unsigned int seek_samples;
u64 seek_total;
sector_t seek_mean;
sector_t last_request_pos;
unsigned long seeky_start;
pid_t pid;
struct cfq_rb_root *service_tree;
struct cfq_queue *new_cfqq;
struct cfq_group *cfqg;
};
/*
* First index in the service_trees.
* IDLE is handled separately, so it has negative index
*/
enum wl_prio_t {
BE_WORKLOAD = 0,
RT_WORKLOAD = 1,
IDLE_WORKLOAD = 2,
};
/*
* Second index in the service_trees.
*/
enum wl_type_t {
ASYNC_WORKLOAD = 0,
SYNC_NOIDLE_WORKLOAD = 1,
SYNC_WORKLOAD = 2
};
/* This is per cgroup per device grouping structure */
struct cfq_group {
/* group service_tree member */
struct rb_node rb_node;
/* group service_tree key */
u64 vdisktime;
bool on_st;
/* number of cfqq currently on this group */
int nr_cfqq;
/*
* rr lists of queues with requests, onle rr for each priority class.
* Counts are embedded in the cfq_rb_root
*/
struct cfq_rb_root service_trees[2][3];
struct cfq_rb_root service_tree_idle;
};
/*
* Per block device queue structure
*/
struct cfq_data {
struct request_queue *queue;
/* Root service tree for cfq_groups */
struct cfq_rb_root grp_service_tree;
struct cfq_group root_group;
/*
* The priority currently being served
*/
enum wl_prio_t serving_prio;
enum wl_type_t serving_type;
unsigned long workload_expires;
struct cfq_group *serving_group;
bool noidle_tree_requires_idle;
/*
* Each priority tree is sorted by next_request position. These
* trees are used when determining if two or more queues are
* interleaving requests (see cfq_close_cooperator).
*/
struct rb_root prio_trees[CFQ_PRIO_LISTS];
unsigned int busy_queues;
unsigned int busy_queues_avg[2];
int rq_in_driver[2];
int sync_flight;
/*
* queue-depth detection
*/
int rq_queued;
int hw_tag;
/*
* hw_tag can be
* -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
* 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
* 0 => no NCQ
*/
int hw_tag_est_depth;
unsigned int hw_tag_samples;
/*
* idle window management
*/
struct timer_list idle_slice_timer;
struct work_struct unplug_work;
struct cfq_queue *active_queue;
struct cfq_io_context *active_cic;
/*
* async queue for each priority case
*/
struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
struct cfq_queue *async_idle_cfqq;
sector_t last_position;
/*
* tunables, see top of file
*/
unsigned int cfq_quantum;
unsigned int cfq_fifo_expire[2];
unsigned int cfq_back_penalty;
unsigned int cfq_back_max;
unsigned int cfq_slice[2];
unsigned int cfq_slice_async_rq;
unsigned int cfq_slice_idle;
unsigned int cfq_latency;
struct list_head cic_list;
/*
* Fallback dummy cfqq for extreme OOM conditions
*/
struct cfq_queue oom_cfqq;
unsigned long last_end_sync_rq;
};
static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
enum wl_prio_t prio,
enum wl_type_t type,
struct cfq_data *cfqd)
{
if (!cfqg)
return NULL;
if (prio == IDLE_WORKLOAD)
return &cfqg->service_tree_idle;
return &cfqg->service_trees[prio][type];
}
enum cfqq_state_flags {
CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
CFQ_CFQQ_FLAG_sync, /* synchronous queue */
CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
};
#define CFQ_CFQQ_FNS(name) \
static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
{ \
(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
} \
static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
{ \
(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
} \
static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
{ \
return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
}
CFQ_CFQQ_FNS(on_rr);
CFQ_CFQQ_FNS(wait_request);
CFQ_CFQQ_FNS(must_dispatch);
CFQ_CFQQ_FNS(must_alloc_slice);
CFQ_CFQQ_FNS(fifo_expire);
CFQ_CFQQ_FNS(idle_window);
CFQ_CFQQ_FNS(prio_changed);
CFQ_CFQQ_FNS(slice_new);
CFQ_CFQQ_FNS(sync);
CFQ_CFQQ_FNS(coop);
CFQ_CFQQ_FNS(deep);
#undef CFQ_CFQQ_FNS
#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
#define cfq_log(cfqd, fmt, args...) \
blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
/* Traverses through cfq group service trees */
#define for_each_cfqg_st(cfqg, i, j, st) \
for (i = 0; i <= IDLE_WORKLOAD; i++) \
for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
: &cfqg->service_tree_idle; \
(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
(i == IDLE_WORKLOAD && j == 0); \
j++, st = i < IDLE_WORKLOAD ? \
&cfqg->service_trees[i][j]: NULL) \
static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
{
if (cfq_class_idle(cfqq))
return IDLE_WORKLOAD;
if (cfq_class_rt(cfqq))
return RT_WORKLOAD;
return BE_WORKLOAD;
}
static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
{
if (!cfq_cfqq_sync(cfqq))
return ASYNC_WORKLOAD;
if (!cfq_cfqq_idle_window(cfqq))
return SYNC_NOIDLE_WORKLOAD;
return SYNC_WORKLOAD;
}
static inline int cfq_busy_queues_wl(enum wl_prio_t wl, struct cfq_data *cfqd)
{
struct cfq_group *cfqg = &cfqd->root_group;
if (wl == IDLE_WORKLOAD)
return cfqg->service_tree_idle.count;
return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
+ cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
+ cfqg->service_trees[wl][SYNC_WORKLOAD].count;
}
static void cfq_dispatch_insert(struct request_queue *, struct request *);
static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
struct io_context *, gfp_t);
static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
struct io_context *);
static inline int rq_in_driver(struct cfq_data *cfqd)
{
return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
}
static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
bool is_sync)
{
return cic->cfqq[is_sync];
}
static inline void cic_set_cfqq(struct cfq_io_context *cic,
struct cfq_queue *cfqq, bool is_sync)
{
cic->cfqq[is_sync] = cfqq;
}
/*
* We regard a request as SYNC, if it's either a read or has the SYNC bit
* set (in which case it could also be direct WRITE).
*/
static inline bool cfq_bio_sync(struct bio *bio)
{
return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
}
/*
* scheduler run of queue, if there are requests pending and no one in the
* driver that will restart queueing
*/
static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
{
if (cfqd->busy_queues) {
cfq_log(cfqd, "schedule dispatch");
kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
}
}
static int cfq_queue_empty(struct request_queue *q)
{
struct cfq_data *cfqd = q->elevator->elevator_data;
return !cfqd->rq_queued;
}
/*
* Scale schedule slice based on io priority. Use the sync time slice only
* if a queue is marked sync and has sync io queued. A sync queue with async
* io only, should not get full sync slice length.
*/
static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
unsigned short prio)
{
const int base_slice = cfqd->cfq_slice[sync];
WARN_ON(prio >= IOPRIO_BE_NR);
return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
}
static inline int
cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
}
/*
* get averaged number of queues of RT/BE priority.
* average is updated, with a formula that gives more weight to higher numbers,
* to quickly follows sudden increases and decrease slowly
*/
static inline unsigned cfq_get_avg_queues(struct cfq_data *cfqd, bool rt)
{
unsigned min_q, max_q;
unsigned mult = cfq_hist_divisor - 1;
unsigned round = cfq_hist_divisor / 2;
unsigned busy = cfq_busy_queues_wl(rt, cfqd);
min_q = min(cfqd->busy_queues_avg[rt], busy);
max_q = max(cfqd->busy_queues_avg[rt], busy);
cfqd->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
cfq_hist_divisor;
return cfqd->busy_queues_avg[rt];
}
static inline void
cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
if (cfqd->cfq_latency) {
/* interested queues (we consider only the ones with the same
* priority class) */
unsigned iq = cfq_get_avg_queues(cfqd, cfq_class_rt(cfqq));
unsigned sync_slice = cfqd->cfq_slice[1];
unsigned expect_latency = sync_slice * iq;
if (expect_latency > cfq_target_latency) {
unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
/* scale low_slice according to IO priority
* and sync vs async */
unsigned low_slice =
min(slice, base_low_slice * slice / sync_slice);
/* the adapted slice value is scaled to fit all iqs
* into the target latency */
slice = max(slice * cfq_target_latency / expect_latency,
low_slice);
}
}
cfqq->slice_end = jiffies + slice;
cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
}
/*
* We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
* isn't valid until the first request from the dispatch is activated
* and the slice time set.
*/
static inline bool cfq_slice_used(struct cfq_queue *cfqq)
{
if (cfq_cfqq_slice_new(cfqq))
return 0;
if (time_before(jiffies, cfqq->slice_end))
return 0;
return 1;
}
/*
* Lifted from AS - choose which of rq1 and rq2 that is best served now.
* We choose the request that is closest to the head right now. Distance
* behind the head is penalized and only allowed to a certain extent.
*/
static struct request *
cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
{
sector_t s1, s2, d1 = 0, d2 = 0;
unsigned long back_max;
#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
unsigned wrap = 0; /* bit mask: requests behind the disk head? */
if (rq1 == NULL || rq1 == rq2)
return rq2;
if (rq2 == NULL)
return rq1;
if (rq_is_sync(rq1) && !rq_is_sync(rq2))
return rq1;
else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
return rq2;
if (rq_is_meta(rq1) && !rq_is_meta(rq2))
return rq1;
else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
return rq2;
s1 = blk_rq_pos(rq1);
s2 = blk_rq_pos(rq2);
/*
* by definition, 1KiB is 2 sectors
*/
back_max = cfqd->cfq_back_max * 2;
/*
* Strict one way elevator _except_ in the case where we allow
* short backward seeks which are biased as twice the cost of a
* similar forward seek.
*/
if (s1 >= last)
d1 = s1 - last;
else if (s1 + back_max >= last)
d1 = (last - s1) * cfqd->cfq_back_penalty;
else
wrap |= CFQ_RQ1_WRAP;
if (s2 >= last)
d2 = s2 - last;
else if (s2 + back_max >= last)
d2 = (last - s2) * cfqd->cfq_back_penalty;
else
wrap |= CFQ_RQ2_WRAP;
/* Found required data */
/*
* By doing switch() on the bit mask "wrap" we avoid having to
* check two variables for all permutations: --> faster!
*/
switch (wrap) {
case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
if (d1 < d2)
return rq1;
else if (d2 < d1)
return rq2;
else {
if (s1 >= s2)
return rq1;
else
return rq2;
}
case CFQ_RQ2_WRAP:
return rq1;
case CFQ_RQ1_WRAP:
return rq2;
case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
default:
/*
* Since both rqs are wrapped,
* start with the one that's further behind head
* (--> only *one* back seek required),
* since back seek takes more time than forward.
*/
if (s1 <= s2)
return rq1;
else
return rq2;
}
}
/*
* The below is leftmost cache rbtree addon
*/
static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
{
/* Service tree is empty */
if (!root->count)
return NULL;
if (!root->left)
root->left = rb_first(&root->rb);
if (root->left)
return rb_entry(root->left, struct cfq_queue, rb_node);
return NULL;
}
static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
{
if (!root->left)
root->left = rb_first(&root->rb);
if (root->left)
return rb_entry_cfqg(root->left);
return NULL;
}
static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
rb_erase(n, root);
RB_CLEAR_NODE(n);
}
static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
{
if (root->left == n)
root->left = NULL;
rb_erase_init(n, &root->rb);
--root->count;
}
/*
* would be nice to take fifo expire time into account as well
*/
static struct request *
cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
struct request *last)
{
struct rb_node *rbnext = rb_next(&last->rb_node);
struct rb_node *rbprev = rb_prev(&last->rb_node);
struct request *next = NULL, *prev = NULL;
BUG_ON(RB_EMPTY_NODE(&last->rb_node));
if (rbprev)
prev = rb_entry_rq(rbprev);
if (rbnext)
next = rb_entry_rq(rbnext);
else {
rbnext = rb_first(&cfqq->sort_list);
if (rbnext && rbnext != &last->rb_node)
next = rb_entry_rq(rbnext);
}
return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
}
static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
struct cfq_queue *cfqq)
{
/*
* just an approximation, should be ok.
*/
return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
}
static inline s64
cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
{
return cfqg->vdisktime - st->min_vdisktime;
}
static void
__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
{
struct rb_node **node = &st->rb.rb_node;
struct rb_node *parent = NULL;
struct cfq_group *__cfqg;
s64 key = cfqg_key(st, cfqg);
int left = 1;
while (*node != NULL) {
parent = *node;
__cfqg = rb_entry_cfqg(parent);
if (key < cfqg_key(st, __cfqg))
node = &parent->rb_left;
else {
node = &parent->rb_right;
left = 0;
}
}
if (left)
st->left = &cfqg->rb_node;
rb_link_node(&cfqg->rb_node, parent, node);
rb_insert_color(&cfqg->rb_node, &st->rb);
}
static void
cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
struct cfq_rb_root *st = &cfqd->grp_service_tree;
struct cfq_group *__cfqg;
struct rb_node *n;
cfqg->nr_cfqq++;
if (cfqg->on_st)
return;
/*
* Currently put the group at the end. Later implement something
* so that groups get lesser vtime based on their weights, so that
* if group does not loose all if it was not continously backlogged.
*/
n = rb_last(&st->rb);
if (n) {
__cfqg = rb_entry_cfqg(n);
cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
} else
cfqg->vdisktime = st->min_vdisktime;
__cfq_group_service_tree_add(st, cfqg);
cfqg->on_st = true;
}
static void
cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
struct cfq_rb_root *st = &cfqd->grp_service_tree;
BUG_ON(cfqg->nr_cfqq < 1);
cfqg->nr_cfqq--;
/* If there are other cfq queues under this group, don't delete it */
if (cfqg->nr_cfqq)
return;
cfqg->on_st = false;
if (!RB_EMPTY_NODE(&cfqg->rb_node))
cfq_rb_erase(&cfqg->rb_node, st);
}
/*
* The cfqd->service_trees holds all pending cfq_queue's that have
* requests waiting to be processed. It is sorted in the order that
* we will service the queues.
*/
static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
bool add_front)
{
struct rb_node **p, *parent;
struct cfq_queue *__cfqq;
unsigned long rb_key;
struct cfq_rb_root *service_tree;
int left;
service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
cfqq_type(cfqq), cfqd);
if (cfq_class_idle(cfqq)) {
rb_key = CFQ_IDLE_DELAY;
parent = rb_last(&service_tree->rb);
if (parent && parent != &cfqq->rb_node) {
__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
rb_key += __cfqq->rb_key;
} else
rb_key += jiffies;
} else if (!add_front) {
/*
* Get our rb key offset. Subtract any residual slice
* value carried from last service. A negative resid
* count indicates slice overrun, and this should position
* the next service time further away in the tree.
*/
rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
rb_key -= cfqq->slice_resid;
cfqq->slice_resid = 0;
} else {
rb_key = -HZ;
__cfqq = cfq_rb_first(service_tree);
rb_key += __cfqq ? __cfqq->rb_key : jiffies;
}
if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
/*
* same position, nothing more to do
*/
if (rb_key == cfqq->rb_key &&
cfqq->service_tree == service_tree)
return;
cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
cfqq->service_tree = NULL;
}
left = 1;
parent = NULL;
cfqq->service_tree = service_tree;
p = &service_tree->rb.rb_node;
while (*p) {
struct rb_node **n;
parent = *p;
__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
/*
* sort by key, that represents service time.
*/
if (time_before(rb_key, __cfqq->rb_key))
n = &(*p)->rb_left;
else {
n = &(*p)->rb_right;
left = 0;
}
p = n;
}
if (left)
service_tree->left = &cfqq->rb_node;
cfqq->rb_key = rb_key;
rb_link_node(&cfqq->rb_node, parent, p);
rb_insert_color(&cfqq->rb_node, &service_tree->rb);
service_tree->count++;
cfq_group_service_tree_add(cfqd, cfqq->cfqg);
}
static struct cfq_queue *
cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
sector_t sector, struct rb_node **ret_parent,
struct rb_node ***rb_link)
{
struct rb_node **p, *parent;
struct cfq_queue *cfqq = NULL;
parent = NULL;
p = &root->rb_node;
while (*p) {
struct rb_node **n;
parent = *p;
cfqq = rb_entry(parent, struct cfq_queue, p_node);
/*
* Sort strictly based on sector. Smallest to the left,
* largest to the right.
*/
if (sector > blk_rq_pos(cfqq->next_rq))
n = &(*p)->rb_right;
else if (sector < blk_rq_pos(cfqq->next_rq))
n = &(*p)->rb_left;
else
break;
p = n;
cfqq = NULL;
}
*ret_parent = parent;
if (rb_link)
*rb_link = p;
return cfqq;
}
static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
struct rb_node **p, *parent;
struct cfq_queue *__cfqq;
if (cfqq->p_root) {
rb_erase(&cfqq->p_node, cfqq->p_root);
cfqq->p_root = NULL;
}
if (cfq_class_idle(cfqq))
return;
if (!cfqq->next_rq)
return;
cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
blk_rq_pos(cfqq->next_rq), &parent, &p);
if (!__cfqq) {
rb_link_node(&cfqq->p_node, parent, p);
rb_insert_color(&cfqq->p_node, cfqq->p_root);
} else
cfqq->p_root = NULL;
}
/*
* Update cfqq's position in the service tree.
*/
static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
/*
* Resorting requires the cfqq to be on the RR list already.
*/
if (cfq_cfqq_on_rr(cfqq)) {
cfq_service_tree_add(cfqd, cfqq, 0);
cfq_prio_tree_add(cfqd, cfqq);
}
}
/*
* add to busy list of queues for service, trying to be fair in ordering
* the pending list according to last request service
*/
static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
BUG_ON(cfq_cfqq_on_rr(cfqq));
cfq_mark_cfqq_on_rr(cfqq);
cfqd->busy_queues++;
cfq_resort_rr_list(cfqd, cfqq);
}
/*
* Called when the cfqq no longer has requests pending, remove it from
* the service tree.
*/
static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
BUG_ON(!cfq_cfqq_on_rr(cfqq));
cfq_clear_cfqq_on_rr(cfqq);
if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
cfqq->service_tree = NULL;
}
if (cfqq->p_root) {
rb_erase(&cfqq->p_node, cfqq->p_root);
cfqq->p_root = NULL;
}
cfq_group_service_tree_del(cfqd, cfqq->cfqg);
BUG_ON(!cfqd->busy_queues);
cfqd->busy_queues--;
}
/*
* rb tree support functions
*/
static void cfq_del_rq_rb(struct request *rq)
{
struct cfq_queue *cfqq = RQ_CFQQ(rq);
const int sync = rq_is_sync(rq);
BUG_ON(!cfqq->queued[sync]);
cfqq->queued[sync]--;
elv_rb_del(&cfqq->sort_list, rq);
if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
/*
* Queue will be deleted from service tree when we actually
* expire it later. Right now just remove it from prio tree
* as it is empty.
*/
if (cfqq->p_root) {
rb_erase(&cfqq->p_node, cfqq->p_root);
cfqq->p_root = NULL;
}
}
}
static void cfq_add_rq_rb(struct request *rq)
{
struct cfq_queue *cfqq = RQ_CFQQ(rq);
struct cfq_data *cfqd = cfqq->cfqd;
struct request *__alias, *prev;
cfqq->queued[rq_is_sync(rq)]++;
/*
* looks a little odd, but the first insert might return an alias.
* if that happens, put the alias on the dispatch list
*/
while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
cfq_dispatch_insert(cfqd->queue, __alias);
if (!cfq_cfqq_on_rr(cfqq))
cfq_add_cfqq_rr(cfqd, cfqq);
/*
* check if this request is a better next-serve candidate
*/
prev = cfqq->next_rq;
cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
/*
* adjust priority tree position, if ->next_rq changes
*/
if (prev != cfqq->next_rq)
cfq_prio_tree_add(cfqd, cfqq);
BUG_ON(!cfqq->next_rq);
}
static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
{
elv_rb_del(&cfqq->sort_list, rq);
cfqq->queued[rq_is_sync(rq)]--;
cfq_add_rq_rb(rq);
}
static struct request *
cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
{
struct task_struct *tsk = current;
struct cfq_io_context *cic;
struct cfq_queue *cfqq;
cic = cfq_cic_lookup(cfqd, tsk->io_context);
if (!cic)
return NULL;
cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
if (cfqq) {
sector_t sector = bio->bi_sector + bio_sectors(bio);
return elv_rb_find(&cfqq->sort_list, sector);
}
return NULL;
}
static void cfq_activate_request(struct request_queue *q, struct request *rq)
{
struct cfq_data *cfqd = q->elevator->elevator_data;
cfqd->rq_in_driver[rq_is_sync(rq)]++;
cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
rq_in_driver(cfqd));
cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
}
static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
{
struct cfq_data *cfqd = q->elevator->elevator_data;
const int sync = rq_is_sync(rq);
WARN_ON(!cfqd->rq_in_driver[sync]);
cfqd->rq_in_driver[sync]--;
cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
rq_in_driver(cfqd));
}
static void cfq_remove_request(struct request *rq)
{
struct cfq_queue *cfqq = RQ_CFQQ(rq);
if (cfqq->next_rq == rq)
cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
list_del_init(&rq->queuelist);
cfq_del_rq_rb(rq);
cfqq->cfqd->rq_queued--;
if (rq_is_meta(rq)) {
WARN_ON(!cfqq->meta_pending);
cfqq->meta_pending--;
}
}
static int cfq_merge(struct request_queue *q, struct request **req,
struct bio *bio)
{
struct cfq_data *cfqd = q->elevator->elevator_data;
struct request *__rq;
__rq = cfq_find_rq_fmerge(cfqd, bio);
if (__rq && elv_rq_merge_ok(__rq, bio)) {
*req = __rq;
return ELEVATOR_FRONT_MERGE;
}
return ELEVATOR_NO_MERGE;
}
static void cfq_merged_request(struct request_queue *q, struct request *req,
int type)
{
if (type == ELEVATOR_FRONT_MERGE) {
struct cfq_queue *cfqq = RQ_CFQQ(req);
cfq_reposition_rq_rb(cfqq, req);
}
}
static void
cfq_merged_requests(struct request_queue *q, struct request *rq,
struct request *next)
{
struct cfq_queue *cfqq = RQ_CFQQ(rq);
/*
* reposition in fifo if next is older than rq
*/
if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
list_move(&rq->queuelist, &next->queuelist);
rq_set_fifo_time(rq, rq_fifo_time(next));
}
if (cfqq->next_rq == next)
cfqq->next_rq = rq;
cfq_remove_request(next);
}
static int cfq_allow_merge(struct request_queue *q, struct request *rq,
struct bio *bio)
{
struct cfq_data *cfqd = q->elevator->elevator_data;
struct cfq_io_context *cic;
struct cfq_queue *cfqq;
/*
* Disallow merge of a sync bio into an async request.
*/
if (cfq_bio_sync(bio) && !rq_is_sync(rq))
return false;
/*
* Lookup the cfqq that this bio will be queued with. Allow
* merge only if rq is queued there.
*/
cic = cfq_cic_lookup(cfqd, current->io_context);
if (!cic)
return false;
cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
return cfqq == RQ_CFQQ(rq);
}
static void __cfq_set_active_queue(struct cfq_data *cfqd,
struct cfq_queue *cfqq)
{
if (cfqq) {
cfq_log_cfqq(cfqd, cfqq, "set_active");
cfqq->slice_end = 0;
cfqq->slice_dispatch = 0;
cfq_clear_cfqq_wait_request(cfqq);
cfq_clear_cfqq_must_dispatch(cfqq);
cfq_clear_cfqq_must_alloc_slice(cfqq);
cfq_clear_cfqq_fifo_expire(cfqq);
cfq_mark_cfqq_slice_new(cfqq);
del_timer(&cfqd->idle_slice_timer);
}
cfqd->active_queue = cfqq;
}
/*
* current cfqq expired its slice (or was too idle), select new one
*/
static void
__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
bool timed_out)
{
cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
if (cfq_cfqq_wait_request(cfqq))
del_timer(&cfqd->idle_slice_timer);
cfq_clear_cfqq_wait_request(cfqq);
/*
* store what was left of this slice, if the queue idled/timed out
*/
if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
cfqq->slice_resid = cfqq->slice_end - jiffies;
cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
}
if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
cfq_del_cfqq_rr(cfqd, cfqq);
cfq_resort_rr_list(cfqd, cfqq);
if (cfqq == cfqd->active_queue)
cfqd->active_queue = NULL;
if (cfqd->active_cic) {
put_io_context(cfqd->active_cic->ioc);
cfqd->active_cic = NULL;
}
}
static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
{
struct cfq_queue *cfqq = cfqd->active_queue;
if (cfqq)
__cfq_slice_expired(cfqd, cfqq, timed_out);
}
/*
* Get next queue for service. Unless we have a queue preemption,
* we'll simply select the first cfqq in the service tree.
*/
static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
{
struct cfq_rb_root *service_tree =
service_tree_for(cfqd->serving_group, cfqd->serving_prio,
cfqd->serving_type, cfqd);
if (!cfqd->rq_queued)
return NULL;
/* There is nothing to dispatch */
if (!service_tree)
return NULL;
if (RB_EMPTY_ROOT(&service_tree->rb))
return NULL;
return cfq_rb_first(service_tree);
}
static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
{
struct cfq_group *cfqg = &cfqd->root_group;
struct cfq_queue *cfqq;
int i, j;
struct cfq_rb_root *st;
if (!cfqd->rq_queued)
return NULL;
for_each_cfqg_st(cfqg, i, j, st)
if ((cfqq = cfq_rb_first(st)) != NULL)
return cfqq;
return NULL;
}
/*
* Get and set a new active queue for service.
*/
static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
struct cfq_queue *cfqq)
{
if (!cfqq)
cfqq = cfq_get_next_queue(cfqd);
__cfq_set_active_queue(cfqd, cfqq);
return cfqq;
}
static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
struct request *rq)
{
if (blk_rq_pos(rq) >= cfqd->last_position)
return blk_rq_pos(rq) - cfqd->last_position;
else
return cfqd->last_position - blk_rq_pos(rq);
}
#define CFQQ_SEEK_THR 8 * 1024
#define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
struct request *rq)
{
sector_t sdist = cfqq->seek_mean;
if (!sample_valid(cfqq->seek_samples))
sdist = CFQQ_SEEK_THR;
return cfq_dist_from_last(cfqd, rq) <= sdist;
}
static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
struct cfq_queue *cur_cfqq)
{
struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
struct rb_node *parent, *node;
struct cfq_queue *__cfqq;
sector_t sector = cfqd->last_position;
if (RB_EMPTY_ROOT(root))
return NULL;
/*
* First, if we find a request starting at the end of the last
* request, choose it.
*/
__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
if (__cfqq)
return __cfqq;
/*
* If the exact sector wasn't found, the parent of the NULL leaf
* will contain the closest sector.
*/
__cfqq = rb_entry(parent, struct cfq_queue, p_node);
if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
return __cfqq;
if (blk_rq_pos(__cfqq->next_rq) < sector)
node = rb_next(&__cfqq->p_node);
else
node = rb_prev(&__cfqq->p_node);
if (!node)
return NULL;
__cfqq = rb_entry(node, struct cfq_queue, p_node);
if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
return __cfqq;
return NULL;
}
/*
* cfqd - obvious
* cur_cfqq - passed in so that we don't decide that the current queue is
* closely cooperating with itself.
*
* So, basically we're assuming that that cur_cfqq has dispatched at least
* one request, and that cfqd->last_position reflects a position on the disk
* associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
* assumption.
*/
static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
struct cfq_queue *cur_cfqq)
{
struct cfq_queue *cfqq;
if (!cfq_cfqq_sync(cur_cfqq))
return NULL;
if (CFQQ_SEEKY(cur_cfqq))
return NULL;
/*
* We should notice if some of the queues are cooperating, eg
* working closely on the same area of the disk. In that case,
* we can group them together and don't waste time idling.
*/
cfqq = cfqq_close(cfqd, cur_cfqq);
if (!cfqq)
return NULL;
/*
* It only makes sense to merge sync queues.
*/
if (!cfq_cfqq_sync(cfqq))
return NULL;
if (CFQQ_SEEKY(cfqq))
return NULL;
/*
* Do not merge queues of different priority classes
*/
if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
return NULL;
return cfqq;
}
/*
* Determine whether we should enforce idle window for this queue.
*/
static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
enum wl_prio_t prio = cfqq_prio(cfqq);
struct cfq_rb_root *service_tree = cfqq->service_tree;
BUG_ON(!service_tree);
BUG_ON(!service_tree->count);
/* We never do for idle class queues. */
if (prio == IDLE_WORKLOAD)
return false;
/* We do for queues that were marked with idle window flag. */
if (cfq_cfqq_idle_window(cfqq))
return true;
/*
* Otherwise, we do only if they are the last ones
* in their service tree.
*/
return service_tree->count == 1;
}
static void cfq_arm_slice_timer(struct cfq_data *cfqd)
{
struct cfq_queue *cfqq = cfqd->active_queue;
struct cfq_io_context *cic;
unsigned long sl;
/*
* SSD device without seek penalty, disable idling. But only do so
* for devices that support queuing, otherwise we still have a problem
* with sync vs async workloads.
*/
if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
return;
WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
WARN_ON(cfq_cfqq_slice_new(cfqq));
/*
* idle is disabled, either manually or by past process history
*/
if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
return;
/*
* still active requests from this queue, don't idle
*/
if (cfqq->dispatched)
return;
/*
* task has exited, don't wait
*/
cic = cfqd->active_cic;
if (!cic || !atomic_read(&cic->ioc->nr_tasks))
return;
/*
* If our average think time is larger than the remaining time
* slice, then don't idle. This avoids overrunning the allotted
* time slice.
*/
if (sample_valid(cic->ttime_samples) &&
(cfqq->slice_end - jiffies < cic->ttime_mean))
return;
cfq_mark_cfqq_wait_request(cfqq);
sl = cfqd->cfq_slice_idle;
mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
}
/*
* Move request from internal lists to the request queue dispatch list.
*/
static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
{
struct cfq_data *cfqd = q->elevator->elevator_data;
struct cfq_queue *cfqq = RQ_CFQQ(rq);
cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
cfq_remove_request(rq);
cfqq->dispatched++;
elv_dispatch_sort(q, rq);
if (cfq_cfqq_sync(cfqq))
cfqd->sync_flight++;
}
/*
* return expired entry, or NULL to just start from scratch in rbtree
*/
static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
{
struct request *rq = NULL;
if (cfq_cfqq_fifo_expire(cfqq))
return NULL;
cfq_mark_cfqq_fifo_expire(cfqq);
if (list_empty(&cfqq->fifo))
return NULL;
rq = rq_entry_fifo(cfqq->fifo.next);
if (time_before(jiffies, rq_fifo_time(rq)))
rq = NULL;
cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
return rq;
}
static inline int
cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
const int base_rq = cfqd->cfq_slice_async_rq;
WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
}
/*
* Must be called with the queue_lock held.
*/
static int cfqq_process_refs(struct cfq_queue *cfqq)
{
int process_refs, io_refs;
io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
process_refs = atomic_read(&cfqq->ref) - io_refs;
BUG_ON(process_refs < 0);
return process_refs;
}
static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
{
int process_refs, new_process_refs;
struct cfq_queue *__cfqq;
/* Avoid a circular list and skip interim queue merges */
while ((__cfqq = new_cfqq->new_cfqq)) {
if (__cfqq == cfqq)
return;
new_cfqq = __cfqq;
}
process_refs = cfqq_process_refs(cfqq);
/*
* If the process for the cfqq has gone away, there is no
* sense in merging the queues.
*/
if (process_refs == 0)
return;
/*
* Merge in the direction of the lesser amount of work.
*/
new_process_refs = cfqq_process_refs(new_cfqq);
if (new_process_refs >= process_refs) {
cfqq->new_cfqq = new_cfqq;
atomic_add(process_refs, &new_cfqq->ref);
} else {
new_cfqq->new_cfqq = cfqq;
atomic_add(new_process_refs, &cfqq->ref);
}
}
static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
struct cfq_group *cfqg, enum wl_prio_t prio,
bool prio_changed)
{
struct cfq_queue *queue;
int i;
bool key_valid = false;
unsigned long lowest_key = 0;
enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
if (prio_changed) {
/*
* When priorities switched, we prefer starting
* from SYNC_NOIDLE (first choice), or just SYNC
* over ASYNC
*/
if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
return cur_best;
cur_best = SYNC_WORKLOAD;
if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
return cur_best;
return ASYNC_WORKLOAD;
}
for (i = 0; i < 3; ++i) {
/* otherwise, select the one with lowest rb_key */
queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
if (queue &&
(!key_valid || time_before(queue->rb_key, lowest_key))) {
lowest_key = queue->rb_key;
cur_best = i;
key_valid = true;
}
}
return cur_best;
}
static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
enum wl_prio_t previous_prio = cfqd->serving_prio;
bool prio_changed;
unsigned slice;
unsigned count;
struct cfq_rb_root *st;
if (!cfqg) {
cfqd->serving_prio = IDLE_WORKLOAD;
cfqd->workload_expires = jiffies + 1;
return;
}
/* Choose next priority. RT > BE > IDLE */
if (cfq_busy_queues_wl(RT_WORKLOAD, cfqd))
cfqd->serving_prio = RT_WORKLOAD;
else if (cfq_busy_queues_wl(BE_WORKLOAD, cfqd))
cfqd->serving_prio = BE_WORKLOAD;
else {
cfqd->serving_prio = IDLE_WORKLOAD;
cfqd->workload_expires = jiffies + 1;
return;
}
/*
* For RT and BE, we have to choose also the type
* (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
* expiration time
*/
prio_changed = (cfqd->serving_prio != previous_prio);
st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
cfqd);
count = st->count;
/*
* If priority didn't change, check workload expiration,
* and that we still have other queues ready
*/
if (!prio_changed && count &&
!time_after(jiffies, cfqd->workload_expires))
return;
/* otherwise select new workload type */
cfqd->serving_type =
cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
cfqd);
count = st->count;
/*
* the workload slice is computed as a fraction of target latency
* proportional to the number of queues in that workload, over
* all the queues in the same priority class
*/
slice = cfq_target_latency * count /
max_t(unsigned, cfqd->busy_queues_avg[cfqd->serving_prio],
cfq_busy_queues_wl(cfqd->serving_prio, cfqd));
if (cfqd->serving_type == ASYNC_WORKLOAD)
/* async workload slice is scaled down according to
* the sync/async slice ratio. */
slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
else
/* sync workload slice is at least 2 * cfq_slice_idle */
slice = max(slice, 2 * cfqd->cfq_slice_idle);
slice = max_t(unsigned, slice, CFQ_MIN_TT);
cfqd->workload_expires = jiffies + slice;
cfqd->noidle_tree_requires_idle = false;
}
static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
{
struct cfq_rb_root *st = &cfqd->grp_service_tree;
if (RB_EMPTY_ROOT(&st->rb))
return NULL;
return cfq_rb_first_group(st);
}
static void cfq_choose_cfqg(struct cfq_data *cfqd)
{
struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
cfqd->serving_group = cfqg;
choose_service_tree(cfqd, cfqg);
}
/*
* Select a queue for service. If we have a current active queue,
* check whether to continue servicing it, or retrieve and set a new one.
*/
static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
{
struct cfq_queue *cfqq, *new_cfqq = NULL;
cfqq = cfqd->active_queue;
if (!cfqq)
goto new_queue;
if (!cfqd->rq_queued)
return NULL;
/*
* The active queue has run out of time, expire it and select new.
*/
if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
goto expire;
/*
* The active queue has requests and isn't expired, allow it to
* dispatch.
*/
if (!RB_EMPTY_ROOT(&cfqq->sort_list))
goto keep_queue;
/*
* If another queue has a request waiting within our mean seek
* distance, let it run. The expire code will check for close
* cooperators and put the close queue at the front of the service
* tree. If possible, merge the expiring queue with the new cfqq.
*/
new_cfqq = cfq_close_cooperator(cfqd, cfqq);
if (new_cfqq) {
if (!cfqq->new_cfqq)
cfq_setup_merge(cfqq, new_cfqq);
goto expire;
}
/*
* No requests pending. If the active queue still has requests in
* flight or is idling for a new request, allow either of these
* conditions to happen (or time out) before selecting a new queue.
*/
if (timer_pending(&cfqd->idle_slice_timer) ||
(cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
cfqq = NULL;
goto keep_queue;
}
expire:
cfq_slice_expired(cfqd, 0);
new_queue:
/*
* Current queue expired. Check if we have to switch to a new
* service tree
*/
if (!new_cfqq)
cfq_choose_cfqg(cfqd);
cfqq = cfq_set_active_queue(cfqd, new_cfqq);
keep_queue:
return cfqq;
}
static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
{
int dispatched = 0;
while (cfqq->next_rq) {
cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
dispatched++;
}
BUG_ON(!list_empty(&cfqq->fifo));
/* By default cfqq is not expired if it is empty. Do it explicitly */
__cfq_slice_expired(cfqq->cfqd, cfqq, 0);
return dispatched;
}
/*
* Drain our current requests. Used for barriers and when switching
* io schedulers on-the-fly.
*/
static int cfq_forced_dispatch(struct cfq_data *cfqd)
{
struct cfq_queue *cfqq;
int dispatched = 0;
while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
dispatched += __cfq_forced_dispatch_cfqq(cfqq);
cfq_slice_expired(cfqd, 0);
BUG_ON(cfqd->busy_queues);
cfq_log(cfqd, "forced_dispatch=%d", dispatched);
return dispatched;
}
static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
unsigned int max_dispatch;
/*
* Drain async requests before we start sync IO
*/
if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
return false;
/*
* If this is an async queue and we have sync IO in flight, let it wait
*/
if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
return false;
max_dispatch = cfqd->cfq_quantum;
if (cfq_class_idle(cfqq))
max_dispatch = 1;
/*
* Does this cfqq already have too much IO in flight?
*/
if (cfqq->dispatched >= max_dispatch) {
/*
* idle queue must always only have a single IO in flight
*/
if (cfq_class_idle(cfqq))
return false;
/*
* We have other queues, don't allow more IO from this one
*/
if (cfqd->busy_queues > 1)
return false;
/*
* Sole queue user, no limit
*/
max_dispatch = -1;
}
/*
* Async queues must wait a bit before being allowed dispatch.
* We also ramp up the dispatch depth gradually for async IO,
* based on the last sync IO we serviced
*/
if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
unsigned int depth;
depth = last_sync / cfqd->cfq_slice[1];
if (!depth && !cfqq->dispatched)
depth = 1;
if (depth < max_dispatch)
max_dispatch = depth;
}
/*
* If we're below the current max, allow a dispatch
*/
return cfqq->dispatched < max_dispatch;
}
/*
* Dispatch a request from cfqq, moving them to the request queue
* dispatch list.
*/
static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
struct request *rq;
BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
if (!cfq_may_dispatch(cfqd, cfqq))
return false;
/*
* follow expired path, else get first next available
*/
rq = cfq_check_fifo(cfqq);
if (!rq)
rq = cfqq->next_rq;
/*
* insert request into driver dispatch list
*/
cfq_dispatch_insert(cfqd->queue, rq);
if (!cfqd->active_cic) {
struct cfq_io_context *cic = RQ_CIC(rq);
atomic_long_inc(&cic->ioc->refcount);
cfqd->active_cic = cic;
}
return true;
}
/*
* Find the cfqq that we need to service and move a request from that to the
* dispatch list
*/
static int cfq_dispatch_requests(struct request_queue *q, int force)
{
struct cfq_data *cfqd = q->elevator->elevator_data;
struct cfq_queue *cfqq;
if (!cfqd->busy_queues)
return 0;
if (unlikely(force))
return cfq_forced_dispatch(cfqd);
cfqq = cfq_select_queue(cfqd);
if (!cfqq)
return 0;
/*
* Dispatch a request from this cfqq, if it is allowed
*/
if (!cfq_dispatch_request(cfqd, cfqq))
return 0;
cfqq->slice_dispatch++;
cfq_clear_cfqq_must_dispatch(cfqq);
/*
* expire an async queue immediately if it has used up its slice. idle
* queue always expire after 1 dispatch round.
*/
if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
cfq_class_idle(cfqq))) {
cfqq->slice_end = jiffies + 1;
cfq_slice_expired(cfqd, 0);
}
cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
return 1;
}
/*
* task holds one reference to the queue, dropped when task exits. each rq
* in-flight on this queue also holds a reference, dropped when rq is freed.
*
* queue lock must be held here.
*/
static void cfq_put_queue(struct cfq_queue *cfqq)
{
struct cfq_data *cfqd = cfqq->cfqd;
BUG_ON(atomic_read(&cfqq->ref) <= 0);
if (!atomic_dec_and_test(&cfqq->ref))
return;
cfq_log_cfqq(cfqd, cfqq, "put_queue");
BUG_ON(rb_first(&cfqq->sort_list));
BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
if (unlikely(cfqd->active_queue == cfqq)) {
__cfq_slice_expired(cfqd, cfqq, 0);
cfq_schedule_dispatch(cfqd);
}
BUG_ON(cfq_cfqq_on_rr(cfqq));
kmem_cache_free(cfq_pool, cfqq);
}
/*
* Must always be called with the rcu_read_lock() held
*/
static void
__call_for_each_cic(struct io_context *ioc,
void (*func)(struct io_context *, struct cfq_io_context *))
{
struct cfq_io_context *cic;
struct hlist_node *n;
hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
func(ioc, cic);
}
/*
* Call func for each cic attached to this ioc.
*/
static void
call_for_each_cic(struct io_context *ioc,
void (*func)(struct io_context *, struct cfq_io_context *))
{
rcu_read_lock();
__call_for_each_cic(ioc, func);
rcu_read_unlock();
}
static void cfq_cic_free_rcu(struct rcu_head *head)
{
struct cfq_io_context *cic;
cic = container_of(head, struct cfq_io_context, rcu_head);
kmem_cache_free(cfq_ioc_pool, cic);
elv_ioc_count_dec(cfq_ioc_count);
if (ioc_gone) {
/*
* CFQ scheduler is exiting, grab exit lock and check
* the pending io context count. If it hits zero,
* complete ioc_gone and set it back to NULL
*/
spin_lock(&ioc_gone_lock);
if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
complete(ioc_gone);
ioc_gone = NULL;
}
spin_unlock(&ioc_gone_lock);
}
}
static void cfq_cic_free(struct cfq_io_context *cic)
{
call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
}
static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
{
unsigned long flags;
BUG_ON(!cic->dead_key);
spin_lock_irqsave(&ioc->lock, flags);
radix_tree_delete(&ioc->radix_root, cic->dead_key);
hlist_del_rcu(&cic->cic_list);
spin_unlock_irqrestore(&ioc->lock, flags);
cfq_cic_free(cic);
}
/*
* Must be called with rcu_read_lock() held or preemption otherwise disabled.
* Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
* and ->trim() which is called with the task lock held
*/
static void cfq_free_io_context(struct io_context *ioc)
{
/*
* ioc->refcount is zero here, or we are called from elv_unregister(),
* so no more cic's are allowed to be linked into this ioc. So it
* should be ok to iterate over the known list, we will see all cic's
* since no new ones are added.
*/
__call_for_each_cic(ioc, cic_free_func);
}
static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
struct cfq_queue *__cfqq, *next;
if (unlikely(cfqq == cfqd->active_queue)) {
__cfq_slice_expired(cfqd, cfqq, 0);
cfq_schedule_dispatch(cfqd);
}
/*
* If this queue was scheduled to merge with another queue, be
* sure to drop the reference taken on that queue (and others in
* the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
*/
__cfqq = cfqq->new_cfqq;
while (__cfqq) {
if (__cfqq == cfqq) {
WARN(1, "cfqq->new_cfqq loop detected\n");
break;
}
next = __cfqq->new_cfqq;
cfq_put_queue(__cfqq);
__cfqq = next;
}
cfq_put_queue(cfqq);
}
static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
struct cfq_io_context *cic)
{
struct io_context *ioc = cic->ioc;
list_del_init(&cic->queue_list);
/*
* Make sure key == NULL is seen for dead queues
*/
smp_wmb();
cic->dead_key = (unsigned long) cic->key;
cic->key = NULL;
if (ioc->ioc_data == cic)
rcu_assign_pointer(ioc->ioc_data, NULL);
if (cic->cfqq[BLK_RW_ASYNC]) {
cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
cic->cfqq[BLK_RW_ASYNC] = NULL;
}
if (cic->cfqq[BLK_RW_SYNC]) {
cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
cic->cfqq[BLK_RW_SYNC] = NULL;
}
}
static void cfq_exit_single_io_context(struct io_context *ioc,
struct cfq_io_context *cic)
{
struct cfq_data *cfqd = cic->key;
if (cfqd) {
struct request_queue *q = cfqd->queue;
unsigned long flags;
spin_lock_irqsave(q->queue_lock, flags);
/*
* Ensure we get a fresh copy of the ->key to prevent
* race between exiting task and queue
*/
smp_read_barrier_depends();
if (cic->key)
__cfq_exit_single_io_context(cfqd, cic);
spin_unlock_irqrestore(q->queue_lock, flags);
}
}
/*
* The process that ioc belongs to has exited, we need to clean up
* and put the internal structures we have that belongs to that process.
*/
static void cfq_exit_io_context(struct io_context *ioc)
{
call_for_each_cic(ioc, cfq_exit_single_io_context);
}
static struct cfq_io_context *
cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
{
struct cfq_io_context *cic;
cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
cfqd->queue->node);
if (cic) {
cic->last_end_request = jiffies;
INIT_LIST_HEAD(&cic->queue_list);
INIT_HLIST_NODE(&cic->cic_list);
cic->dtor = cfq_free_io_context;
cic->exit = cfq_exit_io_context;
elv_ioc_count_inc(cfq_ioc_count);
}
return cic;
}
static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
{
struct task_struct *tsk = current;
int ioprio_class;
if (!cfq_cfqq_prio_changed(cfqq))
return;
ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
switch (ioprio_class) {
default:
printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
case IOPRIO_CLASS_NONE:
/*
* no prio set, inherit CPU scheduling settings
*/
cfqq->ioprio = task_nice_ioprio(tsk);
cfqq->ioprio_class = task_nice_ioclass(tsk);
break;
case IOPRIO_CLASS_RT:
cfqq->ioprio = task_ioprio(ioc);
cfqq->ioprio_class = IOPRIO_CLASS_RT;
break;
case IOPRIO_CLASS_BE:
cfqq->ioprio = task_ioprio(ioc);
cfqq->ioprio_class = IOPRIO_CLASS_BE;
break;
case IOPRIO_CLASS_IDLE:
cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
cfqq->ioprio = 7;
cfq_clear_cfqq_idle_window(cfqq);
break;
}
/*
* keep track of original prio settings in case we have to temporarily
* elevate the priority of this queue
*/
cfqq->org_ioprio = cfqq->ioprio;
cfqq->org_ioprio_class = cfqq->ioprio_class;
cfq_clear_cfqq_prio_changed(cfqq);
}
static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
{
struct cfq_data *cfqd = cic->key;
struct cfq_queue *cfqq;
unsigned long flags;
if (unlikely(!cfqd))
return;
spin_lock_irqsave(cfqd->queue->queue_lock, flags);
cfqq = cic->cfqq[BLK_RW_ASYNC];
if (cfqq) {
struct cfq_queue *new_cfqq;
new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
GFP_ATOMIC);
if (new_cfqq) {
cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
cfq_put_queue(cfqq);
}
}
cfqq = cic->cfqq[BLK_RW_SYNC];
if (cfqq)
cfq_mark_cfqq_prio_changed(cfqq);
spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
}
static void cfq_ioc_set_ioprio(struct io_context *ioc)
{
call_for_each_cic(ioc, changed_ioprio);
ioc->ioprio_changed = 0;
}
static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
pid_t pid, bool is_sync)
{
RB_CLEAR_NODE(&cfqq->rb_node);
RB_CLEAR_NODE(&cfqq->p_node);
INIT_LIST_HEAD(&cfqq->fifo);
atomic_set(&cfqq->ref, 0);
cfqq->cfqd = cfqd;
cfq_mark_cfqq_prio_changed(cfqq);
if (is_sync) {
if (!cfq_class_idle(cfqq))
cfq_mark_cfqq_idle_window(cfqq);
cfq_mark_cfqq_sync(cfqq);
}
cfqq->pid = pid;
}
static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
{
cfqq->cfqg = cfqg;
}
static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
{
return &cfqd->root_group;
}
static struct cfq_queue *
cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
struct io_context *ioc, gfp_t gfp_mask)
{
struct cfq_queue *cfqq, *new_cfqq = NULL;
struct cfq_io_context *cic;
struct cfq_group *cfqg;
retry:
cfqg = cfq_get_cfqg(cfqd, 1);
cic = cfq_cic_lookup(cfqd, ioc);
/* cic always exists here */
cfqq = cic_to_cfqq(cic, is_sync);
/*
* Always try a new alloc if we fell back to the OOM cfqq
* originally, since it should just be a temporary situation.
*/
if (!cfqq || cfqq == &cfqd->oom_cfqq) {
cfqq = NULL;
if (new_cfqq) {
cfqq = new_cfqq;
new_cfqq = NULL;
} else if (gfp_mask & __GFP_WAIT) {
spin_unlock_irq(cfqd->queue->queue_lock);
new_cfqq = kmem_cache_alloc_node(cfq_pool,
gfp_mask | __GFP_ZERO,
cfqd->queue->node);
spin_lock_irq(cfqd->queue->queue_lock);
if (new_cfqq)
goto retry;
} else {
cfqq = kmem_cache_alloc_node(cfq_pool,
gfp_mask | __GFP_ZERO,
cfqd->queue->node);
}
if (cfqq) {
cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
cfq_init_prio_data(cfqq, ioc);
cfq_link_cfqq_cfqg(cfqq, cfqg);
cfq_log_cfqq(cfqd, cfqq, "alloced");
} else
cfqq = &cfqd->oom_cfqq;
}
if (new_cfqq)
kmem_cache_free(cfq_pool, new_cfqq);
return cfqq;
}
static struct cfq_queue **
cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
{
switch (ioprio_class) {
case IOPRIO_CLASS_RT:
return &cfqd->async_cfqq[0][ioprio];
case IOPRIO_CLASS_BE:
return &cfqd->async_cfqq[1][ioprio];
case IOPRIO_CLASS_IDLE:
return &cfqd->async_idle_cfqq;
default:
BUG();
}
}
static struct cfq_queue *
cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
gfp_t gfp_mask)
{
const int ioprio = task_ioprio(ioc);
const int ioprio_class = task_ioprio_class(ioc);
struct cfq_queue **async_cfqq = NULL;
struct cfq_queue *cfqq = NULL;
if (!is_sync) {
async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
cfqq = *async_cfqq;
}
if (!cfqq)
cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
/*
* pin the queue now that it's allocated, scheduler exit will prune it
*/
if (!is_sync && !(*async_cfqq)) {
atomic_inc(&cfqq->ref);
*async_cfqq = cfqq;
}
atomic_inc(&cfqq->ref);
return cfqq;
}
/*
* We drop cfq io contexts lazily, so we may find a dead one.
*/
static void
cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
struct cfq_io_context *cic)
{
unsigned long flags;
WARN_ON(!list_empty(&cic->queue_list));
spin_lock_irqsave(&ioc->lock, flags);
BUG_ON(ioc->ioc_data == cic);
radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
hlist_del_rcu(&cic->cic_list);
spin_unlock_irqrestore(&ioc->lock, flags);
cfq_cic_free(cic);
}
static struct cfq_io_context *
cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
{
struct cfq_io_context *cic;
unsigned long flags;
void *k;
if (unlikely(!ioc))
return NULL;
rcu_read_lock();
/*
* we maintain a last-hit cache, to avoid browsing over the tree
*/
cic = rcu_dereference(ioc->ioc_data);
if (cic && cic->key == cfqd) {
rcu_read_unlock();
return cic;
}
do {
cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
rcu_read_unlock();
if (!cic)
break;
/* ->key must be copied to avoid race with cfq_exit_queue() */
k = cic->key;
if (unlikely(!k)) {
cfq_drop_dead_cic(cfqd, ioc, cic);
rcu_read_lock();
continue;
}
spin_lock_irqsave(&ioc->lock, flags);
rcu_assign_pointer(ioc->ioc_data, cic);
spin_unlock_irqrestore(&ioc->lock, flags);
break;
} while (1);
return cic;
}
/*
* Add cic into ioc, using cfqd as the search key. This enables us to lookup
* the process specific cfq io context when entered from the block layer.
* Also adds the cic to a per-cfqd list, used when this queue is removed.
*/
static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
struct cfq_io_context *cic, gfp_t gfp_mask)
{
unsigned long flags;
int ret;
ret = radix_tree_preload(gfp_mask);
if (!ret) {
cic->ioc = ioc;
cic->key = cfqd;
spin_lock_irqsave(&ioc->lock, flags);
ret = radix_tree_insert(&ioc->radix_root,
(unsigned long) cfqd, cic);
if (!ret)
hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
spin_unlock_irqrestore(&ioc->lock, flags);
radix_tree_preload_end();
if (!ret) {
spin_lock_irqsave(cfqd->queue->queue_lock, flags);
list_add(&cic->queue_list, &cfqd->cic_list);
spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
}
}
if (ret)
printk(KERN_ERR "cfq: cic link failed!\n");
return ret;
}
/*
* Setup general io context and cfq io context. There can be several cfq
* io contexts per general io context, if this process is doing io to more
* than one device managed by cfq.
*/
static struct cfq_io_context *
cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
{
struct io_context *ioc = NULL;
struct cfq_io_context *cic;
might_sleep_if(gfp_mask & __GFP_WAIT);
ioc = get_io_context(gfp_mask, cfqd->queue->node);
if (!ioc)
return NULL;
cic = cfq_cic_lookup(cfqd, ioc);
if (cic)
goto out;
cic = cfq_alloc_io_context(cfqd, gfp_mask);
if (cic == NULL)
goto err;
if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
goto err_free;
out:
smp_read_barrier_depends();
if (unlikely(ioc->ioprio_changed))
cfq_ioc_set_ioprio(ioc);
return cic;
err_free:
cfq_cic_free(cic);
err:
put_io_context(ioc);
return NULL;
}
static void
cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
{
unsigned long elapsed = jiffies - cic->last_end_request;
unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
}
static void
cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
struct request *rq)
{
sector_t sdist;
u64 total;
if (!cfqq->last_request_pos)
sdist = 0;
else if (cfqq->last_request_pos < blk_rq_pos(rq))
sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
else
sdist = cfqq->last_request_pos - blk_rq_pos(rq);
/*
* Don't allow the seek distance to get too large from the
* odd fragment, pagein, etc
*/
if (cfqq->seek_samples <= 60) /* second&third seek */
sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
else
sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
total = cfqq->seek_total + (cfqq->seek_samples/2);
do_div(total, cfqq->seek_samples);
cfqq->seek_mean = (sector_t)total;
/*
* If this cfqq is shared between multiple processes, check to
* make sure that those processes are still issuing I/Os within
* the mean seek distance. If not, it may be time to break the
* queues apart again.
*/
if (cfq_cfqq_coop(cfqq)) {
if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
cfqq->seeky_start = jiffies;
else if (!CFQQ_SEEKY(cfqq))
cfqq->seeky_start = 0;
}
}
/*
* Disable idle window if the process thinks too long or seeks so much that
* it doesn't matter
*/
static void
cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
struct cfq_io_context *cic)
{
int old_idle, enable_idle;
/*
* Don't idle for async or idle io prio class
*/
if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
return;
enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
if (cfqq->queued[0] + cfqq->queued[1] >= 4)
cfq_mark_cfqq_deep(cfqq);
if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
(!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
&& CFQQ_SEEKY(cfqq)))
enable_idle = 0;
else if (sample_valid(cic->ttime_samples)) {
if (cic->ttime_mean > cfqd->cfq_slice_idle)
enable_idle = 0;
else
enable_idle = 1;
}
if (old_idle != enable_idle) {
cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
if (enable_idle)
cfq_mark_cfqq_idle_window(cfqq);
else
cfq_clear_cfqq_idle_window(cfqq);
}
}
/*
* Check if new_cfqq should preempt the currently active queue. Return 0 for
* no or if we aren't sure, a 1 will cause a preempt.
*/
static bool
cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
struct request *rq)
{
struct cfq_queue *cfqq;
cfqq = cfqd->active_queue;
if (!cfqq)
return false;
if (cfq_slice_used(cfqq))
return true;
if (cfq_class_idle(new_cfqq))
return false;
if (cfq_class_idle(cfqq))
return true;
/* Allow preemption only if we are idling on sync-noidle tree */
if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
new_cfqq->service_tree->count == 2 &&
RB_EMPTY_ROOT(&cfqq->sort_list))
return true;
/*
* if the new request is sync, but the currently running queue is
* not, let the sync request have priority.
*/
if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
return true;
/*
* So both queues are sync. Let the new request get disk time if
* it's a metadata request and the current queue is doing regular IO.
*/
if (rq_is_meta(rq) && !cfqq->meta_pending)
return true;
/*
* Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
*/
if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
return true;
if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
return false;
/*
* if this request is as-good as one we would expect from the
* current cfqq, let it preempt
*/
if (cfq_rq_close(cfqd, cfqq, rq))
return true;
return false;
}
/*
* cfqq preempts the active queue. if we allowed preempt with no slice left,
* let it have half of its nominal slice.
*/
static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
cfq_log_cfqq(cfqd, cfqq, "preempt");
cfq_slice_expired(cfqd, 1);
/*
* Put the new queue at the front of the of the current list,
* so we know that it will be selected next.
*/
BUG_ON(!cfq_cfqq_on_rr(cfqq));
cfq_service_tree_add(cfqd, cfqq, 1);
cfqq->slice_end = 0;
cfq_mark_cfqq_slice_new(cfqq);
}
/*
* Called when a new fs request (rq) is added (to cfqq). Check if there's
* something we should do about it
*/
static void
cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
struct request *rq)
{
struct cfq_io_context *cic = RQ_CIC(rq);
cfqd->rq_queued++;
if (rq_is_meta(rq))
cfqq->meta_pending++;
cfq_update_io_thinktime(cfqd, cic);
cfq_update_io_seektime(cfqd, cfqq, rq);
cfq_update_idle_window(cfqd, cfqq, cic);
cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
if (cfqq == cfqd->active_queue) {
/*
* Remember that we saw a request from this process, but
* don't start queuing just yet. Otherwise we risk seeing lots
* of tiny requests, because we disrupt the normal plugging
* and merging. If the request is already larger than a single
* page, let it rip immediately. For that case we assume that
* merging is already done. Ditto for a busy system that
* has other work pending, don't risk delaying until the
* idle timer unplug to continue working.
*/
if (cfq_cfqq_wait_request(cfqq)) {
if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
cfqd->busy_queues > 1) {
del_timer(&cfqd->idle_slice_timer);
__blk_run_queue(cfqd->queue);
} else
cfq_mark_cfqq_must_dispatch(cfqq);
}
} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
/*
* not the active queue - expire current slice if it is
* idle and has expired it's mean thinktime or this new queue
* has some old slice time left and is of higher priority or
* this new queue is RT and the current one is BE
*/
cfq_preempt_queue(cfqd, cfqq);
__blk_run_queue(cfqd->queue);
}
}
static void cfq_insert_request(struct request_queue *q, struct request *rq)
{
struct cfq_data *cfqd = q->elevator->elevator_data;
struct cfq_queue *cfqq = RQ_CFQQ(rq);
cfq_log_cfqq(cfqd, cfqq, "insert_request");
cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
list_add_tail(&rq->queuelist, &cfqq->fifo);
cfq_add_rq_rb(rq);
cfq_rq_enqueued(cfqd, cfqq, rq);
}
/*
* Update hw_tag based on peak queue depth over 50 samples under
* sufficient load.
*/
static void cfq_update_hw_tag(struct cfq_data *cfqd)
{
struct cfq_queue *cfqq = cfqd->active_queue;
if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
if (cfqd->hw_tag == 1)
return;
if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
return;
/*
* If active queue hasn't enough requests and can idle, cfq might not
* dispatch sufficient requests to hardware. Don't zero hw_tag in this
* case
*/
if (cfqq && cfq_cfqq_idle_window(cfqq) &&
cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
return;
if (cfqd->hw_tag_samples++ < 50)
return;
if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
cfqd->hw_tag = 1;
else
cfqd->hw_tag = 0;
}
static void cfq_completed_request(struct request_queue *q, struct request *rq)
{
struct cfq_queue *cfqq = RQ_CFQQ(rq);
struct cfq_data *cfqd = cfqq->cfqd;
const int sync = rq_is_sync(rq);
unsigned long now;
now = jiffies;
cfq_log_cfqq(cfqd, cfqq, "complete");
cfq_update_hw_tag(cfqd);
WARN_ON(!cfqd->rq_in_driver[sync]);
WARN_ON(!cfqq->dispatched);
cfqd->rq_in_driver[sync]--;
cfqq->dispatched--;
if (cfq_cfqq_sync(cfqq))
cfqd->sync_flight--;
if (sync) {
RQ_CIC(rq)->last_end_request = now;
cfqd->last_end_sync_rq = now;
}
/*
* If this is the active queue, check if it needs to be expired,
* or if we want to idle in case it has no pending requests.
*/
if (cfqd->active_queue == cfqq) {
const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
if (cfq_cfqq_slice_new(cfqq)) {
cfq_set_prio_slice(cfqd, cfqq);
cfq_clear_cfqq_slice_new(cfqq);
}
/*
* Idling is not enabled on:
* - expired queues
* - idle-priority queues
* - async queues
* - queues with still some requests queued
* - when there is a close cooperator
*/
if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
cfq_slice_expired(cfqd, 1);
else if (sync && cfqq_empty &&
!cfq_close_cooperator(cfqd, cfqq)) {
cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
/*
* Idling is enabled for SYNC_WORKLOAD.
* SYNC_NOIDLE_WORKLOAD idles at the end of the tree
* only if we processed at least one !rq_noidle request
*/
if (cfqd->serving_type == SYNC_WORKLOAD
|| cfqd->noidle_tree_requires_idle)
cfq_arm_slice_timer(cfqd);
}
}
if (!rq_in_driver(cfqd))
cfq_schedule_dispatch(cfqd);
}
/*
* we temporarily boost lower priority queues if they are holding fs exclusive
* resources. they are boosted to normal prio (CLASS_BE/4)
*/
static void cfq_prio_boost(struct cfq_queue *cfqq)
{
if (has_fs_excl()) {
/*
* boost idle prio on transactions that would lock out other
* users of the filesystem
*/
if (cfq_class_idle(cfqq))
cfqq->ioprio_class = IOPRIO_CLASS_BE;
if (cfqq->ioprio > IOPRIO_NORM)
cfqq->ioprio = IOPRIO_NORM;
} else {
/*
* unboost the queue (if needed)
*/
cfqq->ioprio_class = cfqq->org_ioprio_class;
cfqq->ioprio = cfqq->org_ioprio;
}
}
static inline int __cfq_may_queue(struct cfq_queue *cfqq)
{
if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
cfq_mark_cfqq_must_alloc_slice(cfqq);
return ELV_MQUEUE_MUST;
}
return ELV_MQUEUE_MAY;
}
static int cfq_may_queue(struct request_queue *q, int rw)
{
struct cfq_data *cfqd = q->elevator->elevator_data;
struct task_struct *tsk = current;
struct cfq_io_context *cic;
struct cfq_queue *cfqq;
/*
* don't force setup of a queue from here, as a call to may_queue
* does not necessarily imply that a request actually will be queued.
* so just lookup a possibly existing queue, or return 'may queue'
* if that fails
*/
cic = cfq_cic_lookup(cfqd, tsk->io_context);
if (!cic)
return ELV_MQUEUE_MAY;
cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
if (cfqq) {
cfq_init_prio_data(cfqq, cic->ioc);
cfq_prio_boost(cfqq);
return __cfq_may_queue(cfqq);
}
return ELV_MQUEUE_MAY;
}
/*
* queue lock held here
*/
static void cfq_put_request(struct request *rq)
{
struct cfq_queue *cfqq = RQ_CFQQ(rq);
if (cfqq) {
const int rw = rq_data_dir(rq);
BUG_ON(!cfqq->allocated[rw]);
cfqq->allocated[rw]--;
put_io_context(RQ_CIC(rq)->ioc);
rq->elevator_private = NULL;
rq->elevator_private2 = NULL;
cfq_put_queue(cfqq);
}
}
static struct cfq_queue *
cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
struct cfq_queue *cfqq)
{
cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
cic_set_cfqq(cic, cfqq->new_cfqq, 1);
cfq_mark_cfqq_coop(cfqq->new_cfqq);
cfq_put_queue(cfqq);
return cic_to_cfqq(cic, 1);
}
static int should_split_cfqq(struct cfq_queue *cfqq)
{
if (cfqq->seeky_start &&
time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
return 1;
return 0;
}
/*
* Returns NULL if a new cfqq should be allocated, or the old cfqq if this
* was the last process referring to said cfqq.
*/
static struct cfq_queue *
split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
{
if (cfqq_process_refs(cfqq) == 1) {
cfqq->seeky_start = 0;
cfqq->pid = current->pid;
cfq_clear_cfqq_coop(cfqq);
return cfqq;
}
cic_set_cfqq(cic, NULL, 1);
cfq_put_queue(cfqq);
return NULL;
}
/*
* Allocate cfq data structures associated with this request.
*/
static int
cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
{
struct cfq_data *cfqd = q->elevator->elevator_data;
struct cfq_io_context *cic;
const int rw = rq_data_dir(rq);
const bool is_sync = rq_is_sync(rq);
struct cfq_queue *cfqq;
unsigned long flags;
might_sleep_if(gfp_mask & __GFP_WAIT);
cic = cfq_get_io_context(cfqd, gfp_mask);
spin_lock_irqsave(q->queue_lock, flags);
if (!cic)
goto queue_fail;
new_queue:
cfqq = cic_to_cfqq(cic, is_sync);
if (!cfqq || cfqq == &cfqd->oom_cfqq) {
cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
cic_set_cfqq(cic, cfqq, is_sync);
} else {
/*
* If the queue was seeky for too long, break it apart.
*/
if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
cfqq = split_cfqq(cic, cfqq);
if (!cfqq)
goto new_queue;
}
/*
* Check to see if this queue is scheduled to merge with
* another, closely cooperating queue. The merging of
* queues happens here as it must be done in process context.
* The reference on new_cfqq was taken in merge_cfqqs.
*/
if (cfqq->new_cfqq)
cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
}
cfqq->allocated[rw]++;
atomic_inc(&cfqq->ref);
spin_unlock_irqrestore(q->queue_lock, flags);
rq->elevator_private = cic;
rq->elevator_private2 = cfqq;
return 0;
queue_fail:
if (cic)
put_io_context(cic->ioc);
cfq_schedule_dispatch(cfqd);
spin_unlock_irqrestore(q->queue_lock, flags);
cfq_log(cfqd, "set_request fail");
return 1;
}
static void cfq_kick_queue(struct work_struct *work)
{
struct cfq_data *cfqd =
container_of(work, struct cfq_data, unplug_work);
struct request_queue *q = cfqd->queue;
spin_lock_irq(q->queue_lock);
__blk_run_queue(cfqd->queue);
spin_unlock_irq(q->queue_lock);
}
/*
* Timer running if the active_queue is currently idling inside its time slice
*/
static void cfq_idle_slice_timer(unsigned long data)
{
struct cfq_data *cfqd = (struct cfq_data *) data;
struct cfq_queue *cfqq;
unsigned long flags;
int timed_out = 1;
cfq_log(cfqd, "idle timer fired");
spin_lock_irqsave(cfqd->queue->queue_lock, flags);
cfqq = cfqd->active_queue;
if (cfqq) {
timed_out = 0;
/*
* We saw a request before the queue expired, let it through
*/
if (cfq_cfqq_must_dispatch(cfqq))
goto out_kick;
/*
* expired
*/
if (cfq_slice_used(cfqq))
goto expire;
/*
* only expire and reinvoke request handler, if there are
* other queues with pending requests
*/
if (!cfqd->busy_queues)
goto out_cont;
/*
* not expired and it has a request pending, let it dispatch
*/
if (!RB_EMPTY_ROOT(&cfqq->sort_list))
goto out_kick;
/*
* Queue depth flag is reset only when the idle didn't succeed
*/
cfq_clear_cfqq_deep(cfqq);
}
expire:
cfq_slice_expired(cfqd, timed_out);
out_kick:
cfq_schedule_dispatch(cfqd);
out_cont:
spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
}
static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
{
del_timer_sync(&cfqd->idle_slice_timer);
cancel_work_sync(&cfqd->unplug_work);
}
static void cfq_put_async_queues(struct cfq_data *cfqd)
{
int i;
for (i = 0; i < IOPRIO_BE_NR; i++) {
if (cfqd->async_cfqq[0][i])
cfq_put_queue(cfqd->async_cfqq[0][i]);
if (cfqd->async_cfqq[1][i])
cfq_put_queue(cfqd->async_cfqq[1][i]);
}
if (cfqd->async_idle_cfqq)
cfq_put_queue(cfqd->async_idle_cfqq);
}
static void cfq_exit_queue(struct elevator_queue *e)
{
struct cfq_data *cfqd = e->elevator_data;
struct request_queue *q = cfqd->queue;
cfq_shutdown_timer_wq(cfqd);
spin_lock_irq(q->queue_lock);
if (cfqd->active_queue)
__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
while (!list_empty(&cfqd->cic_list)) {
struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
struct cfq_io_context,
queue_list);
__cfq_exit_single_io_context(cfqd, cic);
}
cfq_put_async_queues(cfqd);
spin_unlock_irq(q->queue_lock);
cfq_shutdown_timer_wq(cfqd);
kfree(cfqd);
}
static void *cfq_init_queue(struct request_queue *q)
{
struct cfq_data *cfqd;
int i, j;
struct cfq_group *cfqg;
struct cfq_rb_root *st;
cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
if (!cfqd)
return NULL;
/* Init root service tree */
cfqd->grp_service_tree = CFQ_RB_ROOT;
/* Init root group */
cfqg = &cfqd->root_group;
for_each_cfqg_st(cfqg, i, j, st)
*st = CFQ_RB_ROOT;
RB_CLEAR_NODE(&cfqg->rb_node);
/*
* Not strictly needed (since RB_ROOT just clears the node and we
* zeroed cfqd on alloc), but better be safe in case someone decides
* to add magic to the rb code
*/
for (i = 0; i < CFQ_PRIO_LISTS; i++)
cfqd->prio_trees[i] = RB_ROOT;
/*
* Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
* Grab a permanent reference to it, so that the normal code flow
* will not attempt to free it.
*/
cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
atomic_inc(&cfqd->oom_cfqq.ref);
cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
INIT_LIST_HEAD(&cfqd->cic_list);
cfqd->queue = q;
init_timer(&cfqd->idle_slice_timer);
cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
cfqd->idle_slice_timer.data = (unsigned long) cfqd;
INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
cfqd->cfq_quantum = cfq_quantum;
cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
cfqd->cfq_back_max = cfq_back_max;
cfqd->cfq_back_penalty = cfq_back_penalty;
cfqd->cfq_slice[0] = cfq_slice_async;
cfqd->cfq_slice[1] = cfq_slice_sync;
cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
cfqd->cfq_slice_idle = cfq_slice_idle;
cfqd->cfq_latency = 1;
cfqd->hw_tag = -1;
cfqd->last_end_sync_rq = jiffies;
return cfqd;
}
static void cfq_slab_kill(void)
{
/*
* Caller already ensured that pending RCU callbacks are completed,
* so we should have no busy allocations at this point.
*/
if (cfq_pool)
kmem_cache_destroy(cfq_pool);
if (cfq_ioc_pool)
kmem_cache_destroy(cfq_ioc_pool);
}
static int __init cfq_slab_setup(void)
{
cfq_pool = KMEM_CACHE(cfq_queue, 0);
if (!cfq_pool)
goto fail;
cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
if (!cfq_ioc_pool)
goto fail;
return 0;
fail:
cfq_slab_kill();
return -ENOMEM;
}
/*
* sysfs parts below -->
*/
static ssize_t
cfq_var_show(unsigned int var, char *page)
{
return sprintf(page, "%d\n", var);
}
static ssize_t
cfq_var_store(unsigned int *var, const char *page, size_t count)
{
char *p = (char *) page;
*var = simple_strtoul(p, &p, 10);
return count;
}
#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
static ssize_t __FUNC(struct elevator_queue *e, char *page) \
{ \
struct cfq_data *cfqd = e->elevator_data; \
unsigned int __data = __VAR; \
if (__CONV) \
__data = jiffies_to_msecs(__data); \
return cfq_var_show(__data, (page)); \
}
SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
#undef SHOW_FUNCTION
#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
{ \
struct cfq_data *cfqd = e->elevator_data; \
unsigned int __data; \
int ret = cfq_var_store(&__data, (page), count); \
if (__data < (MIN)) \
__data = (MIN); \
else if (__data > (MAX)) \
__data = (MAX); \
if (__CONV) \
*(__PTR) = msecs_to_jiffies(__data); \
else \
*(__PTR) = __data; \
return ret; \
}
STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
UINT_MAX, 1);
STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
UINT_MAX, 1);
STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
UINT_MAX, 0);
STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
UINT_MAX, 0);
STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
#undef STORE_FUNCTION
#define CFQ_ATTR(name) \
__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
static struct elv_fs_entry cfq_attrs[] = {
CFQ_ATTR(quantum),
CFQ_ATTR(fifo_expire_sync),
CFQ_ATTR(fifo_expire_async),
CFQ_ATTR(back_seek_max),
CFQ_ATTR(back_seek_penalty),
CFQ_ATTR(slice_sync),
CFQ_ATTR(slice_async),
CFQ_ATTR(slice_async_rq),
CFQ_ATTR(slice_idle),
CFQ_ATTR(low_latency),
__ATTR_NULL
};
static struct elevator_type iosched_cfq = {
.ops = {
.elevator_merge_fn = cfq_merge,
.elevator_merged_fn = cfq_merged_request,
.elevator_merge_req_fn = cfq_merged_requests,
.elevator_allow_merge_fn = cfq_allow_merge,
.elevator_dispatch_fn = cfq_dispatch_requests,
.elevator_add_req_fn = cfq_insert_request,
.elevator_activate_req_fn = cfq_activate_request,
.elevator_deactivate_req_fn = cfq_deactivate_request,
.elevator_queue_empty_fn = cfq_queue_empty,
.elevator_completed_req_fn = cfq_completed_request,
.elevator_former_req_fn = elv_rb_former_request,
.elevator_latter_req_fn = elv_rb_latter_request,
.elevator_set_req_fn = cfq_set_request,
.elevator_put_req_fn = cfq_put_request,
.elevator_may_queue_fn = cfq_may_queue,
.elevator_init_fn = cfq_init_queue,
.elevator_exit_fn = cfq_exit_queue,
.trim = cfq_free_io_context,
},
.elevator_attrs = cfq_attrs,
.elevator_name = "cfq",
.elevator_owner = THIS_MODULE,
};
static int __init cfq_init(void)
{
/*
* could be 0 on HZ < 1000 setups
*/
if (!cfq_slice_async)
cfq_slice_async = 1;
if (!cfq_slice_idle)
cfq_slice_idle = 1;
if (cfq_slab_setup())
return -ENOMEM;
elv_register(&iosched_cfq);
return 0;
}
static void __exit cfq_exit(void)
{
DECLARE_COMPLETION_ONSTACK(all_gone);
elv_unregister(&iosched_cfq);
ioc_gone = &all_gone;
/* ioc_gone's update must be visible before reading ioc_count */
smp_wmb();
/*
* this also protects us from entering cfq_slab_kill() with
* pending RCU callbacks
*/
if (elv_ioc_count_read(cfq_ioc_count))
wait_for_completion(&all_gone);
cfq_slab_kill();
}
module_init(cfq_init);
module_exit(cfq_exit);
MODULE_AUTHOR("Jens Axboe");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");