linux/drivers/net/dsa/mv88e6xxx.c
Russell King 53adc9e830 net: dsa: actually force the speed on the CPU port
Commit 54d792f257 ("net: dsa: Centralise global and port setup
code into mv88e6xxx.") merged in the 4.2 merge window broke the link
speed forcing for the CPU port of Marvell DSA switches.  The original
code was:

        /* MAC Forcing register: don't force link, speed, duplex
         * or flow control state to any particular values on physical
         * ports, but force the CPU port and all DSA ports to 1000 Mb/s
         * full duplex.
         */
        if (dsa_is_cpu_port(ds, p) || ds->dsa_port_mask & (1 << p))
                REG_WRITE(addr, 0x01, 0x003e);
        else
                REG_WRITE(addr, 0x01, 0x0003);

but the new code does a read-modify-write:

                reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_PCS_CTRL);
                if (dsa_is_cpu_port(ds, port) ||
                    ds->dsa_port_mask & (1 << port)) {
                        reg |= PORT_PCS_CTRL_FORCE_LINK |
                                PORT_PCS_CTRL_LINK_UP |
                                PORT_PCS_CTRL_DUPLEX_FULL |
                                PORT_PCS_CTRL_FORCE_DUPLEX;
                        if (mv88e6xxx_6065_family(ds))
                                reg |= PORT_PCS_CTRL_100;
                        else
                                reg |= PORT_PCS_CTRL_1000;

The link speed in the PCS control register is a two bit field.  Forcing
the link speed in this way doesn't ensure that the bit field is set to
the correct value - on the hardware I have here, the speed bitfield
remains set to 0x03, resulting in the speed not being forced to gigabit.

We must clear both bits before forcing the link speed.

Fixes: 54d792f257 ("net: dsa: Centralise global and port setup code into mv88e6xxx.")
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Acked-by: Andrew Lunn <andrew@lunn.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-22 17:18:24 -07:00

2959 lines
70 KiB
C

/*
* net/dsa/mv88e6xxx.c - Marvell 88e6xxx switch chip support
* Copyright (c) 2008 Marvell Semiconductor
*
* Copyright (c) 2015 CMC Electronics, Inc.
* Added support for VLAN Table Unit operations
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/if_bridge.h>
#include <linux/jiffies.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/phy.h>
#include <linux/seq_file.h>
#include <net/dsa.h>
#include "mv88e6xxx.h"
/* MDIO bus access can be nested in the case of PHYs connected to the
* internal MDIO bus of the switch, which is accessed via MDIO bus of
* the Ethernet interface. Avoid lockdep false positives by using
* mutex_lock_nested().
*/
static int mv88e6xxx_mdiobus_read(struct mii_bus *bus, int addr, u32 regnum)
{
int ret;
mutex_lock_nested(&bus->mdio_lock, SINGLE_DEPTH_NESTING);
ret = bus->read(bus, addr, regnum);
mutex_unlock(&bus->mdio_lock);
return ret;
}
static int mv88e6xxx_mdiobus_write(struct mii_bus *bus, int addr, u32 regnum,
u16 val)
{
int ret;
mutex_lock_nested(&bus->mdio_lock, SINGLE_DEPTH_NESTING);
ret = bus->write(bus, addr, regnum, val);
mutex_unlock(&bus->mdio_lock);
return ret;
}
/* If the switch's ADDR[4:0] strap pins are strapped to zero, it will
* use all 32 SMI bus addresses on its SMI bus, and all switch registers
* will be directly accessible on some {device address,register address}
* pair. If the ADDR[4:0] pins are not strapped to zero, the switch
* will only respond to SMI transactions to that specific address, and
* an indirect addressing mechanism needs to be used to access its
* registers.
*/
static int mv88e6xxx_reg_wait_ready(struct mii_bus *bus, int sw_addr)
{
int ret;
int i;
for (i = 0; i < 16; i++) {
ret = mv88e6xxx_mdiobus_read(bus, sw_addr, SMI_CMD);
if (ret < 0)
return ret;
if ((ret & SMI_CMD_BUSY) == 0)
return 0;
}
return -ETIMEDOUT;
}
int __mv88e6xxx_reg_read(struct mii_bus *bus, int sw_addr, int addr, int reg)
{
int ret;
if (sw_addr == 0)
return mv88e6xxx_mdiobus_read(bus, addr, reg);
/* Wait for the bus to become free. */
ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
if (ret < 0)
return ret;
/* Transmit the read command. */
ret = mv88e6xxx_mdiobus_write(bus, sw_addr, SMI_CMD,
SMI_CMD_OP_22_READ | (addr << 5) | reg);
if (ret < 0)
return ret;
/* Wait for the read command to complete. */
ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
if (ret < 0)
return ret;
/* Read the data. */
ret = mv88e6xxx_mdiobus_read(bus, sw_addr, SMI_DATA);
if (ret < 0)
return ret;
return ret & 0xffff;
}
/* Must be called with SMI mutex held */
static int _mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
{
struct mii_bus *bus = dsa_host_dev_to_mii_bus(ds->master_dev);
int ret;
if (bus == NULL)
return -EINVAL;
ret = __mv88e6xxx_reg_read(bus, ds->pd->sw_addr, addr, reg);
if (ret < 0)
return ret;
dev_dbg(ds->master_dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
addr, reg, ret);
return ret;
}
int mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int ret;
mutex_lock(&ps->smi_mutex);
ret = _mv88e6xxx_reg_read(ds, addr, reg);
mutex_unlock(&ps->smi_mutex);
return ret;
}
int __mv88e6xxx_reg_write(struct mii_bus *bus, int sw_addr, int addr,
int reg, u16 val)
{
int ret;
if (sw_addr == 0)
return mv88e6xxx_mdiobus_write(bus, addr, reg, val);
/* Wait for the bus to become free. */
ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
if (ret < 0)
return ret;
/* Transmit the data to write. */
ret = mv88e6xxx_mdiobus_write(bus, sw_addr, SMI_DATA, val);
if (ret < 0)
return ret;
/* Transmit the write command. */
ret = mv88e6xxx_mdiobus_write(bus, sw_addr, SMI_CMD,
SMI_CMD_OP_22_WRITE | (addr << 5) | reg);
if (ret < 0)
return ret;
/* Wait for the write command to complete. */
ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
if (ret < 0)
return ret;
return 0;
}
/* Must be called with SMI mutex held */
static int _mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg,
u16 val)
{
struct mii_bus *bus = dsa_host_dev_to_mii_bus(ds->master_dev);
if (bus == NULL)
return -EINVAL;
dev_dbg(ds->master_dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
addr, reg, val);
return __mv88e6xxx_reg_write(bus, ds->pd->sw_addr, addr, reg, val);
}
int mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg, u16 val)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int ret;
mutex_lock(&ps->smi_mutex);
ret = _mv88e6xxx_reg_write(ds, addr, reg, val);
mutex_unlock(&ps->smi_mutex);
return ret;
}
int mv88e6xxx_set_addr_direct(struct dsa_switch *ds, u8 *addr)
{
REG_WRITE(REG_GLOBAL, GLOBAL_MAC_01, (addr[0] << 8) | addr[1]);
REG_WRITE(REG_GLOBAL, GLOBAL_MAC_23, (addr[2] << 8) | addr[3]);
REG_WRITE(REG_GLOBAL, GLOBAL_MAC_45, (addr[4] << 8) | addr[5]);
return 0;
}
int mv88e6xxx_set_addr_indirect(struct dsa_switch *ds, u8 *addr)
{
int i;
int ret;
for (i = 0; i < 6; i++) {
int j;
/* Write the MAC address byte. */
REG_WRITE(REG_GLOBAL2, GLOBAL2_SWITCH_MAC,
GLOBAL2_SWITCH_MAC_BUSY | (i << 8) | addr[i]);
/* Wait for the write to complete. */
for (j = 0; j < 16; j++) {
ret = REG_READ(REG_GLOBAL2, GLOBAL2_SWITCH_MAC);
if ((ret & GLOBAL2_SWITCH_MAC_BUSY) == 0)
break;
}
if (j == 16)
return -ETIMEDOUT;
}
return 0;
}
/* Must be called with SMI mutex held */
static int _mv88e6xxx_phy_read(struct dsa_switch *ds, int addr, int regnum)
{
if (addr >= 0)
return _mv88e6xxx_reg_read(ds, addr, regnum);
return 0xffff;
}
/* Must be called with SMI mutex held */
static int _mv88e6xxx_phy_write(struct dsa_switch *ds, int addr, int regnum,
u16 val)
{
if (addr >= 0)
return _mv88e6xxx_reg_write(ds, addr, regnum, val);
return 0;
}
#ifdef CONFIG_NET_DSA_MV88E6XXX_NEED_PPU
static int mv88e6xxx_ppu_disable(struct dsa_switch *ds)
{
int ret;
unsigned long timeout;
ret = REG_READ(REG_GLOBAL, GLOBAL_CONTROL);
REG_WRITE(REG_GLOBAL, GLOBAL_CONTROL,
ret & ~GLOBAL_CONTROL_PPU_ENABLE);
timeout = jiffies + 1 * HZ;
while (time_before(jiffies, timeout)) {
ret = REG_READ(REG_GLOBAL, GLOBAL_STATUS);
usleep_range(1000, 2000);
if ((ret & GLOBAL_STATUS_PPU_MASK) !=
GLOBAL_STATUS_PPU_POLLING)
return 0;
}
return -ETIMEDOUT;
}
static int mv88e6xxx_ppu_enable(struct dsa_switch *ds)
{
int ret;
unsigned long timeout;
ret = REG_READ(REG_GLOBAL, GLOBAL_CONTROL);
REG_WRITE(REG_GLOBAL, GLOBAL_CONTROL, ret | GLOBAL_CONTROL_PPU_ENABLE);
timeout = jiffies + 1 * HZ;
while (time_before(jiffies, timeout)) {
ret = REG_READ(REG_GLOBAL, GLOBAL_STATUS);
usleep_range(1000, 2000);
if ((ret & GLOBAL_STATUS_PPU_MASK) ==
GLOBAL_STATUS_PPU_POLLING)
return 0;
}
return -ETIMEDOUT;
}
static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
{
struct mv88e6xxx_priv_state *ps;
ps = container_of(ugly, struct mv88e6xxx_priv_state, ppu_work);
if (mutex_trylock(&ps->ppu_mutex)) {
struct dsa_switch *ds = ((struct dsa_switch *)ps) - 1;
if (mv88e6xxx_ppu_enable(ds) == 0)
ps->ppu_disabled = 0;
mutex_unlock(&ps->ppu_mutex);
}
}
static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
{
struct mv88e6xxx_priv_state *ps = (void *)_ps;
schedule_work(&ps->ppu_work);
}
static int mv88e6xxx_ppu_access_get(struct dsa_switch *ds)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int ret;
mutex_lock(&ps->ppu_mutex);
/* If the PHY polling unit is enabled, disable it so that
* we can access the PHY registers. If it was already
* disabled, cancel the timer that is going to re-enable
* it.
*/
if (!ps->ppu_disabled) {
ret = mv88e6xxx_ppu_disable(ds);
if (ret < 0) {
mutex_unlock(&ps->ppu_mutex);
return ret;
}
ps->ppu_disabled = 1;
} else {
del_timer(&ps->ppu_timer);
ret = 0;
}
return ret;
}
static void mv88e6xxx_ppu_access_put(struct dsa_switch *ds)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
/* Schedule a timer to re-enable the PHY polling unit. */
mod_timer(&ps->ppu_timer, jiffies + msecs_to_jiffies(10));
mutex_unlock(&ps->ppu_mutex);
}
void mv88e6xxx_ppu_state_init(struct dsa_switch *ds)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
mutex_init(&ps->ppu_mutex);
INIT_WORK(&ps->ppu_work, mv88e6xxx_ppu_reenable_work);
init_timer(&ps->ppu_timer);
ps->ppu_timer.data = (unsigned long)ps;
ps->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
}
int mv88e6xxx_phy_read_ppu(struct dsa_switch *ds, int addr, int regnum)
{
int ret;
ret = mv88e6xxx_ppu_access_get(ds);
if (ret >= 0) {
ret = mv88e6xxx_reg_read(ds, addr, regnum);
mv88e6xxx_ppu_access_put(ds);
}
return ret;
}
int mv88e6xxx_phy_write_ppu(struct dsa_switch *ds, int addr,
int regnum, u16 val)
{
int ret;
ret = mv88e6xxx_ppu_access_get(ds);
if (ret >= 0) {
ret = mv88e6xxx_reg_write(ds, addr, regnum, val);
mv88e6xxx_ppu_access_put(ds);
}
return ret;
}
#endif
void mv88e6xxx_poll_link(struct dsa_switch *ds)
{
int i;
for (i = 0; i < DSA_MAX_PORTS; i++) {
struct net_device *dev;
int uninitialized_var(port_status);
int pcs_ctrl;
int link;
int speed;
int duplex;
int fc;
dev = ds->ports[i];
if (dev == NULL)
continue;
pcs_ctrl = mv88e6xxx_reg_read(ds, REG_PORT(i), PORT_PCS_CTRL);
if (pcs_ctrl < 0 || pcs_ctrl & PORT_PCS_CTRL_FORCE_LINK)
continue;
link = 0;
if (dev->flags & IFF_UP) {
port_status = mv88e6xxx_reg_read(ds, REG_PORT(i),
PORT_STATUS);
if (port_status < 0)
continue;
link = !!(port_status & PORT_STATUS_LINK);
}
if (!link) {
if (netif_carrier_ok(dev)) {
netdev_info(dev, "link down\n");
netif_carrier_off(dev);
}
continue;
}
switch (port_status & PORT_STATUS_SPEED_MASK) {
case PORT_STATUS_SPEED_10:
speed = 10;
break;
case PORT_STATUS_SPEED_100:
speed = 100;
break;
case PORT_STATUS_SPEED_1000:
speed = 1000;
break;
default:
speed = -1;
break;
}
duplex = (port_status & PORT_STATUS_DUPLEX) ? 1 : 0;
fc = (port_status & PORT_STATUS_PAUSE_EN) ? 1 : 0;
if (!netif_carrier_ok(dev)) {
netdev_info(dev,
"link up, %d Mb/s, %s duplex, flow control %sabled\n",
speed,
duplex ? "full" : "half",
fc ? "en" : "dis");
netif_carrier_on(dev);
}
}
}
static bool mv88e6xxx_6065_family(struct dsa_switch *ds)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
switch (ps->id) {
case PORT_SWITCH_ID_6031:
case PORT_SWITCH_ID_6061:
case PORT_SWITCH_ID_6035:
case PORT_SWITCH_ID_6065:
return true;
}
return false;
}
static bool mv88e6xxx_6095_family(struct dsa_switch *ds)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
switch (ps->id) {
case PORT_SWITCH_ID_6092:
case PORT_SWITCH_ID_6095:
return true;
}
return false;
}
static bool mv88e6xxx_6097_family(struct dsa_switch *ds)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
switch (ps->id) {
case PORT_SWITCH_ID_6046:
case PORT_SWITCH_ID_6085:
case PORT_SWITCH_ID_6096:
case PORT_SWITCH_ID_6097:
return true;
}
return false;
}
static bool mv88e6xxx_6165_family(struct dsa_switch *ds)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
switch (ps->id) {
case PORT_SWITCH_ID_6123:
case PORT_SWITCH_ID_6161:
case PORT_SWITCH_ID_6165:
return true;
}
return false;
}
static bool mv88e6xxx_6185_family(struct dsa_switch *ds)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
switch (ps->id) {
case PORT_SWITCH_ID_6121:
case PORT_SWITCH_ID_6122:
case PORT_SWITCH_ID_6152:
case PORT_SWITCH_ID_6155:
case PORT_SWITCH_ID_6182:
case PORT_SWITCH_ID_6185:
case PORT_SWITCH_ID_6108:
case PORT_SWITCH_ID_6131:
return true;
}
return false;
}
static bool mv88e6xxx_6320_family(struct dsa_switch *ds)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
switch (ps->id) {
case PORT_SWITCH_ID_6320:
case PORT_SWITCH_ID_6321:
return true;
}
return false;
}
static bool mv88e6xxx_6351_family(struct dsa_switch *ds)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
switch (ps->id) {
case PORT_SWITCH_ID_6171:
case PORT_SWITCH_ID_6175:
case PORT_SWITCH_ID_6350:
case PORT_SWITCH_ID_6351:
return true;
}
return false;
}
static bool mv88e6xxx_6352_family(struct dsa_switch *ds)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
switch (ps->id) {
case PORT_SWITCH_ID_6172:
case PORT_SWITCH_ID_6176:
case PORT_SWITCH_ID_6240:
case PORT_SWITCH_ID_6352:
return true;
}
return false;
}
/* We expect the switch to perform auto negotiation if there is a real
* phy. However, in the case of a fixed link phy, we force the port
* settings from the fixed link settings.
*/
void mv88e6xxx_adjust_link(struct dsa_switch *ds, int port,
struct phy_device *phydev)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
u32 ret, reg;
if (!phy_is_pseudo_fixed_link(phydev))
return;
mutex_lock(&ps->smi_mutex);
ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_PCS_CTRL);
if (ret < 0)
goto out;
reg = ret & ~(PORT_PCS_CTRL_LINK_UP |
PORT_PCS_CTRL_FORCE_LINK |
PORT_PCS_CTRL_DUPLEX_FULL |
PORT_PCS_CTRL_FORCE_DUPLEX |
PORT_PCS_CTRL_UNFORCED);
reg |= PORT_PCS_CTRL_FORCE_LINK;
if (phydev->link)
reg |= PORT_PCS_CTRL_LINK_UP;
if (mv88e6xxx_6065_family(ds) && phydev->speed > SPEED_100)
goto out;
switch (phydev->speed) {
case SPEED_1000:
reg |= PORT_PCS_CTRL_1000;
break;
case SPEED_100:
reg |= PORT_PCS_CTRL_100;
break;
case SPEED_10:
reg |= PORT_PCS_CTRL_10;
break;
default:
pr_info("Unknown speed");
goto out;
}
reg |= PORT_PCS_CTRL_FORCE_DUPLEX;
if (phydev->duplex == DUPLEX_FULL)
reg |= PORT_PCS_CTRL_DUPLEX_FULL;
if ((mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds)) &&
(port >= ps->num_ports - 2)) {
if (phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
reg |= PORT_PCS_CTRL_RGMII_DELAY_RXCLK;
if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
reg |= PORT_PCS_CTRL_RGMII_DELAY_TXCLK;
if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID)
reg |= (PORT_PCS_CTRL_RGMII_DELAY_RXCLK |
PORT_PCS_CTRL_RGMII_DELAY_TXCLK);
}
_mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_PCS_CTRL, reg);
out:
mutex_unlock(&ps->smi_mutex);
}
/* Must be called with SMI mutex held */
static int _mv88e6xxx_stats_wait(struct dsa_switch *ds)
{
int ret;
int i;
for (i = 0; i < 10; i++) {
ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_OP);
if ((ret & GLOBAL_STATS_OP_BUSY) == 0)
return 0;
}
return -ETIMEDOUT;
}
/* Must be called with SMI mutex held */
static int _mv88e6xxx_stats_snapshot(struct dsa_switch *ds, int port)
{
int ret;
if (mv88e6xxx_6320_family(ds) || mv88e6xxx_6352_family(ds))
port = (port + 1) << 5;
/* Snapshot the hardware statistics counters for this port. */
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP,
GLOBAL_STATS_OP_CAPTURE_PORT |
GLOBAL_STATS_OP_HIST_RX_TX | port);
if (ret < 0)
return ret;
/* Wait for the snapshotting to complete. */
ret = _mv88e6xxx_stats_wait(ds);
if (ret < 0)
return ret;
return 0;
}
/* Must be called with SMI mutex held */
static void _mv88e6xxx_stats_read(struct dsa_switch *ds, int stat, u32 *val)
{
u32 _val;
int ret;
*val = 0;
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP,
GLOBAL_STATS_OP_READ_CAPTURED |
GLOBAL_STATS_OP_HIST_RX_TX | stat);
if (ret < 0)
return;
ret = _mv88e6xxx_stats_wait(ds);
if (ret < 0)
return;
ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_32);
if (ret < 0)
return;
_val = ret << 16;
ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_01);
if (ret < 0)
return;
*val = _val | ret;
}
static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = {
{ "in_good_octets", 8, 0x00, },
{ "in_bad_octets", 4, 0x02, },
{ "in_unicast", 4, 0x04, },
{ "in_broadcasts", 4, 0x06, },
{ "in_multicasts", 4, 0x07, },
{ "in_pause", 4, 0x16, },
{ "in_undersize", 4, 0x18, },
{ "in_fragments", 4, 0x19, },
{ "in_oversize", 4, 0x1a, },
{ "in_jabber", 4, 0x1b, },
{ "in_rx_error", 4, 0x1c, },
{ "in_fcs_error", 4, 0x1d, },
{ "out_octets", 8, 0x0e, },
{ "out_unicast", 4, 0x10, },
{ "out_broadcasts", 4, 0x13, },
{ "out_multicasts", 4, 0x12, },
{ "out_pause", 4, 0x15, },
{ "excessive", 4, 0x11, },
{ "collisions", 4, 0x1e, },
{ "deferred", 4, 0x05, },
{ "single", 4, 0x14, },
{ "multiple", 4, 0x17, },
{ "out_fcs_error", 4, 0x03, },
{ "late", 4, 0x1f, },
{ "hist_64bytes", 4, 0x08, },
{ "hist_65_127bytes", 4, 0x09, },
{ "hist_128_255bytes", 4, 0x0a, },
{ "hist_256_511bytes", 4, 0x0b, },
{ "hist_512_1023bytes", 4, 0x0c, },
{ "hist_1024_max_bytes", 4, 0x0d, },
/* Not all devices have the following counters */
{ "sw_in_discards", 4, 0x110, },
{ "sw_in_filtered", 2, 0x112, },
{ "sw_out_filtered", 2, 0x113, },
};
static bool have_sw_in_discards(struct dsa_switch *ds)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
switch (ps->id) {
case PORT_SWITCH_ID_6095: case PORT_SWITCH_ID_6161:
case PORT_SWITCH_ID_6165: case PORT_SWITCH_ID_6171:
case PORT_SWITCH_ID_6172: case PORT_SWITCH_ID_6176:
case PORT_SWITCH_ID_6182: case PORT_SWITCH_ID_6185:
case PORT_SWITCH_ID_6352:
return true;
default:
return false;
}
}
static void _mv88e6xxx_get_strings(struct dsa_switch *ds,
int nr_stats,
struct mv88e6xxx_hw_stat *stats,
int port, uint8_t *data)
{
int i;
for (i = 0; i < nr_stats; i++) {
memcpy(data + i * ETH_GSTRING_LEN,
stats[i].string, ETH_GSTRING_LEN);
}
}
static uint64_t _mv88e6xxx_get_ethtool_stat(struct dsa_switch *ds,
int stat,
struct mv88e6xxx_hw_stat *stats,
int port)
{
struct mv88e6xxx_hw_stat *s = stats + stat;
u32 low;
u32 high = 0;
int ret;
u64 value;
if (s->reg >= 0x100) {
ret = _mv88e6xxx_reg_read(ds, REG_PORT(port),
s->reg - 0x100);
if (ret < 0)
return UINT64_MAX;
low = ret;
if (s->sizeof_stat == 4) {
ret = _mv88e6xxx_reg_read(ds, REG_PORT(port),
s->reg - 0x100 + 1);
if (ret < 0)
return UINT64_MAX;
high = ret;
}
} else {
_mv88e6xxx_stats_read(ds, s->reg, &low);
if (s->sizeof_stat == 8)
_mv88e6xxx_stats_read(ds, s->reg + 1, &high);
}
value = (((u64)high) << 16) | low;
return value;
}
static void _mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds,
int nr_stats,
struct mv88e6xxx_hw_stat *stats,
int port, uint64_t *data)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int ret;
int i;
mutex_lock(&ps->smi_mutex);
ret = _mv88e6xxx_stats_snapshot(ds, port);
if (ret < 0) {
mutex_unlock(&ps->smi_mutex);
return;
}
/* Read each of the counters. */
for (i = 0; i < nr_stats; i++)
data[i] = _mv88e6xxx_get_ethtool_stat(ds, i, stats, port);
mutex_unlock(&ps->smi_mutex);
}
/* All the statistics in the table */
void
mv88e6xxx_get_strings(struct dsa_switch *ds, int port, uint8_t *data)
{
if (have_sw_in_discards(ds))
_mv88e6xxx_get_strings(ds, ARRAY_SIZE(mv88e6xxx_hw_stats),
mv88e6xxx_hw_stats, port, data);
else
_mv88e6xxx_get_strings(ds, ARRAY_SIZE(mv88e6xxx_hw_stats) - 3,
mv88e6xxx_hw_stats, port, data);
}
int mv88e6xxx_get_sset_count(struct dsa_switch *ds)
{
if (have_sw_in_discards(ds))
return ARRAY_SIZE(mv88e6xxx_hw_stats);
return ARRAY_SIZE(mv88e6xxx_hw_stats) - 3;
}
void
mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds,
int port, uint64_t *data)
{
if (have_sw_in_discards(ds))
_mv88e6xxx_get_ethtool_stats(
ds, ARRAY_SIZE(mv88e6xxx_hw_stats),
mv88e6xxx_hw_stats, port, data);
else
_mv88e6xxx_get_ethtool_stats(
ds, ARRAY_SIZE(mv88e6xxx_hw_stats) - 3,
mv88e6xxx_hw_stats, port, data);
}
int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port)
{
return 32 * sizeof(u16);
}
void mv88e6xxx_get_regs(struct dsa_switch *ds, int port,
struct ethtool_regs *regs, void *_p)
{
u16 *p = _p;
int i;
regs->version = 0;
memset(p, 0xff, 32 * sizeof(u16));
for (i = 0; i < 32; i++) {
int ret;
ret = mv88e6xxx_reg_read(ds, REG_PORT(port), i);
if (ret >= 0)
p[i] = ret;
}
}
/* Must be called with SMI lock held */
static int _mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset,
u16 mask)
{
unsigned long timeout = jiffies + HZ / 10;
while (time_before(jiffies, timeout)) {
int ret;
ret = _mv88e6xxx_reg_read(ds, reg, offset);
if (ret < 0)
return ret;
if (!(ret & mask))
return 0;
usleep_range(1000, 2000);
}
return -ETIMEDOUT;
}
static int mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset, u16 mask)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int ret;
mutex_lock(&ps->smi_mutex);
ret = _mv88e6xxx_wait(ds, reg, offset, mask);
mutex_unlock(&ps->smi_mutex);
return ret;
}
static int _mv88e6xxx_phy_wait(struct dsa_switch *ds)
{
return _mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
GLOBAL2_SMI_OP_BUSY);
}
int mv88e6xxx_eeprom_load_wait(struct dsa_switch *ds)
{
return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
GLOBAL2_EEPROM_OP_LOAD);
}
int mv88e6xxx_eeprom_busy_wait(struct dsa_switch *ds)
{
return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
GLOBAL2_EEPROM_OP_BUSY);
}
/* Must be called with SMI lock held */
static int _mv88e6xxx_atu_wait(struct dsa_switch *ds)
{
return _mv88e6xxx_wait(ds, REG_GLOBAL, GLOBAL_ATU_OP,
GLOBAL_ATU_OP_BUSY);
}
/* Must be called with SMI lock held */
static int _mv88e6xxx_scratch_wait(struct dsa_switch *ds)
{
return _mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_SCRATCH_MISC,
GLOBAL2_SCRATCH_BUSY);
}
/* Must be called with SMI mutex held */
static int _mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int addr,
int regnum)
{
int ret;
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
GLOBAL2_SMI_OP_22_READ | (addr << 5) |
regnum);
if (ret < 0)
return ret;
ret = _mv88e6xxx_phy_wait(ds);
if (ret < 0)
return ret;
return _mv88e6xxx_reg_read(ds, REG_GLOBAL2, GLOBAL2_SMI_DATA);
}
/* Must be called with SMI mutex held */
static int _mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int addr,
int regnum, u16 val)
{
int ret;
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_DATA, val);
if (ret < 0)
return ret;
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
GLOBAL2_SMI_OP_22_WRITE | (addr << 5) |
regnum);
return _mv88e6xxx_phy_wait(ds);
}
int mv88e6xxx_get_eee(struct dsa_switch *ds, int port, struct ethtool_eee *e)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int reg;
mutex_lock(&ps->smi_mutex);
reg = _mv88e6xxx_phy_read_indirect(ds, port, 16);
if (reg < 0)
goto out;
e->eee_enabled = !!(reg & 0x0200);
e->tx_lpi_enabled = !!(reg & 0x0100);
reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_STATUS);
if (reg < 0)
goto out;
e->eee_active = !!(reg & PORT_STATUS_EEE);
reg = 0;
out:
mutex_unlock(&ps->smi_mutex);
return reg;
}
int mv88e6xxx_set_eee(struct dsa_switch *ds, int port,
struct phy_device *phydev, struct ethtool_eee *e)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int reg;
int ret;
mutex_lock(&ps->smi_mutex);
ret = _mv88e6xxx_phy_read_indirect(ds, port, 16);
if (ret < 0)
goto out;
reg = ret & ~0x0300;
if (e->eee_enabled)
reg |= 0x0200;
if (e->tx_lpi_enabled)
reg |= 0x0100;
ret = _mv88e6xxx_phy_write_indirect(ds, port, 16, reg);
out:
mutex_unlock(&ps->smi_mutex);
return ret;
}
static int _mv88e6xxx_atu_cmd(struct dsa_switch *ds, int fid, u16 cmd)
{
int ret;
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_FID, fid);
if (ret < 0)
return ret;
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_OP, cmd);
if (ret < 0)
return ret;
return _mv88e6xxx_atu_wait(ds);
}
static int _mv88e6xxx_flush_fid(struct dsa_switch *ds, int fid)
{
int ret;
ret = _mv88e6xxx_atu_wait(ds);
if (ret < 0)
return ret;
return _mv88e6xxx_atu_cmd(ds, fid, GLOBAL_ATU_OP_FLUSH_NON_STATIC_DB);
}
static int mv88e6xxx_set_port_state(struct dsa_switch *ds, int port, u8 state)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int reg, ret = 0;
u8 oldstate;
mutex_lock(&ps->smi_mutex);
reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_CONTROL);
if (reg < 0) {
ret = reg;
goto abort;
}
oldstate = reg & PORT_CONTROL_STATE_MASK;
if (oldstate != state) {
/* Flush forwarding database if we're moving a port
* from Learning or Forwarding state to Disabled or
* Blocking or Listening state.
*/
if (oldstate >= PORT_CONTROL_STATE_LEARNING &&
state <= PORT_CONTROL_STATE_BLOCKING) {
ret = _mv88e6xxx_flush_fid(ds, ps->fid[port]);
if (ret)
goto abort;
}
reg = (reg & ~PORT_CONTROL_STATE_MASK) | state;
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL,
reg);
}
abort:
mutex_unlock(&ps->smi_mutex);
return ret;
}
/* Must be called with smi lock held */
static int _mv88e6xxx_update_port_config(struct dsa_switch *ds, int port)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
u8 fid = ps->fid[port];
u16 reg = fid << 12;
if (dsa_is_cpu_port(ds, port))
reg |= ds->phys_port_mask;
else
reg |= (ps->bridge_mask[fid] |
(1 << dsa_upstream_port(ds))) & ~(1 << port);
return _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_BASE_VLAN, reg);
}
/* Must be called with smi lock held */
static int _mv88e6xxx_update_bridge_config(struct dsa_switch *ds, int fid)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int port;
u32 mask;
int ret;
mask = ds->phys_port_mask;
while (mask) {
port = __ffs(mask);
mask &= ~(1 << port);
if (ps->fid[port] != fid)
continue;
ret = _mv88e6xxx_update_port_config(ds, port);
if (ret)
return ret;
}
return _mv88e6xxx_flush_fid(ds, fid);
}
/* Bridge handling functions */
int mv88e6xxx_join_bridge(struct dsa_switch *ds, int port, u32 br_port_mask)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int ret = 0;
u32 nmask;
int fid;
/* If the bridge group is not empty, join that group.
* Otherwise create a new group.
*/
fid = ps->fid[port];
nmask = br_port_mask & ~(1 << port);
if (nmask)
fid = ps->fid[__ffs(nmask)];
nmask = ps->bridge_mask[fid] | (1 << port);
if (nmask != br_port_mask) {
netdev_err(ds->ports[port],
"join: Bridge port mask mismatch fid=%d mask=0x%x expected 0x%x\n",
fid, br_port_mask, nmask);
return -EINVAL;
}
mutex_lock(&ps->smi_mutex);
ps->bridge_mask[fid] = br_port_mask;
if (fid != ps->fid[port]) {
clear_bit(ps->fid[port], ps->fid_bitmap);
ps->fid[port] = fid;
ret = _mv88e6xxx_update_bridge_config(ds, fid);
}
mutex_unlock(&ps->smi_mutex);
return ret;
}
int mv88e6xxx_leave_bridge(struct dsa_switch *ds, int port, u32 br_port_mask)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
u8 fid, newfid;
int ret;
fid = ps->fid[port];
if (ps->bridge_mask[fid] != br_port_mask) {
netdev_err(ds->ports[port],
"leave: Bridge port mask mismatch fid=%d mask=0x%x expected 0x%x\n",
fid, br_port_mask, ps->bridge_mask[fid]);
return -EINVAL;
}
/* If the port was the last port of a bridge, we are done.
* Otherwise assign a new fid to the port, and fix up
* the bridge configuration.
*/
if (br_port_mask == (1 << port))
return 0;
mutex_lock(&ps->smi_mutex);
newfid = find_next_zero_bit(ps->fid_bitmap, VLAN_N_VID, 1);
if (unlikely(newfid > ps->num_ports)) {
netdev_err(ds->ports[port], "all first %d FIDs are used\n",
ps->num_ports);
ret = -ENOSPC;
goto unlock;
}
ps->fid[port] = newfid;
set_bit(newfid, ps->fid_bitmap);
ps->bridge_mask[fid] &= ~(1 << port);
ps->bridge_mask[newfid] = 1 << port;
ret = _mv88e6xxx_update_bridge_config(ds, fid);
if (!ret)
ret = _mv88e6xxx_update_bridge_config(ds, newfid);
unlock:
mutex_unlock(&ps->smi_mutex);
return ret;
}
int mv88e6xxx_port_stp_update(struct dsa_switch *ds, int port, u8 state)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int stp_state;
switch (state) {
case BR_STATE_DISABLED:
stp_state = PORT_CONTROL_STATE_DISABLED;
break;
case BR_STATE_BLOCKING:
case BR_STATE_LISTENING:
stp_state = PORT_CONTROL_STATE_BLOCKING;
break;
case BR_STATE_LEARNING:
stp_state = PORT_CONTROL_STATE_LEARNING;
break;
case BR_STATE_FORWARDING:
default:
stp_state = PORT_CONTROL_STATE_FORWARDING;
break;
}
netdev_dbg(ds->ports[port], "port state %d [%d]\n", state, stp_state);
/* mv88e6xxx_port_stp_update may be called with softirqs disabled,
* so we can not update the port state directly but need to schedule it.
*/
ps->port_state[port] = stp_state;
set_bit(port, &ps->port_state_update_mask);
schedule_work(&ps->bridge_work);
return 0;
}
int mv88e6xxx_port_pvid_get(struct dsa_switch *ds, int port, u16 *pvid)
{
int ret;
ret = mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_DEFAULT_VLAN);
if (ret < 0)
return ret;
*pvid = ret & PORT_DEFAULT_VLAN_MASK;
return 0;
}
int mv88e6xxx_port_pvid_set(struct dsa_switch *ds, int port, u16 pvid)
{
return mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_DEFAULT_VLAN,
pvid & PORT_DEFAULT_VLAN_MASK);
}
static int _mv88e6xxx_vtu_wait(struct dsa_switch *ds)
{
return _mv88e6xxx_wait(ds, REG_GLOBAL, GLOBAL_VTU_OP,
GLOBAL_VTU_OP_BUSY);
}
static int _mv88e6xxx_vtu_cmd(struct dsa_switch *ds, u16 op)
{
int ret;
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_OP, op);
if (ret < 0)
return ret;
return _mv88e6xxx_vtu_wait(ds);
}
static int _mv88e6xxx_vtu_stu_flush(struct dsa_switch *ds)
{
int ret;
ret = _mv88e6xxx_vtu_wait(ds);
if (ret < 0)
return ret;
return _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_FLUSH_ALL);
}
static int _mv88e6xxx_vtu_stu_data_read(struct dsa_switch *ds,
struct mv88e6xxx_vtu_stu_entry *entry,
unsigned int nibble_offset)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
u16 regs[3];
int i;
int ret;
for (i = 0; i < 3; ++i) {
ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
GLOBAL_VTU_DATA_0_3 + i);
if (ret < 0)
return ret;
regs[i] = ret;
}
for (i = 0; i < ps->num_ports; ++i) {
unsigned int shift = (i % 4) * 4 + nibble_offset;
u16 reg = regs[i / 4];
entry->data[i] = (reg >> shift) & GLOBAL_VTU_STU_DATA_MASK;
}
return 0;
}
static int _mv88e6xxx_vtu_stu_data_write(struct dsa_switch *ds,
struct mv88e6xxx_vtu_stu_entry *entry,
unsigned int nibble_offset)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
u16 regs[3] = { 0 };
int i;
int ret;
for (i = 0; i < ps->num_ports; ++i) {
unsigned int shift = (i % 4) * 4 + nibble_offset;
u8 data = entry->data[i];
regs[i / 4] |= (data & GLOBAL_VTU_STU_DATA_MASK) << shift;
}
for (i = 0; i < 3; ++i) {
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL,
GLOBAL_VTU_DATA_0_3 + i, regs[i]);
if (ret < 0)
return ret;
}
return 0;
}
static int _mv88e6xxx_vtu_getnext(struct dsa_switch *ds, u16 vid,
struct mv88e6xxx_vtu_stu_entry *entry)
{
struct mv88e6xxx_vtu_stu_entry next = { 0 };
int ret;
ret = _mv88e6xxx_vtu_wait(ds);
if (ret < 0)
return ret;
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID,
vid & GLOBAL_VTU_VID_MASK);
if (ret < 0)
return ret;
ret = _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_VTU_GET_NEXT);
if (ret < 0)
return ret;
ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_VID);
if (ret < 0)
return ret;
next.vid = ret & GLOBAL_VTU_VID_MASK;
next.valid = !!(ret & GLOBAL_VTU_VID_VALID);
if (next.valid) {
ret = _mv88e6xxx_vtu_stu_data_read(ds, &next, 0);
if (ret < 0)
return ret;
if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) ||
mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds)) {
ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
GLOBAL_VTU_FID);
if (ret < 0)
return ret;
next.fid = ret & GLOBAL_VTU_FID_MASK;
ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
GLOBAL_VTU_SID);
if (ret < 0)
return ret;
next.sid = ret & GLOBAL_VTU_SID_MASK;
}
}
*entry = next;
return 0;
}
static int _mv88e6xxx_vtu_loadpurge(struct dsa_switch *ds,
struct mv88e6xxx_vtu_stu_entry *entry)
{
u16 reg = 0;
int ret;
ret = _mv88e6xxx_vtu_wait(ds);
if (ret < 0)
return ret;
if (!entry->valid)
goto loadpurge;
/* Write port member tags */
ret = _mv88e6xxx_vtu_stu_data_write(ds, entry, 0);
if (ret < 0)
return ret;
if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) ||
mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds)) {
reg = entry->sid & GLOBAL_VTU_SID_MASK;
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID, reg);
if (ret < 0)
return ret;
reg = entry->fid & GLOBAL_VTU_FID_MASK;
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_FID, reg);
if (ret < 0)
return ret;
}
reg = GLOBAL_VTU_VID_VALID;
loadpurge:
reg |= entry->vid & GLOBAL_VTU_VID_MASK;
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID, reg);
if (ret < 0)
return ret;
return _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_VTU_LOAD_PURGE);
}
static int _mv88e6xxx_stu_getnext(struct dsa_switch *ds, u8 sid,
struct mv88e6xxx_vtu_stu_entry *entry)
{
struct mv88e6xxx_vtu_stu_entry next = { 0 };
int ret;
ret = _mv88e6xxx_vtu_wait(ds);
if (ret < 0)
return ret;
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID,
sid & GLOBAL_VTU_SID_MASK);
if (ret < 0)
return ret;
ret = _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_STU_GET_NEXT);
if (ret < 0)
return ret;
ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_SID);
if (ret < 0)
return ret;
next.sid = ret & GLOBAL_VTU_SID_MASK;
ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_VID);
if (ret < 0)
return ret;
next.valid = !!(ret & GLOBAL_VTU_VID_VALID);
if (next.valid) {
ret = _mv88e6xxx_vtu_stu_data_read(ds, &next, 2);
if (ret < 0)
return ret;
}
*entry = next;
return 0;
}
static int _mv88e6xxx_stu_loadpurge(struct dsa_switch *ds,
struct mv88e6xxx_vtu_stu_entry *entry)
{
u16 reg = 0;
int ret;
ret = _mv88e6xxx_vtu_wait(ds);
if (ret < 0)
return ret;
if (!entry->valid)
goto loadpurge;
/* Write port states */
ret = _mv88e6xxx_vtu_stu_data_write(ds, entry, 2);
if (ret < 0)
return ret;
reg = GLOBAL_VTU_VID_VALID;
loadpurge:
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID, reg);
if (ret < 0)
return ret;
reg = entry->sid & GLOBAL_VTU_SID_MASK;
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID, reg);
if (ret < 0)
return ret;
return _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_STU_LOAD_PURGE);
}
static int _mv88e6xxx_vlan_init(struct dsa_switch *ds, u16 vid,
struct mv88e6xxx_vtu_stu_entry *entry)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
struct mv88e6xxx_vtu_stu_entry vlan = {
.valid = true,
.vid = vid,
};
int i;
/* exclude all ports except the CPU */
for (i = 0; i < ps->num_ports; ++i)
vlan.data[i] = dsa_is_cpu_port(ds, i) ?
GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED :
GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) ||
mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds)) {
struct mv88e6xxx_vtu_stu_entry vstp;
int err;
/* Adding a VTU entry requires a valid STU entry. As VSTP is not
* implemented, only one STU entry is needed to cover all VTU
* entries. Thus, validate the SID 0.
*/
vlan.sid = 0;
err = _mv88e6xxx_stu_getnext(ds, GLOBAL_VTU_SID_MASK, &vstp);
if (err)
return err;
if (vstp.sid != vlan.sid || !vstp.valid) {
memset(&vstp, 0, sizeof(vstp));
vstp.valid = true;
vstp.sid = vlan.sid;
err = _mv88e6xxx_stu_loadpurge(ds, &vstp);
if (err)
return err;
}
/* Non-bridged ports and bridge groups use FIDs from 1 to
* num_ports; VLANs use FIDs from num_ports+1 to 4095.
*/
vlan.fid = find_next_zero_bit(ps->fid_bitmap, VLAN_N_VID,
ps->num_ports + 1);
if (unlikely(vlan.fid == VLAN_N_VID)) {
pr_err("no more FID available for VLAN %d\n", vid);
return -ENOSPC;
}
err = _mv88e6xxx_flush_fid(ds, vlan.fid);
if (err)
return err;
set_bit(vlan.fid, ps->fid_bitmap);
}
*entry = vlan;
return 0;
}
int mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port, u16 vid,
bool untagged)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
struct mv88e6xxx_vtu_stu_entry vlan;
int err;
mutex_lock(&ps->smi_mutex);
err = _mv88e6xxx_vtu_getnext(ds, vid - 1, &vlan);
if (err)
goto unlock;
if (vlan.vid != vid || !vlan.valid) {
err = _mv88e6xxx_vlan_init(ds, vid, &vlan);
if (err)
goto unlock;
}
vlan.data[port] = untagged ?
GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED :
GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED;
err = _mv88e6xxx_vtu_loadpurge(ds, &vlan);
unlock:
mutex_unlock(&ps->smi_mutex);
return err;
}
int mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port, u16 vid)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
struct mv88e6xxx_vtu_stu_entry vlan;
bool keep = false;
int i, err;
mutex_lock(&ps->smi_mutex);
err = _mv88e6xxx_vtu_getnext(ds, vid - 1, &vlan);
if (err)
goto unlock;
if (vlan.vid != vid || !vlan.valid ||
vlan.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) {
err = -ENOENT;
goto unlock;
}
vlan.data[port] = GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
/* keep the VLAN unless all ports are excluded */
for (i = 0; i < ps->num_ports; ++i) {
if (dsa_is_cpu_port(ds, i))
continue;
if (vlan.data[i] != GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) {
keep = true;
break;
}
}
vlan.valid = keep;
err = _mv88e6xxx_vtu_loadpurge(ds, &vlan);
if (err)
goto unlock;
if (!keep)
clear_bit(vlan.fid, ps->fid_bitmap);
unlock:
mutex_unlock(&ps->smi_mutex);
return err;
}
static int _mv88e6xxx_port_vtu_getnext(struct dsa_switch *ds, int port, u16 vid,
struct mv88e6xxx_vtu_stu_entry *entry)
{
int err;
do {
if (vid == 4095)
return -ENOENT;
err = _mv88e6xxx_vtu_getnext(ds, vid, entry);
if (err)
return err;
if (!entry->valid)
return -ENOENT;
vid = entry->vid;
} while (entry->data[port] != GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED &&
entry->data[port] != GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED);
return 0;
}
int mv88e6xxx_vlan_getnext(struct dsa_switch *ds, u16 *vid,
unsigned long *ports, unsigned long *untagged)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
struct mv88e6xxx_vtu_stu_entry next;
int port;
int err;
if (*vid == 4095)
return -ENOENT;
mutex_lock(&ps->smi_mutex);
err = _mv88e6xxx_vtu_getnext(ds, *vid, &next);
mutex_unlock(&ps->smi_mutex);
if (err)
return err;
if (!next.valid)
return -ENOENT;
*vid = next.vid;
for (port = 0; port < ps->num_ports; ++port) {
clear_bit(port, ports);
clear_bit(port, untagged);
if (dsa_is_cpu_port(ds, port))
continue;
if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED ||
next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED)
set_bit(port, ports);
if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED)
set_bit(port, untagged);
}
return 0;
}
static int _mv88e6xxx_atu_mac_write(struct dsa_switch *ds,
const unsigned char *addr)
{
int i, ret;
for (i = 0; i < 3; i++) {
ret = _mv88e6xxx_reg_write(
ds, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i,
(addr[i * 2] << 8) | addr[i * 2 + 1]);
if (ret < 0)
return ret;
}
return 0;
}
static int _mv88e6xxx_atu_mac_read(struct dsa_switch *ds, unsigned char *addr)
{
int i, ret;
for (i = 0; i < 3; i++) {
ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
GLOBAL_ATU_MAC_01 + i);
if (ret < 0)
return ret;
addr[i * 2] = ret >> 8;
addr[i * 2 + 1] = ret & 0xff;
}
return 0;
}
static int _mv88e6xxx_atu_load(struct dsa_switch *ds,
struct mv88e6xxx_atu_entry *entry)
{
u16 reg = 0;
int ret;
ret = _mv88e6xxx_atu_wait(ds);
if (ret < 0)
return ret;
ret = _mv88e6xxx_atu_mac_write(ds, entry->mac);
if (ret < 0)
return ret;
if (entry->state != GLOBAL_ATU_DATA_STATE_UNUSED) {
unsigned int mask, shift;
if (entry->trunk) {
reg |= GLOBAL_ATU_DATA_TRUNK;
mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
} else {
mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
}
reg |= (entry->portv_trunkid << shift) & mask;
}
reg |= entry->state & GLOBAL_ATU_DATA_STATE_MASK;
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_DATA, reg);
if (ret < 0)
return ret;
return _mv88e6xxx_atu_cmd(ds, entry->fid, GLOBAL_ATU_OP_LOAD_DB);
}
static int _mv88e6xxx_port_vid_to_fid(struct dsa_switch *ds, int port, u16 vid)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
struct mv88e6xxx_vtu_stu_entry vlan;
int err;
if (vid == 0)
return ps->fid[port];
err = _mv88e6xxx_port_vtu_getnext(ds, port, vid - 1, &vlan);
if (err)
return err;
if (vlan.vid == vid)
return vlan.fid;
return -ENOENT;
}
static int _mv88e6xxx_port_fdb_load(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid,
u8 state)
{
struct mv88e6xxx_atu_entry entry = { 0 };
int ret;
ret = _mv88e6xxx_port_vid_to_fid(ds, port, vid);
if (ret < 0)
return ret;
entry.fid = ret;
entry.state = state;
ether_addr_copy(entry.mac, addr);
if (state != GLOBAL_ATU_DATA_STATE_UNUSED) {
entry.trunk = false;
entry.portv_trunkid = BIT(port);
}
return _mv88e6xxx_atu_load(ds, &entry);
}
int mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid)
{
int state = is_multicast_ether_addr(addr) ?
GLOBAL_ATU_DATA_STATE_MC_STATIC :
GLOBAL_ATU_DATA_STATE_UC_STATIC;
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int ret;
mutex_lock(&ps->smi_mutex);
ret = _mv88e6xxx_port_fdb_load(ds, port, addr, vid, state);
mutex_unlock(&ps->smi_mutex);
return ret;
}
int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int ret;
mutex_lock(&ps->smi_mutex);
ret = _mv88e6xxx_port_fdb_load(ds, port, addr, vid,
GLOBAL_ATU_DATA_STATE_UNUSED);
mutex_unlock(&ps->smi_mutex);
return ret;
}
static int _mv88e6xxx_atu_getnext(struct dsa_switch *ds, u16 fid,
const unsigned char *addr,
struct mv88e6xxx_atu_entry *entry)
{
struct mv88e6xxx_atu_entry next = { 0 };
int ret;
next.fid = fid;
ret = _mv88e6xxx_atu_wait(ds);
if (ret < 0)
return ret;
ret = _mv88e6xxx_atu_mac_write(ds, addr);
if (ret < 0)
return ret;
ret = _mv88e6xxx_atu_cmd(ds, fid, GLOBAL_ATU_OP_GET_NEXT_DB);
if (ret < 0)
return ret;
ret = _mv88e6xxx_atu_mac_read(ds, next.mac);
if (ret < 0)
return ret;
ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_ATU_DATA);
if (ret < 0)
return ret;
next.state = ret & GLOBAL_ATU_DATA_STATE_MASK;
if (next.state != GLOBAL_ATU_DATA_STATE_UNUSED) {
unsigned int mask, shift;
if (ret & GLOBAL_ATU_DATA_TRUNK) {
next.trunk = true;
mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
} else {
next.trunk = false;
mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
}
next.portv_trunkid = (ret & mask) >> shift;
}
*entry = next;
return 0;
}
/* get next entry for port */
int mv88e6xxx_port_fdb_getnext(struct dsa_switch *ds, int port,
unsigned char *addr, u16 *vid, bool *is_static)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
struct mv88e6xxx_atu_entry next;
u16 fid;
int ret;
mutex_lock(&ps->smi_mutex);
ret = _mv88e6xxx_port_vid_to_fid(ds, port, *vid);
if (ret < 0)
goto unlock;
fid = ret;
do {
if (is_broadcast_ether_addr(addr)) {
struct mv88e6xxx_vtu_stu_entry vtu;
ret = _mv88e6xxx_port_vtu_getnext(ds, port, *vid, &vtu);
if (ret < 0)
goto unlock;
*vid = vtu.vid;
fid = vtu.fid;
}
ret = _mv88e6xxx_atu_getnext(ds, fid, addr, &next);
if (ret < 0)
goto unlock;
ether_addr_copy(addr, next.mac);
if (next.state == GLOBAL_ATU_DATA_STATE_UNUSED)
continue;
} while (next.trunk || (next.portv_trunkid & BIT(port)) == 0);
*is_static = next.state == (is_multicast_ether_addr(addr) ?
GLOBAL_ATU_DATA_STATE_MC_STATIC :
GLOBAL_ATU_DATA_STATE_UC_STATIC);
unlock:
mutex_unlock(&ps->smi_mutex);
return ret;
}
static void mv88e6xxx_bridge_work(struct work_struct *work)
{
struct mv88e6xxx_priv_state *ps;
struct dsa_switch *ds;
int port;
ps = container_of(work, struct mv88e6xxx_priv_state, bridge_work);
ds = ((struct dsa_switch *)ps) - 1;
while (ps->port_state_update_mask) {
port = __ffs(ps->port_state_update_mask);
clear_bit(port, &ps->port_state_update_mask);
mv88e6xxx_set_port_state(ds, port, ps->port_state[port]);
}
}
static int mv88e6xxx_setup_port(struct dsa_switch *ds, int port)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int ret, fid;
u16 reg;
mutex_lock(&ps->smi_mutex);
if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) ||
mv88e6xxx_6065_family(ds) || mv88e6xxx_6320_family(ds)) {
/* MAC Forcing register: don't force link, speed,
* duplex or flow control state to any particular
* values on physical ports, but force the CPU port
* and all DSA ports to their maximum bandwidth and
* full duplex.
*/
reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_PCS_CTRL);
if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
reg &= ~PORT_PCS_CTRL_UNFORCED;
reg |= PORT_PCS_CTRL_FORCE_LINK |
PORT_PCS_CTRL_LINK_UP |
PORT_PCS_CTRL_DUPLEX_FULL |
PORT_PCS_CTRL_FORCE_DUPLEX;
if (mv88e6xxx_6065_family(ds))
reg |= PORT_PCS_CTRL_100;
else
reg |= PORT_PCS_CTRL_1000;
} else {
reg |= PORT_PCS_CTRL_UNFORCED;
}
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
PORT_PCS_CTRL, reg);
if (ret)
goto abort;
}
/* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock,
* disable Header mode, enable IGMP/MLD snooping, disable VLAN
* tunneling, determine priority by looking at 802.1p and IP
* priority fields (IP prio has precedence), and set STP state
* to Forwarding.
*
* If this is the CPU link, use DSA or EDSA tagging depending
* on which tagging mode was configured.
*
* If this is a link to another switch, use DSA tagging mode.
*
* If this is the upstream port for this switch, enable
* forwarding of unknown unicasts and multicasts.
*/
reg = 0;
if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds) ||
mv88e6xxx_6185_family(ds) || mv88e6xxx_6320_family(ds))
reg = PORT_CONTROL_IGMP_MLD_SNOOP |
PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP |
PORT_CONTROL_STATE_FORWARDING;
if (dsa_is_cpu_port(ds, port)) {
if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds))
reg |= PORT_CONTROL_DSA_TAG;
if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
mv88e6xxx_6320_family(ds)) {
if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA)
reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA;
else
reg |= PORT_CONTROL_FRAME_MODE_DSA;
}
if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds) ||
mv88e6xxx_6185_family(ds) || mv88e6xxx_6320_family(ds)) {
if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA)
reg |= PORT_CONTROL_EGRESS_ADD_TAG;
}
}
if (dsa_is_dsa_port(ds, port)) {
if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds))
reg |= PORT_CONTROL_DSA_TAG;
if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
mv88e6xxx_6320_family(ds)) {
reg |= PORT_CONTROL_FRAME_MODE_DSA;
}
if (port == dsa_upstream_port(ds))
reg |= PORT_CONTROL_FORWARD_UNKNOWN |
PORT_CONTROL_FORWARD_UNKNOWN_MC;
}
if (reg) {
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
PORT_CONTROL, reg);
if (ret)
goto abort;
}
/* Port Control 2: don't force a good FCS, set the maximum frame size to
* 10240 bytes, enable secure 802.1q tags, don't discard tagged or
* untagged frames on this port, do a destination address lookup on all
* received packets as usual, disable ARP mirroring and don't send a
* copy of all transmitted/received frames on this port to the CPU.
*/
reg = 0;
if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
mv88e6xxx_6095_family(ds) || mv88e6xxx_6320_family(ds))
reg = PORT_CONTROL_2_MAP_DA;
if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
mv88e6xxx_6165_family(ds) || mv88e6xxx_6320_family(ds))
reg |= PORT_CONTROL_2_JUMBO_10240;
if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds)) {
/* Set the upstream port this port should use */
reg |= dsa_upstream_port(ds);
/* enable forwarding of unknown multicast addresses to
* the upstream port
*/
if (port == dsa_upstream_port(ds))
reg |= PORT_CONTROL_2_FORWARD_UNKNOWN;
}
reg |= PORT_CONTROL_2_8021Q_FALLBACK;
if (reg) {
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
PORT_CONTROL_2, reg);
if (ret)
goto abort;
}
/* Port Association Vector: when learning source addresses
* of packets, add the address to the address database using
* a port bitmap that has only the bit for this port set and
* the other bits clear.
*/
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_ASSOC_VECTOR,
1 << port);
if (ret)
goto abort;
/* Egress rate control 2: disable egress rate control. */
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_RATE_CONTROL_2,
0x0000);
if (ret)
goto abort;
if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
mv88e6xxx_6320_family(ds)) {
/* Do not limit the period of time that this port can
* be paused for by the remote end or the period of
* time that this port can pause the remote end.
*/
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
PORT_PAUSE_CTRL, 0x0000);
if (ret)
goto abort;
/* Port ATU control: disable limiting the number of
* address database entries that this port is allowed
* to use.
*/
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
PORT_ATU_CONTROL, 0x0000);
/* Priority Override: disable DA, SA and VTU priority
* override.
*/
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
PORT_PRI_OVERRIDE, 0x0000);
if (ret)
goto abort;
/* Port Ethertype: use the Ethertype DSA Ethertype
* value.
*/
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
PORT_ETH_TYPE, ETH_P_EDSA);
if (ret)
goto abort;
/* Tag Remap: use an identity 802.1p prio -> switch
* prio mapping.
*/
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
PORT_TAG_REGMAP_0123, 0x3210);
if (ret)
goto abort;
/* Tag Remap 2: use an identity 802.1p prio -> switch
* prio mapping.
*/
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
PORT_TAG_REGMAP_4567, 0x7654);
if (ret)
goto abort;
}
if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) ||
mv88e6xxx_6320_family(ds)) {
/* Rate Control: disable ingress rate limiting. */
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
PORT_RATE_CONTROL, 0x0001);
if (ret)
goto abort;
}
/* Port Control 1: disable trunking, disable sending
* learning messages to this port.
*/
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL_1, 0x0000);
if (ret)
goto abort;
/* Port based VLAN map: give each port its own address
* database, allow the CPU port to talk to each of the 'real'
* ports, and allow each of the 'real' ports to only talk to
* the upstream port.
*/
fid = port + 1;
ps->fid[port] = fid;
set_bit(fid, ps->fid_bitmap);
if (!dsa_is_cpu_port(ds, port))
ps->bridge_mask[fid] = 1 << port;
ret = _mv88e6xxx_update_port_config(ds, port);
if (ret)
goto abort;
/* Default VLAN ID and priority: don't set a default VLAN
* ID, and set the default packet priority to zero.
*/
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_DEFAULT_VLAN,
0x0000);
abort:
mutex_unlock(&ps->smi_mutex);
return ret;
}
int mv88e6xxx_setup_ports(struct dsa_switch *ds)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int ret;
int i;
for (i = 0; i < ps->num_ports; i++) {
ret = mv88e6xxx_setup_port(ds, i);
if (ret < 0)
return ret;
}
return 0;
}
static int mv88e6xxx_regs_show(struct seq_file *s, void *p)
{
struct dsa_switch *ds = s->private;
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int reg, port;
seq_puts(s, " GLOBAL GLOBAL2 ");
for (port = 0 ; port < ps->num_ports; port++)
seq_printf(s, " %2d ", port);
seq_puts(s, "\n");
for (reg = 0; reg < 32; reg++) {
seq_printf(s, "%2x: ", reg);
seq_printf(s, " %4x %4x ",
mv88e6xxx_reg_read(ds, REG_GLOBAL, reg),
mv88e6xxx_reg_read(ds, REG_GLOBAL2, reg));
for (port = 0 ; port < ps->num_ports; port++)
seq_printf(s, "%4x ",
mv88e6xxx_reg_read(ds, REG_PORT(port), reg));
seq_puts(s, "\n");
}
return 0;
}
static int mv88e6xxx_regs_open(struct inode *inode, struct file *file)
{
return single_open(file, mv88e6xxx_regs_show, inode->i_private);
}
static const struct file_operations mv88e6xxx_regs_fops = {
.open = mv88e6xxx_regs_open,
.read = seq_read,
.llseek = no_llseek,
.release = single_release,
.owner = THIS_MODULE,
};
static void mv88e6xxx_atu_show_header(struct seq_file *s)
{
seq_puts(s, "DB T/P Vec State Addr\n");
}
static void mv88e6xxx_atu_show_entry(struct seq_file *s, int dbnum,
unsigned char *addr, int data)
{
bool trunk = !!(data & GLOBAL_ATU_DATA_TRUNK);
int portvec = ((data & GLOBAL_ATU_DATA_PORT_VECTOR_MASK) >>
GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT);
int state = data & GLOBAL_ATU_DATA_STATE_MASK;
seq_printf(s, "%03x %5s %10pb %x %pM\n",
dbnum, (trunk ? "Trunk" : "Port"), &portvec, state, addr);
}
static int mv88e6xxx_atu_show_db(struct seq_file *s, struct dsa_switch *ds,
int dbnum)
{
unsigned char bcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
unsigned char addr[6];
int ret, data, state;
ret = _mv88e6xxx_atu_mac_write(ds, bcast);
if (ret < 0)
return ret;
do {
ret = _mv88e6xxx_atu_cmd(ds, dbnum, GLOBAL_ATU_OP_GET_NEXT_DB);
if (ret < 0)
return ret;
data = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_ATU_DATA);
if (data < 0)
return data;
state = data & GLOBAL_ATU_DATA_STATE_MASK;
if (state == GLOBAL_ATU_DATA_STATE_UNUSED)
break;
ret = _mv88e6xxx_atu_mac_read(ds, addr);
if (ret < 0)
return ret;
mv88e6xxx_atu_show_entry(s, dbnum, addr, data);
} while (state != GLOBAL_ATU_DATA_STATE_UNUSED);
return 0;
}
static int mv88e6xxx_atu_show(struct seq_file *s, void *p)
{
struct dsa_switch *ds = s->private;
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int dbnum;
mv88e6xxx_atu_show_header(s);
for (dbnum = 0; dbnum < 255; dbnum++) {
mutex_lock(&ps->smi_mutex);
mv88e6xxx_atu_show_db(s, ds, dbnum);
mutex_unlock(&ps->smi_mutex);
}
return 0;
}
static int mv88e6xxx_atu_open(struct inode *inode, struct file *file)
{
return single_open(file, mv88e6xxx_atu_show, inode->i_private);
}
static const struct file_operations mv88e6xxx_atu_fops = {
.open = mv88e6xxx_atu_open,
.read = seq_read,
.llseek = no_llseek,
.release = single_release,
.owner = THIS_MODULE,
};
static void mv88e6xxx_stats_show_header(struct seq_file *s,
struct mv88e6xxx_priv_state *ps)
{
int port;
seq_puts(s, " Statistic ");
for (port = 0 ; port < ps->num_ports; port++)
seq_printf(s, "Port %2d ", port);
seq_puts(s, "\n");
}
static int mv88e6xxx_stats_show(struct seq_file *s, void *p)
{
struct dsa_switch *ds = s->private;
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
struct mv88e6xxx_hw_stat *stats = mv88e6xxx_hw_stats;
int port, stat, max_stats;
uint64_t value;
if (have_sw_in_discards(ds))
max_stats = ARRAY_SIZE(mv88e6xxx_hw_stats);
else
max_stats = ARRAY_SIZE(mv88e6xxx_hw_stats) - 3;
mv88e6xxx_stats_show_header(s, ps);
mutex_lock(&ps->smi_mutex);
for (stat = 0; stat < max_stats; stat++) {
seq_printf(s, "%19s: ", stats[stat].string);
for (port = 0 ; port < ps->num_ports; port++) {
_mv88e6xxx_stats_snapshot(ds, port);
value = _mv88e6xxx_get_ethtool_stat(ds, stat, stats,
port);
seq_printf(s, "%8llu ", value);
}
seq_puts(s, "\n");
}
mutex_unlock(&ps->smi_mutex);
return 0;
}
static int mv88e6xxx_stats_open(struct inode *inode, struct file *file)
{
return single_open(file, mv88e6xxx_stats_show, inode->i_private);
}
static const struct file_operations mv88e6xxx_stats_fops = {
.open = mv88e6xxx_stats_open,
.read = seq_read,
.llseek = no_llseek,
.release = single_release,
.owner = THIS_MODULE,
};
static int mv88e6xxx_device_map_show(struct seq_file *s, void *p)
{
struct dsa_switch *ds = s->private;
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int target, ret;
seq_puts(s, "Target Port\n");
mutex_lock(&ps->smi_mutex);
for (target = 0; target < 32; target++) {
ret = _mv88e6xxx_reg_write(
ds, REG_GLOBAL2, GLOBAL2_DEVICE_MAPPING,
target << GLOBAL2_DEVICE_MAPPING_TARGET_SHIFT);
if (ret < 0)
goto out;
ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL2,
GLOBAL2_DEVICE_MAPPING);
seq_printf(s, " %2d %2d\n", target,
ret & GLOBAL2_DEVICE_MAPPING_PORT_MASK);
}
out:
mutex_unlock(&ps->smi_mutex);
return 0;
}
static int mv88e6xxx_device_map_open(struct inode *inode, struct file *file)
{
return single_open(file, mv88e6xxx_device_map_show, inode->i_private);
}
static const struct file_operations mv88e6xxx_device_map_fops = {
.open = mv88e6xxx_device_map_open,
.read = seq_read,
.llseek = no_llseek,
.release = single_release,
.owner = THIS_MODULE,
};
static int mv88e6xxx_scratch_show(struct seq_file *s, void *p)
{
struct dsa_switch *ds = s->private;
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int reg, ret;
seq_puts(s, "Register Value\n");
mutex_lock(&ps->smi_mutex);
for (reg = 0; reg < 0x80; reg++) {
ret = _mv88e6xxx_reg_write(
ds, REG_GLOBAL2, GLOBAL2_SCRATCH_MISC,
reg << GLOBAL2_SCRATCH_REGISTER_SHIFT);
if (ret < 0)
goto out;
ret = _mv88e6xxx_scratch_wait(ds);
if (ret < 0)
goto out;
ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL2,
GLOBAL2_SCRATCH_MISC);
seq_printf(s, " %2x %2x\n", reg,
ret & GLOBAL2_SCRATCH_VALUE_MASK);
}
out:
mutex_unlock(&ps->smi_mutex);
return 0;
}
static int mv88e6xxx_scratch_open(struct inode *inode, struct file *file)
{
return single_open(file, mv88e6xxx_scratch_show, inode->i_private);
}
static const struct file_operations mv88e6xxx_scratch_fops = {
.open = mv88e6xxx_scratch_open,
.read = seq_read,
.llseek = no_llseek,
.release = single_release,
.owner = THIS_MODULE,
};
int mv88e6xxx_setup_common(struct dsa_switch *ds)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
char *name;
mutex_init(&ps->smi_mutex);
ps->id = REG_READ(REG_PORT(0), PORT_SWITCH_ID) & 0xfff0;
INIT_WORK(&ps->bridge_work, mv88e6xxx_bridge_work);
name = kasprintf(GFP_KERNEL, "dsa%d", ds->index);
ps->dbgfs = debugfs_create_dir(name, NULL);
kfree(name);
debugfs_create_file("regs", S_IRUGO, ps->dbgfs, ds,
&mv88e6xxx_regs_fops);
debugfs_create_file("atu", S_IRUGO, ps->dbgfs, ds,
&mv88e6xxx_atu_fops);
debugfs_create_file("stats", S_IRUGO, ps->dbgfs, ds,
&mv88e6xxx_stats_fops);
debugfs_create_file("device_map", S_IRUGO, ps->dbgfs, ds,
&mv88e6xxx_device_map_fops);
debugfs_create_file("scratch", S_IRUGO, ps->dbgfs, ds,
&mv88e6xxx_scratch_fops);
return 0;
}
int mv88e6xxx_setup_global(struct dsa_switch *ds)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int ret;
int i;
/* Set the default address aging time to 5 minutes, and
* enable address learn messages to be sent to all message
* ports.
*/
REG_WRITE(REG_GLOBAL, GLOBAL_ATU_CONTROL,
0x0140 | GLOBAL_ATU_CONTROL_LEARN2ALL);
/* Configure the IP ToS mapping registers. */
REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_0, 0x0000);
REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_1, 0x0000);
REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_2, 0x5555);
REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_3, 0x5555);
REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_4, 0xaaaa);
REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_5, 0xaaaa);
REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_6, 0xffff);
REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_7, 0xffff);
/* Configure the IEEE 802.1p priority mapping register. */
REG_WRITE(REG_GLOBAL, GLOBAL_IEEE_PRI, 0xfa41);
/* Send all frames with destination addresses matching
* 01:80:c2:00:00:0x to the CPU port.
*/
REG_WRITE(REG_GLOBAL2, GLOBAL2_MGMT_EN_0X, 0xffff);
/* Ignore removed tag data on doubly tagged packets, disable
* flow control messages, force flow control priority to the
* highest, and send all special multicast frames to the CPU
* port at the highest priority.
*/
REG_WRITE(REG_GLOBAL2, GLOBAL2_SWITCH_MGMT,
0x7 | GLOBAL2_SWITCH_MGMT_RSVD2CPU | 0x70 |
GLOBAL2_SWITCH_MGMT_FORCE_FLOW_CTRL_PRI);
/* Program the DSA routing table. */
for (i = 0; i < 32; i++) {
int nexthop = 0x1f;
if (ds->pd->rtable &&
i != ds->index && i < ds->dst->pd->nr_chips)
nexthop = ds->pd->rtable[i] & 0x1f;
REG_WRITE(REG_GLOBAL2, GLOBAL2_DEVICE_MAPPING,
GLOBAL2_DEVICE_MAPPING_UPDATE |
(i << GLOBAL2_DEVICE_MAPPING_TARGET_SHIFT) |
nexthop);
}
/* Clear all trunk masks. */
for (i = 0; i < 8; i++)
REG_WRITE(REG_GLOBAL2, GLOBAL2_TRUNK_MASK,
0x8000 | (i << GLOBAL2_TRUNK_MASK_NUM_SHIFT) |
((1 << ps->num_ports) - 1));
/* Clear all trunk mappings. */
for (i = 0; i < 16; i++)
REG_WRITE(REG_GLOBAL2, GLOBAL2_TRUNK_MAPPING,
GLOBAL2_TRUNK_MAPPING_UPDATE |
(i << GLOBAL2_TRUNK_MAPPING_ID_SHIFT));
if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
mv88e6xxx_6320_family(ds)) {
/* Send all frames with destination addresses matching
* 01:80:c2:00:00:2x to the CPU port.
*/
REG_WRITE(REG_GLOBAL2, GLOBAL2_MGMT_EN_2X, 0xffff);
/* Initialise cross-chip port VLAN table to reset
* defaults.
*/
REG_WRITE(REG_GLOBAL2, GLOBAL2_PVT_ADDR, 0x9000);
/* Clear the priority override table. */
for (i = 0; i < 16; i++)
REG_WRITE(REG_GLOBAL2, GLOBAL2_PRIO_OVERRIDE,
0x8000 | (i << 8));
}
if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) ||
mv88e6xxx_6320_family(ds)) {
/* Disable ingress rate limiting by resetting all
* ingress rate limit registers to their initial
* state.
*/
for (i = 0; i < ps->num_ports; i++)
REG_WRITE(REG_GLOBAL2, GLOBAL2_INGRESS_OP,
0x9000 | (i << 8));
}
/* Clear the statistics counters for all ports */
REG_WRITE(REG_GLOBAL, GLOBAL_STATS_OP, GLOBAL_STATS_OP_FLUSH_ALL);
/* Wait for the flush to complete. */
mutex_lock(&ps->smi_mutex);
ret = _mv88e6xxx_stats_wait(ds);
if (ret < 0)
goto unlock;
/* Clear all the VTU and STU entries */
ret = _mv88e6xxx_vtu_stu_flush(ds);
unlock:
mutex_unlock(&ps->smi_mutex);
return ret;
}
int mv88e6xxx_switch_reset(struct dsa_switch *ds, bool ppu_active)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
u16 is_reset = (ppu_active ? 0x8800 : 0xc800);
unsigned long timeout;
int ret;
int i;
/* Set all ports to the disabled state. */
for (i = 0; i < ps->num_ports; i++) {
ret = REG_READ(REG_PORT(i), PORT_CONTROL);
REG_WRITE(REG_PORT(i), PORT_CONTROL, ret & 0xfffc);
}
/* Wait for transmit queues to drain. */
usleep_range(2000, 4000);
/* Reset the switch. Keep the PPU active if requested. The PPU
* needs to be active to support indirect phy register access
* through global registers 0x18 and 0x19.
*/
if (ppu_active)
REG_WRITE(REG_GLOBAL, 0x04, 0xc000);
else
REG_WRITE(REG_GLOBAL, 0x04, 0xc400);
/* Wait up to one second for reset to complete. */
timeout = jiffies + 1 * HZ;
while (time_before(jiffies, timeout)) {
ret = REG_READ(REG_GLOBAL, 0x00);
if ((ret & is_reset) == is_reset)
break;
usleep_range(1000, 2000);
}
if (time_after(jiffies, timeout))
return -ETIMEDOUT;
return 0;
}
int mv88e6xxx_phy_page_read(struct dsa_switch *ds, int port, int page, int reg)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int ret;
mutex_lock(&ps->smi_mutex);
ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page);
if (ret < 0)
goto error;
ret = _mv88e6xxx_phy_read_indirect(ds, port, reg);
error:
_mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0);
mutex_unlock(&ps->smi_mutex);
return ret;
}
int mv88e6xxx_phy_page_write(struct dsa_switch *ds, int port, int page,
int reg, int val)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int ret;
mutex_lock(&ps->smi_mutex);
ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page);
if (ret < 0)
goto error;
ret = _mv88e6xxx_phy_write_indirect(ds, port, reg, val);
error:
_mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0);
mutex_unlock(&ps->smi_mutex);
return ret;
}
static int mv88e6xxx_port_to_phy_addr(struct dsa_switch *ds, int port)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
if (port >= 0 && port < ps->num_ports)
return port;
return -EINVAL;
}
int
mv88e6xxx_phy_read(struct dsa_switch *ds, int port, int regnum)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int addr = mv88e6xxx_port_to_phy_addr(ds, port);
int ret;
if (addr < 0)
return addr;
mutex_lock(&ps->smi_mutex);
ret = _mv88e6xxx_phy_read(ds, addr, regnum);
mutex_unlock(&ps->smi_mutex);
return ret;
}
int
mv88e6xxx_phy_write(struct dsa_switch *ds, int port, int regnum, u16 val)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int addr = mv88e6xxx_port_to_phy_addr(ds, port);
int ret;
if (addr < 0)
return addr;
mutex_lock(&ps->smi_mutex);
ret = _mv88e6xxx_phy_write(ds, addr, regnum, val);
mutex_unlock(&ps->smi_mutex);
return ret;
}
int
mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int port, int regnum)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int addr = mv88e6xxx_port_to_phy_addr(ds, port);
int ret;
if (addr < 0)
return addr;
mutex_lock(&ps->smi_mutex);
ret = _mv88e6xxx_phy_read_indirect(ds, addr, regnum);
mutex_unlock(&ps->smi_mutex);
return ret;
}
int
mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int port, int regnum,
u16 val)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int addr = mv88e6xxx_port_to_phy_addr(ds, port);
int ret;
if (addr < 0)
return addr;
mutex_lock(&ps->smi_mutex);
ret = _mv88e6xxx_phy_write_indirect(ds, addr, regnum, val);
mutex_unlock(&ps->smi_mutex);
return ret;
}
#ifdef CONFIG_NET_DSA_HWMON
static int mv88e61xx_get_temp(struct dsa_switch *ds, int *temp)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int ret;
int val;
*temp = 0;
mutex_lock(&ps->smi_mutex);
ret = _mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x6);
if (ret < 0)
goto error;
/* Enable temperature sensor */
ret = _mv88e6xxx_phy_read(ds, 0x0, 0x1a);
if (ret < 0)
goto error;
ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret | (1 << 5));
if (ret < 0)
goto error;
/* Wait for temperature to stabilize */
usleep_range(10000, 12000);
val = _mv88e6xxx_phy_read(ds, 0x0, 0x1a);
if (val < 0) {
ret = val;
goto error;
}
/* Disable temperature sensor */
ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret & ~(1 << 5));
if (ret < 0)
goto error;
*temp = ((val & 0x1f) - 5) * 5;
error:
_mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x0);
mutex_unlock(&ps->smi_mutex);
return ret;
}
static int mv88e63xx_get_temp(struct dsa_switch *ds, int *temp)
{
int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
int ret;
*temp = 0;
ret = mv88e6xxx_phy_page_read(ds, phy, 6, 27);
if (ret < 0)
return ret;
*temp = (ret & 0xff) - 25;
return 0;
}
int mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp)
{
if (mv88e6xxx_6320_family(ds) || mv88e6xxx_6352_family(ds))
return mv88e63xx_get_temp(ds, temp);
return mv88e61xx_get_temp(ds, temp);
}
int mv88e6xxx_get_temp_limit(struct dsa_switch *ds, int *temp)
{
int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
int ret;
if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds))
return -EOPNOTSUPP;
*temp = 0;
ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26);
if (ret < 0)
return ret;
*temp = (((ret >> 8) & 0x1f) * 5) - 25;
return 0;
}
int mv88e6xxx_set_temp_limit(struct dsa_switch *ds, int temp)
{
int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
int ret;
if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds))
return -EOPNOTSUPP;
ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26);
if (ret < 0)
return ret;
temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f);
return mv88e6xxx_phy_page_write(ds, phy, 6, 26,
(ret & 0xe0ff) | (temp << 8));
}
int mv88e6xxx_get_temp_alarm(struct dsa_switch *ds, bool *alarm)
{
int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
int ret;
if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds))
return -EOPNOTSUPP;
*alarm = false;
ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26);
if (ret < 0)
return ret;
*alarm = !!(ret & 0x40);
return 0;
}
#endif /* CONFIG_NET_DSA_HWMON */
static int __init mv88e6xxx_init(void)
{
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
register_switch_driver(&mv88e6131_switch_driver);
#endif
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65)
register_switch_driver(&mv88e6123_61_65_switch_driver);
#endif
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6352)
register_switch_driver(&mv88e6352_switch_driver);
#endif
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
register_switch_driver(&mv88e6171_switch_driver);
#endif
return 0;
}
module_init(mv88e6xxx_init);
static void __exit mv88e6xxx_cleanup(void)
{
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
unregister_switch_driver(&mv88e6171_switch_driver);
#endif
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6352)
unregister_switch_driver(&mv88e6352_switch_driver);
#endif
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65)
unregister_switch_driver(&mv88e6123_61_65_switch_driver);
#endif
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
unregister_switch_driver(&mv88e6131_switch_driver);
#endif
}
module_exit(mv88e6xxx_cleanup);
MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
MODULE_LICENSE("GPL");