forked from Minki/linux
2ed53a94d8
After the GPU reset and we discard all of the incomplete requests, mark the GPU as having advanced to the last_submitted_seqno (as having completed the requests and ready for fresh work). The impact of this is negligible, as all the requests will be considered completed by this point, it just brings the HWS into line with expectations for external viewers. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com> Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/1460010558-10705-2-git-send-email-chris@chris-wilson.co.uk
5370 lines
137 KiB
C
5370 lines
137 KiB
C
/*
|
|
* Copyright © 2008-2015 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
* Authors:
|
|
* Eric Anholt <eric@anholt.net>
|
|
*
|
|
*/
|
|
|
|
#include <drm/drmP.h>
|
|
#include <drm/drm_vma_manager.h>
|
|
#include <drm/i915_drm.h>
|
|
#include "i915_drv.h"
|
|
#include "i915_vgpu.h"
|
|
#include "i915_trace.h"
|
|
#include "intel_drv.h"
|
|
#include <linux/shmem_fs.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/dma-buf.h>
|
|
|
|
#define RQ_BUG_ON(expr)
|
|
|
|
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
|
|
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
|
|
static void
|
|
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
|
|
static void
|
|
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
|
|
|
|
static bool cpu_cache_is_coherent(struct drm_device *dev,
|
|
enum i915_cache_level level)
|
|
{
|
|
return HAS_LLC(dev) || level != I915_CACHE_NONE;
|
|
}
|
|
|
|
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
|
|
{
|
|
if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
|
|
return true;
|
|
|
|
return obj->pin_display;
|
|
}
|
|
|
|
/* some bookkeeping */
|
|
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
|
|
size_t size)
|
|
{
|
|
spin_lock(&dev_priv->mm.object_stat_lock);
|
|
dev_priv->mm.object_count++;
|
|
dev_priv->mm.object_memory += size;
|
|
spin_unlock(&dev_priv->mm.object_stat_lock);
|
|
}
|
|
|
|
static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
|
|
size_t size)
|
|
{
|
|
spin_lock(&dev_priv->mm.object_stat_lock);
|
|
dev_priv->mm.object_count--;
|
|
dev_priv->mm.object_memory -= size;
|
|
spin_unlock(&dev_priv->mm.object_stat_lock);
|
|
}
|
|
|
|
static int
|
|
i915_gem_wait_for_error(struct i915_gpu_error *error)
|
|
{
|
|
int ret;
|
|
|
|
#define EXIT_COND (!i915_reset_in_progress(error) || \
|
|
i915_terminally_wedged(error))
|
|
if (EXIT_COND)
|
|
return 0;
|
|
|
|
/*
|
|
* Only wait 10 seconds for the gpu reset to complete to avoid hanging
|
|
* userspace. If it takes that long something really bad is going on and
|
|
* we should simply try to bail out and fail as gracefully as possible.
|
|
*/
|
|
ret = wait_event_interruptible_timeout(error->reset_queue,
|
|
EXIT_COND,
|
|
10*HZ);
|
|
if (ret == 0) {
|
|
DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
|
|
return -EIO;
|
|
} else if (ret < 0) {
|
|
return ret;
|
|
}
|
|
#undef EXIT_COND
|
|
|
|
return 0;
|
|
}
|
|
|
|
int i915_mutex_lock_interruptible(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int ret;
|
|
|
|
ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = mutex_lock_interruptible(&dev->struct_mutex);
|
|
if (ret)
|
|
return ret;
|
|
|
|
WARN_ON(i915_verify_lists(dev));
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct i915_ggtt *ggtt = &dev_priv->ggtt;
|
|
struct drm_i915_gem_get_aperture *args = data;
|
|
struct i915_vma *vma;
|
|
size_t pinned;
|
|
|
|
pinned = 0;
|
|
mutex_lock(&dev->struct_mutex);
|
|
list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
|
|
if (vma->pin_count)
|
|
pinned += vma->node.size;
|
|
list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
|
|
if (vma->pin_count)
|
|
pinned += vma->node.size;
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
args->aper_size = ggtt->base.total;
|
|
args->aper_available_size = args->aper_size - pinned;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
|
|
char *vaddr = obj->phys_handle->vaddr;
|
|
struct sg_table *st;
|
|
struct scatterlist *sg;
|
|
int i;
|
|
|
|
if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
|
|
return -EINVAL;
|
|
|
|
for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
|
|
struct page *page;
|
|
char *src;
|
|
|
|
page = shmem_read_mapping_page(mapping, i);
|
|
if (IS_ERR(page))
|
|
return PTR_ERR(page);
|
|
|
|
src = kmap_atomic(page);
|
|
memcpy(vaddr, src, PAGE_SIZE);
|
|
drm_clflush_virt_range(vaddr, PAGE_SIZE);
|
|
kunmap_atomic(src);
|
|
|
|
page_cache_release(page);
|
|
vaddr += PAGE_SIZE;
|
|
}
|
|
|
|
i915_gem_chipset_flush(obj->base.dev);
|
|
|
|
st = kmalloc(sizeof(*st), GFP_KERNEL);
|
|
if (st == NULL)
|
|
return -ENOMEM;
|
|
|
|
if (sg_alloc_table(st, 1, GFP_KERNEL)) {
|
|
kfree(st);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
sg = st->sgl;
|
|
sg->offset = 0;
|
|
sg->length = obj->base.size;
|
|
|
|
sg_dma_address(sg) = obj->phys_handle->busaddr;
|
|
sg_dma_len(sg) = obj->base.size;
|
|
|
|
obj->pages = st;
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
|
|
{
|
|
int ret;
|
|
|
|
BUG_ON(obj->madv == __I915_MADV_PURGED);
|
|
|
|
ret = i915_gem_object_set_to_cpu_domain(obj, true);
|
|
if (ret) {
|
|
/* In the event of a disaster, abandon all caches and
|
|
* hope for the best.
|
|
*/
|
|
WARN_ON(ret != -EIO);
|
|
obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
|
|
}
|
|
|
|
if (obj->madv == I915_MADV_DONTNEED)
|
|
obj->dirty = 0;
|
|
|
|
if (obj->dirty) {
|
|
struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
|
|
char *vaddr = obj->phys_handle->vaddr;
|
|
int i;
|
|
|
|
for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
|
|
struct page *page;
|
|
char *dst;
|
|
|
|
page = shmem_read_mapping_page(mapping, i);
|
|
if (IS_ERR(page))
|
|
continue;
|
|
|
|
dst = kmap_atomic(page);
|
|
drm_clflush_virt_range(vaddr, PAGE_SIZE);
|
|
memcpy(dst, vaddr, PAGE_SIZE);
|
|
kunmap_atomic(dst);
|
|
|
|
set_page_dirty(page);
|
|
if (obj->madv == I915_MADV_WILLNEED)
|
|
mark_page_accessed(page);
|
|
page_cache_release(page);
|
|
vaddr += PAGE_SIZE;
|
|
}
|
|
obj->dirty = 0;
|
|
}
|
|
|
|
sg_free_table(obj->pages);
|
|
kfree(obj->pages);
|
|
}
|
|
|
|
static void
|
|
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
|
|
{
|
|
drm_pci_free(obj->base.dev, obj->phys_handle);
|
|
}
|
|
|
|
static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
|
|
.get_pages = i915_gem_object_get_pages_phys,
|
|
.put_pages = i915_gem_object_put_pages_phys,
|
|
.release = i915_gem_object_release_phys,
|
|
};
|
|
|
|
static int
|
|
drop_pages(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct i915_vma *vma, *next;
|
|
int ret;
|
|
|
|
drm_gem_object_reference(&obj->base);
|
|
list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
|
|
if (i915_vma_unbind(vma))
|
|
break;
|
|
|
|
ret = i915_gem_object_put_pages(obj);
|
|
drm_gem_object_unreference(&obj->base);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
|
|
int align)
|
|
{
|
|
drm_dma_handle_t *phys;
|
|
int ret;
|
|
|
|
if (obj->phys_handle) {
|
|
if ((unsigned long)obj->phys_handle->vaddr & (align -1))
|
|
return -EBUSY;
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (obj->madv != I915_MADV_WILLNEED)
|
|
return -EFAULT;
|
|
|
|
if (obj->base.filp == NULL)
|
|
return -EINVAL;
|
|
|
|
ret = drop_pages(obj);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* create a new object */
|
|
phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
|
|
if (!phys)
|
|
return -ENOMEM;
|
|
|
|
obj->phys_handle = phys;
|
|
obj->ops = &i915_gem_phys_ops;
|
|
|
|
return i915_gem_object_get_pages(obj);
|
|
}
|
|
|
|
static int
|
|
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
|
|
struct drm_i915_gem_pwrite *args,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_device *dev = obj->base.dev;
|
|
void *vaddr = obj->phys_handle->vaddr + args->offset;
|
|
char __user *user_data = to_user_ptr(args->data_ptr);
|
|
int ret = 0;
|
|
|
|
/* We manually control the domain here and pretend that it
|
|
* remains coherent i.e. in the GTT domain, like shmem_pwrite.
|
|
*/
|
|
ret = i915_gem_object_wait_rendering(obj, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_fb_obj_invalidate(obj, ORIGIN_CPU);
|
|
if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
|
|
unsigned long unwritten;
|
|
|
|
/* The physical object once assigned is fixed for the lifetime
|
|
* of the obj, so we can safely drop the lock and continue
|
|
* to access vaddr.
|
|
*/
|
|
mutex_unlock(&dev->struct_mutex);
|
|
unwritten = copy_from_user(vaddr, user_data, args->size);
|
|
mutex_lock(&dev->struct_mutex);
|
|
if (unwritten) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
drm_clflush_virt_range(vaddr, args->size);
|
|
i915_gem_chipset_flush(dev);
|
|
|
|
out:
|
|
intel_fb_obj_flush(obj, false, ORIGIN_CPU);
|
|
return ret;
|
|
}
|
|
|
|
void *i915_gem_object_alloc(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
|
|
}
|
|
|
|
void i915_gem_object_free(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
|
|
kmem_cache_free(dev_priv->objects, obj);
|
|
}
|
|
|
|
static int
|
|
i915_gem_create(struct drm_file *file,
|
|
struct drm_device *dev,
|
|
uint64_t size,
|
|
uint32_t *handle_p)
|
|
{
|
|
struct drm_i915_gem_object *obj;
|
|
int ret;
|
|
u32 handle;
|
|
|
|
size = roundup(size, PAGE_SIZE);
|
|
if (size == 0)
|
|
return -EINVAL;
|
|
|
|
/* Allocate the new object */
|
|
obj = i915_gem_alloc_object(dev, size);
|
|
if (obj == NULL)
|
|
return -ENOMEM;
|
|
|
|
ret = drm_gem_handle_create(file, &obj->base, &handle);
|
|
/* drop reference from allocate - handle holds it now */
|
|
drm_gem_object_unreference_unlocked(&obj->base);
|
|
if (ret)
|
|
return ret;
|
|
|
|
*handle_p = handle;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
i915_gem_dumb_create(struct drm_file *file,
|
|
struct drm_device *dev,
|
|
struct drm_mode_create_dumb *args)
|
|
{
|
|
/* have to work out size/pitch and return them */
|
|
args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
|
|
args->size = args->pitch * args->height;
|
|
return i915_gem_create(file, dev,
|
|
args->size, &args->handle);
|
|
}
|
|
|
|
/**
|
|
* Creates a new mm object and returns a handle to it.
|
|
*/
|
|
int
|
|
i915_gem_create_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_create *args = data;
|
|
|
|
return i915_gem_create(file, dev,
|
|
args->size, &args->handle);
|
|
}
|
|
|
|
static inline int
|
|
__copy_to_user_swizzled(char __user *cpu_vaddr,
|
|
const char *gpu_vaddr, int gpu_offset,
|
|
int length)
|
|
{
|
|
int ret, cpu_offset = 0;
|
|
|
|
while (length > 0) {
|
|
int cacheline_end = ALIGN(gpu_offset + 1, 64);
|
|
int this_length = min(cacheline_end - gpu_offset, length);
|
|
int swizzled_gpu_offset = gpu_offset ^ 64;
|
|
|
|
ret = __copy_to_user(cpu_vaddr + cpu_offset,
|
|
gpu_vaddr + swizzled_gpu_offset,
|
|
this_length);
|
|
if (ret)
|
|
return ret + length;
|
|
|
|
cpu_offset += this_length;
|
|
gpu_offset += this_length;
|
|
length -= this_length;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int
|
|
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
|
|
const char __user *cpu_vaddr,
|
|
int length)
|
|
{
|
|
int ret, cpu_offset = 0;
|
|
|
|
while (length > 0) {
|
|
int cacheline_end = ALIGN(gpu_offset + 1, 64);
|
|
int this_length = min(cacheline_end - gpu_offset, length);
|
|
int swizzled_gpu_offset = gpu_offset ^ 64;
|
|
|
|
ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
|
|
cpu_vaddr + cpu_offset,
|
|
this_length);
|
|
if (ret)
|
|
return ret + length;
|
|
|
|
cpu_offset += this_length;
|
|
gpu_offset += this_length;
|
|
length -= this_length;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Pins the specified object's pages and synchronizes the object with
|
|
* GPU accesses. Sets needs_clflush to non-zero if the caller should
|
|
* flush the object from the CPU cache.
|
|
*/
|
|
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
|
|
int *needs_clflush)
|
|
{
|
|
int ret;
|
|
|
|
*needs_clflush = 0;
|
|
|
|
if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
|
|
return -EINVAL;
|
|
|
|
if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
|
|
/* If we're not in the cpu read domain, set ourself into the gtt
|
|
* read domain and manually flush cachelines (if required). This
|
|
* optimizes for the case when the gpu will dirty the data
|
|
* anyway again before the next pread happens. */
|
|
*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
|
|
obj->cache_level);
|
|
ret = i915_gem_object_wait_rendering(obj, true);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
ret = i915_gem_object_get_pages(obj);
|
|
if (ret)
|
|
return ret;
|
|
|
|
i915_gem_object_pin_pages(obj);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Per-page copy function for the shmem pread fastpath.
|
|
* Flushes invalid cachelines before reading the target if
|
|
* needs_clflush is set. */
|
|
static int
|
|
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
|
|
char __user *user_data,
|
|
bool page_do_bit17_swizzling, bool needs_clflush)
|
|
{
|
|
char *vaddr;
|
|
int ret;
|
|
|
|
if (unlikely(page_do_bit17_swizzling))
|
|
return -EINVAL;
|
|
|
|
vaddr = kmap_atomic(page);
|
|
if (needs_clflush)
|
|
drm_clflush_virt_range(vaddr + shmem_page_offset,
|
|
page_length);
|
|
ret = __copy_to_user_inatomic(user_data,
|
|
vaddr + shmem_page_offset,
|
|
page_length);
|
|
kunmap_atomic(vaddr);
|
|
|
|
return ret ? -EFAULT : 0;
|
|
}
|
|
|
|
static void
|
|
shmem_clflush_swizzled_range(char *addr, unsigned long length,
|
|
bool swizzled)
|
|
{
|
|
if (unlikely(swizzled)) {
|
|
unsigned long start = (unsigned long) addr;
|
|
unsigned long end = (unsigned long) addr + length;
|
|
|
|
/* For swizzling simply ensure that we always flush both
|
|
* channels. Lame, but simple and it works. Swizzled
|
|
* pwrite/pread is far from a hotpath - current userspace
|
|
* doesn't use it at all. */
|
|
start = round_down(start, 128);
|
|
end = round_up(end, 128);
|
|
|
|
drm_clflush_virt_range((void *)start, end - start);
|
|
} else {
|
|
drm_clflush_virt_range(addr, length);
|
|
}
|
|
|
|
}
|
|
|
|
/* Only difference to the fast-path function is that this can handle bit17
|
|
* and uses non-atomic copy and kmap functions. */
|
|
static int
|
|
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
|
|
char __user *user_data,
|
|
bool page_do_bit17_swizzling, bool needs_clflush)
|
|
{
|
|
char *vaddr;
|
|
int ret;
|
|
|
|
vaddr = kmap(page);
|
|
if (needs_clflush)
|
|
shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
|
|
page_length,
|
|
page_do_bit17_swizzling);
|
|
|
|
if (page_do_bit17_swizzling)
|
|
ret = __copy_to_user_swizzled(user_data,
|
|
vaddr, shmem_page_offset,
|
|
page_length);
|
|
else
|
|
ret = __copy_to_user(user_data,
|
|
vaddr + shmem_page_offset,
|
|
page_length);
|
|
kunmap(page);
|
|
|
|
return ret ? - EFAULT : 0;
|
|
}
|
|
|
|
static int
|
|
i915_gem_shmem_pread(struct drm_device *dev,
|
|
struct drm_i915_gem_object *obj,
|
|
struct drm_i915_gem_pread *args,
|
|
struct drm_file *file)
|
|
{
|
|
char __user *user_data;
|
|
ssize_t remain;
|
|
loff_t offset;
|
|
int shmem_page_offset, page_length, ret = 0;
|
|
int obj_do_bit17_swizzling, page_do_bit17_swizzling;
|
|
int prefaulted = 0;
|
|
int needs_clflush = 0;
|
|
struct sg_page_iter sg_iter;
|
|
|
|
user_data = to_user_ptr(args->data_ptr);
|
|
remain = args->size;
|
|
|
|
obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
|
|
|
|
ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
|
|
if (ret)
|
|
return ret;
|
|
|
|
offset = args->offset;
|
|
|
|
for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
|
|
offset >> PAGE_SHIFT) {
|
|
struct page *page = sg_page_iter_page(&sg_iter);
|
|
|
|
if (remain <= 0)
|
|
break;
|
|
|
|
/* Operation in this page
|
|
*
|
|
* shmem_page_offset = offset within page in shmem file
|
|
* page_length = bytes to copy for this page
|
|
*/
|
|
shmem_page_offset = offset_in_page(offset);
|
|
page_length = remain;
|
|
if ((shmem_page_offset + page_length) > PAGE_SIZE)
|
|
page_length = PAGE_SIZE - shmem_page_offset;
|
|
|
|
page_do_bit17_swizzling = obj_do_bit17_swizzling &&
|
|
(page_to_phys(page) & (1 << 17)) != 0;
|
|
|
|
ret = shmem_pread_fast(page, shmem_page_offset, page_length,
|
|
user_data, page_do_bit17_swizzling,
|
|
needs_clflush);
|
|
if (ret == 0)
|
|
goto next_page;
|
|
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
if (likely(!i915.prefault_disable) && !prefaulted) {
|
|
ret = fault_in_multipages_writeable(user_data, remain);
|
|
/* Userspace is tricking us, but we've already clobbered
|
|
* its pages with the prefault and promised to write the
|
|
* data up to the first fault. Hence ignore any errors
|
|
* and just continue. */
|
|
(void)ret;
|
|
prefaulted = 1;
|
|
}
|
|
|
|
ret = shmem_pread_slow(page, shmem_page_offset, page_length,
|
|
user_data, page_do_bit17_swizzling,
|
|
needs_clflush);
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
|
|
if (ret)
|
|
goto out;
|
|
|
|
next_page:
|
|
remain -= page_length;
|
|
user_data += page_length;
|
|
offset += page_length;
|
|
}
|
|
|
|
out:
|
|
i915_gem_object_unpin_pages(obj);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Reads data from the object referenced by handle.
|
|
*
|
|
* On error, the contents of *data are undefined.
|
|
*/
|
|
int
|
|
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_pread *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
int ret = 0;
|
|
|
|
if (args->size == 0)
|
|
return 0;
|
|
|
|
if (!access_ok(VERIFY_WRITE,
|
|
to_user_ptr(args->data_ptr),
|
|
args->size))
|
|
return -EFAULT;
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
|
|
if (&obj->base == NULL) {
|
|
ret = -ENOENT;
|
|
goto unlock;
|
|
}
|
|
|
|
/* Bounds check source. */
|
|
if (args->offset > obj->base.size ||
|
|
args->size > obj->base.size - args->offset) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* prime objects have no backing filp to GEM pread/pwrite
|
|
* pages from.
|
|
*/
|
|
if (!obj->base.filp) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
trace_i915_gem_object_pread(obj, args->offset, args->size);
|
|
|
|
ret = i915_gem_shmem_pread(dev, obj, args, file);
|
|
|
|
out:
|
|
drm_gem_object_unreference(&obj->base);
|
|
unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
/* This is the fast write path which cannot handle
|
|
* page faults in the source data
|
|
*/
|
|
|
|
static inline int
|
|
fast_user_write(struct io_mapping *mapping,
|
|
loff_t page_base, int page_offset,
|
|
char __user *user_data,
|
|
int length)
|
|
{
|
|
void __iomem *vaddr_atomic;
|
|
void *vaddr;
|
|
unsigned long unwritten;
|
|
|
|
vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
|
|
/* We can use the cpu mem copy function because this is X86. */
|
|
vaddr = (void __force*)vaddr_atomic + page_offset;
|
|
unwritten = __copy_from_user_inatomic_nocache(vaddr,
|
|
user_data, length);
|
|
io_mapping_unmap_atomic(vaddr_atomic);
|
|
return unwritten;
|
|
}
|
|
|
|
/**
|
|
* This is the fast pwrite path, where we copy the data directly from the
|
|
* user into the GTT, uncached.
|
|
*/
|
|
static int
|
|
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
|
|
struct drm_i915_gem_object *obj,
|
|
struct drm_i915_gem_pwrite *args,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct i915_ggtt *ggtt = &dev_priv->ggtt;
|
|
ssize_t remain;
|
|
loff_t offset, page_base;
|
|
char __user *user_data;
|
|
int page_offset, page_length, ret;
|
|
|
|
ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = i915_gem_object_set_to_gtt_domain(obj, true);
|
|
if (ret)
|
|
goto out_unpin;
|
|
|
|
ret = i915_gem_object_put_fence(obj);
|
|
if (ret)
|
|
goto out_unpin;
|
|
|
|
user_data = to_user_ptr(args->data_ptr);
|
|
remain = args->size;
|
|
|
|
offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
|
|
|
|
intel_fb_obj_invalidate(obj, ORIGIN_GTT);
|
|
|
|
while (remain > 0) {
|
|
/* Operation in this page
|
|
*
|
|
* page_base = page offset within aperture
|
|
* page_offset = offset within page
|
|
* page_length = bytes to copy for this page
|
|
*/
|
|
page_base = offset & PAGE_MASK;
|
|
page_offset = offset_in_page(offset);
|
|
page_length = remain;
|
|
if ((page_offset + remain) > PAGE_SIZE)
|
|
page_length = PAGE_SIZE - page_offset;
|
|
|
|
/* If we get a fault while copying data, then (presumably) our
|
|
* source page isn't available. Return the error and we'll
|
|
* retry in the slow path.
|
|
*/
|
|
if (fast_user_write(ggtt->mappable, page_base,
|
|
page_offset, user_data, page_length)) {
|
|
ret = -EFAULT;
|
|
goto out_flush;
|
|
}
|
|
|
|
remain -= page_length;
|
|
user_data += page_length;
|
|
offset += page_length;
|
|
}
|
|
|
|
out_flush:
|
|
intel_fb_obj_flush(obj, false, ORIGIN_GTT);
|
|
out_unpin:
|
|
i915_gem_object_ggtt_unpin(obj);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/* Per-page copy function for the shmem pwrite fastpath.
|
|
* Flushes invalid cachelines before writing to the target if
|
|
* needs_clflush_before is set and flushes out any written cachelines after
|
|
* writing if needs_clflush is set. */
|
|
static int
|
|
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
|
|
char __user *user_data,
|
|
bool page_do_bit17_swizzling,
|
|
bool needs_clflush_before,
|
|
bool needs_clflush_after)
|
|
{
|
|
char *vaddr;
|
|
int ret;
|
|
|
|
if (unlikely(page_do_bit17_swizzling))
|
|
return -EINVAL;
|
|
|
|
vaddr = kmap_atomic(page);
|
|
if (needs_clflush_before)
|
|
drm_clflush_virt_range(vaddr + shmem_page_offset,
|
|
page_length);
|
|
ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
|
|
user_data, page_length);
|
|
if (needs_clflush_after)
|
|
drm_clflush_virt_range(vaddr + shmem_page_offset,
|
|
page_length);
|
|
kunmap_atomic(vaddr);
|
|
|
|
return ret ? -EFAULT : 0;
|
|
}
|
|
|
|
/* Only difference to the fast-path function is that this can handle bit17
|
|
* and uses non-atomic copy and kmap functions. */
|
|
static int
|
|
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
|
|
char __user *user_data,
|
|
bool page_do_bit17_swizzling,
|
|
bool needs_clflush_before,
|
|
bool needs_clflush_after)
|
|
{
|
|
char *vaddr;
|
|
int ret;
|
|
|
|
vaddr = kmap(page);
|
|
if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
|
|
shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
|
|
page_length,
|
|
page_do_bit17_swizzling);
|
|
if (page_do_bit17_swizzling)
|
|
ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
|
|
user_data,
|
|
page_length);
|
|
else
|
|
ret = __copy_from_user(vaddr + shmem_page_offset,
|
|
user_data,
|
|
page_length);
|
|
if (needs_clflush_after)
|
|
shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
|
|
page_length,
|
|
page_do_bit17_swizzling);
|
|
kunmap(page);
|
|
|
|
return ret ? -EFAULT : 0;
|
|
}
|
|
|
|
static int
|
|
i915_gem_shmem_pwrite(struct drm_device *dev,
|
|
struct drm_i915_gem_object *obj,
|
|
struct drm_i915_gem_pwrite *args,
|
|
struct drm_file *file)
|
|
{
|
|
ssize_t remain;
|
|
loff_t offset;
|
|
char __user *user_data;
|
|
int shmem_page_offset, page_length, ret = 0;
|
|
int obj_do_bit17_swizzling, page_do_bit17_swizzling;
|
|
int hit_slowpath = 0;
|
|
int needs_clflush_after = 0;
|
|
int needs_clflush_before = 0;
|
|
struct sg_page_iter sg_iter;
|
|
|
|
user_data = to_user_ptr(args->data_ptr);
|
|
remain = args->size;
|
|
|
|
obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
|
|
|
|
if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
|
|
/* If we're not in the cpu write domain, set ourself into the gtt
|
|
* write domain and manually flush cachelines (if required). This
|
|
* optimizes for the case when the gpu will use the data
|
|
* right away and we therefore have to clflush anyway. */
|
|
needs_clflush_after = cpu_write_needs_clflush(obj);
|
|
ret = i915_gem_object_wait_rendering(obj, false);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
/* Same trick applies to invalidate partially written cachelines read
|
|
* before writing. */
|
|
if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
|
|
needs_clflush_before =
|
|
!cpu_cache_is_coherent(dev, obj->cache_level);
|
|
|
|
ret = i915_gem_object_get_pages(obj);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_fb_obj_invalidate(obj, ORIGIN_CPU);
|
|
|
|
i915_gem_object_pin_pages(obj);
|
|
|
|
offset = args->offset;
|
|
obj->dirty = 1;
|
|
|
|
for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
|
|
offset >> PAGE_SHIFT) {
|
|
struct page *page = sg_page_iter_page(&sg_iter);
|
|
int partial_cacheline_write;
|
|
|
|
if (remain <= 0)
|
|
break;
|
|
|
|
/* Operation in this page
|
|
*
|
|
* shmem_page_offset = offset within page in shmem file
|
|
* page_length = bytes to copy for this page
|
|
*/
|
|
shmem_page_offset = offset_in_page(offset);
|
|
|
|
page_length = remain;
|
|
if ((shmem_page_offset + page_length) > PAGE_SIZE)
|
|
page_length = PAGE_SIZE - shmem_page_offset;
|
|
|
|
/* If we don't overwrite a cacheline completely we need to be
|
|
* careful to have up-to-date data by first clflushing. Don't
|
|
* overcomplicate things and flush the entire patch. */
|
|
partial_cacheline_write = needs_clflush_before &&
|
|
((shmem_page_offset | page_length)
|
|
& (boot_cpu_data.x86_clflush_size - 1));
|
|
|
|
page_do_bit17_swizzling = obj_do_bit17_swizzling &&
|
|
(page_to_phys(page) & (1 << 17)) != 0;
|
|
|
|
ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
|
|
user_data, page_do_bit17_swizzling,
|
|
partial_cacheline_write,
|
|
needs_clflush_after);
|
|
if (ret == 0)
|
|
goto next_page;
|
|
|
|
hit_slowpath = 1;
|
|
mutex_unlock(&dev->struct_mutex);
|
|
ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
|
|
user_data, page_do_bit17_swizzling,
|
|
partial_cacheline_write,
|
|
needs_clflush_after);
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
|
|
if (ret)
|
|
goto out;
|
|
|
|
next_page:
|
|
remain -= page_length;
|
|
user_data += page_length;
|
|
offset += page_length;
|
|
}
|
|
|
|
out:
|
|
i915_gem_object_unpin_pages(obj);
|
|
|
|
if (hit_slowpath) {
|
|
/*
|
|
* Fixup: Flush cpu caches in case we didn't flush the dirty
|
|
* cachelines in-line while writing and the object moved
|
|
* out of the cpu write domain while we've dropped the lock.
|
|
*/
|
|
if (!needs_clflush_after &&
|
|
obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
|
|
if (i915_gem_clflush_object(obj, obj->pin_display))
|
|
needs_clflush_after = true;
|
|
}
|
|
}
|
|
|
|
if (needs_clflush_after)
|
|
i915_gem_chipset_flush(dev);
|
|
else
|
|
obj->cache_dirty = true;
|
|
|
|
intel_fb_obj_flush(obj, false, ORIGIN_CPU);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Writes data to the object referenced by handle.
|
|
*
|
|
* On error, the contents of the buffer that were to be modified are undefined.
|
|
*/
|
|
int
|
|
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_pwrite *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
int ret;
|
|
|
|
if (args->size == 0)
|
|
return 0;
|
|
|
|
if (!access_ok(VERIFY_READ,
|
|
to_user_ptr(args->data_ptr),
|
|
args->size))
|
|
return -EFAULT;
|
|
|
|
if (likely(!i915.prefault_disable)) {
|
|
ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
|
|
args->size);
|
|
if (ret)
|
|
return -EFAULT;
|
|
}
|
|
|
|
intel_runtime_pm_get(dev_priv);
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
goto put_rpm;
|
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
|
|
if (&obj->base == NULL) {
|
|
ret = -ENOENT;
|
|
goto unlock;
|
|
}
|
|
|
|
/* Bounds check destination. */
|
|
if (args->offset > obj->base.size ||
|
|
args->size > obj->base.size - args->offset) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* prime objects have no backing filp to GEM pread/pwrite
|
|
* pages from.
|
|
*/
|
|
if (!obj->base.filp) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
trace_i915_gem_object_pwrite(obj, args->offset, args->size);
|
|
|
|
ret = -EFAULT;
|
|
/* We can only do the GTT pwrite on untiled buffers, as otherwise
|
|
* it would end up going through the fenced access, and we'll get
|
|
* different detiling behavior between reading and writing.
|
|
* pread/pwrite currently are reading and writing from the CPU
|
|
* perspective, requiring manual detiling by the client.
|
|
*/
|
|
if (obj->tiling_mode == I915_TILING_NONE &&
|
|
obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
|
|
cpu_write_needs_clflush(obj)) {
|
|
ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
|
|
/* Note that the gtt paths might fail with non-page-backed user
|
|
* pointers (e.g. gtt mappings when moving data between
|
|
* textures). Fallback to the shmem path in that case. */
|
|
}
|
|
|
|
if (ret == -EFAULT || ret == -ENOSPC) {
|
|
if (obj->phys_handle)
|
|
ret = i915_gem_phys_pwrite(obj, args, file);
|
|
else
|
|
ret = i915_gem_shmem_pwrite(dev, obj, args, file);
|
|
}
|
|
|
|
out:
|
|
drm_gem_object_unreference(&obj->base);
|
|
unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
put_rpm:
|
|
intel_runtime_pm_put(dev_priv);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
i915_gem_check_wedge(struct i915_gpu_error *error,
|
|
bool interruptible)
|
|
{
|
|
if (i915_reset_in_progress(error)) {
|
|
/* Non-interruptible callers can't handle -EAGAIN, hence return
|
|
* -EIO unconditionally for these. */
|
|
if (!interruptible)
|
|
return -EIO;
|
|
|
|
/* Recovery complete, but the reset failed ... */
|
|
if (i915_terminally_wedged(error))
|
|
return -EIO;
|
|
|
|
/*
|
|
* Check if GPU Reset is in progress - we need intel_ring_begin
|
|
* to work properly to reinit the hw state while the gpu is
|
|
* still marked as reset-in-progress. Handle this with a flag.
|
|
*/
|
|
if (!error->reload_in_reset)
|
|
return -EAGAIN;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void fake_irq(unsigned long data)
|
|
{
|
|
wake_up_process((struct task_struct *)data);
|
|
}
|
|
|
|
static bool missed_irq(struct drm_i915_private *dev_priv,
|
|
struct intel_engine_cs *engine)
|
|
{
|
|
return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
|
|
}
|
|
|
|
static unsigned long local_clock_us(unsigned *cpu)
|
|
{
|
|
unsigned long t;
|
|
|
|
/* Cheaply and approximately convert from nanoseconds to microseconds.
|
|
* The result and subsequent calculations are also defined in the same
|
|
* approximate microseconds units. The principal source of timing
|
|
* error here is from the simple truncation.
|
|
*
|
|
* Note that local_clock() is only defined wrt to the current CPU;
|
|
* the comparisons are no longer valid if we switch CPUs. Instead of
|
|
* blocking preemption for the entire busywait, we can detect the CPU
|
|
* switch and use that as indicator of system load and a reason to
|
|
* stop busywaiting, see busywait_stop().
|
|
*/
|
|
*cpu = get_cpu();
|
|
t = local_clock() >> 10;
|
|
put_cpu();
|
|
|
|
return t;
|
|
}
|
|
|
|
static bool busywait_stop(unsigned long timeout, unsigned cpu)
|
|
{
|
|
unsigned this_cpu;
|
|
|
|
if (time_after(local_clock_us(&this_cpu), timeout))
|
|
return true;
|
|
|
|
return this_cpu != cpu;
|
|
}
|
|
|
|
static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
|
|
{
|
|
unsigned long timeout;
|
|
unsigned cpu;
|
|
|
|
/* When waiting for high frequency requests, e.g. during synchronous
|
|
* rendering split between the CPU and GPU, the finite amount of time
|
|
* required to set up the irq and wait upon it limits the response
|
|
* rate. By busywaiting on the request completion for a short while we
|
|
* can service the high frequency waits as quick as possible. However,
|
|
* if it is a slow request, we want to sleep as quickly as possible.
|
|
* The tradeoff between waiting and sleeping is roughly the time it
|
|
* takes to sleep on a request, on the order of a microsecond.
|
|
*/
|
|
|
|
if (req->engine->irq_refcount)
|
|
return -EBUSY;
|
|
|
|
/* Only spin if we know the GPU is processing this request */
|
|
if (!i915_gem_request_started(req, true))
|
|
return -EAGAIN;
|
|
|
|
timeout = local_clock_us(&cpu) + 5;
|
|
while (!need_resched()) {
|
|
if (i915_gem_request_completed(req, true))
|
|
return 0;
|
|
|
|
if (signal_pending_state(state, current))
|
|
break;
|
|
|
|
if (busywait_stop(timeout, cpu))
|
|
break;
|
|
|
|
cpu_relax_lowlatency();
|
|
}
|
|
|
|
if (i915_gem_request_completed(req, false))
|
|
return 0;
|
|
|
|
return -EAGAIN;
|
|
}
|
|
|
|
/**
|
|
* __i915_wait_request - wait until execution of request has finished
|
|
* @req: duh!
|
|
* @reset_counter: reset sequence associated with the given request
|
|
* @interruptible: do an interruptible wait (normally yes)
|
|
* @timeout: in - how long to wait (NULL forever); out - how much time remaining
|
|
*
|
|
* Note: It is of utmost importance that the passed in seqno and reset_counter
|
|
* values have been read by the caller in an smp safe manner. Where read-side
|
|
* locks are involved, it is sufficient to read the reset_counter before
|
|
* unlocking the lock that protects the seqno. For lockless tricks, the
|
|
* reset_counter _must_ be read before, and an appropriate smp_rmb must be
|
|
* inserted.
|
|
*
|
|
* Returns 0 if the request was found within the alloted time. Else returns the
|
|
* errno with remaining time filled in timeout argument.
|
|
*/
|
|
int __i915_wait_request(struct drm_i915_gem_request *req,
|
|
unsigned reset_counter,
|
|
bool interruptible,
|
|
s64 *timeout,
|
|
struct intel_rps_client *rps)
|
|
{
|
|
struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
|
|
struct drm_device *dev = engine->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
const bool irq_test_in_progress =
|
|
ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
|
|
int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
|
|
DEFINE_WAIT(wait);
|
|
unsigned long timeout_expire;
|
|
s64 before = 0; /* Only to silence a compiler warning. */
|
|
int ret;
|
|
|
|
WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
|
|
|
|
if (list_empty(&req->list))
|
|
return 0;
|
|
|
|
if (i915_gem_request_completed(req, true))
|
|
return 0;
|
|
|
|
timeout_expire = 0;
|
|
if (timeout) {
|
|
if (WARN_ON(*timeout < 0))
|
|
return -EINVAL;
|
|
|
|
if (*timeout == 0)
|
|
return -ETIME;
|
|
|
|
timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
|
|
|
|
/*
|
|
* Record current time in case interrupted by signal, or wedged.
|
|
*/
|
|
before = ktime_get_raw_ns();
|
|
}
|
|
|
|
if (INTEL_INFO(dev_priv)->gen >= 6)
|
|
gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
|
|
|
|
trace_i915_gem_request_wait_begin(req);
|
|
|
|
/* Optimistic spin for the next jiffie before touching IRQs */
|
|
ret = __i915_spin_request(req, state);
|
|
if (ret == 0)
|
|
goto out;
|
|
|
|
if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
|
|
ret = -ENODEV;
|
|
goto out;
|
|
}
|
|
|
|
for (;;) {
|
|
struct timer_list timer;
|
|
|
|
prepare_to_wait(&engine->irq_queue, &wait, state);
|
|
|
|
/* We need to check whether any gpu reset happened in between
|
|
* the caller grabbing the seqno and now ... */
|
|
if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
|
|
/* ... but upgrade the -EAGAIN to an -EIO if the gpu
|
|
* is truely gone. */
|
|
ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
|
|
if (ret == 0)
|
|
ret = -EAGAIN;
|
|
break;
|
|
}
|
|
|
|
if (i915_gem_request_completed(req, false)) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
if (signal_pending_state(state, current)) {
|
|
ret = -ERESTARTSYS;
|
|
break;
|
|
}
|
|
|
|
if (timeout && time_after_eq(jiffies, timeout_expire)) {
|
|
ret = -ETIME;
|
|
break;
|
|
}
|
|
|
|
timer.function = NULL;
|
|
if (timeout || missed_irq(dev_priv, engine)) {
|
|
unsigned long expire;
|
|
|
|
setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
|
|
expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
|
|
mod_timer(&timer, expire);
|
|
}
|
|
|
|
io_schedule();
|
|
|
|
if (timer.function) {
|
|
del_singleshot_timer_sync(&timer);
|
|
destroy_timer_on_stack(&timer);
|
|
}
|
|
}
|
|
if (!irq_test_in_progress)
|
|
engine->irq_put(engine);
|
|
|
|
finish_wait(&engine->irq_queue, &wait);
|
|
|
|
out:
|
|
trace_i915_gem_request_wait_end(req);
|
|
|
|
if (timeout) {
|
|
s64 tres = *timeout - (ktime_get_raw_ns() - before);
|
|
|
|
*timeout = tres < 0 ? 0 : tres;
|
|
|
|
/*
|
|
* Apparently ktime isn't accurate enough and occasionally has a
|
|
* bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
|
|
* things up to make the test happy. We allow up to 1 jiffy.
|
|
*
|
|
* This is a regrssion from the timespec->ktime conversion.
|
|
*/
|
|
if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
|
|
*timeout = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_file_private *file_priv;
|
|
|
|
WARN_ON(!req || !file || req->file_priv);
|
|
|
|
if (!req || !file)
|
|
return -EINVAL;
|
|
|
|
if (req->file_priv)
|
|
return -EINVAL;
|
|
|
|
file_priv = file->driver_priv;
|
|
|
|
spin_lock(&file_priv->mm.lock);
|
|
req->file_priv = file_priv;
|
|
list_add_tail(&req->client_list, &file_priv->mm.request_list);
|
|
spin_unlock(&file_priv->mm.lock);
|
|
|
|
req->pid = get_pid(task_pid(current));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void
|
|
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
|
|
{
|
|
struct drm_i915_file_private *file_priv = request->file_priv;
|
|
|
|
if (!file_priv)
|
|
return;
|
|
|
|
spin_lock(&file_priv->mm.lock);
|
|
list_del(&request->client_list);
|
|
request->file_priv = NULL;
|
|
spin_unlock(&file_priv->mm.lock);
|
|
|
|
put_pid(request->pid);
|
|
request->pid = NULL;
|
|
}
|
|
|
|
static void i915_gem_request_retire(struct drm_i915_gem_request *request)
|
|
{
|
|
trace_i915_gem_request_retire(request);
|
|
|
|
/* We know the GPU must have read the request to have
|
|
* sent us the seqno + interrupt, so use the position
|
|
* of tail of the request to update the last known position
|
|
* of the GPU head.
|
|
*
|
|
* Note this requires that we are always called in request
|
|
* completion order.
|
|
*/
|
|
request->ringbuf->last_retired_head = request->postfix;
|
|
|
|
list_del_init(&request->list);
|
|
i915_gem_request_remove_from_client(request);
|
|
|
|
i915_gem_request_unreference(request);
|
|
}
|
|
|
|
static void
|
|
__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
|
|
{
|
|
struct intel_engine_cs *engine = req->engine;
|
|
struct drm_i915_gem_request *tmp;
|
|
|
|
lockdep_assert_held(&engine->dev->struct_mutex);
|
|
|
|
if (list_empty(&req->list))
|
|
return;
|
|
|
|
do {
|
|
tmp = list_first_entry(&engine->request_list,
|
|
typeof(*tmp), list);
|
|
|
|
i915_gem_request_retire(tmp);
|
|
} while (tmp != req);
|
|
|
|
WARN_ON(i915_verify_lists(engine->dev));
|
|
}
|
|
|
|
/**
|
|
* Waits for a request to be signaled, and cleans up the
|
|
* request and object lists appropriately for that event.
|
|
*/
|
|
int
|
|
i915_wait_request(struct drm_i915_gem_request *req)
|
|
{
|
|
struct drm_device *dev;
|
|
struct drm_i915_private *dev_priv;
|
|
bool interruptible;
|
|
int ret;
|
|
|
|
BUG_ON(req == NULL);
|
|
|
|
dev = req->engine->dev;
|
|
dev_priv = dev->dev_private;
|
|
interruptible = dev_priv->mm.interruptible;
|
|
|
|
BUG_ON(!mutex_is_locked(&dev->struct_mutex));
|
|
|
|
ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = __i915_wait_request(req,
|
|
atomic_read(&dev_priv->gpu_error.reset_counter),
|
|
interruptible, NULL, NULL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
__i915_gem_request_retire__upto(req);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Ensures that all rendering to the object has completed and the object is
|
|
* safe to unbind from the GTT or access from the CPU.
|
|
*/
|
|
int
|
|
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
|
|
bool readonly)
|
|
{
|
|
int ret, i;
|
|
|
|
if (!obj->active)
|
|
return 0;
|
|
|
|
if (readonly) {
|
|
if (obj->last_write_req != NULL) {
|
|
ret = i915_wait_request(obj->last_write_req);
|
|
if (ret)
|
|
return ret;
|
|
|
|
i = obj->last_write_req->engine->id;
|
|
if (obj->last_read_req[i] == obj->last_write_req)
|
|
i915_gem_object_retire__read(obj, i);
|
|
else
|
|
i915_gem_object_retire__write(obj);
|
|
}
|
|
} else {
|
|
for (i = 0; i < I915_NUM_ENGINES; i++) {
|
|
if (obj->last_read_req[i] == NULL)
|
|
continue;
|
|
|
|
ret = i915_wait_request(obj->last_read_req[i]);
|
|
if (ret)
|
|
return ret;
|
|
|
|
i915_gem_object_retire__read(obj, i);
|
|
}
|
|
RQ_BUG_ON(obj->active);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
|
|
struct drm_i915_gem_request *req)
|
|
{
|
|
int ring = req->engine->id;
|
|
|
|
if (obj->last_read_req[ring] == req)
|
|
i915_gem_object_retire__read(obj, ring);
|
|
else if (obj->last_write_req == req)
|
|
i915_gem_object_retire__write(obj);
|
|
|
|
__i915_gem_request_retire__upto(req);
|
|
}
|
|
|
|
/* A nonblocking variant of the above wait. This is a highly dangerous routine
|
|
* as the object state may change during this call.
|
|
*/
|
|
static __must_check int
|
|
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
|
|
struct intel_rps_client *rps,
|
|
bool readonly)
|
|
{
|
|
struct drm_device *dev = obj->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
|
|
unsigned reset_counter;
|
|
int ret, i, n = 0;
|
|
|
|
BUG_ON(!mutex_is_locked(&dev->struct_mutex));
|
|
BUG_ON(!dev_priv->mm.interruptible);
|
|
|
|
if (!obj->active)
|
|
return 0;
|
|
|
|
ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
|
|
if (ret)
|
|
return ret;
|
|
|
|
reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
|
|
|
|
if (readonly) {
|
|
struct drm_i915_gem_request *req;
|
|
|
|
req = obj->last_write_req;
|
|
if (req == NULL)
|
|
return 0;
|
|
|
|
requests[n++] = i915_gem_request_reference(req);
|
|
} else {
|
|
for (i = 0; i < I915_NUM_ENGINES; i++) {
|
|
struct drm_i915_gem_request *req;
|
|
|
|
req = obj->last_read_req[i];
|
|
if (req == NULL)
|
|
continue;
|
|
|
|
requests[n++] = i915_gem_request_reference(req);
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&dev->struct_mutex);
|
|
for (i = 0; ret == 0 && i < n; i++)
|
|
ret = __i915_wait_request(requests[i], reset_counter, true,
|
|
NULL, rps);
|
|
mutex_lock(&dev->struct_mutex);
|
|
|
|
for (i = 0; i < n; i++) {
|
|
if (ret == 0)
|
|
i915_gem_object_retire_request(obj, requests[i]);
|
|
i915_gem_request_unreference(requests[i]);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct intel_rps_client *to_rps_client(struct drm_file *file)
|
|
{
|
|
struct drm_i915_file_private *fpriv = file->driver_priv;
|
|
return &fpriv->rps;
|
|
}
|
|
|
|
/**
|
|
* Called when user space prepares to use an object with the CPU, either
|
|
* through the mmap ioctl's mapping or a GTT mapping.
|
|
*/
|
|
int
|
|
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_set_domain *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
uint32_t read_domains = args->read_domains;
|
|
uint32_t write_domain = args->write_domain;
|
|
int ret;
|
|
|
|
/* Only handle setting domains to types used by the CPU. */
|
|
if (write_domain & I915_GEM_GPU_DOMAINS)
|
|
return -EINVAL;
|
|
|
|
if (read_domains & I915_GEM_GPU_DOMAINS)
|
|
return -EINVAL;
|
|
|
|
/* Having something in the write domain implies it's in the read
|
|
* domain, and only that read domain. Enforce that in the request.
|
|
*/
|
|
if (write_domain != 0 && read_domains != write_domain)
|
|
return -EINVAL;
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
|
|
if (&obj->base == NULL) {
|
|
ret = -ENOENT;
|
|
goto unlock;
|
|
}
|
|
|
|
/* Try to flush the object off the GPU without holding the lock.
|
|
* We will repeat the flush holding the lock in the normal manner
|
|
* to catch cases where we are gazumped.
|
|
*/
|
|
ret = i915_gem_object_wait_rendering__nonblocking(obj,
|
|
to_rps_client(file),
|
|
!write_domain);
|
|
if (ret)
|
|
goto unref;
|
|
|
|
if (read_domains & I915_GEM_DOMAIN_GTT)
|
|
ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
|
|
else
|
|
ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
|
|
|
|
if (write_domain != 0)
|
|
intel_fb_obj_invalidate(obj,
|
|
write_domain == I915_GEM_DOMAIN_GTT ?
|
|
ORIGIN_GTT : ORIGIN_CPU);
|
|
|
|
unref:
|
|
drm_gem_object_unreference(&obj->base);
|
|
unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Called when user space has done writes to this buffer
|
|
*/
|
|
int
|
|
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_sw_finish *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
int ret = 0;
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
|
|
if (&obj->base == NULL) {
|
|
ret = -ENOENT;
|
|
goto unlock;
|
|
}
|
|
|
|
/* Pinned buffers may be scanout, so flush the cache */
|
|
if (obj->pin_display)
|
|
i915_gem_object_flush_cpu_write_domain(obj);
|
|
|
|
drm_gem_object_unreference(&obj->base);
|
|
unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Maps the contents of an object, returning the address it is mapped
|
|
* into.
|
|
*
|
|
* While the mapping holds a reference on the contents of the object, it doesn't
|
|
* imply a ref on the object itself.
|
|
*
|
|
* IMPORTANT:
|
|
*
|
|
* DRM driver writers who look a this function as an example for how to do GEM
|
|
* mmap support, please don't implement mmap support like here. The modern way
|
|
* to implement DRM mmap support is with an mmap offset ioctl (like
|
|
* i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
|
|
* That way debug tooling like valgrind will understand what's going on, hiding
|
|
* the mmap call in a driver private ioctl will break that. The i915 driver only
|
|
* does cpu mmaps this way because we didn't know better.
|
|
*/
|
|
int
|
|
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_mmap *args = data;
|
|
struct drm_gem_object *obj;
|
|
unsigned long addr;
|
|
|
|
if (args->flags & ~(I915_MMAP_WC))
|
|
return -EINVAL;
|
|
|
|
if (args->flags & I915_MMAP_WC && !cpu_has_pat)
|
|
return -ENODEV;
|
|
|
|
obj = drm_gem_object_lookup(dev, file, args->handle);
|
|
if (obj == NULL)
|
|
return -ENOENT;
|
|
|
|
/* prime objects have no backing filp to GEM mmap
|
|
* pages from.
|
|
*/
|
|
if (!obj->filp) {
|
|
drm_gem_object_unreference_unlocked(obj);
|
|
return -EINVAL;
|
|
}
|
|
|
|
addr = vm_mmap(obj->filp, 0, args->size,
|
|
PROT_READ | PROT_WRITE, MAP_SHARED,
|
|
args->offset);
|
|
if (args->flags & I915_MMAP_WC) {
|
|
struct mm_struct *mm = current->mm;
|
|
struct vm_area_struct *vma;
|
|
|
|
down_write(&mm->mmap_sem);
|
|
vma = find_vma(mm, addr);
|
|
if (vma)
|
|
vma->vm_page_prot =
|
|
pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
|
|
else
|
|
addr = -ENOMEM;
|
|
up_write(&mm->mmap_sem);
|
|
}
|
|
drm_gem_object_unreference_unlocked(obj);
|
|
if (IS_ERR((void *)addr))
|
|
return addr;
|
|
|
|
args->addr_ptr = (uint64_t) addr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_fault - fault a page into the GTT
|
|
* @vma: VMA in question
|
|
* @vmf: fault info
|
|
*
|
|
* The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
|
|
* from userspace. The fault handler takes care of binding the object to
|
|
* the GTT (if needed), allocating and programming a fence register (again,
|
|
* only if needed based on whether the old reg is still valid or the object
|
|
* is tiled) and inserting a new PTE into the faulting process.
|
|
*
|
|
* Note that the faulting process may involve evicting existing objects
|
|
* from the GTT and/or fence registers to make room. So performance may
|
|
* suffer if the GTT working set is large or there are few fence registers
|
|
* left.
|
|
*/
|
|
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
|
|
{
|
|
struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
|
|
struct drm_device *dev = obj->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct i915_ggtt *ggtt = &dev_priv->ggtt;
|
|
struct i915_ggtt_view view = i915_ggtt_view_normal;
|
|
pgoff_t page_offset;
|
|
unsigned long pfn;
|
|
int ret = 0;
|
|
bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
|
|
|
|
intel_runtime_pm_get(dev_priv);
|
|
|
|
/* We don't use vmf->pgoff since that has the fake offset */
|
|
page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
|
|
PAGE_SHIFT;
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
goto out;
|
|
|
|
trace_i915_gem_object_fault(obj, page_offset, true, write);
|
|
|
|
/* Try to flush the object off the GPU first without holding the lock.
|
|
* Upon reacquiring the lock, we will perform our sanity checks and then
|
|
* repeat the flush holding the lock in the normal manner to catch cases
|
|
* where we are gazumped.
|
|
*/
|
|
ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
|
|
if (ret)
|
|
goto unlock;
|
|
|
|
/* Access to snoopable pages through the GTT is incoherent. */
|
|
if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
|
|
ret = -EFAULT;
|
|
goto unlock;
|
|
}
|
|
|
|
/* Use a partial view if the object is bigger than the aperture. */
|
|
if (obj->base.size >= ggtt->mappable_end &&
|
|
obj->tiling_mode == I915_TILING_NONE) {
|
|
static const unsigned int chunk_size = 256; // 1 MiB
|
|
|
|
memset(&view, 0, sizeof(view));
|
|
view.type = I915_GGTT_VIEW_PARTIAL;
|
|
view.params.partial.offset = rounddown(page_offset, chunk_size);
|
|
view.params.partial.size =
|
|
min_t(unsigned int,
|
|
chunk_size,
|
|
(vma->vm_end - vma->vm_start)/PAGE_SIZE -
|
|
view.params.partial.offset);
|
|
}
|
|
|
|
/* Now pin it into the GTT if needed */
|
|
ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
|
|
if (ret)
|
|
goto unlock;
|
|
|
|
ret = i915_gem_object_set_to_gtt_domain(obj, write);
|
|
if (ret)
|
|
goto unpin;
|
|
|
|
ret = i915_gem_object_get_fence(obj);
|
|
if (ret)
|
|
goto unpin;
|
|
|
|
/* Finally, remap it using the new GTT offset */
|
|
pfn = ggtt->mappable_base +
|
|
i915_gem_obj_ggtt_offset_view(obj, &view);
|
|
pfn >>= PAGE_SHIFT;
|
|
|
|
if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
|
|
/* Overriding existing pages in partial view does not cause
|
|
* us any trouble as TLBs are still valid because the fault
|
|
* is due to userspace losing part of the mapping or never
|
|
* having accessed it before (at this partials' range).
|
|
*/
|
|
unsigned long base = vma->vm_start +
|
|
(view.params.partial.offset << PAGE_SHIFT);
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < view.params.partial.size; i++) {
|
|
ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
obj->fault_mappable = true;
|
|
} else {
|
|
if (!obj->fault_mappable) {
|
|
unsigned long size = min_t(unsigned long,
|
|
vma->vm_end - vma->vm_start,
|
|
obj->base.size);
|
|
int i;
|
|
|
|
for (i = 0; i < size >> PAGE_SHIFT; i++) {
|
|
ret = vm_insert_pfn(vma,
|
|
(unsigned long)vma->vm_start + i * PAGE_SIZE,
|
|
pfn + i);
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
obj->fault_mappable = true;
|
|
} else
|
|
ret = vm_insert_pfn(vma,
|
|
(unsigned long)vmf->virtual_address,
|
|
pfn + page_offset);
|
|
}
|
|
unpin:
|
|
i915_gem_object_ggtt_unpin_view(obj, &view);
|
|
unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
out:
|
|
switch (ret) {
|
|
case -EIO:
|
|
/*
|
|
* We eat errors when the gpu is terminally wedged to avoid
|
|
* userspace unduly crashing (gl has no provisions for mmaps to
|
|
* fail). But any other -EIO isn't ours (e.g. swap in failure)
|
|
* and so needs to be reported.
|
|
*/
|
|
if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
|
|
ret = VM_FAULT_SIGBUS;
|
|
break;
|
|
}
|
|
case -EAGAIN:
|
|
/*
|
|
* EAGAIN means the gpu is hung and we'll wait for the error
|
|
* handler to reset everything when re-faulting in
|
|
* i915_mutex_lock_interruptible.
|
|
*/
|
|
case 0:
|
|
case -ERESTARTSYS:
|
|
case -EINTR:
|
|
case -EBUSY:
|
|
/*
|
|
* EBUSY is ok: this just means that another thread
|
|
* already did the job.
|
|
*/
|
|
ret = VM_FAULT_NOPAGE;
|
|
break;
|
|
case -ENOMEM:
|
|
ret = VM_FAULT_OOM;
|
|
break;
|
|
case -ENOSPC:
|
|
case -EFAULT:
|
|
ret = VM_FAULT_SIGBUS;
|
|
break;
|
|
default:
|
|
WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
|
|
ret = VM_FAULT_SIGBUS;
|
|
break;
|
|
}
|
|
|
|
intel_runtime_pm_put(dev_priv);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_release_mmap - remove physical page mappings
|
|
* @obj: obj in question
|
|
*
|
|
* Preserve the reservation of the mmapping with the DRM core code, but
|
|
* relinquish ownership of the pages back to the system.
|
|
*
|
|
* It is vital that we remove the page mapping if we have mapped a tiled
|
|
* object through the GTT and then lose the fence register due to
|
|
* resource pressure. Similarly if the object has been moved out of the
|
|
* aperture, than pages mapped into userspace must be revoked. Removing the
|
|
* mapping will then trigger a page fault on the next user access, allowing
|
|
* fixup by i915_gem_fault().
|
|
*/
|
|
void
|
|
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
|
|
{
|
|
if (!obj->fault_mappable)
|
|
return;
|
|
|
|
drm_vma_node_unmap(&obj->base.vma_node,
|
|
obj->base.dev->anon_inode->i_mapping);
|
|
obj->fault_mappable = false;
|
|
}
|
|
|
|
void
|
|
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct drm_i915_gem_object *obj;
|
|
|
|
list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
|
|
i915_gem_release_mmap(obj);
|
|
}
|
|
|
|
uint32_t
|
|
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
|
|
{
|
|
uint32_t gtt_size;
|
|
|
|
if (INTEL_INFO(dev)->gen >= 4 ||
|
|
tiling_mode == I915_TILING_NONE)
|
|
return size;
|
|
|
|
/* Previous chips need a power-of-two fence region when tiling */
|
|
if (INTEL_INFO(dev)->gen == 3)
|
|
gtt_size = 1024*1024;
|
|
else
|
|
gtt_size = 512*1024;
|
|
|
|
while (gtt_size < size)
|
|
gtt_size <<= 1;
|
|
|
|
return gtt_size;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_get_gtt_alignment - return required GTT alignment for an object
|
|
* @obj: object to check
|
|
*
|
|
* Return the required GTT alignment for an object, taking into account
|
|
* potential fence register mapping.
|
|
*/
|
|
uint32_t
|
|
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
|
|
int tiling_mode, bool fenced)
|
|
{
|
|
/*
|
|
* Minimum alignment is 4k (GTT page size), but might be greater
|
|
* if a fence register is needed for the object.
|
|
*/
|
|
if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
|
|
tiling_mode == I915_TILING_NONE)
|
|
return 4096;
|
|
|
|
/*
|
|
* Previous chips need to be aligned to the size of the smallest
|
|
* fence register that can contain the object.
|
|
*/
|
|
return i915_gem_get_gtt_size(dev, size, tiling_mode);
|
|
}
|
|
|
|
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
|
|
int ret;
|
|
|
|
if (drm_vma_node_has_offset(&obj->base.vma_node))
|
|
return 0;
|
|
|
|
dev_priv->mm.shrinker_no_lock_stealing = true;
|
|
|
|
ret = drm_gem_create_mmap_offset(&obj->base);
|
|
if (ret != -ENOSPC)
|
|
goto out;
|
|
|
|
/* Badly fragmented mmap space? The only way we can recover
|
|
* space is by destroying unwanted objects. We can't randomly release
|
|
* mmap_offsets as userspace expects them to be persistent for the
|
|
* lifetime of the objects. The closest we can is to release the
|
|
* offsets on purgeable objects by truncating it and marking it purged,
|
|
* which prevents userspace from ever using that object again.
|
|
*/
|
|
i915_gem_shrink(dev_priv,
|
|
obj->base.size >> PAGE_SHIFT,
|
|
I915_SHRINK_BOUND |
|
|
I915_SHRINK_UNBOUND |
|
|
I915_SHRINK_PURGEABLE);
|
|
ret = drm_gem_create_mmap_offset(&obj->base);
|
|
if (ret != -ENOSPC)
|
|
goto out;
|
|
|
|
i915_gem_shrink_all(dev_priv);
|
|
ret = drm_gem_create_mmap_offset(&obj->base);
|
|
out:
|
|
dev_priv->mm.shrinker_no_lock_stealing = false;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
|
|
{
|
|
drm_gem_free_mmap_offset(&obj->base);
|
|
}
|
|
|
|
int
|
|
i915_gem_mmap_gtt(struct drm_file *file,
|
|
struct drm_device *dev,
|
|
uint32_t handle,
|
|
uint64_t *offset)
|
|
{
|
|
struct drm_i915_gem_object *obj;
|
|
int ret;
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
|
|
if (&obj->base == NULL) {
|
|
ret = -ENOENT;
|
|
goto unlock;
|
|
}
|
|
|
|
if (obj->madv != I915_MADV_WILLNEED) {
|
|
DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
ret = i915_gem_object_create_mmap_offset(obj);
|
|
if (ret)
|
|
goto out;
|
|
|
|
*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
|
|
|
|
out:
|
|
drm_gem_object_unreference(&obj->base);
|
|
unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
|
|
* @dev: DRM device
|
|
* @data: GTT mapping ioctl data
|
|
* @file: GEM object info
|
|
*
|
|
* Simply returns the fake offset to userspace so it can mmap it.
|
|
* The mmap call will end up in drm_gem_mmap(), which will set things
|
|
* up so we can get faults in the handler above.
|
|
*
|
|
* The fault handler will take care of binding the object into the GTT
|
|
* (since it may have been evicted to make room for something), allocating
|
|
* a fence register, and mapping the appropriate aperture address into
|
|
* userspace.
|
|
*/
|
|
int
|
|
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_mmap_gtt *args = data;
|
|
|
|
return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
|
|
}
|
|
|
|
/* Immediately discard the backing storage */
|
|
static void
|
|
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
|
|
{
|
|
i915_gem_object_free_mmap_offset(obj);
|
|
|
|
if (obj->base.filp == NULL)
|
|
return;
|
|
|
|
/* Our goal here is to return as much of the memory as
|
|
* is possible back to the system as we are called from OOM.
|
|
* To do this we must instruct the shmfs to drop all of its
|
|
* backing pages, *now*.
|
|
*/
|
|
shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
|
|
obj->madv = __I915_MADV_PURGED;
|
|
}
|
|
|
|
/* Try to discard unwanted pages */
|
|
static void
|
|
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct address_space *mapping;
|
|
|
|
switch (obj->madv) {
|
|
case I915_MADV_DONTNEED:
|
|
i915_gem_object_truncate(obj);
|
|
case __I915_MADV_PURGED:
|
|
return;
|
|
}
|
|
|
|
if (obj->base.filp == NULL)
|
|
return;
|
|
|
|
mapping = file_inode(obj->base.filp)->i_mapping,
|
|
invalidate_mapping_pages(mapping, 0, (loff_t)-1);
|
|
}
|
|
|
|
static void
|
|
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct sg_page_iter sg_iter;
|
|
int ret;
|
|
|
|
BUG_ON(obj->madv == __I915_MADV_PURGED);
|
|
|
|
ret = i915_gem_object_set_to_cpu_domain(obj, true);
|
|
if (ret) {
|
|
/* In the event of a disaster, abandon all caches and
|
|
* hope for the best.
|
|
*/
|
|
WARN_ON(ret != -EIO);
|
|
i915_gem_clflush_object(obj, true);
|
|
obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
|
|
}
|
|
|
|
i915_gem_gtt_finish_object(obj);
|
|
|
|
if (i915_gem_object_needs_bit17_swizzle(obj))
|
|
i915_gem_object_save_bit_17_swizzle(obj);
|
|
|
|
if (obj->madv == I915_MADV_DONTNEED)
|
|
obj->dirty = 0;
|
|
|
|
for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
|
|
struct page *page = sg_page_iter_page(&sg_iter);
|
|
|
|
if (obj->dirty)
|
|
set_page_dirty(page);
|
|
|
|
if (obj->madv == I915_MADV_WILLNEED)
|
|
mark_page_accessed(page);
|
|
|
|
page_cache_release(page);
|
|
}
|
|
obj->dirty = 0;
|
|
|
|
sg_free_table(obj->pages);
|
|
kfree(obj->pages);
|
|
}
|
|
|
|
int
|
|
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
|
|
{
|
|
const struct drm_i915_gem_object_ops *ops = obj->ops;
|
|
|
|
if (obj->pages == NULL)
|
|
return 0;
|
|
|
|
if (obj->pages_pin_count)
|
|
return -EBUSY;
|
|
|
|
BUG_ON(i915_gem_obj_bound_any(obj));
|
|
|
|
/* ->put_pages might need to allocate memory for the bit17 swizzle
|
|
* array, hence protect them from being reaped by removing them from gtt
|
|
* lists early. */
|
|
list_del(&obj->global_list);
|
|
|
|
ops->put_pages(obj);
|
|
obj->pages = NULL;
|
|
|
|
i915_gem_object_invalidate(obj);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
|
|
int page_count, i;
|
|
struct address_space *mapping;
|
|
struct sg_table *st;
|
|
struct scatterlist *sg;
|
|
struct sg_page_iter sg_iter;
|
|
struct page *page;
|
|
unsigned long last_pfn = 0; /* suppress gcc warning */
|
|
int ret;
|
|
gfp_t gfp;
|
|
|
|
/* Assert that the object is not currently in any GPU domain. As it
|
|
* wasn't in the GTT, there shouldn't be any way it could have been in
|
|
* a GPU cache
|
|
*/
|
|
BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
|
|
BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
|
|
|
|
st = kmalloc(sizeof(*st), GFP_KERNEL);
|
|
if (st == NULL)
|
|
return -ENOMEM;
|
|
|
|
page_count = obj->base.size / PAGE_SIZE;
|
|
if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
|
|
kfree(st);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Get the list of pages out of our struct file. They'll be pinned
|
|
* at this point until we release them.
|
|
*
|
|
* Fail silently without starting the shrinker
|
|
*/
|
|
mapping = file_inode(obj->base.filp)->i_mapping;
|
|
gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
|
|
gfp |= __GFP_NORETRY | __GFP_NOWARN;
|
|
sg = st->sgl;
|
|
st->nents = 0;
|
|
for (i = 0; i < page_count; i++) {
|
|
page = shmem_read_mapping_page_gfp(mapping, i, gfp);
|
|
if (IS_ERR(page)) {
|
|
i915_gem_shrink(dev_priv,
|
|
page_count,
|
|
I915_SHRINK_BOUND |
|
|
I915_SHRINK_UNBOUND |
|
|
I915_SHRINK_PURGEABLE);
|
|
page = shmem_read_mapping_page_gfp(mapping, i, gfp);
|
|
}
|
|
if (IS_ERR(page)) {
|
|
/* We've tried hard to allocate the memory by reaping
|
|
* our own buffer, now let the real VM do its job and
|
|
* go down in flames if truly OOM.
|
|
*/
|
|
i915_gem_shrink_all(dev_priv);
|
|
page = shmem_read_mapping_page(mapping, i);
|
|
if (IS_ERR(page)) {
|
|
ret = PTR_ERR(page);
|
|
goto err_pages;
|
|
}
|
|
}
|
|
#ifdef CONFIG_SWIOTLB
|
|
if (swiotlb_nr_tbl()) {
|
|
st->nents++;
|
|
sg_set_page(sg, page, PAGE_SIZE, 0);
|
|
sg = sg_next(sg);
|
|
continue;
|
|
}
|
|
#endif
|
|
if (!i || page_to_pfn(page) != last_pfn + 1) {
|
|
if (i)
|
|
sg = sg_next(sg);
|
|
st->nents++;
|
|
sg_set_page(sg, page, PAGE_SIZE, 0);
|
|
} else {
|
|
sg->length += PAGE_SIZE;
|
|
}
|
|
last_pfn = page_to_pfn(page);
|
|
|
|
/* Check that the i965g/gm workaround works. */
|
|
WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
|
|
}
|
|
#ifdef CONFIG_SWIOTLB
|
|
if (!swiotlb_nr_tbl())
|
|
#endif
|
|
sg_mark_end(sg);
|
|
obj->pages = st;
|
|
|
|
ret = i915_gem_gtt_prepare_object(obj);
|
|
if (ret)
|
|
goto err_pages;
|
|
|
|
if (i915_gem_object_needs_bit17_swizzle(obj))
|
|
i915_gem_object_do_bit_17_swizzle(obj);
|
|
|
|
if (obj->tiling_mode != I915_TILING_NONE &&
|
|
dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
|
|
i915_gem_object_pin_pages(obj);
|
|
|
|
return 0;
|
|
|
|
err_pages:
|
|
sg_mark_end(sg);
|
|
for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
|
|
page_cache_release(sg_page_iter_page(&sg_iter));
|
|
sg_free_table(st);
|
|
kfree(st);
|
|
|
|
/* shmemfs first checks if there is enough memory to allocate the page
|
|
* and reports ENOSPC should there be insufficient, along with the usual
|
|
* ENOMEM for a genuine allocation failure.
|
|
*
|
|
* We use ENOSPC in our driver to mean that we have run out of aperture
|
|
* space and so want to translate the error from shmemfs back to our
|
|
* usual understanding of ENOMEM.
|
|
*/
|
|
if (ret == -ENOSPC)
|
|
ret = -ENOMEM;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Ensure that the associated pages are gathered from the backing storage
|
|
* and pinned into our object. i915_gem_object_get_pages() may be called
|
|
* multiple times before they are released by a single call to
|
|
* i915_gem_object_put_pages() - once the pages are no longer referenced
|
|
* either as a result of memory pressure (reaping pages under the shrinker)
|
|
* or as the object is itself released.
|
|
*/
|
|
int
|
|
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
|
|
const struct drm_i915_gem_object_ops *ops = obj->ops;
|
|
int ret;
|
|
|
|
if (obj->pages)
|
|
return 0;
|
|
|
|
if (obj->madv != I915_MADV_WILLNEED) {
|
|
DRM_DEBUG("Attempting to obtain a purgeable object\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
BUG_ON(obj->pages_pin_count);
|
|
|
|
ret = ops->get_pages(obj);
|
|
if (ret)
|
|
return ret;
|
|
|
|
list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
|
|
|
|
obj->get_page.sg = obj->pages->sgl;
|
|
obj->get_page.last = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void i915_vma_move_to_active(struct i915_vma *vma,
|
|
struct drm_i915_gem_request *req)
|
|
{
|
|
struct drm_i915_gem_object *obj = vma->obj;
|
|
struct intel_engine_cs *engine;
|
|
|
|
engine = i915_gem_request_get_engine(req);
|
|
|
|
/* Add a reference if we're newly entering the active list. */
|
|
if (obj->active == 0)
|
|
drm_gem_object_reference(&obj->base);
|
|
obj->active |= intel_engine_flag(engine);
|
|
|
|
list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
|
|
i915_gem_request_assign(&obj->last_read_req[engine->id], req);
|
|
|
|
list_move_tail(&vma->vm_link, &vma->vm->active_list);
|
|
}
|
|
|
|
static void
|
|
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
|
|
{
|
|
RQ_BUG_ON(obj->last_write_req == NULL);
|
|
RQ_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
|
|
|
|
i915_gem_request_assign(&obj->last_write_req, NULL);
|
|
intel_fb_obj_flush(obj, true, ORIGIN_CS);
|
|
}
|
|
|
|
static void
|
|
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
|
|
{
|
|
struct i915_vma *vma;
|
|
|
|
RQ_BUG_ON(obj->last_read_req[ring] == NULL);
|
|
RQ_BUG_ON(!(obj->active & (1 << ring)));
|
|
|
|
list_del_init(&obj->engine_list[ring]);
|
|
i915_gem_request_assign(&obj->last_read_req[ring], NULL);
|
|
|
|
if (obj->last_write_req && obj->last_write_req->engine->id == ring)
|
|
i915_gem_object_retire__write(obj);
|
|
|
|
obj->active &= ~(1 << ring);
|
|
if (obj->active)
|
|
return;
|
|
|
|
/* Bump our place on the bound list to keep it roughly in LRU order
|
|
* so that we don't steal from recently used but inactive objects
|
|
* (unless we are forced to ofc!)
|
|
*/
|
|
list_move_tail(&obj->global_list,
|
|
&to_i915(obj->base.dev)->mm.bound_list);
|
|
|
|
list_for_each_entry(vma, &obj->vma_list, obj_link) {
|
|
if (!list_empty(&vma->vm_link))
|
|
list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
|
|
}
|
|
|
|
i915_gem_request_assign(&obj->last_fenced_req, NULL);
|
|
drm_gem_object_unreference(&obj->base);
|
|
}
|
|
|
|
static int
|
|
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_engine_cs *engine;
|
|
int ret, j;
|
|
|
|
/* Carefully retire all requests without writing to the rings */
|
|
for_each_engine(engine, dev_priv) {
|
|
ret = intel_engine_idle(engine);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
i915_gem_retire_requests(dev);
|
|
|
|
/* Finally reset hw state */
|
|
for_each_engine(engine, dev_priv) {
|
|
intel_ring_init_seqno(engine, seqno);
|
|
|
|
for (j = 0; j < ARRAY_SIZE(engine->semaphore.sync_seqno); j++)
|
|
engine->semaphore.sync_seqno[j] = 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int ret;
|
|
|
|
if (seqno == 0)
|
|
return -EINVAL;
|
|
|
|
/* HWS page needs to be set less than what we
|
|
* will inject to ring
|
|
*/
|
|
ret = i915_gem_init_seqno(dev, seqno - 1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Carefully set the last_seqno value so that wrap
|
|
* detection still works
|
|
*/
|
|
dev_priv->next_seqno = seqno;
|
|
dev_priv->last_seqno = seqno - 1;
|
|
if (dev_priv->last_seqno == 0)
|
|
dev_priv->last_seqno--;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
/* reserve 0 for non-seqno */
|
|
if (dev_priv->next_seqno == 0) {
|
|
int ret = i915_gem_init_seqno(dev, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
dev_priv->next_seqno = 1;
|
|
}
|
|
|
|
*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* NB: This function is not allowed to fail. Doing so would mean the the
|
|
* request is not being tracked for completion but the work itself is
|
|
* going to happen on the hardware. This would be a Bad Thing(tm).
|
|
*/
|
|
void __i915_add_request(struct drm_i915_gem_request *request,
|
|
struct drm_i915_gem_object *obj,
|
|
bool flush_caches)
|
|
{
|
|
struct intel_engine_cs *engine;
|
|
struct drm_i915_private *dev_priv;
|
|
struct intel_ringbuffer *ringbuf;
|
|
u32 request_start;
|
|
int ret;
|
|
|
|
if (WARN_ON(request == NULL))
|
|
return;
|
|
|
|
engine = request->engine;
|
|
dev_priv = request->i915;
|
|
ringbuf = request->ringbuf;
|
|
|
|
/*
|
|
* To ensure that this call will not fail, space for its emissions
|
|
* should already have been reserved in the ring buffer. Let the ring
|
|
* know that it is time to use that space up.
|
|
*/
|
|
intel_ring_reserved_space_use(ringbuf);
|
|
|
|
request_start = intel_ring_get_tail(ringbuf);
|
|
/*
|
|
* Emit any outstanding flushes - execbuf can fail to emit the flush
|
|
* after having emitted the batchbuffer command. Hence we need to fix
|
|
* things up similar to emitting the lazy request. The difference here
|
|
* is that the flush _must_ happen before the next request, no matter
|
|
* what.
|
|
*/
|
|
if (flush_caches) {
|
|
if (i915.enable_execlists)
|
|
ret = logical_ring_flush_all_caches(request);
|
|
else
|
|
ret = intel_ring_flush_all_caches(request);
|
|
/* Not allowed to fail! */
|
|
WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
|
|
}
|
|
|
|
/* Record the position of the start of the request so that
|
|
* should we detect the updated seqno part-way through the
|
|
* GPU processing the request, we never over-estimate the
|
|
* position of the head.
|
|
*/
|
|
request->postfix = intel_ring_get_tail(ringbuf);
|
|
|
|
if (i915.enable_execlists)
|
|
ret = engine->emit_request(request);
|
|
else {
|
|
ret = engine->add_request(request);
|
|
|
|
request->tail = intel_ring_get_tail(ringbuf);
|
|
}
|
|
/* Not allowed to fail! */
|
|
WARN(ret, "emit|add_request failed: %d!\n", ret);
|
|
|
|
request->head = request_start;
|
|
|
|
/* Whilst this request exists, batch_obj will be on the
|
|
* active_list, and so will hold the active reference. Only when this
|
|
* request is retired will the the batch_obj be moved onto the
|
|
* inactive_list and lose its active reference. Hence we do not need
|
|
* to explicitly hold another reference here.
|
|
*/
|
|
request->batch_obj = obj;
|
|
|
|
request->emitted_jiffies = jiffies;
|
|
request->previous_seqno = engine->last_submitted_seqno;
|
|
engine->last_submitted_seqno = request->seqno;
|
|
list_add_tail(&request->list, &engine->request_list);
|
|
|
|
trace_i915_gem_request_add(request);
|
|
|
|
i915_queue_hangcheck(engine->dev);
|
|
|
|
queue_delayed_work(dev_priv->wq,
|
|
&dev_priv->mm.retire_work,
|
|
round_jiffies_up_relative(HZ));
|
|
intel_mark_busy(dev_priv->dev);
|
|
|
|
/* Sanity check that the reserved size was large enough. */
|
|
intel_ring_reserved_space_end(ringbuf);
|
|
}
|
|
|
|
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
|
|
const struct intel_context *ctx)
|
|
{
|
|
unsigned long elapsed;
|
|
|
|
elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
|
|
|
|
if (ctx->hang_stats.banned)
|
|
return true;
|
|
|
|
if (ctx->hang_stats.ban_period_seconds &&
|
|
elapsed <= ctx->hang_stats.ban_period_seconds) {
|
|
if (!i915_gem_context_is_default(ctx)) {
|
|
DRM_DEBUG("context hanging too fast, banning!\n");
|
|
return true;
|
|
} else if (i915_stop_ring_allow_ban(dev_priv)) {
|
|
if (i915_stop_ring_allow_warn(dev_priv))
|
|
DRM_ERROR("gpu hanging too fast, banning!\n");
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
|
|
struct intel_context *ctx,
|
|
const bool guilty)
|
|
{
|
|
struct i915_ctx_hang_stats *hs;
|
|
|
|
if (WARN_ON(!ctx))
|
|
return;
|
|
|
|
hs = &ctx->hang_stats;
|
|
|
|
if (guilty) {
|
|
hs->banned = i915_context_is_banned(dev_priv, ctx);
|
|
hs->batch_active++;
|
|
hs->guilty_ts = get_seconds();
|
|
} else {
|
|
hs->batch_pending++;
|
|
}
|
|
}
|
|
|
|
void i915_gem_request_free(struct kref *req_ref)
|
|
{
|
|
struct drm_i915_gem_request *req = container_of(req_ref,
|
|
typeof(*req), ref);
|
|
struct intel_context *ctx = req->ctx;
|
|
|
|
if (req->file_priv)
|
|
i915_gem_request_remove_from_client(req);
|
|
|
|
if (ctx) {
|
|
if (i915.enable_execlists && ctx != req->i915->kernel_context)
|
|
intel_lr_context_unpin(ctx, req->engine);
|
|
|
|
i915_gem_context_unreference(ctx);
|
|
}
|
|
|
|
kmem_cache_free(req->i915->requests, req);
|
|
}
|
|
|
|
static inline int
|
|
__i915_gem_request_alloc(struct intel_engine_cs *engine,
|
|
struct intel_context *ctx,
|
|
struct drm_i915_gem_request **req_out)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(engine->dev);
|
|
struct drm_i915_gem_request *req;
|
|
int ret;
|
|
|
|
if (!req_out)
|
|
return -EINVAL;
|
|
|
|
*req_out = NULL;
|
|
|
|
req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
|
|
if (req == NULL)
|
|
return -ENOMEM;
|
|
|
|
ret = i915_gem_get_seqno(engine->dev, &req->seqno);
|
|
if (ret)
|
|
goto err;
|
|
|
|
kref_init(&req->ref);
|
|
req->i915 = dev_priv;
|
|
req->engine = engine;
|
|
req->ctx = ctx;
|
|
i915_gem_context_reference(req->ctx);
|
|
|
|
if (i915.enable_execlists)
|
|
ret = intel_logical_ring_alloc_request_extras(req);
|
|
else
|
|
ret = intel_ring_alloc_request_extras(req);
|
|
if (ret) {
|
|
i915_gem_context_unreference(req->ctx);
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* Reserve space in the ring buffer for all the commands required to
|
|
* eventually emit this request. This is to guarantee that the
|
|
* i915_add_request() call can't fail. Note that the reserve may need
|
|
* to be redone if the request is not actually submitted straight
|
|
* away, e.g. because a GPU scheduler has deferred it.
|
|
*/
|
|
if (i915.enable_execlists)
|
|
ret = intel_logical_ring_reserve_space(req);
|
|
else
|
|
ret = intel_ring_reserve_space(req);
|
|
if (ret) {
|
|
/*
|
|
* At this point, the request is fully allocated even if not
|
|
* fully prepared. Thus it can be cleaned up using the proper
|
|
* free code.
|
|
*/
|
|
i915_gem_request_cancel(req);
|
|
return ret;
|
|
}
|
|
|
|
*req_out = req;
|
|
return 0;
|
|
|
|
err:
|
|
kmem_cache_free(dev_priv->requests, req);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_request_alloc - allocate a request structure
|
|
*
|
|
* @engine: engine that we wish to issue the request on.
|
|
* @ctx: context that the request will be associated with.
|
|
* This can be NULL if the request is not directly related to
|
|
* any specific user context, in which case this function will
|
|
* choose an appropriate context to use.
|
|
*
|
|
* Returns a pointer to the allocated request if successful,
|
|
* or an error code if not.
|
|
*/
|
|
struct drm_i915_gem_request *
|
|
i915_gem_request_alloc(struct intel_engine_cs *engine,
|
|
struct intel_context *ctx)
|
|
{
|
|
struct drm_i915_gem_request *req;
|
|
int err;
|
|
|
|
if (ctx == NULL)
|
|
ctx = to_i915(engine->dev)->kernel_context;
|
|
err = __i915_gem_request_alloc(engine, ctx, &req);
|
|
return err ? ERR_PTR(err) : req;
|
|
}
|
|
|
|
void i915_gem_request_cancel(struct drm_i915_gem_request *req)
|
|
{
|
|
intel_ring_reserved_space_cancel(req->ringbuf);
|
|
|
|
i915_gem_request_unreference(req);
|
|
}
|
|
|
|
struct drm_i915_gem_request *
|
|
i915_gem_find_active_request(struct intel_engine_cs *engine)
|
|
{
|
|
struct drm_i915_gem_request *request;
|
|
|
|
list_for_each_entry(request, &engine->request_list, list) {
|
|
if (i915_gem_request_completed(request, false))
|
|
continue;
|
|
|
|
return request;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
|
|
struct intel_engine_cs *engine)
|
|
{
|
|
struct drm_i915_gem_request *request;
|
|
bool ring_hung;
|
|
|
|
request = i915_gem_find_active_request(engine);
|
|
|
|
if (request == NULL)
|
|
return;
|
|
|
|
ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
|
|
|
|
i915_set_reset_status(dev_priv, request->ctx, ring_hung);
|
|
|
|
list_for_each_entry_continue(request, &engine->request_list, list)
|
|
i915_set_reset_status(dev_priv, request->ctx, false);
|
|
}
|
|
|
|
static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
|
|
struct intel_engine_cs *engine)
|
|
{
|
|
struct intel_ringbuffer *buffer;
|
|
|
|
while (!list_empty(&engine->active_list)) {
|
|
struct drm_i915_gem_object *obj;
|
|
|
|
obj = list_first_entry(&engine->active_list,
|
|
struct drm_i915_gem_object,
|
|
engine_list[engine->id]);
|
|
|
|
i915_gem_object_retire__read(obj, engine->id);
|
|
}
|
|
|
|
/*
|
|
* Clear the execlists queue up before freeing the requests, as those
|
|
* are the ones that keep the context and ringbuffer backing objects
|
|
* pinned in place.
|
|
*/
|
|
|
|
if (i915.enable_execlists) {
|
|
/* Ensure irq handler finishes or is cancelled. */
|
|
tasklet_kill(&engine->irq_tasklet);
|
|
|
|
spin_lock_bh(&engine->execlist_lock);
|
|
/* list_splice_tail_init checks for empty lists */
|
|
list_splice_tail_init(&engine->execlist_queue,
|
|
&engine->execlist_retired_req_list);
|
|
spin_unlock_bh(&engine->execlist_lock);
|
|
|
|
intel_execlists_retire_requests(engine);
|
|
}
|
|
|
|
/*
|
|
* We must free the requests after all the corresponding objects have
|
|
* been moved off active lists. Which is the same order as the normal
|
|
* retire_requests function does. This is important if object hold
|
|
* implicit references on things like e.g. ppgtt address spaces through
|
|
* the request.
|
|
*/
|
|
while (!list_empty(&engine->request_list)) {
|
|
struct drm_i915_gem_request *request;
|
|
|
|
request = list_first_entry(&engine->request_list,
|
|
struct drm_i915_gem_request,
|
|
list);
|
|
|
|
i915_gem_request_retire(request);
|
|
}
|
|
|
|
/* Having flushed all requests from all queues, we know that all
|
|
* ringbuffers must now be empty. However, since we do not reclaim
|
|
* all space when retiring the request (to prevent HEADs colliding
|
|
* with rapid ringbuffer wraparound) the amount of available space
|
|
* upon reset is less than when we start. Do one more pass over
|
|
* all the ringbuffers to reset last_retired_head.
|
|
*/
|
|
list_for_each_entry(buffer, &engine->buffers, link) {
|
|
buffer->last_retired_head = buffer->tail;
|
|
intel_ring_update_space(buffer);
|
|
}
|
|
|
|
intel_ring_init_seqno(engine, engine->last_submitted_seqno);
|
|
}
|
|
|
|
void i915_gem_reset(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_engine_cs *engine;
|
|
|
|
/*
|
|
* Before we free the objects from the requests, we need to inspect
|
|
* them for finding the guilty party. As the requests only borrow
|
|
* their reference to the objects, the inspection must be done first.
|
|
*/
|
|
for_each_engine(engine, dev_priv)
|
|
i915_gem_reset_engine_status(dev_priv, engine);
|
|
|
|
for_each_engine(engine, dev_priv)
|
|
i915_gem_reset_engine_cleanup(dev_priv, engine);
|
|
|
|
i915_gem_context_reset(dev);
|
|
|
|
i915_gem_restore_fences(dev);
|
|
|
|
WARN_ON(i915_verify_lists(dev));
|
|
}
|
|
|
|
/**
|
|
* This function clears the request list as sequence numbers are passed.
|
|
*/
|
|
void
|
|
i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
|
|
{
|
|
WARN_ON(i915_verify_lists(engine->dev));
|
|
|
|
/* Retire requests first as we use it above for the early return.
|
|
* If we retire requests last, we may use a later seqno and so clear
|
|
* the requests lists without clearing the active list, leading to
|
|
* confusion.
|
|
*/
|
|
while (!list_empty(&engine->request_list)) {
|
|
struct drm_i915_gem_request *request;
|
|
|
|
request = list_first_entry(&engine->request_list,
|
|
struct drm_i915_gem_request,
|
|
list);
|
|
|
|
if (!i915_gem_request_completed(request, true))
|
|
break;
|
|
|
|
i915_gem_request_retire(request);
|
|
}
|
|
|
|
/* Move any buffers on the active list that are no longer referenced
|
|
* by the ringbuffer to the flushing/inactive lists as appropriate,
|
|
* before we free the context associated with the requests.
|
|
*/
|
|
while (!list_empty(&engine->active_list)) {
|
|
struct drm_i915_gem_object *obj;
|
|
|
|
obj = list_first_entry(&engine->active_list,
|
|
struct drm_i915_gem_object,
|
|
engine_list[engine->id]);
|
|
|
|
if (!list_empty(&obj->last_read_req[engine->id]->list))
|
|
break;
|
|
|
|
i915_gem_object_retire__read(obj, engine->id);
|
|
}
|
|
|
|
if (unlikely(engine->trace_irq_req &&
|
|
i915_gem_request_completed(engine->trace_irq_req, true))) {
|
|
engine->irq_put(engine);
|
|
i915_gem_request_assign(&engine->trace_irq_req, NULL);
|
|
}
|
|
|
|
WARN_ON(i915_verify_lists(engine->dev));
|
|
}
|
|
|
|
bool
|
|
i915_gem_retire_requests(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_engine_cs *engine;
|
|
bool idle = true;
|
|
|
|
for_each_engine(engine, dev_priv) {
|
|
i915_gem_retire_requests_ring(engine);
|
|
idle &= list_empty(&engine->request_list);
|
|
if (i915.enable_execlists) {
|
|
spin_lock_bh(&engine->execlist_lock);
|
|
idle &= list_empty(&engine->execlist_queue);
|
|
spin_unlock_bh(&engine->execlist_lock);
|
|
|
|
intel_execlists_retire_requests(engine);
|
|
}
|
|
}
|
|
|
|
if (idle)
|
|
mod_delayed_work(dev_priv->wq,
|
|
&dev_priv->mm.idle_work,
|
|
msecs_to_jiffies(100));
|
|
|
|
return idle;
|
|
}
|
|
|
|
static void
|
|
i915_gem_retire_work_handler(struct work_struct *work)
|
|
{
|
|
struct drm_i915_private *dev_priv =
|
|
container_of(work, typeof(*dev_priv), mm.retire_work.work);
|
|
struct drm_device *dev = dev_priv->dev;
|
|
bool idle;
|
|
|
|
/* Come back later if the device is busy... */
|
|
idle = false;
|
|
if (mutex_trylock(&dev->struct_mutex)) {
|
|
idle = i915_gem_retire_requests(dev);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
}
|
|
if (!idle)
|
|
queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
|
|
round_jiffies_up_relative(HZ));
|
|
}
|
|
|
|
static void
|
|
i915_gem_idle_work_handler(struct work_struct *work)
|
|
{
|
|
struct drm_i915_private *dev_priv =
|
|
container_of(work, typeof(*dev_priv), mm.idle_work.work);
|
|
struct drm_device *dev = dev_priv->dev;
|
|
struct intel_engine_cs *engine;
|
|
|
|
for_each_engine(engine, dev_priv)
|
|
if (!list_empty(&engine->request_list))
|
|
return;
|
|
|
|
/* we probably should sync with hangcheck here, using cancel_work_sync.
|
|
* Also locking seems to be fubar here, engine->request_list is protected
|
|
* by dev->struct_mutex. */
|
|
|
|
intel_mark_idle(dev);
|
|
|
|
if (mutex_trylock(&dev->struct_mutex)) {
|
|
for_each_engine(engine, dev_priv)
|
|
i915_gem_batch_pool_fini(&engine->batch_pool);
|
|
|
|
mutex_unlock(&dev->struct_mutex);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Ensures that an object will eventually get non-busy by flushing any required
|
|
* write domains, emitting any outstanding lazy request and retiring and
|
|
* completed requests.
|
|
*/
|
|
static int
|
|
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
|
|
{
|
|
int i;
|
|
|
|
if (!obj->active)
|
|
return 0;
|
|
|
|
for (i = 0; i < I915_NUM_ENGINES; i++) {
|
|
struct drm_i915_gem_request *req;
|
|
|
|
req = obj->last_read_req[i];
|
|
if (req == NULL)
|
|
continue;
|
|
|
|
if (list_empty(&req->list))
|
|
goto retire;
|
|
|
|
if (i915_gem_request_completed(req, true)) {
|
|
__i915_gem_request_retire__upto(req);
|
|
retire:
|
|
i915_gem_object_retire__read(obj, i);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
|
|
* @DRM_IOCTL_ARGS: standard ioctl arguments
|
|
*
|
|
* Returns 0 if successful, else an error is returned with the remaining time in
|
|
* the timeout parameter.
|
|
* -ETIME: object is still busy after timeout
|
|
* -ERESTARTSYS: signal interrupted the wait
|
|
* -ENONENT: object doesn't exist
|
|
* Also possible, but rare:
|
|
* -EAGAIN: GPU wedged
|
|
* -ENOMEM: damn
|
|
* -ENODEV: Internal IRQ fail
|
|
* -E?: The add request failed
|
|
*
|
|
* The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
|
|
* non-zero timeout parameter the wait ioctl will wait for the given number of
|
|
* nanoseconds on an object becoming unbusy. Since the wait itself does so
|
|
* without holding struct_mutex the object may become re-busied before this
|
|
* function completes. A similar but shorter * race condition exists in the busy
|
|
* ioctl
|
|
*/
|
|
int
|
|
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_wait *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
struct drm_i915_gem_request *req[I915_NUM_ENGINES];
|
|
unsigned reset_counter;
|
|
int i, n = 0;
|
|
int ret;
|
|
|
|
if (args->flags != 0)
|
|
return -EINVAL;
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
|
|
if (&obj->base == NULL) {
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return -ENOENT;
|
|
}
|
|
|
|
/* Need to make sure the object gets inactive eventually. */
|
|
ret = i915_gem_object_flush_active(obj);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (!obj->active)
|
|
goto out;
|
|
|
|
/* Do this after OLR check to make sure we make forward progress polling
|
|
* on this IOCTL with a timeout == 0 (like busy ioctl)
|
|
*/
|
|
if (args->timeout_ns == 0) {
|
|
ret = -ETIME;
|
|
goto out;
|
|
}
|
|
|
|
drm_gem_object_unreference(&obj->base);
|
|
reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
|
|
|
|
for (i = 0; i < I915_NUM_ENGINES; i++) {
|
|
if (obj->last_read_req[i] == NULL)
|
|
continue;
|
|
|
|
req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
|
|
}
|
|
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
for (i = 0; i < n; i++) {
|
|
if (ret == 0)
|
|
ret = __i915_wait_request(req[i], reset_counter, true,
|
|
args->timeout_ns > 0 ? &args->timeout_ns : NULL,
|
|
to_rps_client(file));
|
|
i915_gem_request_unreference__unlocked(req[i]);
|
|
}
|
|
return ret;
|
|
|
|
out:
|
|
drm_gem_object_unreference(&obj->base);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
__i915_gem_object_sync(struct drm_i915_gem_object *obj,
|
|
struct intel_engine_cs *to,
|
|
struct drm_i915_gem_request *from_req,
|
|
struct drm_i915_gem_request **to_req)
|
|
{
|
|
struct intel_engine_cs *from;
|
|
int ret;
|
|
|
|
from = i915_gem_request_get_engine(from_req);
|
|
if (to == from)
|
|
return 0;
|
|
|
|
if (i915_gem_request_completed(from_req, true))
|
|
return 0;
|
|
|
|
if (!i915_semaphore_is_enabled(obj->base.dev)) {
|
|
struct drm_i915_private *i915 = to_i915(obj->base.dev);
|
|
ret = __i915_wait_request(from_req,
|
|
atomic_read(&i915->gpu_error.reset_counter),
|
|
i915->mm.interruptible,
|
|
NULL,
|
|
&i915->rps.semaphores);
|
|
if (ret)
|
|
return ret;
|
|
|
|
i915_gem_object_retire_request(obj, from_req);
|
|
} else {
|
|
int idx = intel_ring_sync_index(from, to);
|
|
u32 seqno = i915_gem_request_get_seqno(from_req);
|
|
|
|
WARN_ON(!to_req);
|
|
|
|
if (seqno <= from->semaphore.sync_seqno[idx])
|
|
return 0;
|
|
|
|
if (*to_req == NULL) {
|
|
struct drm_i915_gem_request *req;
|
|
|
|
req = i915_gem_request_alloc(to, NULL);
|
|
if (IS_ERR(req))
|
|
return PTR_ERR(req);
|
|
|
|
*to_req = req;
|
|
}
|
|
|
|
trace_i915_gem_ring_sync_to(*to_req, from, from_req);
|
|
ret = to->semaphore.sync_to(*to_req, from, seqno);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* We use last_read_req because sync_to()
|
|
* might have just caused seqno wrap under
|
|
* the radar.
|
|
*/
|
|
from->semaphore.sync_seqno[idx] =
|
|
i915_gem_request_get_seqno(obj->last_read_req[from->id]);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_object_sync - sync an object to a ring.
|
|
*
|
|
* @obj: object which may be in use on another ring.
|
|
* @to: ring we wish to use the object on. May be NULL.
|
|
* @to_req: request we wish to use the object for. See below.
|
|
* This will be allocated and returned if a request is
|
|
* required but not passed in.
|
|
*
|
|
* This code is meant to abstract object synchronization with the GPU.
|
|
* Calling with NULL implies synchronizing the object with the CPU
|
|
* rather than a particular GPU ring. Conceptually we serialise writes
|
|
* between engines inside the GPU. We only allow one engine to write
|
|
* into a buffer at any time, but multiple readers. To ensure each has
|
|
* a coherent view of memory, we must:
|
|
*
|
|
* - If there is an outstanding write request to the object, the new
|
|
* request must wait for it to complete (either CPU or in hw, requests
|
|
* on the same ring will be naturally ordered).
|
|
*
|
|
* - If we are a write request (pending_write_domain is set), the new
|
|
* request must wait for outstanding read requests to complete.
|
|
*
|
|
* For CPU synchronisation (NULL to) no request is required. For syncing with
|
|
* rings to_req must be non-NULL. However, a request does not have to be
|
|
* pre-allocated. If *to_req is NULL and sync commands will be emitted then a
|
|
* request will be allocated automatically and returned through *to_req. Note
|
|
* that it is not guaranteed that commands will be emitted (because the system
|
|
* might already be idle). Hence there is no need to create a request that
|
|
* might never have any work submitted. Note further that if a request is
|
|
* returned in *to_req, it is the responsibility of the caller to submit
|
|
* that request (after potentially adding more work to it).
|
|
*
|
|
* Returns 0 if successful, else propagates up the lower layer error.
|
|
*/
|
|
int
|
|
i915_gem_object_sync(struct drm_i915_gem_object *obj,
|
|
struct intel_engine_cs *to,
|
|
struct drm_i915_gem_request **to_req)
|
|
{
|
|
const bool readonly = obj->base.pending_write_domain == 0;
|
|
struct drm_i915_gem_request *req[I915_NUM_ENGINES];
|
|
int ret, i, n;
|
|
|
|
if (!obj->active)
|
|
return 0;
|
|
|
|
if (to == NULL)
|
|
return i915_gem_object_wait_rendering(obj, readonly);
|
|
|
|
n = 0;
|
|
if (readonly) {
|
|
if (obj->last_write_req)
|
|
req[n++] = obj->last_write_req;
|
|
} else {
|
|
for (i = 0; i < I915_NUM_ENGINES; i++)
|
|
if (obj->last_read_req[i])
|
|
req[n++] = obj->last_read_req[i];
|
|
}
|
|
for (i = 0; i < n; i++) {
|
|
ret = __i915_gem_object_sync(obj, to, req[i], to_req);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
|
|
{
|
|
u32 old_write_domain, old_read_domains;
|
|
|
|
/* Force a pagefault for domain tracking on next user access */
|
|
i915_gem_release_mmap(obj);
|
|
|
|
if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
|
|
return;
|
|
|
|
/* Wait for any direct GTT access to complete */
|
|
mb();
|
|
|
|
old_read_domains = obj->base.read_domains;
|
|
old_write_domain = obj->base.write_domain;
|
|
|
|
obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
|
|
obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
|
|
|
|
trace_i915_gem_object_change_domain(obj,
|
|
old_read_domains,
|
|
old_write_domain);
|
|
}
|
|
|
|
static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
|
|
{
|
|
struct drm_i915_gem_object *obj = vma->obj;
|
|
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
|
|
int ret;
|
|
|
|
if (list_empty(&vma->obj_link))
|
|
return 0;
|
|
|
|
if (!drm_mm_node_allocated(&vma->node)) {
|
|
i915_gem_vma_destroy(vma);
|
|
return 0;
|
|
}
|
|
|
|
if (vma->pin_count)
|
|
return -EBUSY;
|
|
|
|
BUG_ON(obj->pages == NULL);
|
|
|
|
if (wait) {
|
|
ret = i915_gem_object_wait_rendering(obj, false);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
|
|
i915_gem_object_finish_gtt(obj);
|
|
|
|
/* release the fence reg _after_ flushing */
|
|
ret = i915_gem_object_put_fence(obj);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
trace_i915_vma_unbind(vma);
|
|
|
|
vma->vm->unbind_vma(vma);
|
|
vma->bound = 0;
|
|
|
|
list_del_init(&vma->vm_link);
|
|
if (vma->is_ggtt) {
|
|
if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
|
|
obj->map_and_fenceable = false;
|
|
} else if (vma->ggtt_view.pages) {
|
|
sg_free_table(vma->ggtt_view.pages);
|
|
kfree(vma->ggtt_view.pages);
|
|
}
|
|
vma->ggtt_view.pages = NULL;
|
|
}
|
|
|
|
drm_mm_remove_node(&vma->node);
|
|
i915_gem_vma_destroy(vma);
|
|
|
|
/* Since the unbound list is global, only move to that list if
|
|
* no more VMAs exist. */
|
|
if (list_empty(&obj->vma_list))
|
|
list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
|
|
|
|
/* And finally now the object is completely decoupled from this vma,
|
|
* we can drop its hold on the backing storage and allow it to be
|
|
* reaped by the shrinker.
|
|
*/
|
|
i915_gem_object_unpin_pages(obj);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int i915_vma_unbind(struct i915_vma *vma)
|
|
{
|
|
return __i915_vma_unbind(vma, true);
|
|
}
|
|
|
|
int __i915_vma_unbind_no_wait(struct i915_vma *vma)
|
|
{
|
|
return __i915_vma_unbind(vma, false);
|
|
}
|
|
|
|
int i915_gpu_idle(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_engine_cs *engine;
|
|
int ret;
|
|
|
|
/* Flush everything onto the inactive list. */
|
|
for_each_engine(engine, dev_priv) {
|
|
if (!i915.enable_execlists) {
|
|
struct drm_i915_gem_request *req;
|
|
|
|
req = i915_gem_request_alloc(engine, NULL);
|
|
if (IS_ERR(req))
|
|
return PTR_ERR(req);
|
|
|
|
ret = i915_switch_context(req);
|
|
if (ret) {
|
|
i915_gem_request_cancel(req);
|
|
return ret;
|
|
}
|
|
|
|
i915_add_request_no_flush(req);
|
|
}
|
|
|
|
ret = intel_engine_idle(engine);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
WARN_ON(i915_verify_lists(dev));
|
|
return 0;
|
|
}
|
|
|
|
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
|
|
unsigned long cache_level)
|
|
{
|
|
struct drm_mm_node *gtt_space = &vma->node;
|
|
struct drm_mm_node *other;
|
|
|
|
/*
|
|
* On some machines we have to be careful when putting differing types
|
|
* of snoopable memory together to avoid the prefetcher crossing memory
|
|
* domains and dying. During vm initialisation, we decide whether or not
|
|
* these constraints apply and set the drm_mm.color_adjust
|
|
* appropriately.
|
|
*/
|
|
if (vma->vm->mm.color_adjust == NULL)
|
|
return true;
|
|
|
|
if (!drm_mm_node_allocated(gtt_space))
|
|
return true;
|
|
|
|
if (list_empty(>t_space->node_list))
|
|
return true;
|
|
|
|
other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
|
|
if (other->allocated && !other->hole_follows && other->color != cache_level)
|
|
return false;
|
|
|
|
other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
|
|
if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Finds free space in the GTT aperture and binds the object or a view of it
|
|
* there.
|
|
*/
|
|
static struct i915_vma *
|
|
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
|
|
struct i915_address_space *vm,
|
|
const struct i915_ggtt_view *ggtt_view,
|
|
unsigned alignment,
|
|
uint64_t flags)
|
|
{
|
|
struct drm_device *dev = obj->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct i915_ggtt *ggtt = &dev_priv->ggtt;
|
|
u32 fence_alignment, unfenced_alignment;
|
|
u32 search_flag, alloc_flag;
|
|
u64 start, end;
|
|
u64 size, fence_size;
|
|
struct i915_vma *vma;
|
|
int ret;
|
|
|
|
if (i915_is_ggtt(vm)) {
|
|
u32 view_size;
|
|
|
|
if (WARN_ON(!ggtt_view))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
view_size = i915_ggtt_view_size(obj, ggtt_view);
|
|
|
|
fence_size = i915_gem_get_gtt_size(dev,
|
|
view_size,
|
|
obj->tiling_mode);
|
|
fence_alignment = i915_gem_get_gtt_alignment(dev,
|
|
view_size,
|
|
obj->tiling_mode,
|
|
true);
|
|
unfenced_alignment = i915_gem_get_gtt_alignment(dev,
|
|
view_size,
|
|
obj->tiling_mode,
|
|
false);
|
|
size = flags & PIN_MAPPABLE ? fence_size : view_size;
|
|
} else {
|
|
fence_size = i915_gem_get_gtt_size(dev,
|
|
obj->base.size,
|
|
obj->tiling_mode);
|
|
fence_alignment = i915_gem_get_gtt_alignment(dev,
|
|
obj->base.size,
|
|
obj->tiling_mode,
|
|
true);
|
|
unfenced_alignment =
|
|
i915_gem_get_gtt_alignment(dev,
|
|
obj->base.size,
|
|
obj->tiling_mode,
|
|
false);
|
|
size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
|
|
}
|
|
|
|
start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
|
|
end = vm->total;
|
|
if (flags & PIN_MAPPABLE)
|
|
end = min_t(u64, end, ggtt->mappable_end);
|
|
if (flags & PIN_ZONE_4G)
|
|
end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
|
|
|
|
if (alignment == 0)
|
|
alignment = flags & PIN_MAPPABLE ? fence_alignment :
|
|
unfenced_alignment;
|
|
if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
|
|
DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
|
|
ggtt_view ? ggtt_view->type : 0,
|
|
alignment);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
/* If binding the object/GGTT view requires more space than the entire
|
|
* aperture has, reject it early before evicting everything in a vain
|
|
* attempt to find space.
|
|
*/
|
|
if (size > end) {
|
|
DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
|
|
ggtt_view ? ggtt_view->type : 0,
|
|
size,
|
|
flags & PIN_MAPPABLE ? "mappable" : "total",
|
|
end);
|
|
return ERR_PTR(-E2BIG);
|
|
}
|
|
|
|
ret = i915_gem_object_get_pages(obj);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
|
|
i915_gem_object_pin_pages(obj);
|
|
|
|
vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
|
|
i915_gem_obj_lookup_or_create_vma(obj, vm);
|
|
|
|
if (IS_ERR(vma))
|
|
goto err_unpin;
|
|
|
|
if (flags & PIN_OFFSET_FIXED) {
|
|
uint64_t offset = flags & PIN_OFFSET_MASK;
|
|
|
|
if (offset & (alignment - 1) || offset + size > end) {
|
|
ret = -EINVAL;
|
|
goto err_free_vma;
|
|
}
|
|
vma->node.start = offset;
|
|
vma->node.size = size;
|
|
vma->node.color = obj->cache_level;
|
|
ret = drm_mm_reserve_node(&vm->mm, &vma->node);
|
|
if (ret) {
|
|
ret = i915_gem_evict_for_vma(vma);
|
|
if (ret == 0)
|
|
ret = drm_mm_reserve_node(&vm->mm, &vma->node);
|
|
}
|
|
if (ret)
|
|
goto err_free_vma;
|
|
} else {
|
|
if (flags & PIN_HIGH) {
|
|
search_flag = DRM_MM_SEARCH_BELOW;
|
|
alloc_flag = DRM_MM_CREATE_TOP;
|
|
} else {
|
|
search_flag = DRM_MM_SEARCH_DEFAULT;
|
|
alloc_flag = DRM_MM_CREATE_DEFAULT;
|
|
}
|
|
|
|
search_free:
|
|
ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
|
|
size, alignment,
|
|
obj->cache_level,
|
|
start, end,
|
|
search_flag,
|
|
alloc_flag);
|
|
if (ret) {
|
|
ret = i915_gem_evict_something(dev, vm, size, alignment,
|
|
obj->cache_level,
|
|
start, end,
|
|
flags);
|
|
if (ret == 0)
|
|
goto search_free;
|
|
|
|
goto err_free_vma;
|
|
}
|
|
}
|
|
if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
|
|
ret = -EINVAL;
|
|
goto err_remove_node;
|
|
}
|
|
|
|
trace_i915_vma_bind(vma, flags);
|
|
ret = i915_vma_bind(vma, obj->cache_level, flags);
|
|
if (ret)
|
|
goto err_remove_node;
|
|
|
|
list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
|
|
list_add_tail(&vma->vm_link, &vm->inactive_list);
|
|
|
|
return vma;
|
|
|
|
err_remove_node:
|
|
drm_mm_remove_node(&vma->node);
|
|
err_free_vma:
|
|
i915_gem_vma_destroy(vma);
|
|
vma = ERR_PTR(ret);
|
|
err_unpin:
|
|
i915_gem_object_unpin_pages(obj);
|
|
return vma;
|
|
}
|
|
|
|
bool
|
|
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
|
|
bool force)
|
|
{
|
|
/* If we don't have a page list set up, then we're not pinned
|
|
* to GPU, and we can ignore the cache flush because it'll happen
|
|
* again at bind time.
|
|
*/
|
|
if (obj->pages == NULL)
|
|
return false;
|
|
|
|
/*
|
|
* Stolen memory is always coherent with the GPU as it is explicitly
|
|
* marked as wc by the system, or the system is cache-coherent.
|
|
*/
|
|
if (obj->stolen || obj->phys_handle)
|
|
return false;
|
|
|
|
/* If the GPU is snooping the contents of the CPU cache,
|
|
* we do not need to manually clear the CPU cache lines. However,
|
|
* the caches are only snooped when the render cache is
|
|
* flushed/invalidated. As we always have to emit invalidations
|
|
* and flushes when moving into and out of the RENDER domain, correct
|
|
* snooping behaviour occurs naturally as the result of our domain
|
|
* tracking.
|
|
*/
|
|
if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
|
|
obj->cache_dirty = true;
|
|
return false;
|
|
}
|
|
|
|
trace_i915_gem_object_clflush(obj);
|
|
drm_clflush_sg(obj->pages);
|
|
obj->cache_dirty = false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/** Flushes the GTT write domain for the object if it's dirty. */
|
|
static void
|
|
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
|
|
{
|
|
uint32_t old_write_domain;
|
|
|
|
if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
|
|
return;
|
|
|
|
/* No actual flushing is required for the GTT write domain. Writes
|
|
* to it immediately go to main memory as far as we know, so there's
|
|
* no chipset flush. It also doesn't land in render cache.
|
|
*
|
|
* However, we do have to enforce the order so that all writes through
|
|
* the GTT land before any writes to the device, such as updates to
|
|
* the GATT itself.
|
|
*/
|
|
wmb();
|
|
|
|
old_write_domain = obj->base.write_domain;
|
|
obj->base.write_domain = 0;
|
|
|
|
intel_fb_obj_flush(obj, false, ORIGIN_GTT);
|
|
|
|
trace_i915_gem_object_change_domain(obj,
|
|
obj->base.read_domains,
|
|
old_write_domain);
|
|
}
|
|
|
|
/** Flushes the CPU write domain for the object if it's dirty. */
|
|
static void
|
|
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
|
|
{
|
|
uint32_t old_write_domain;
|
|
|
|
if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
|
|
return;
|
|
|
|
if (i915_gem_clflush_object(obj, obj->pin_display))
|
|
i915_gem_chipset_flush(obj->base.dev);
|
|
|
|
old_write_domain = obj->base.write_domain;
|
|
obj->base.write_domain = 0;
|
|
|
|
intel_fb_obj_flush(obj, false, ORIGIN_CPU);
|
|
|
|
trace_i915_gem_object_change_domain(obj,
|
|
obj->base.read_domains,
|
|
old_write_domain);
|
|
}
|
|
|
|
/**
|
|
* Moves a single object to the GTT read, and possibly write domain.
|
|
*
|
|
* This function returns when the move is complete, including waiting on
|
|
* flushes to occur.
|
|
*/
|
|
int
|
|
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
|
|
{
|
|
struct drm_device *dev = obj->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct i915_ggtt *ggtt = &dev_priv->ggtt;
|
|
uint32_t old_write_domain, old_read_domains;
|
|
struct i915_vma *vma;
|
|
int ret;
|
|
|
|
if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
|
|
return 0;
|
|
|
|
ret = i915_gem_object_wait_rendering(obj, !write);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Flush and acquire obj->pages so that we are coherent through
|
|
* direct access in memory with previous cached writes through
|
|
* shmemfs and that our cache domain tracking remains valid.
|
|
* For example, if the obj->filp was moved to swap without us
|
|
* being notified and releasing the pages, we would mistakenly
|
|
* continue to assume that the obj remained out of the CPU cached
|
|
* domain.
|
|
*/
|
|
ret = i915_gem_object_get_pages(obj);
|
|
if (ret)
|
|
return ret;
|
|
|
|
i915_gem_object_flush_cpu_write_domain(obj);
|
|
|
|
/* Serialise direct access to this object with the barriers for
|
|
* coherent writes from the GPU, by effectively invalidating the
|
|
* GTT domain upon first access.
|
|
*/
|
|
if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
|
|
mb();
|
|
|
|
old_write_domain = obj->base.write_domain;
|
|
old_read_domains = obj->base.read_domains;
|
|
|
|
/* It should now be out of any other write domains, and we can update
|
|
* the domain values for our changes.
|
|
*/
|
|
BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
|
|
obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
|
|
if (write) {
|
|
obj->base.read_domains = I915_GEM_DOMAIN_GTT;
|
|
obj->base.write_domain = I915_GEM_DOMAIN_GTT;
|
|
obj->dirty = 1;
|
|
}
|
|
|
|
trace_i915_gem_object_change_domain(obj,
|
|
old_read_domains,
|
|
old_write_domain);
|
|
|
|
/* And bump the LRU for this access */
|
|
vma = i915_gem_obj_to_ggtt(obj);
|
|
if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
|
|
list_move_tail(&vma->vm_link,
|
|
&ggtt->base.inactive_list);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Changes the cache-level of an object across all VMA.
|
|
*
|
|
* After this function returns, the object will be in the new cache-level
|
|
* across all GTT and the contents of the backing storage will be coherent,
|
|
* with respect to the new cache-level. In order to keep the backing storage
|
|
* coherent for all users, we only allow a single cache level to be set
|
|
* globally on the object and prevent it from being changed whilst the
|
|
* hardware is reading from the object. That is if the object is currently
|
|
* on the scanout it will be set to uncached (or equivalent display
|
|
* cache coherency) and all non-MOCS GPU access will also be uncached so
|
|
* that all direct access to the scanout remains coherent.
|
|
*/
|
|
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
|
|
enum i915_cache_level cache_level)
|
|
{
|
|
struct drm_device *dev = obj->base.dev;
|
|
struct i915_vma *vma, *next;
|
|
bool bound = false;
|
|
int ret = 0;
|
|
|
|
if (obj->cache_level == cache_level)
|
|
goto out;
|
|
|
|
/* Inspect the list of currently bound VMA and unbind any that would
|
|
* be invalid given the new cache-level. This is principally to
|
|
* catch the issue of the CS prefetch crossing page boundaries and
|
|
* reading an invalid PTE on older architectures.
|
|
*/
|
|
list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
|
|
if (!drm_mm_node_allocated(&vma->node))
|
|
continue;
|
|
|
|
if (vma->pin_count) {
|
|
DRM_DEBUG("can not change the cache level of pinned objects\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
if (!i915_gem_valid_gtt_space(vma, cache_level)) {
|
|
ret = i915_vma_unbind(vma);
|
|
if (ret)
|
|
return ret;
|
|
} else
|
|
bound = true;
|
|
}
|
|
|
|
/* We can reuse the existing drm_mm nodes but need to change the
|
|
* cache-level on the PTE. We could simply unbind them all and
|
|
* rebind with the correct cache-level on next use. However since
|
|
* we already have a valid slot, dma mapping, pages etc, we may as
|
|
* rewrite the PTE in the belief that doing so tramples upon less
|
|
* state and so involves less work.
|
|
*/
|
|
if (bound) {
|
|
/* Before we change the PTE, the GPU must not be accessing it.
|
|
* If we wait upon the object, we know that all the bound
|
|
* VMA are no longer active.
|
|
*/
|
|
ret = i915_gem_object_wait_rendering(obj, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
|
|
/* Access to snoopable pages through the GTT is
|
|
* incoherent and on some machines causes a hard
|
|
* lockup. Relinquish the CPU mmaping to force
|
|
* userspace to refault in the pages and we can
|
|
* then double check if the GTT mapping is still
|
|
* valid for that pointer access.
|
|
*/
|
|
i915_gem_release_mmap(obj);
|
|
|
|
/* As we no longer need a fence for GTT access,
|
|
* we can relinquish it now (and so prevent having
|
|
* to steal a fence from someone else on the next
|
|
* fence request). Note GPU activity would have
|
|
* dropped the fence as all snoopable access is
|
|
* supposed to be linear.
|
|
*/
|
|
ret = i915_gem_object_put_fence(obj);
|
|
if (ret)
|
|
return ret;
|
|
} else {
|
|
/* We either have incoherent backing store and
|
|
* so no GTT access or the architecture is fully
|
|
* coherent. In such cases, existing GTT mmaps
|
|
* ignore the cache bit in the PTE and we can
|
|
* rewrite it without confusing the GPU or having
|
|
* to force userspace to fault back in its mmaps.
|
|
*/
|
|
}
|
|
|
|
list_for_each_entry(vma, &obj->vma_list, obj_link) {
|
|
if (!drm_mm_node_allocated(&vma->node))
|
|
continue;
|
|
|
|
ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
list_for_each_entry(vma, &obj->vma_list, obj_link)
|
|
vma->node.color = cache_level;
|
|
obj->cache_level = cache_level;
|
|
|
|
out:
|
|
/* Flush the dirty CPU caches to the backing storage so that the
|
|
* object is now coherent at its new cache level (with respect
|
|
* to the access domain).
|
|
*/
|
|
if (obj->cache_dirty &&
|
|
obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
|
|
cpu_write_needs_clflush(obj)) {
|
|
if (i915_gem_clflush_object(obj, true))
|
|
i915_gem_chipset_flush(obj->base.dev);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_caching *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
|
|
if (&obj->base == NULL)
|
|
return -ENOENT;
|
|
|
|
switch (obj->cache_level) {
|
|
case I915_CACHE_LLC:
|
|
case I915_CACHE_L3_LLC:
|
|
args->caching = I915_CACHING_CACHED;
|
|
break;
|
|
|
|
case I915_CACHE_WT:
|
|
args->caching = I915_CACHING_DISPLAY;
|
|
break;
|
|
|
|
default:
|
|
args->caching = I915_CACHING_NONE;
|
|
break;
|
|
}
|
|
|
|
drm_gem_object_unreference_unlocked(&obj->base);
|
|
return 0;
|
|
}
|
|
|
|
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_caching *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
enum i915_cache_level level;
|
|
int ret;
|
|
|
|
switch (args->caching) {
|
|
case I915_CACHING_NONE:
|
|
level = I915_CACHE_NONE;
|
|
break;
|
|
case I915_CACHING_CACHED:
|
|
/*
|
|
* Due to a HW issue on BXT A stepping, GPU stores via a
|
|
* snooped mapping may leave stale data in a corresponding CPU
|
|
* cacheline, whereas normally such cachelines would get
|
|
* invalidated.
|
|
*/
|
|
if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
|
|
return -ENODEV;
|
|
|
|
level = I915_CACHE_LLC;
|
|
break;
|
|
case I915_CACHING_DISPLAY:
|
|
level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
intel_runtime_pm_get(dev_priv);
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
goto rpm_put;
|
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
|
|
if (&obj->base == NULL) {
|
|
ret = -ENOENT;
|
|
goto unlock;
|
|
}
|
|
|
|
ret = i915_gem_object_set_cache_level(obj, level);
|
|
|
|
drm_gem_object_unreference(&obj->base);
|
|
unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
rpm_put:
|
|
intel_runtime_pm_put(dev_priv);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Prepare buffer for display plane (scanout, cursors, etc).
|
|
* Can be called from an uninterruptible phase (modesetting) and allows
|
|
* any flushes to be pipelined (for pageflips).
|
|
*/
|
|
int
|
|
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
|
|
u32 alignment,
|
|
const struct i915_ggtt_view *view)
|
|
{
|
|
u32 old_read_domains, old_write_domain;
|
|
int ret;
|
|
|
|
/* Mark the pin_display early so that we account for the
|
|
* display coherency whilst setting up the cache domains.
|
|
*/
|
|
obj->pin_display++;
|
|
|
|
/* The display engine is not coherent with the LLC cache on gen6. As
|
|
* a result, we make sure that the pinning that is about to occur is
|
|
* done with uncached PTEs. This is lowest common denominator for all
|
|
* chipsets.
|
|
*
|
|
* However for gen6+, we could do better by using the GFDT bit instead
|
|
* of uncaching, which would allow us to flush all the LLC-cached data
|
|
* with that bit in the PTE to main memory with just one PIPE_CONTROL.
|
|
*/
|
|
ret = i915_gem_object_set_cache_level(obj,
|
|
HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
|
|
if (ret)
|
|
goto err_unpin_display;
|
|
|
|
/* As the user may map the buffer once pinned in the display plane
|
|
* (e.g. libkms for the bootup splash), we have to ensure that we
|
|
* always use map_and_fenceable for all scanout buffers.
|
|
*/
|
|
ret = i915_gem_object_ggtt_pin(obj, view, alignment,
|
|
view->type == I915_GGTT_VIEW_NORMAL ?
|
|
PIN_MAPPABLE : 0);
|
|
if (ret)
|
|
goto err_unpin_display;
|
|
|
|
i915_gem_object_flush_cpu_write_domain(obj);
|
|
|
|
old_write_domain = obj->base.write_domain;
|
|
old_read_domains = obj->base.read_domains;
|
|
|
|
/* It should now be out of any other write domains, and we can update
|
|
* the domain values for our changes.
|
|
*/
|
|
obj->base.write_domain = 0;
|
|
obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
|
|
|
|
trace_i915_gem_object_change_domain(obj,
|
|
old_read_domains,
|
|
old_write_domain);
|
|
|
|
return 0;
|
|
|
|
err_unpin_display:
|
|
obj->pin_display--;
|
|
return ret;
|
|
}
|
|
|
|
void
|
|
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
|
|
const struct i915_ggtt_view *view)
|
|
{
|
|
if (WARN_ON(obj->pin_display == 0))
|
|
return;
|
|
|
|
i915_gem_object_ggtt_unpin_view(obj, view);
|
|
|
|
obj->pin_display--;
|
|
}
|
|
|
|
/**
|
|
* Moves a single object to the CPU read, and possibly write domain.
|
|
*
|
|
* This function returns when the move is complete, including waiting on
|
|
* flushes to occur.
|
|
*/
|
|
int
|
|
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
|
|
{
|
|
uint32_t old_write_domain, old_read_domains;
|
|
int ret;
|
|
|
|
if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
|
|
return 0;
|
|
|
|
ret = i915_gem_object_wait_rendering(obj, !write);
|
|
if (ret)
|
|
return ret;
|
|
|
|
i915_gem_object_flush_gtt_write_domain(obj);
|
|
|
|
old_write_domain = obj->base.write_domain;
|
|
old_read_domains = obj->base.read_domains;
|
|
|
|
/* Flush the CPU cache if it's still invalid. */
|
|
if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
|
|
i915_gem_clflush_object(obj, false);
|
|
|
|
obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
|
|
}
|
|
|
|
/* It should now be out of any other write domains, and we can update
|
|
* the domain values for our changes.
|
|
*/
|
|
BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
|
|
|
|
/* If we're writing through the CPU, then the GPU read domains will
|
|
* need to be invalidated at next use.
|
|
*/
|
|
if (write) {
|
|
obj->base.read_domains = I915_GEM_DOMAIN_CPU;
|
|
obj->base.write_domain = I915_GEM_DOMAIN_CPU;
|
|
}
|
|
|
|
trace_i915_gem_object_change_domain(obj,
|
|
old_read_domains,
|
|
old_write_domain);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Throttle our rendering by waiting until the ring has completed our requests
|
|
* emitted over 20 msec ago.
|
|
*
|
|
* Note that if we were to use the current jiffies each time around the loop,
|
|
* we wouldn't escape the function with any frames outstanding if the time to
|
|
* render a frame was over 20ms.
|
|
*
|
|
* This should get us reasonable parallelism between CPU and GPU but also
|
|
* relatively low latency when blocking on a particular request to finish.
|
|
*/
|
|
static int
|
|
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_file_private *file_priv = file->driver_priv;
|
|
unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
|
|
struct drm_i915_gem_request *request, *target = NULL;
|
|
unsigned reset_counter;
|
|
int ret;
|
|
|
|
ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
spin_lock(&file_priv->mm.lock);
|
|
list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
|
|
if (time_after_eq(request->emitted_jiffies, recent_enough))
|
|
break;
|
|
|
|
/*
|
|
* Note that the request might not have been submitted yet.
|
|
* In which case emitted_jiffies will be zero.
|
|
*/
|
|
if (!request->emitted_jiffies)
|
|
continue;
|
|
|
|
target = request;
|
|
}
|
|
reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
|
|
if (target)
|
|
i915_gem_request_reference(target);
|
|
spin_unlock(&file_priv->mm.lock);
|
|
|
|
if (target == NULL)
|
|
return 0;
|
|
|
|
ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
|
|
if (ret == 0)
|
|
queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
|
|
|
|
i915_gem_request_unreference__unlocked(target);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool
|
|
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
|
|
{
|
|
struct drm_i915_gem_object *obj = vma->obj;
|
|
|
|
if (alignment &&
|
|
vma->node.start & (alignment - 1))
|
|
return true;
|
|
|
|
if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
|
|
return true;
|
|
|
|
if (flags & PIN_OFFSET_BIAS &&
|
|
vma->node.start < (flags & PIN_OFFSET_MASK))
|
|
return true;
|
|
|
|
if (flags & PIN_OFFSET_FIXED &&
|
|
vma->node.start != (flags & PIN_OFFSET_MASK))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
|
|
{
|
|
struct drm_i915_gem_object *obj = vma->obj;
|
|
bool mappable, fenceable;
|
|
u32 fence_size, fence_alignment;
|
|
|
|
fence_size = i915_gem_get_gtt_size(obj->base.dev,
|
|
obj->base.size,
|
|
obj->tiling_mode);
|
|
fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
|
|
obj->base.size,
|
|
obj->tiling_mode,
|
|
true);
|
|
|
|
fenceable = (vma->node.size == fence_size &&
|
|
(vma->node.start & (fence_alignment - 1)) == 0);
|
|
|
|
mappable = (vma->node.start + fence_size <=
|
|
to_i915(obj->base.dev)->ggtt.mappable_end);
|
|
|
|
obj->map_and_fenceable = mappable && fenceable;
|
|
}
|
|
|
|
static int
|
|
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
|
|
struct i915_address_space *vm,
|
|
const struct i915_ggtt_view *ggtt_view,
|
|
uint32_t alignment,
|
|
uint64_t flags)
|
|
{
|
|
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
|
|
struct i915_vma *vma;
|
|
unsigned bound;
|
|
int ret;
|
|
|
|
if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
|
|
return -ENODEV;
|
|
|
|
if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
|
|
return -EINVAL;
|
|
|
|
if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
|
|
return -EINVAL;
|
|
|
|
if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
|
|
return -EINVAL;
|
|
|
|
vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
|
|
i915_gem_obj_to_vma(obj, vm);
|
|
|
|
if (vma) {
|
|
if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
|
|
return -EBUSY;
|
|
|
|
if (i915_vma_misplaced(vma, alignment, flags)) {
|
|
WARN(vma->pin_count,
|
|
"bo is already pinned in %s with incorrect alignment:"
|
|
" offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
|
|
" obj->map_and_fenceable=%d\n",
|
|
ggtt_view ? "ggtt" : "ppgtt",
|
|
upper_32_bits(vma->node.start),
|
|
lower_32_bits(vma->node.start),
|
|
alignment,
|
|
!!(flags & PIN_MAPPABLE),
|
|
obj->map_and_fenceable);
|
|
ret = i915_vma_unbind(vma);
|
|
if (ret)
|
|
return ret;
|
|
|
|
vma = NULL;
|
|
}
|
|
}
|
|
|
|
bound = vma ? vma->bound : 0;
|
|
if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
|
|
vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
|
|
flags);
|
|
if (IS_ERR(vma))
|
|
return PTR_ERR(vma);
|
|
} else {
|
|
ret = i915_vma_bind(vma, obj->cache_level, flags);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
|
|
(bound ^ vma->bound) & GLOBAL_BIND) {
|
|
__i915_vma_set_map_and_fenceable(vma);
|
|
WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
|
|
}
|
|
|
|
vma->pin_count++;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
i915_gem_object_pin(struct drm_i915_gem_object *obj,
|
|
struct i915_address_space *vm,
|
|
uint32_t alignment,
|
|
uint64_t flags)
|
|
{
|
|
return i915_gem_object_do_pin(obj, vm,
|
|
i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
|
|
alignment, flags);
|
|
}
|
|
|
|
int
|
|
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
|
|
const struct i915_ggtt_view *view,
|
|
uint32_t alignment,
|
|
uint64_t flags)
|
|
{
|
|
struct drm_device *dev = obj->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct i915_ggtt *ggtt = &dev_priv->ggtt;
|
|
|
|
BUG_ON(!view);
|
|
|
|
return i915_gem_object_do_pin(obj, &ggtt->base, view,
|
|
alignment, flags | PIN_GLOBAL);
|
|
}
|
|
|
|
void
|
|
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
|
|
const struct i915_ggtt_view *view)
|
|
{
|
|
struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
|
|
|
|
BUG_ON(!vma);
|
|
WARN_ON(vma->pin_count == 0);
|
|
WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
|
|
|
|
--vma->pin_count;
|
|
}
|
|
|
|
int
|
|
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_busy *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
int ret;
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
|
|
if (&obj->base == NULL) {
|
|
ret = -ENOENT;
|
|
goto unlock;
|
|
}
|
|
|
|
/* Count all active objects as busy, even if they are currently not used
|
|
* by the gpu. Users of this interface expect objects to eventually
|
|
* become non-busy without any further actions, therefore emit any
|
|
* necessary flushes here.
|
|
*/
|
|
ret = i915_gem_object_flush_active(obj);
|
|
if (ret)
|
|
goto unref;
|
|
|
|
args->busy = 0;
|
|
if (obj->active) {
|
|
int i;
|
|
|
|
for (i = 0; i < I915_NUM_ENGINES; i++) {
|
|
struct drm_i915_gem_request *req;
|
|
|
|
req = obj->last_read_req[i];
|
|
if (req)
|
|
args->busy |= 1 << (16 + req->engine->exec_id);
|
|
}
|
|
if (obj->last_write_req)
|
|
args->busy |= obj->last_write_req->engine->exec_id;
|
|
}
|
|
|
|
unref:
|
|
drm_gem_object_unreference(&obj->base);
|
|
unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
return i915_gem_ring_throttle(dev, file_priv);
|
|
}
|
|
|
|
int
|
|
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_madvise *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
int ret;
|
|
|
|
switch (args->madv) {
|
|
case I915_MADV_DONTNEED:
|
|
case I915_MADV_WILLNEED:
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
|
|
if (&obj->base == NULL) {
|
|
ret = -ENOENT;
|
|
goto unlock;
|
|
}
|
|
|
|
if (i915_gem_obj_is_pinned(obj)) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (obj->pages &&
|
|
obj->tiling_mode != I915_TILING_NONE &&
|
|
dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
|
|
if (obj->madv == I915_MADV_WILLNEED)
|
|
i915_gem_object_unpin_pages(obj);
|
|
if (args->madv == I915_MADV_WILLNEED)
|
|
i915_gem_object_pin_pages(obj);
|
|
}
|
|
|
|
if (obj->madv != __I915_MADV_PURGED)
|
|
obj->madv = args->madv;
|
|
|
|
/* if the object is no longer attached, discard its backing storage */
|
|
if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
|
|
i915_gem_object_truncate(obj);
|
|
|
|
args->retained = obj->madv != __I915_MADV_PURGED;
|
|
|
|
out:
|
|
drm_gem_object_unreference(&obj->base);
|
|
unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
void i915_gem_object_init(struct drm_i915_gem_object *obj,
|
|
const struct drm_i915_gem_object_ops *ops)
|
|
{
|
|
int i;
|
|
|
|
INIT_LIST_HEAD(&obj->global_list);
|
|
for (i = 0; i < I915_NUM_ENGINES; i++)
|
|
INIT_LIST_HEAD(&obj->engine_list[i]);
|
|
INIT_LIST_HEAD(&obj->obj_exec_link);
|
|
INIT_LIST_HEAD(&obj->vma_list);
|
|
INIT_LIST_HEAD(&obj->batch_pool_link);
|
|
|
|
obj->ops = ops;
|
|
|
|
obj->fence_reg = I915_FENCE_REG_NONE;
|
|
obj->madv = I915_MADV_WILLNEED;
|
|
|
|
i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
|
|
}
|
|
|
|
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
|
|
.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
|
|
.get_pages = i915_gem_object_get_pages_gtt,
|
|
.put_pages = i915_gem_object_put_pages_gtt,
|
|
};
|
|
|
|
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
|
|
size_t size)
|
|
{
|
|
struct drm_i915_gem_object *obj;
|
|
struct address_space *mapping;
|
|
gfp_t mask;
|
|
|
|
obj = i915_gem_object_alloc(dev);
|
|
if (obj == NULL)
|
|
return NULL;
|
|
|
|
if (drm_gem_object_init(dev, &obj->base, size) != 0) {
|
|
i915_gem_object_free(obj);
|
|
return NULL;
|
|
}
|
|
|
|
mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
|
|
if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
|
|
/* 965gm cannot relocate objects above 4GiB. */
|
|
mask &= ~__GFP_HIGHMEM;
|
|
mask |= __GFP_DMA32;
|
|
}
|
|
|
|
mapping = file_inode(obj->base.filp)->i_mapping;
|
|
mapping_set_gfp_mask(mapping, mask);
|
|
|
|
i915_gem_object_init(obj, &i915_gem_object_ops);
|
|
|
|
obj->base.write_domain = I915_GEM_DOMAIN_CPU;
|
|
obj->base.read_domains = I915_GEM_DOMAIN_CPU;
|
|
|
|
if (HAS_LLC(dev)) {
|
|
/* On some devices, we can have the GPU use the LLC (the CPU
|
|
* cache) for about a 10% performance improvement
|
|
* compared to uncached. Graphics requests other than
|
|
* display scanout are coherent with the CPU in
|
|
* accessing this cache. This means in this mode we
|
|
* don't need to clflush on the CPU side, and on the
|
|
* GPU side we only need to flush internal caches to
|
|
* get data visible to the CPU.
|
|
*
|
|
* However, we maintain the display planes as UC, and so
|
|
* need to rebind when first used as such.
|
|
*/
|
|
obj->cache_level = I915_CACHE_LLC;
|
|
} else
|
|
obj->cache_level = I915_CACHE_NONE;
|
|
|
|
trace_i915_gem_object_create(obj);
|
|
|
|
return obj;
|
|
}
|
|
|
|
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
|
|
{
|
|
/* If we are the last user of the backing storage (be it shmemfs
|
|
* pages or stolen etc), we know that the pages are going to be
|
|
* immediately released. In this case, we can then skip copying
|
|
* back the contents from the GPU.
|
|
*/
|
|
|
|
if (obj->madv != I915_MADV_WILLNEED)
|
|
return false;
|
|
|
|
if (obj->base.filp == NULL)
|
|
return true;
|
|
|
|
/* At first glance, this looks racy, but then again so would be
|
|
* userspace racing mmap against close. However, the first external
|
|
* reference to the filp can only be obtained through the
|
|
* i915_gem_mmap_ioctl() which safeguards us against the user
|
|
* acquiring such a reference whilst we are in the middle of
|
|
* freeing the object.
|
|
*/
|
|
return atomic_long_read(&obj->base.filp->f_count) == 1;
|
|
}
|
|
|
|
void i915_gem_free_object(struct drm_gem_object *gem_obj)
|
|
{
|
|
struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
|
|
struct drm_device *dev = obj->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct i915_vma *vma, *next;
|
|
|
|
intel_runtime_pm_get(dev_priv);
|
|
|
|
trace_i915_gem_object_destroy(obj);
|
|
|
|
list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
|
|
int ret;
|
|
|
|
vma->pin_count = 0;
|
|
ret = i915_vma_unbind(vma);
|
|
if (WARN_ON(ret == -ERESTARTSYS)) {
|
|
bool was_interruptible;
|
|
|
|
was_interruptible = dev_priv->mm.interruptible;
|
|
dev_priv->mm.interruptible = false;
|
|
|
|
WARN_ON(i915_vma_unbind(vma));
|
|
|
|
dev_priv->mm.interruptible = was_interruptible;
|
|
}
|
|
}
|
|
|
|
/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
|
|
* before progressing. */
|
|
if (obj->stolen)
|
|
i915_gem_object_unpin_pages(obj);
|
|
|
|
WARN_ON(obj->frontbuffer_bits);
|
|
|
|
if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
|
|
dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
|
|
obj->tiling_mode != I915_TILING_NONE)
|
|
i915_gem_object_unpin_pages(obj);
|
|
|
|
if (WARN_ON(obj->pages_pin_count))
|
|
obj->pages_pin_count = 0;
|
|
if (discard_backing_storage(obj))
|
|
obj->madv = I915_MADV_DONTNEED;
|
|
i915_gem_object_put_pages(obj);
|
|
i915_gem_object_free_mmap_offset(obj);
|
|
|
|
BUG_ON(obj->pages);
|
|
|
|
if (obj->base.import_attach)
|
|
drm_prime_gem_destroy(&obj->base, NULL);
|
|
|
|
if (obj->ops->release)
|
|
obj->ops->release(obj);
|
|
|
|
drm_gem_object_release(&obj->base);
|
|
i915_gem_info_remove_obj(dev_priv, obj->base.size);
|
|
|
|
kfree(obj->bit_17);
|
|
i915_gem_object_free(obj);
|
|
|
|
intel_runtime_pm_put(dev_priv);
|
|
}
|
|
|
|
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
|
|
struct i915_address_space *vm)
|
|
{
|
|
struct i915_vma *vma;
|
|
list_for_each_entry(vma, &obj->vma_list, obj_link) {
|
|
if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
|
|
vma->vm == vm)
|
|
return vma;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
|
|
const struct i915_ggtt_view *view)
|
|
{
|
|
struct drm_device *dev = obj->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct i915_ggtt *ggtt = &dev_priv->ggtt;
|
|
struct i915_vma *vma;
|
|
|
|
BUG_ON(!view);
|
|
|
|
list_for_each_entry(vma, &obj->vma_list, obj_link)
|
|
if (vma->vm == &ggtt->base &&
|
|
i915_ggtt_view_equal(&vma->ggtt_view, view))
|
|
return vma;
|
|
return NULL;
|
|
}
|
|
|
|
void i915_gem_vma_destroy(struct i915_vma *vma)
|
|
{
|
|
WARN_ON(vma->node.allocated);
|
|
|
|
/* Keep the vma as a placeholder in the execbuffer reservation lists */
|
|
if (!list_empty(&vma->exec_list))
|
|
return;
|
|
|
|
if (!vma->is_ggtt)
|
|
i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
|
|
|
|
list_del(&vma->obj_link);
|
|
|
|
kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
|
|
}
|
|
|
|
static void
|
|
i915_gem_stop_engines(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_engine_cs *engine;
|
|
|
|
for_each_engine(engine, dev_priv)
|
|
dev_priv->gt.stop_engine(engine);
|
|
}
|
|
|
|
int
|
|
i915_gem_suspend(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int ret = 0;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
ret = i915_gpu_idle(dev);
|
|
if (ret)
|
|
goto err;
|
|
|
|
i915_gem_retire_requests(dev);
|
|
|
|
i915_gem_stop_engines(dev);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
|
|
cancel_delayed_work_sync(&dev_priv->mm.retire_work);
|
|
flush_delayed_work(&dev_priv->mm.idle_work);
|
|
|
|
/* Assert that we sucessfully flushed all the work and
|
|
* reset the GPU back to its idle, low power state.
|
|
*/
|
|
WARN_ON(dev_priv->mm.busy);
|
|
|
|
return 0;
|
|
|
|
err:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
|
|
{
|
|
struct intel_engine_cs *engine = req->engine;
|
|
struct drm_device *dev = engine->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
|
|
int i, ret;
|
|
|
|
if (!HAS_L3_DPF(dev) || !remap_info)
|
|
return 0;
|
|
|
|
ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Note: We do not worry about the concurrent register cacheline hang
|
|
* here because no other code should access these registers other than
|
|
* at initialization time.
|
|
*/
|
|
for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
|
|
intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
|
|
intel_ring_emit_reg(engine, GEN7_L3LOG(slice, i));
|
|
intel_ring_emit(engine, remap_info[i]);
|
|
}
|
|
|
|
intel_ring_advance(engine);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void i915_gem_init_swizzling(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
if (INTEL_INFO(dev)->gen < 5 ||
|
|
dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
|
|
return;
|
|
|
|
I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
|
|
DISP_TILE_SURFACE_SWIZZLING);
|
|
|
|
if (IS_GEN5(dev))
|
|
return;
|
|
|
|
I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
|
|
if (IS_GEN6(dev))
|
|
I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
|
|
else if (IS_GEN7(dev))
|
|
I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
|
|
else if (IS_GEN8(dev))
|
|
I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
|
|
else
|
|
BUG();
|
|
}
|
|
|
|
static void init_unused_ring(struct drm_device *dev, u32 base)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
I915_WRITE(RING_CTL(base), 0);
|
|
I915_WRITE(RING_HEAD(base), 0);
|
|
I915_WRITE(RING_TAIL(base), 0);
|
|
I915_WRITE(RING_START(base), 0);
|
|
}
|
|
|
|
static void init_unused_rings(struct drm_device *dev)
|
|
{
|
|
if (IS_I830(dev)) {
|
|
init_unused_ring(dev, PRB1_BASE);
|
|
init_unused_ring(dev, SRB0_BASE);
|
|
init_unused_ring(dev, SRB1_BASE);
|
|
init_unused_ring(dev, SRB2_BASE);
|
|
init_unused_ring(dev, SRB3_BASE);
|
|
} else if (IS_GEN2(dev)) {
|
|
init_unused_ring(dev, SRB0_BASE);
|
|
init_unused_ring(dev, SRB1_BASE);
|
|
} else if (IS_GEN3(dev)) {
|
|
init_unused_ring(dev, PRB1_BASE);
|
|
init_unused_ring(dev, PRB2_BASE);
|
|
}
|
|
}
|
|
|
|
int i915_gem_init_engines(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int ret;
|
|
|
|
ret = intel_init_render_ring_buffer(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (HAS_BSD(dev)) {
|
|
ret = intel_init_bsd_ring_buffer(dev);
|
|
if (ret)
|
|
goto cleanup_render_ring;
|
|
}
|
|
|
|
if (HAS_BLT(dev)) {
|
|
ret = intel_init_blt_ring_buffer(dev);
|
|
if (ret)
|
|
goto cleanup_bsd_ring;
|
|
}
|
|
|
|
if (HAS_VEBOX(dev)) {
|
|
ret = intel_init_vebox_ring_buffer(dev);
|
|
if (ret)
|
|
goto cleanup_blt_ring;
|
|
}
|
|
|
|
if (HAS_BSD2(dev)) {
|
|
ret = intel_init_bsd2_ring_buffer(dev);
|
|
if (ret)
|
|
goto cleanup_vebox_ring;
|
|
}
|
|
|
|
return 0;
|
|
|
|
cleanup_vebox_ring:
|
|
intel_cleanup_engine(&dev_priv->engine[VECS]);
|
|
cleanup_blt_ring:
|
|
intel_cleanup_engine(&dev_priv->engine[BCS]);
|
|
cleanup_bsd_ring:
|
|
intel_cleanup_engine(&dev_priv->engine[VCS]);
|
|
cleanup_render_ring:
|
|
intel_cleanup_engine(&dev_priv->engine[RCS]);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
i915_gem_init_hw(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_engine_cs *engine;
|
|
int ret, j;
|
|
|
|
if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
|
|
return -EIO;
|
|
|
|
/* Double layer security blanket, see i915_gem_init() */
|
|
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
|
|
|
|
if (dev_priv->ellc_size)
|
|
I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
|
|
|
|
if (IS_HASWELL(dev))
|
|
I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
|
|
LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
|
|
|
|
if (HAS_PCH_NOP(dev)) {
|
|
if (IS_IVYBRIDGE(dev)) {
|
|
u32 temp = I915_READ(GEN7_MSG_CTL);
|
|
temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
|
|
I915_WRITE(GEN7_MSG_CTL, temp);
|
|
} else if (INTEL_INFO(dev)->gen >= 7) {
|
|
u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
|
|
temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
|
|
I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
|
|
}
|
|
}
|
|
|
|
i915_gem_init_swizzling(dev);
|
|
|
|
/*
|
|
* At least 830 can leave some of the unused rings
|
|
* "active" (ie. head != tail) after resume which
|
|
* will prevent c3 entry. Makes sure all unused rings
|
|
* are totally idle.
|
|
*/
|
|
init_unused_rings(dev);
|
|
|
|
BUG_ON(!dev_priv->kernel_context);
|
|
|
|
ret = i915_ppgtt_init_hw(dev);
|
|
if (ret) {
|
|
DRM_ERROR("PPGTT enable HW failed %d\n", ret);
|
|
goto out;
|
|
}
|
|
|
|
/* Need to do basic initialisation of all rings first: */
|
|
for_each_engine(engine, dev_priv) {
|
|
ret = engine->init_hw(engine);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
/* We can't enable contexts until all firmware is loaded */
|
|
if (HAS_GUC_UCODE(dev)) {
|
|
ret = intel_guc_ucode_load(dev);
|
|
if (ret) {
|
|
DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Increment the next seqno by 0x100 so we have a visible break
|
|
* on re-initialisation
|
|
*/
|
|
ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/* Now it is safe to go back round and do everything else: */
|
|
for_each_engine(engine, dev_priv) {
|
|
struct drm_i915_gem_request *req;
|
|
|
|
req = i915_gem_request_alloc(engine, NULL);
|
|
if (IS_ERR(req)) {
|
|
ret = PTR_ERR(req);
|
|
i915_gem_cleanup_engines(dev);
|
|
goto out;
|
|
}
|
|
|
|
if (engine->id == RCS) {
|
|
for (j = 0; j < NUM_L3_SLICES(dev); j++)
|
|
i915_gem_l3_remap(req, j);
|
|
}
|
|
|
|
ret = i915_ppgtt_init_ring(req);
|
|
if (ret && ret != -EIO) {
|
|
DRM_ERROR("PPGTT enable %s failed %d\n",
|
|
engine->name, ret);
|
|
i915_gem_request_cancel(req);
|
|
i915_gem_cleanup_engines(dev);
|
|
goto out;
|
|
}
|
|
|
|
ret = i915_gem_context_enable(req);
|
|
if (ret && ret != -EIO) {
|
|
DRM_ERROR("Context enable %s failed %d\n",
|
|
engine->name, ret);
|
|
i915_gem_request_cancel(req);
|
|
i915_gem_cleanup_engines(dev);
|
|
goto out;
|
|
}
|
|
|
|
i915_add_request_no_flush(req);
|
|
}
|
|
|
|
out:
|
|
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
|
|
return ret;
|
|
}
|
|
|
|
int i915_gem_init(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int ret;
|
|
|
|
i915.enable_execlists = intel_sanitize_enable_execlists(dev,
|
|
i915.enable_execlists);
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
|
|
if (!i915.enable_execlists) {
|
|
dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
|
|
dev_priv->gt.init_engines = i915_gem_init_engines;
|
|
dev_priv->gt.cleanup_engine = intel_cleanup_engine;
|
|
dev_priv->gt.stop_engine = intel_stop_engine;
|
|
} else {
|
|
dev_priv->gt.execbuf_submit = intel_execlists_submission;
|
|
dev_priv->gt.init_engines = intel_logical_rings_init;
|
|
dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
|
|
dev_priv->gt.stop_engine = intel_logical_ring_stop;
|
|
}
|
|
|
|
/* This is just a security blanket to placate dragons.
|
|
* On some systems, we very sporadically observe that the first TLBs
|
|
* used by the CS may be stale, despite us poking the TLB reset. If
|
|
* we hold the forcewake during initialisation these problems
|
|
* just magically go away.
|
|
*/
|
|
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
|
|
|
|
ret = i915_gem_init_userptr(dev);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
i915_gem_init_ggtt(dev);
|
|
|
|
ret = i915_gem_context_init(dev);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
ret = dev_priv->gt.init_engines(dev);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
ret = i915_gem_init_hw(dev);
|
|
if (ret == -EIO) {
|
|
/* Allow ring initialisation to fail by marking the GPU as
|
|
* wedged. But we only want to do this where the GPU is angry,
|
|
* for all other failure, such as an allocation failure, bail.
|
|
*/
|
|
DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
|
|
atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
|
|
ret = 0;
|
|
}
|
|
|
|
out_unlock:
|
|
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void
|
|
i915_gem_cleanup_engines(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_engine_cs *engine;
|
|
|
|
for_each_engine(engine, dev_priv)
|
|
dev_priv->gt.cleanup_engine(engine);
|
|
|
|
if (i915.enable_execlists)
|
|
/*
|
|
* Neither the BIOS, ourselves or any other kernel
|
|
* expects the system to be in execlists mode on startup,
|
|
* so we need to reset the GPU back to legacy mode.
|
|
*/
|
|
intel_gpu_reset(dev, ALL_ENGINES);
|
|
}
|
|
|
|
static void
|
|
init_engine_lists(struct intel_engine_cs *engine)
|
|
{
|
|
INIT_LIST_HEAD(&engine->active_list);
|
|
INIT_LIST_HEAD(&engine->request_list);
|
|
}
|
|
|
|
void
|
|
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct drm_device *dev = dev_priv->dev;
|
|
|
|
if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
|
|
!IS_CHERRYVIEW(dev_priv))
|
|
dev_priv->num_fence_regs = 32;
|
|
else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
|
|
IS_I945GM(dev_priv) || IS_G33(dev_priv))
|
|
dev_priv->num_fence_regs = 16;
|
|
else
|
|
dev_priv->num_fence_regs = 8;
|
|
|
|
if (intel_vgpu_active(dev))
|
|
dev_priv->num_fence_regs =
|
|
I915_READ(vgtif_reg(avail_rs.fence_num));
|
|
|
|
/* Initialize fence registers to zero */
|
|
i915_gem_restore_fences(dev);
|
|
|
|
i915_gem_detect_bit_6_swizzle(dev);
|
|
}
|
|
|
|
void
|
|
i915_gem_load_init(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int i;
|
|
|
|
dev_priv->objects =
|
|
kmem_cache_create("i915_gem_object",
|
|
sizeof(struct drm_i915_gem_object), 0,
|
|
SLAB_HWCACHE_ALIGN,
|
|
NULL);
|
|
dev_priv->vmas =
|
|
kmem_cache_create("i915_gem_vma",
|
|
sizeof(struct i915_vma), 0,
|
|
SLAB_HWCACHE_ALIGN,
|
|
NULL);
|
|
dev_priv->requests =
|
|
kmem_cache_create("i915_gem_request",
|
|
sizeof(struct drm_i915_gem_request), 0,
|
|
SLAB_HWCACHE_ALIGN,
|
|
NULL);
|
|
|
|
INIT_LIST_HEAD(&dev_priv->vm_list);
|
|
INIT_LIST_HEAD(&dev_priv->context_list);
|
|
INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
|
|
INIT_LIST_HEAD(&dev_priv->mm.bound_list);
|
|
INIT_LIST_HEAD(&dev_priv->mm.fence_list);
|
|
for (i = 0; i < I915_NUM_ENGINES; i++)
|
|
init_engine_lists(&dev_priv->engine[i]);
|
|
for (i = 0; i < I915_MAX_NUM_FENCES; i++)
|
|
INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
|
|
INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
|
|
i915_gem_retire_work_handler);
|
|
INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
|
|
i915_gem_idle_work_handler);
|
|
init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
|
|
|
|
dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
|
|
|
|
/*
|
|
* Set initial sequence number for requests.
|
|
* Using this number allows the wraparound to happen early,
|
|
* catching any obvious problems.
|
|
*/
|
|
dev_priv->next_seqno = ((u32)~0 - 0x1100);
|
|
dev_priv->last_seqno = ((u32)~0 - 0x1101);
|
|
|
|
INIT_LIST_HEAD(&dev_priv->mm.fence_list);
|
|
|
|
init_waitqueue_head(&dev_priv->pending_flip_queue);
|
|
|
|
dev_priv->mm.interruptible = true;
|
|
|
|
mutex_init(&dev_priv->fb_tracking.lock);
|
|
}
|
|
|
|
void i915_gem_load_cleanup(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
|
|
kmem_cache_destroy(dev_priv->requests);
|
|
kmem_cache_destroy(dev_priv->vmas);
|
|
kmem_cache_destroy(dev_priv->objects);
|
|
}
|
|
|
|
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
|
|
{
|
|
struct drm_i915_file_private *file_priv = file->driver_priv;
|
|
|
|
/* Clean up our request list when the client is going away, so that
|
|
* later retire_requests won't dereference our soon-to-be-gone
|
|
* file_priv.
|
|
*/
|
|
spin_lock(&file_priv->mm.lock);
|
|
while (!list_empty(&file_priv->mm.request_list)) {
|
|
struct drm_i915_gem_request *request;
|
|
|
|
request = list_first_entry(&file_priv->mm.request_list,
|
|
struct drm_i915_gem_request,
|
|
client_list);
|
|
list_del(&request->client_list);
|
|
request->file_priv = NULL;
|
|
}
|
|
spin_unlock(&file_priv->mm.lock);
|
|
|
|
if (!list_empty(&file_priv->rps.link)) {
|
|
spin_lock(&to_i915(dev)->rps.client_lock);
|
|
list_del(&file_priv->rps.link);
|
|
spin_unlock(&to_i915(dev)->rps.client_lock);
|
|
}
|
|
}
|
|
|
|
int i915_gem_open(struct drm_device *dev, struct drm_file *file)
|
|
{
|
|
struct drm_i915_file_private *file_priv;
|
|
int ret;
|
|
|
|
DRM_DEBUG_DRIVER("\n");
|
|
|
|
file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
|
|
if (!file_priv)
|
|
return -ENOMEM;
|
|
|
|
file->driver_priv = file_priv;
|
|
file_priv->dev_priv = dev->dev_private;
|
|
file_priv->file = file;
|
|
INIT_LIST_HEAD(&file_priv->rps.link);
|
|
|
|
spin_lock_init(&file_priv->mm.lock);
|
|
INIT_LIST_HEAD(&file_priv->mm.request_list);
|
|
|
|
file_priv->bsd_ring = -1;
|
|
|
|
ret = i915_gem_context_open(dev, file);
|
|
if (ret)
|
|
kfree(file_priv);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_track_fb - update frontbuffer tracking
|
|
* @old: current GEM buffer for the frontbuffer slots
|
|
* @new: new GEM buffer for the frontbuffer slots
|
|
* @frontbuffer_bits: bitmask of frontbuffer slots
|
|
*
|
|
* This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
|
|
* from @old and setting them in @new. Both @old and @new can be NULL.
|
|
*/
|
|
void i915_gem_track_fb(struct drm_i915_gem_object *old,
|
|
struct drm_i915_gem_object *new,
|
|
unsigned frontbuffer_bits)
|
|
{
|
|
if (old) {
|
|
WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
|
|
WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
|
|
old->frontbuffer_bits &= ~frontbuffer_bits;
|
|
}
|
|
|
|
if (new) {
|
|
WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
|
|
WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
|
|
new->frontbuffer_bits |= frontbuffer_bits;
|
|
}
|
|
}
|
|
|
|
/* All the new VM stuff */
|
|
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
|
|
struct i915_address_space *vm)
|
|
{
|
|
struct drm_i915_private *dev_priv = o->base.dev->dev_private;
|
|
struct i915_vma *vma;
|
|
|
|
WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
|
|
|
|
list_for_each_entry(vma, &o->vma_list, obj_link) {
|
|
if (vma->is_ggtt &&
|
|
vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
|
|
continue;
|
|
if (vma->vm == vm)
|
|
return vma->node.start;
|
|
}
|
|
|
|
WARN(1, "%s vma for this object not found.\n",
|
|
i915_is_ggtt(vm) ? "global" : "ppgtt");
|
|
return -1;
|
|
}
|
|
|
|
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
|
|
const struct i915_ggtt_view *view)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(o->base.dev);
|
|
struct i915_ggtt *ggtt = &dev_priv->ggtt;
|
|
struct i915_vma *vma;
|
|
|
|
list_for_each_entry(vma, &o->vma_list, obj_link)
|
|
if (vma->vm == &ggtt->base &&
|
|
i915_ggtt_view_equal(&vma->ggtt_view, view))
|
|
return vma->node.start;
|
|
|
|
WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
|
|
return -1;
|
|
}
|
|
|
|
bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
|
|
struct i915_address_space *vm)
|
|
{
|
|
struct i915_vma *vma;
|
|
|
|
list_for_each_entry(vma, &o->vma_list, obj_link) {
|
|
if (vma->is_ggtt &&
|
|
vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
|
|
continue;
|
|
if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
|
|
const struct i915_ggtt_view *view)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(o->base.dev);
|
|
struct i915_ggtt *ggtt = &dev_priv->ggtt;
|
|
struct i915_vma *vma;
|
|
|
|
list_for_each_entry(vma, &o->vma_list, obj_link)
|
|
if (vma->vm == &ggtt->base &&
|
|
i915_ggtt_view_equal(&vma->ggtt_view, view) &&
|
|
drm_mm_node_allocated(&vma->node))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
|
|
{
|
|
struct i915_vma *vma;
|
|
|
|
list_for_each_entry(vma, &o->vma_list, obj_link)
|
|
if (drm_mm_node_allocated(&vma->node))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
|
|
struct i915_address_space *vm)
|
|
{
|
|
struct drm_i915_private *dev_priv = o->base.dev->dev_private;
|
|
struct i915_vma *vma;
|
|
|
|
WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
|
|
|
|
BUG_ON(list_empty(&o->vma_list));
|
|
|
|
list_for_each_entry(vma, &o->vma_list, obj_link) {
|
|
if (vma->is_ggtt &&
|
|
vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
|
|
continue;
|
|
if (vma->vm == vm)
|
|
return vma->node.size;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct i915_vma *vma;
|
|
list_for_each_entry(vma, &obj->vma_list, obj_link)
|
|
if (vma->pin_count > 0)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
|
|
struct page *
|
|
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
|
|
{
|
|
struct page *page;
|
|
|
|
/* Only default objects have per-page dirty tracking */
|
|
if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
|
|
return NULL;
|
|
|
|
page = i915_gem_object_get_page(obj, n);
|
|
set_page_dirty(page);
|
|
return page;
|
|
}
|
|
|
|
/* Allocate a new GEM object and fill it with the supplied data */
|
|
struct drm_i915_gem_object *
|
|
i915_gem_object_create_from_data(struct drm_device *dev,
|
|
const void *data, size_t size)
|
|
{
|
|
struct drm_i915_gem_object *obj;
|
|
struct sg_table *sg;
|
|
size_t bytes;
|
|
int ret;
|
|
|
|
obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
|
|
if (IS_ERR_OR_NULL(obj))
|
|
return obj;
|
|
|
|
ret = i915_gem_object_set_to_cpu_domain(obj, true);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
ret = i915_gem_object_get_pages(obj);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
i915_gem_object_pin_pages(obj);
|
|
sg = obj->pages;
|
|
bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
|
|
obj->dirty = 1; /* Backing store is now out of date */
|
|
i915_gem_object_unpin_pages(obj);
|
|
|
|
if (WARN_ON(bytes != size)) {
|
|
DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
|
|
ret = -EFAULT;
|
|
goto fail;
|
|
}
|
|
|
|
return obj;
|
|
|
|
fail:
|
|
drm_gem_object_unreference(&obj->base);
|
|
return ERR_PTR(ret);
|
|
}
|