linux/arch/mips/sgi-ip32/ip32-irq.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

550 lines
14 KiB
C

/*
* Code to handle IP32 IRQs
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2000 Harald Koerfgen
* Copyright (C) 2001 Keith M Wesolowski
*/
#include <linux/init.h>
#include <linux/kernel_stat.h>
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/bitops.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/random.h>
#include <linux/sched.h>
#include <asm/irq_cpu.h>
#include <asm/mipsregs.h>
#include <asm/signal.h>
#include <asm/system.h>
#include <asm/time.h>
#include <asm/ip32/crime.h>
#include <asm/ip32/mace.h>
#include <asm/ip32/ip32_ints.h>
/* issue a PIO read to make sure no PIO writes are pending */
static void inline flush_crime_bus(void)
{
crime->control;
}
static void inline flush_mace_bus(void)
{
mace->perif.ctrl.misc;
}
/*
* O2 irq map
*
* IP0 -> software (ignored)
* IP1 -> software (ignored)
* IP2 -> (irq0) C crime 1.1 all interrupts; crime 1.5 ???
* IP3 -> (irq1) X unknown
* IP4 -> (irq2) X unknown
* IP5 -> (irq3) X unknown
* IP6 -> (irq4) X unknown
* IP7 -> (irq5) 7 CPU count/compare timer (system timer)
*
* crime: (C)
*
* CRIME_INT_STAT 31:0:
*
* 0 -> 8 Video in 1
* 1 -> 9 Video in 2
* 2 -> 10 Video out
* 3 -> 11 Mace ethernet
* 4 -> S SuperIO sub-interrupt
* 5 -> M Miscellaneous sub-interrupt
* 6 -> A Audio sub-interrupt
* 7 -> 15 PCI bridge errors
* 8 -> 16 PCI SCSI aic7xxx 0
* 9 -> 17 PCI SCSI aic7xxx 1
* 10 -> 18 PCI slot 0
* 11 -> 19 unused (PCI slot 1)
* 12 -> 20 unused (PCI slot 2)
* 13 -> 21 unused (PCI shared 0)
* 14 -> 22 unused (PCI shared 1)
* 15 -> 23 unused (PCI shared 2)
* 16 -> 24 GBE0 (E)
* 17 -> 25 GBE1 (E)
* 18 -> 26 GBE2 (E)
* 19 -> 27 GBE3 (E)
* 20 -> 28 CPU errors
* 21 -> 29 Memory errors
* 22 -> 30 RE empty edge (E)
* 23 -> 31 RE full edge (E)
* 24 -> 32 RE idle edge (E)
* 25 -> 33 RE empty level
* 26 -> 34 RE full level
* 27 -> 35 RE idle level
* 28 -> 36 unused (software 0) (E)
* 29 -> 37 unused (software 1) (E)
* 30 -> 38 unused (software 2) - crime 1.5 CPU SysCorError (E)
* 31 -> 39 VICE
*
* S, M, A: Use the MACE ISA interrupt register
* MACE_ISA_INT_STAT 31:0
*
* 0-7 -> 40-47 Audio
* 8 -> 48 RTC
* 9 -> 49 Keyboard
* 10 -> X Keyboard polled
* 11 -> 51 Mouse
* 12 -> X Mouse polled
* 13-15 -> 53-55 Count/compare timers
* 16-19 -> 56-59 Parallel (16 E)
* 20-25 -> 60-62 Serial 1 (22 E)
* 26-31 -> 66-71 Serial 2 (28 E)
*
* Note that this means IRQs 12-14, 50, and 52 do not exist. This is a
* different IRQ map than IRIX uses, but that's OK as Linux irq handling
* is quite different anyway.
*/
/* Some initial interrupts to set up */
extern irqreturn_t crime_memerr_intr(int irq, void *dev_id);
extern irqreturn_t crime_cpuerr_intr(int irq, void *dev_id);
static struct irqaction memerr_irq = {
.handler = crime_memerr_intr,
.flags = IRQF_DISABLED,
.name = "CRIME memory error",
};
static struct irqaction cpuerr_irq = {
.handler = crime_cpuerr_intr,
.flags = IRQF_DISABLED,
.name = "CRIME CPU error",
};
/*
* This is for pure CRIME interrupts - ie not MACE. The advantage?
* We get to split the register in half and do faster lookups.
*/
static uint64_t crime_mask;
static inline void crime_enable_irq(unsigned int irq)
{
unsigned int bit = irq - CRIME_IRQ_BASE;
crime_mask |= 1 << bit;
crime->imask = crime_mask;
}
static inline void crime_disable_irq(unsigned int irq)
{
unsigned int bit = irq - CRIME_IRQ_BASE;
crime_mask &= ~(1 << bit);
crime->imask = crime_mask;
flush_crime_bus();
}
static void crime_level_mask_and_ack_irq(unsigned int irq)
{
crime_disable_irq(irq);
}
static void crime_level_end_irq(unsigned int irq)
{
if (!(irq_desc[irq].status & (IRQ_DISABLED | IRQ_INPROGRESS)))
crime_enable_irq(irq);
}
static struct irq_chip crime_level_interrupt = {
.name = "IP32 CRIME",
.ack = crime_level_mask_and_ack_irq,
.mask = crime_disable_irq,
.mask_ack = crime_level_mask_and_ack_irq,
.unmask = crime_enable_irq,
.end = crime_level_end_irq,
};
static void crime_edge_mask_and_ack_irq(unsigned int irq)
{
unsigned int bit = irq - CRIME_IRQ_BASE;
uint64_t crime_int;
/* Edge triggered interrupts must be cleared. */
crime_int = crime->hard_int;
crime_int &= ~(1 << bit);
crime->hard_int = crime_int;
crime_disable_irq(irq);
}
static void crime_edge_end_irq(unsigned int irq)
{
if (!(irq_desc[irq].status & (IRQ_DISABLED | IRQ_INPROGRESS)))
crime_enable_irq(irq);
}
static struct irq_chip crime_edge_interrupt = {
.name = "IP32 CRIME",
.ack = crime_edge_mask_and_ack_irq,
.mask = crime_disable_irq,
.mask_ack = crime_edge_mask_and_ack_irq,
.unmask = crime_enable_irq,
.end = crime_edge_end_irq,
};
/*
* This is for MACE PCI interrupts. We can decrease bus traffic by masking
* as close to the source as possible. This also means we can take the
* next chunk of the CRIME register in one piece.
*/
static unsigned long macepci_mask;
static void enable_macepci_irq(unsigned int irq)
{
macepci_mask |= MACEPCI_CONTROL_INT(irq - MACEPCI_SCSI0_IRQ);
mace->pci.control = macepci_mask;
crime_mask |= 1 << (irq - CRIME_IRQ_BASE);
crime->imask = crime_mask;
}
static void disable_macepci_irq(unsigned int irq)
{
crime_mask &= ~(1 << (irq - CRIME_IRQ_BASE));
crime->imask = crime_mask;
flush_crime_bus();
macepci_mask &= ~MACEPCI_CONTROL_INT(irq - MACEPCI_SCSI0_IRQ);
mace->pci.control = macepci_mask;
flush_mace_bus();
}
static void end_macepci_irq(unsigned int irq)
{
if (!(irq_desc[irq].status & (IRQ_DISABLED|IRQ_INPROGRESS)))
enable_macepci_irq(irq);
}
static struct irq_chip ip32_macepci_interrupt = {
.name = "IP32 MACE PCI",
.ack = disable_macepci_irq,
.mask = disable_macepci_irq,
.mask_ack = disable_macepci_irq,
.unmask = enable_macepci_irq,
.end = end_macepci_irq,
};
/* This is used for MACE ISA interrupts. That means bits 4-6 in the
* CRIME register.
*/
#define MACEISA_AUDIO_INT (MACEISA_AUDIO_SW_INT | \
MACEISA_AUDIO_SC_INT | \
MACEISA_AUDIO1_DMAT_INT | \
MACEISA_AUDIO1_OF_INT | \
MACEISA_AUDIO2_DMAT_INT | \
MACEISA_AUDIO2_MERR_INT | \
MACEISA_AUDIO3_DMAT_INT | \
MACEISA_AUDIO3_MERR_INT)
#define MACEISA_MISC_INT (MACEISA_RTC_INT | \
MACEISA_KEYB_INT | \
MACEISA_KEYB_POLL_INT | \
MACEISA_MOUSE_INT | \
MACEISA_MOUSE_POLL_INT | \
MACEISA_TIMER0_INT | \
MACEISA_TIMER1_INT | \
MACEISA_TIMER2_INT)
#define MACEISA_SUPERIO_INT (MACEISA_PARALLEL_INT | \
MACEISA_PAR_CTXA_INT | \
MACEISA_PAR_CTXB_INT | \
MACEISA_PAR_MERR_INT | \
MACEISA_SERIAL1_INT | \
MACEISA_SERIAL1_TDMAT_INT | \
MACEISA_SERIAL1_TDMAPR_INT | \
MACEISA_SERIAL1_TDMAME_INT | \
MACEISA_SERIAL1_RDMAT_INT | \
MACEISA_SERIAL1_RDMAOR_INT | \
MACEISA_SERIAL2_INT | \
MACEISA_SERIAL2_TDMAT_INT | \
MACEISA_SERIAL2_TDMAPR_INT | \
MACEISA_SERIAL2_TDMAME_INT | \
MACEISA_SERIAL2_RDMAT_INT | \
MACEISA_SERIAL2_RDMAOR_INT)
static unsigned long maceisa_mask;
static void enable_maceisa_irq(unsigned int irq)
{
unsigned int crime_int = 0;
pr_debug("maceisa enable: %u\n", irq);
switch (irq) {
case MACEISA_AUDIO_SW_IRQ ... MACEISA_AUDIO3_MERR_IRQ:
crime_int = MACE_AUDIO_INT;
break;
case MACEISA_RTC_IRQ ... MACEISA_TIMER2_IRQ:
crime_int = MACE_MISC_INT;
break;
case MACEISA_PARALLEL_IRQ ... MACEISA_SERIAL2_RDMAOR_IRQ:
crime_int = MACE_SUPERIO_INT;
break;
}
pr_debug("crime_int %08x enabled\n", crime_int);
crime_mask |= crime_int;
crime->imask = crime_mask;
maceisa_mask |= 1 << (irq - MACEISA_AUDIO_SW_IRQ);
mace->perif.ctrl.imask = maceisa_mask;
}
static void disable_maceisa_irq(unsigned int irq)
{
unsigned int crime_int = 0;
maceisa_mask &= ~(1 << (irq - MACEISA_AUDIO_SW_IRQ));
if (!(maceisa_mask & MACEISA_AUDIO_INT))
crime_int |= MACE_AUDIO_INT;
if (!(maceisa_mask & MACEISA_MISC_INT))
crime_int |= MACE_MISC_INT;
if (!(maceisa_mask & MACEISA_SUPERIO_INT))
crime_int |= MACE_SUPERIO_INT;
crime_mask &= ~crime_int;
crime->imask = crime_mask;
flush_crime_bus();
mace->perif.ctrl.imask = maceisa_mask;
flush_mace_bus();
}
static void mask_and_ack_maceisa_irq(unsigned int irq)
{
unsigned long mace_int;
/* edge triggered */
mace_int = mace->perif.ctrl.istat;
mace_int &= ~(1 << (irq - MACEISA_AUDIO_SW_IRQ));
mace->perif.ctrl.istat = mace_int;
disable_maceisa_irq(irq);
}
static void end_maceisa_irq(unsigned irq)
{
if (!(irq_desc[irq].status & (IRQ_DISABLED | IRQ_INPROGRESS)))
enable_maceisa_irq(irq);
}
static struct irq_chip ip32_maceisa_level_interrupt = {
.name = "IP32 MACE ISA",
.ack = disable_maceisa_irq,
.mask = disable_maceisa_irq,
.mask_ack = disable_maceisa_irq,
.unmask = enable_maceisa_irq,
.end = end_maceisa_irq,
};
static struct irq_chip ip32_maceisa_edge_interrupt = {
.name = "IP32 MACE ISA",
.ack = mask_and_ack_maceisa_irq,
.mask = disable_maceisa_irq,
.mask_ack = mask_and_ack_maceisa_irq,
.unmask = enable_maceisa_irq,
.end = end_maceisa_irq,
};
/* This is used for regular non-ISA, non-PCI MACE interrupts. That means
* bits 0-3 and 7 in the CRIME register.
*/
static void enable_mace_irq(unsigned int irq)
{
unsigned int bit = irq - CRIME_IRQ_BASE;
crime_mask |= (1 << bit);
crime->imask = crime_mask;
}
static void disable_mace_irq(unsigned int irq)
{
unsigned int bit = irq - CRIME_IRQ_BASE;
crime_mask &= ~(1 << bit);
crime->imask = crime_mask;
flush_crime_bus();
}
static void end_mace_irq(unsigned int irq)
{
if (!(irq_desc[irq].status & (IRQ_DISABLED|IRQ_INPROGRESS)))
enable_mace_irq(irq);
}
static struct irq_chip ip32_mace_interrupt = {
.name = "IP32 MACE",
.ack = disable_mace_irq,
.mask = disable_mace_irq,
.mask_ack = disable_mace_irq,
.unmask = enable_mace_irq,
.end = end_mace_irq,
};
static void ip32_unknown_interrupt(void)
{
printk("Unknown interrupt occurred!\n");
printk("cp0_status: %08x\n", read_c0_status());
printk("cp0_cause: %08x\n", read_c0_cause());
printk("CRIME intr mask: %016lx\n", crime->imask);
printk("CRIME intr status: %016lx\n", crime->istat);
printk("CRIME hardware intr register: %016lx\n", crime->hard_int);
printk("MACE ISA intr mask: %08lx\n", mace->perif.ctrl.imask);
printk("MACE ISA intr status: %08lx\n", mace->perif.ctrl.istat);
printk("MACE PCI control register: %08x\n", mace->pci.control);
printk("Register dump:\n");
show_regs(get_irq_regs());
printk("Please mail this report to linux-mips@linux-mips.org\n");
printk("Spinning...");
while(1) ;
}
/* CRIME 1.1 appears to deliver all interrupts to this one pin. */
/* change this to loop over all edge-triggered irqs, exception masked out ones */
static void ip32_irq0(void)
{
uint64_t crime_int;
int irq = 0;
/*
* Sanity check interrupt numbering enum.
* MACE got 32 interrupts and there are 32 MACE ISA interrupts daisy
* chained.
*/
BUILD_BUG_ON(CRIME_VICE_IRQ - MACE_VID_IN1_IRQ != 31);
BUILD_BUG_ON(MACEISA_SERIAL2_RDMAOR_IRQ - MACEISA_AUDIO_SW_IRQ != 31);
crime_int = crime->istat & crime_mask;
/* crime sometime delivers spurious interrupts, ignore them */
if (unlikely(crime_int == 0))
return;
irq = MACE_VID_IN1_IRQ + __ffs(crime_int);
if (crime_int & CRIME_MACEISA_INT_MASK) {
unsigned long mace_int = mace->perif.ctrl.istat;
irq = __ffs(mace_int & maceisa_mask) + MACEISA_AUDIO_SW_IRQ;
}
pr_debug("*irq %u*\n", irq);
do_IRQ(irq);
}
static void ip32_irq1(void)
{
ip32_unknown_interrupt();
}
static void ip32_irq2(void)
{
ip32_unknown_interrupt();
}
static void ip32_irq3(void)
{
ip32_unknown_interrupt();
}
static void ip32_irq4(void)
{
ip32_unknown_interrupt();
}
static void ip32_irq5(void)
{
do_IRQ(MIPS_CPU_IRQ_BASE + 7);
}
asmlinkage void plat_irq_dispatch(void)
{
unsigned int pending = read_c0_status() & read_c0_cause();
if (likely(pending & IE_IRQ0))
ip32_irq0();
else if (unlikely(pending & IE_IRQ1))
ip32_irq1();
else if (unlikely(pending & IE_IRQ2))
ip32_irq2();
else if (unlikely(pending & IE_IRQ3))
ip32_irq3();
else if (unlikely(pending & IE_IRQ4))
ip32_irq4();
else if (likely(pending & IE_IRQ5))
ip32_irq5();
}
void __init arch_init_irq(void)
{
unsigned int irq;
/* Install our interrupt handler, then clear and disable all
* CRIME and MACE interrupts. */
crime->imask = 0;
crime->hard_int = 0;
crime->soft_int = 0;
mace->perif.ctrl.istat = 0;
mace->perif.ctrl.imask = 0;
mips_cpu_irq_init();
for (irq = CRIME_IRQ_BASE; irq <= IP32_IRQ_MAX; irq++) {
switch (irq) {
case MACE_VID_IN1_IRQ ... MACE_PCI_BRIDGE_IRQ:
set_irq_chip_and_handler_name(irq,&ip32_mace_interrupt,
handle_level_irq, "level");
break;
case MACEPCI_SCSI0_IRQ ... MACEPCI_SHARED2_IRQ:
set_irq_chip_and_handler_name(irq,
&ip32_macepci_interrupt, handle_level_irq,
"level");
break;
case CRIME_CPUERR_IRQ:
case CRIME_MEMERR_IRQ:
set_irq_chip_and_handler_name(irq,
&crime_level_interrupt, handle_level_irq,
"level");
break;
case CRIME_GBE0_IRQ ... CRIME_GBE3_IRQ:
case CRIME_RE_EMPTY_E_IRQ ... CRIME_RE_IDLE_E_IRQ:
case CRIME_SOFT0_IRQ ... CRIME_SOFT2_IRQ:
case CRIME_VICE_IRQ:
set_irq_chip_and_handler_name(irq,
&crime_edge_interrupt, handle_edge_irq, "edge");
break;
case MACEISA_PARALLEL_IRQ:
case MACEISA_SERIAL1_TDMAPR_IRQ:
case MACEISA_SERIAL2_TDMAPR_IRQ:
set_irq_chip_and_handler_name(irq,
&ip32_maceisa_edge_interrupt, handle_edge_irq,
"edge");
break;
default:
set_irq_chip_and_handler_name(irq,
&ip32_maceisa_level_interrupt, handle_level_irq,
"level");
break;
}
}
setup_irq(CRIME_MEMERR_IRQ, &memerr_irq);
setup_irq(CRIME_CPUERR_IRQ, &cpuerr_irq);
#define ALLINTS (IE_IRQ0 | IE_IRQ1 | IE_IRQ2 | IE_IRQ3 | IE_IRQ4 | IE_IRQ5)
change_c0_status(ST0_IM, ALLINTS);
}