linux/Documentation/devicetree/bindings/interrupt-controller/arm,gic-v3.txt
Srinivas Kandagatla 7c813152cf dt-bindings/gic-v3: Add msm8996 compatible string
Access to GICR_WAKER is restricted on msm8996 SoC in Hypervisor.
There are many devices out there with this restriction in place
and there has been no update to this firmware since last few years,
making those devices totally unusable for upstream development.

IIDR register value conflicts with other SoCs, using compatible seems
to be the only way to apply quirks required for msm8996 based SoCs.

Without this quirk many qcom SoCs (atleast 3 that I know) are
unable to boot mainline.

Reviewed-by: Rob Herring <robh@kernel.org>
Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-12-13 17:22:14 +00:00

176 lines
5.5 KiB
Plaintext

* ARM Generic Interrupt Controller, version 3
AArch64 SMP cores are often associated with a GICv3, providing Private
Peripheral Interrupts (PPI), Shared Peripheral Interrupts (SPI),
Software Generated Interrupts (SGI), and Locality-specific Peripheral
Interrupts (LPI).
Main node required properties:
- compatible : should at least contain "arm,gic-v3" or either
"qcom,msm8996-gic-v3", "arm,gic-v3" for msm8996 SoCs
to address SoC specific bugs/quirks
- interrupt-controller : Identifies the node as an interrupt controller
- #interrupt-cells : Specifies the number of cells needed to encode an
interrupt source. Must be a single cell with a value of at least 3.
If the system requires describing PPI affinity, then the value must
be at least 4.
The 1st cell is the interrupt type; 0 for SPI interrupts, 1 for PPI
interrupts. Other values are reserved for future use.
The 2nd cell contains the interrupt number for the interrupt type.
SPI interrupts are in the range [0-987]. PPI interrupts are in the
range [0-15].
The 3rd cell is the flags, encoded as follows:
bits[3:0] trigger type and level flags.
1 = edge triggered
4 = level triggered
The 4th cell is a phandle to a node describing a set of CPUs this
interrupt is affine to. The interrupt must be a PPI, and the node
pointed must be a subnode of the "ppi-partitions" subnode. For
interrupt types other than PPI or PPIs that are not partitionned,
this cell must be zero. See the "ppi-partitions" node description
below.
Cells 5 and beyond are reserved for future use and must have a value
of 0 if present.
- reg : Specifies base physical address(s) and size of the GIC
registers, in the following order:
- GIC Distributor interface (GICD)
- GIC Redistributors (GICR), one range per redistributor region
- GIC CPU interface (GICC)
- GIC Hypervisor interface (GICH)
- GIC Virtual CPU interface (GICV)
GICC, GICH and GICV are optional.
- interrupts : Interrupt source of the VGIC maintenance interrupt.
Optional
- redistributor-stride : If using padding pages, specifies the stride
of consecutive redistributors. Must be a multiple of 64kB.
- #redistributor-regions: The number of independent contiguous regions
occupied by the redistributors. Required if more than one such
region is present.
- msi-controller: Boolean property. Identifies the node as an MSI
controller. Only present if the Message Based Interrupt
functionnality is being exposed by the HW, and the mbi-ranges
property present.
- mbi-ranges: A list of pairs <intid span>, where "intid" is the first
SPI of a range that can be used an MBI, and "span" the size of that
range. Multiple ranges can be provided. Requires "msi-controller" to
be set.
- mbi-alias: Address property. Base address of an alias of the GICD
region containing only the {SET,CLR}SPI registers to be used if
isolation is required, and if supported by the HW.
Sub-nodes:
PPI affinity can be expressed as a single "ppi-partitions" node,
containing a set of sub-nodes, each with the following property:
- affinity: Should be a list of phandles to CPU nodes (as described in
Documentation/devicetree/bindings/arm/cpus.txt).
GICv3 has one or more Interrupt Translation Services (ITS) that are
used to route Message Signalled Interrupts (MSI) to the CPUs.
These nodes must have the following properties:
- compatible : Should at least contain "arm,gic-v3-its".
- msi-controller : Boolean property. Identifies the node as an MSI controller
- #msi-cells: Must be <1>. The single msi-cell is the DeviceID of the device
which will generate the MSI.
- reg: Specifies the base physical address and size of the ITS
registers.
Optional:
- socionext,synquacer-pre-its: (u32, u32) tuple describing the untranslated
address and size of the pre-ITS window.
The main GIC node must contain the appropriate #address-cells,
#size-cells and ranges properties for the reg property of all ITS
nodes.
Examples:
gic: interrupt-controller@2cf00000 {
compatible = "arm,gic-v3";
#interrupt-cells = <3>;
#address-cells = <2>;
#size-cells = <2>;
ranges;
interrupt-controller;
reg = <0x0 0x2f000000 0 0x10000>, // GICD
<0x0 0x2f100000 0 0x200000>, // GICR
<0x0 0x2c000000 0 0x2000>, // GICC
<0x0 0x2c010000 0 0x2000>, // GICH
<0x0 0x2c020000 0 0x2000>; // GICV
interrupts = <1 9 4>;
msi-controller;
mbi-ranges = <256 128>;
gic-its@2c200000 {
compatible = "arm,gic-v3-its";
msi-controller;
#msi-cells = <1>;
reg = <0x0 0x2c200000 0 0x20000>;
};
};
gic: interrupt-controller@2c010000 {
compatible = "arm,gic-v3";
#interrupt-cells = <4>;
#address-cells = <2>;
#size-cells = <2>;
ranges;
interrupt-controller;
redistributor-stride = <0x0 0x40000>; // 256kB stride
#redistributor-regions = <2>;
reg = <0x0 0x2c010000 0 0x10000>, // GICD
<0x0 0x2d000000 0 0x800000>, // GICR 1: CPUs 0-31
<0x0 0x2e000000 0 0x800000>; // GICR 2: CPUs 32-63
<0x0 0x2c040000 0 0x2000>, // GICC
<0x0 0x2c060000 0 0x2000>, // GICH
<0x0 0x2c080000 0 0x2000>; // GICV
interrupts = <1 9 4>;
gic-its@2c200000 {
compatible = "arm,gic-v3-its";
msi-controller;
#msi-cells = <1>;
reg = <0x0 0x2c200000 0 0x20000>;
};
gic-its@2c400000 {
compatible = "arm,gic-v3-its";
msi-controller;
#msi-cells = <1>;
reg = <0x0 0x2c400000 0 0x20000>;
};
ppi-partitions {
part0: interrupt-partition-0 {
affinity = <&cpu0 &cpu2>;
};
part1: interrupt-partition-1 {
affinity = <&cpu1 &cpu3>;
};
};
};
device@0 {
reg = <0 0 0 4>;
interrupts = <1 1 4 &part0>;
};