2b5fe07a78
Since arm64 does not use a decompressor that supplies an execution environment where it is feasible to some extent to provide a source of randomness, the arm64 KASLR kernel depends on the bootloader to supply some random bits in the /chosen/kaslr-seed DT property upon kernel entry. On UEFI systems, we can use the EFI_RNG_PROTOCOL, if supplied, to obtain some random bits. At the same time, use it to randomize the offset of the kernel Image in physical memory. Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
354 lines
9.8 KiB
C
354 lines
9.8 KiB
C
/*
|
|
* FDT related Helper functions used by the EFI stub on multiple
|
|
* architectures. This should be #included by the EFI stub
|
|
* implementation files.
|
|
*
|
|
* Copyright 2013 Linaro Limited; author Roy Franz
|
|
*
|
|
* This file is part of the Linux kernel, and is made available
|
|
* under the terms of the GNU General Public License version 2.
|
|
*
|
|
*/
|
|
|
|
#include <linux/efi.h>
|
|
#include <linux/libfdt.h>
|
|
#include <asm/efi.h>
|
|
|
|
#include "efistub.h"
|
|
|
|
efi_status_t update_fdt(efi_system_table_t *sys_table, void *orig_fdt,
|
|
unsigned long orig_fdt_size,
|
|
void *fdt, int new_fdt_size, char *cmdline_ptr,
|
|
u64 initrd_addr, u64 initrd_size,
|
|
efi_memory_desc_t *memory_map,
|
|
unsigned long map_size, unsigned long desc_size,
|
|
u32 desc_ver)
|
|
{
|
|
int node, prev, num_rsv;
|
|
int status;
|
|
u32 fdt_val32;
|
|
u64 fdt_val64;
|
|
|
|
/* Do some checks on provided FDT, if it exists*/
|
|
if (orig_fdt) {
|
|
if (fdt_check_header(orig_fdt)) {
|
|
pr_efi_err(sys_table, "Device Tree header not valid!\n");
|
|
return EFI_LOAD_ERROR;
|
|
}
|
|
/*
|
|
* We don't get the size of the FDT if we get if from a
|
|
* configuration table.
|
|
*/
|
|
if (orig_fdt_size && fdt_totalsize(orig_fdt) > orig_fdt_size) {
|
|
pr_efi_err(sys_table, "Truncated device tree! foo!\n");
|
|
return EFI_LOAD_ERROR;
|
|
}
|
|
}
|
|
|
|
if (orig_fdt)
|
|
status = fdt_open_into(orig_fdt, fdt, new_fdt_size);
|
|
else
|
|
status = fdt_create_empty_tree(fdt, new_fdt_size);
|
|
|
|
if (status != 0)
|
|
goto fdt_set_fail;
|
|
|
|
/*
|
|
* Delete any memory nodes present. We must delete nodes which
|
|
* early_init_dt_scan_memory may try to use.
|
|
*/
|
|
prev = 0;
|
|
for (;;) {
|
|
const char *type;
|
|
int len;
|
|
|
|
node = fdt_next_node(fdt, prev, NULL);
|
|
if (node < 0)
|
|
break;
|
|
|
|
type = fdt_getprop(fdt, node, "device_type", &len);
|
|
if (type && strncmp(type, "memory", len) == 0) {
|
|
fdt_del_node(fdt, node);
|
|
continue;
|
|
}
|
|
|
|
prev = node;
|
|
}
|
|
|
|
/*
|
|
* Delete all memory reserve map entries. When booting via UEFI,
|
|
* kernel will use the UEFI memory map to find reserved regions.
|
|
*/
|
|
num_rsv = fdt_num_mem_rsv(fdt);
|
|
while (num_rsv-- > 0)
|
|
fdt_del_mem_rsv(fdt, num_rsv);
|
|
|
|
node = fdt_subnode_offset(fdt, 0, "chosen");
|
|
if (node < 0) {
|
|
node = fdt_add_subnode(fdt, 0, "chosen");
|
|
if (node < 0) {
|
|
status = node; /* node is error code when negative */
|
|
goto fdt_set_fail;
|
|
}
|
|
}
|
|
|
|
if ((cmdline_ptr != NULL) && (strlen(cmdline_ptr) > 0)) {
|
|
status = fdt_setprop(fdt, node, "bootargs", cmdline_ptr,
|
|
strlen(cmdline_ptr) + 1);
|
|
if (status)
|
|
goto fdt_set_fail;
|
|
}
|
|
|
|
/* Set initrd address/end in device tree, if present */
|
|
if (initrd_size != 0) {
|
|
u64 initrd_image_end;
|
|
u64 initrd_image_start = cpu_to_fdt64(initrd_addr);
|
|
|
|
status = fdt_setprop(fdt, node, "linux,initrd-start",
|
|
&initrd_image_start, sizeof(u64));
|
|
if (status)
|
|
goto fdt_set_fail;
|
|
initrd_image_end = cpu_to_fdt64(initrd_addr + initrd_size);
|
|
status = fdt_setprop(fdt, node, "linux,initrd-end",
|
|
&initrd_image_end, sizeof(u64));
|
|
if (status)
|
|
goto fdt_set_fail;
|
|
}
|
|
|
|
/* Add FDT entries for EFI runtime services in chosen node. */
|
|
node = fdt_subnode_offset(fdt, 0, "chosen");
|
|
fdt_val64 = cpu_to_fdt64((u64)(unsigned long)sys_table);
|
|
status = fdt_setprop(fdt, node, "linux,uefi-system-table",
|
|
&fdt_val64, sizeof(fdt_val64));
|
|
if (status)
|
|
goto fdt_set_fail;
|
|
|
|
fdt_val64 = cpu_to_fdt64((u64)(unsigned long)memory_map);
|
|
status = fdt_setprop(fdt, node, "linux,uefi-mmap-start",
|
|
&fdt_val64, sizeof(fdt_val64));
|
|
if (status)
|
|
goto fdt_set_fail;
|
|
|
|
fdt_val32 = cpu_to_fdt32(map_size);
|
|
status = fdt_setprop(fdt, node, "linux,uefi-mmap-size",
|
|
&fdt_val32, sizeof(fdt_val32));
|
|
if (status)
|
|
goto fdt_set_fail;
|
|
|
|
fdt_val32 = cpu_to_fdt32(desc_size);
|
|
status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-size",
|
|
&fdt_val32, sizeof(fdt_val32));
|
|
if (status)
|
|
goto fdt_set_fail;
|
|
|
|
fdt_val32 = cpu_to_fdt32(desc_ver);
|
|
status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-ver",
|
|
&fdt_val32, sizeof(fdt_val32));
|
|
if (status)
|
|
goto fdt_set_fail;
|
|
|
|
if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
|
|
efi_status_t efi_status;
|
|
|
|
efi_status = efi_get_random_bytes(sys_table, sizeof(fdt_val64),
|
|
(u8 *)&fdt_val64);
|
|
if (efi_status == EFI_SUCCESS) {
|
|
status = fdt_setprop(fdt, node, "kaslr-seed",
|
|
&fdt_val64, sizeof(fdt_val64));
|
|
if (status)
|
|
goto fdt_set_fail;
|
|
} else if (efi_status != EFI_NOT_FOUND) {
|
|
return efi_status;
|
|
}
|
|
}
|
|
return EFI_SUCCESS;
|
|
|
|
fdt_set_fail:
|
|
if (status == -FDT_ERR_NOSPACE)
|
|
return EFI_BUFFER_TOO_SMALL;
|
|
|
|
return EFI_LOAD_ERROR;
|
|
}
|
|
|
|
#ifndef EFI_FDT_ALIGN
|
|
#define EFI_FDT_ALIGN EFI_PAGE_SIZE
|
|
#endif
|
|
|
|
/*
|
|
* Allocate memory for a new FDT, then add EFI, commandline, and
|
|
* initrd related fields to the FDT. This routine increases the
|
|
* FDT allocation size until the allocated memory is large
|
|
* enough. EFI allocations are in EFI_PAGE_SIZE granules,
|
|
* which are fixed at 4K bytes, so in most cases the first
|
|
* allocation should succeed.
|
|
* EFI boot services are exited at the end of this function.
|
|
* There must be no allocations between the get_memory_map()
|
|
* call and the exit_boot_services() call, so the exiting of
|
|
* boot services is very tightly tied to the creation of the FDT
|
|
* with the final memory map in it.
|
|
*/
|
|
|
|
efi_status_t allocate_new_fdt_and_exit_boot(efi_system_table_t *sys_table,
|
|
void *handle,
|
|
unsigned long *new_fdt_addr,
|
|
unsigned long max_addr,
|
|
u64 initrd_addr, u64 initrd_size,
|
|
char *cmdline_ptr,
|
|
unsigned long fdt_addr,
|
|
unsigned long fdt_size)
|
|
{
|
|
unsigned long map_size, desc_size;
|
|
u32 desc_ver;
|
|
unsigned long mmap_key;
|
|
efi_memory_desc_t *memory_map, *runtime_map;
|
|
unsigned long new_fdt_size;
|
|
efi_status_t status;
|
|
int runtime_entry_count = 0;
|
|
|
|
/*
|
|
* Get a copy of the current memory map that we will use to prepare
|
|
* the input for SetVirtualAddressMap(). We don't have to worry about
|
|
* subsequent allocations adding entries, since they could not affect
|
|
* the number of EFI_MEMORY_RUNTIME regions.
|
|
*/
|
|
status = efi_get_memory_map(sys_table, &runtime_map, &map_size,
|
|
&desc_size, &desc_ver, &mmap_key);
|
|
if (status != EFI_SUCCESS) {
|
|
pr_efi_err(sys_table, "Unable to retrieve UEFI memory map.\n");
|
|
return status;
|
|
}
|
|
|
|
pr_efi(sys_table,
|
|
"Exiting boot services and installing virtual address map...\n");
|
|
|
|
/*
|
|
* Estimate size of new FDT, and allocate memory for it. We
|
|
* will allocate a bigger buffer if this ends up being too
|
|
* small, so a rough guess is OK here.
|
|
*/
|
|
new_fdt_size = fdt_size + EFI_PAGE_SIZE;
|
|
while (1) {
|
|
status = efi_high_alloc(sys_table, new_fdt_size, EFI_FDT_ALIGN,
|
|
new_fdt_addr, max_addr);
|
|
if (status != EFI_SUCCESS) {
|
|
pr_efi_err(sys_table, "Unable to allocate memory for new device tree.\n");
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Now that we have done our final memory allocation (and free)
|
|
* we can get the memory map key needed for
|
|
* exit_boot_services().
|
|
*/
|
|
status = efi_get_memory_map(sys_table, &memory_map, &map_size,
|
|
&desc_size, &desc_ver, &mmap_key);
|
|
if (status != EFI_SUCCESS)
|
|
goto fail_free_new_fdt;
|
|
|
|
status = update_fdt(sys_table,
|
|
(void *)fdt_addr, fdt_size,
|
|
(void *)*new_fdt_addr, new_fdt_size,
|
|
cmdline_ptr, initrd_addr, initrd_size,
|
|
memory_map, map_size, desc_size, desc_ver);
|
|
|
|
/* Succeeding the first time is the expected case. */
|
|
if (status == EFI_SUCCESS)
|
|
break;
|
|
|
|
if (status == EFI_BUFFER_TOO_SMALL) {
|
|
/*
|
|
* We need to allocate more space for the new
|
|
* device tree, so free existing buffer that is
|
|
* too small. Also free memory map, as we will need
|
|
* to get new one that reflects the free/alloc we do
|
|
* on the device tree buffer.
|
|
*/
|
|
efi_free(sys_table, new_fdt_size, *new_fdt_addr);
|
|
sys_table->boottime->free_pool(memory_map);
|
|
new_fdt_size += EFI_PAGE_SIZE;
|
|
} else {
|
|
pr_efi_err(sys_table, "Unable to construct new device tree.\n");
|
|
goto fail_free_mmap;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Update the memory map with virtual addresses. The function will also
|
|
* populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME
|
|
* entries so that we can pass it straight into SetVirtualAddressMap()
|
|
*/
|
|
efi_get_virtmap(memory_map, map_size, desc_size, runtime_map,
|
|
&runtime_entry_count);
|
|
|
|
/* Now we are ready to exit_boot_services.*/
|
|
status = sys_table->boottime->exit_boot_services(handle, mmap_key);
|
|
|
|
if (status == EFI_SUCCESS) {
|
|
efi_set_virtual_address_map_t *svam;
|
|
|
|
/* Install the new virtual address map */
|
|
svam = sys_table->runtime->set_virtual_address_map;
|
|
status = svam(runtime_entry_count * desc_size, desc_size,
|
|
desc_ver, runtime_map);
|
|
|
|
/*
|
|
* We are beyond the point of no return here, so if the call to
|
|
* SetVirtualAddressMap() failed, we need to signal that to the
|
|
* incoming kernel but proceed normally otherwise.
|
|
*/
|
|
if (status != EFI_SUCCESS) {
|
|
int l;
|
|
|
|
/*
|
|
* Set the virtual address field of all
|
|
* EFI_MEMORY_RUNTIME entries to 0. This will signal
|
|
* the incoming kernel that no virtual translation has
|
|
* been installed.
|
|
*/
|
|
for (l = 0; l < map_size; l += desc_size) {
|
|
efi_memory_desc_t *p = (void *)memory_map + l;
|
|
|
|
if (p->attribute & EFI_MEMORY_RUNTIME)
|
|
p->virt_addr = 0;
|
|
}
|
|
}
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
pr_efi_err(sys_table, "Exit boot services failed.\n");
|
|
|
|
fail_free_mmap:
|
|
sys_table->boottime->free_pool(memory_map);
|
|
|
|
fail_free_new_fdt:
|
|
efi_free(sys_table, new_fdt_size, *new_fdt_addr);
|
|
|
|
fail:
|
|
sys_table->boottime->free_pool(runtime_map);
|
|
return EFI_LOAD_ERROR;
|
|
}
|
|
|
|
void *get_fdt(efi_system_table_t *sys_table, unsigned long *fdt_size)
|
|
{
|
|
efi_guid_t fdt_guid = DEVICE_TREE_GUID;
|
|
efi_config_table_t *tables;
|
|
void *fdt;
|
|
int i;
|
|
|
|
tables = (efi_config_table_t *) sys_table->tables;
|
|
fdt = NULL;
|
|
|
|
for (i = 0; i < sys_table->nr_tables; i++)
|
|
if (efi_guidcmp(tables[i].guid, fdt_guid) == 0) {
|
|
fdt = (void *) tables[i].table;
|
|
if (fdt_check_header(fdt) != 0) {
|
|
pr_efi_err(sys_table, "Invalid header detected on UEFI supplied FDT, ignoring ...\n");
|
|
return NULL;
|
|
}
|
|
*fdt_size = fdt_totalsize(fdt);
|
|
break;
|
|
}
|
|
|
|
return fdt;
|
|
}
|