linux/sound/usb/usbaudio.c
Clemens Ladisch 3315937825 [ALSA] usb-audio: fix non-48k sample rates with SB Audigy 2 ZS
Modules: USB generic driver

On the Audigy 2 ZS, disable all sample rate that are not a multiple of
48 kHz because the others work only with the digital output which is
not yet supported.

Signed-off-by: Clemens Ladisch <clemens@ladisch.de>
2006-01-22 16:24:16 +01:00

3429 lines
96 KiB
C

/*
* (Tentative) USB Audio Driver for ALSA
*
* Main and PCM part
*
* Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de>
*
* Many codes borrowed from audio.c by
* Alan Cox (alan@lxorguk.ukuu.org.uk)
* Thomas Sailer (sailer@ife.ee.ethz.ch)
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*
* NOTES:
*
* - async unlink should be used for avoiding the sleep inside lock.
* 2.4.22 usb-uhci seems buggy for async unlinking and results in
* oops. in such a cse, pass async_unlink=0 option.
* - the linked URBs would be preferred but not used so far because of
* the instability of unlinking.
* - type II is not supported properly. there is no device which supports
* this type *correctly*. SB extigy looks as if it supports, but it's
* indeed an AC3 stream packed in SPDIF frames (i.e. no real AC3 stream).
*/
#include <sound/driver.h>
#include <linux/bitops.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/usb.h>
#include <linux/vmalloc.h>
#include <linux/moduleparam.h>
#include <sound/core.h>
#include <sound/info.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/initval.h>
#include "usbaudio.h"
MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
MODULE_DESCRIPTION("USB Audio");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("{{Generic,USB Audio}}");
static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */
static int vid[SNDRV_CARDS] = { [0 ... (SNDRV_CARDS-1)] = -1 }; /* Vendor ID for this card */
static int pid[SNDRV_CARDS] = { [0 ... (SNDRV_CARDS-1)] = -1 }; /* Product ID for this card */
static int nrpacks = 4; /* max. number of packets per urb */
static int async_unlink = 1;
module_param_array(index, int, NULL, 0444);
MODULE_PARM_DESC(index, "Index value for the USB audio adapter.");
module_param_array(id, charp, NULL, 0444);
MODULE_PARM_DESC(id, "ID string for the USB audio adapter.");
module_param_array(enable, bool, NULL, 0444);
MODULE_PARM_DESC(enable, "Enable USB audio adapter.");
module_param_array(vid, int, NULL, 0444);
MODULE_PARM_DESC(vid, "Vendor ID for the USB audio device.");
module_param_array(pid, int, NULL, 0444);
MODULE_PARM_DESC(pid, "Product ID for the USB audio device.");
module_param(nrpacks, int, 0644);
MODULE_PARM_DESC(nrpacks, "Max. number of packets per URB.");
module_param(async_unlink, bool, 0444);
MODULE_PARM_DESC(async_unlink, "Use async unlink mode.");
/*
* debug the h/w constraints
*/
/* #define HW_CONST_DEBUG */
/*
*
*/
#define MAX_PACKS 10
#define MAX_PACKS_HS (MAX_PACKS * 8) /* in high speed mode */
#define MAX_URBS 8
#define SYNC_URBS 4 /* always four urbs for sync */
#define MIN_PACKS_URB 1 /* minimum 1 packet per urb */
struct audioformat {
struct list_head list;
snd_pcm_format_t format; /* format type */
unsigned int channels; /* # channels */
unsigned int fmt_type; /* USB audio format type (1-3) */
unsigned int frame_size; /* samples per frame for non-audio */
int iface; /* interface number */
unsigned char altsetting; /* corresponding alternate setting */
unsigned char altset_idx; /* array index of altenate setting */
unsigned char attributes; /* corresponding attributes of cs endpoint */
unsigned char endpoint; /* endpoint */
unsigned char ep_attr; /* endpoint attributes */
unsigned int maxpacksize; /* max. packet size */
unsigned int rates; /* rate bitmasks */
unsigned int rate_min, rate_max; /* min/max rates */
unsigned int nr_rates; /* number of rate table entries */
unsigned int *rate_table; /* rate table */
};
struct snd_usb_substream;
struct snd_urb_ctx {
struct urb *urb;
unsigned int buffer_size; /* size of data buffer, if data URB */
struct snd_usb_substream *subs;
int index; /* index for urb array */
int packets; /* number of packets per urb */
};
struct snd_urb_ops {
int (*prepare)(struct snd_usb_substream *subs, struct snd_pcm_runtime *runtime, struct urb *u);
int (*retire)(struct snd_usb_substream *subs, struct snd_pcm_runtime *runtime, struct urb *u);
int (*prepare_sync)(struct snd_usb_substream *subs, struct snd_pcm_runtime *runtime, struct urb *u);
int (*retire_sync)(struct snd_usb_substream *subs, struct snd_pcm_runtime *runtime, struct urb *u);
};
struct snd_usb_substream {
struct snd_usb_stream *stream;
struct usb_device *dev;
struct snd_pcm_substream *pcm_substream;
int direction; /* playback or capture */
int interface; /* current interface */
int endpoint; /* assigned endpoint */
struct audioformat *cur_audiofmt; /* current audioformat pointer (for hw_params callback) */
unsigned int cur_rate; /* current rate (for hw_params callback) */
unsigned int period_bytes; /* current period bytes (for hw_params callback) */
unsigned int format; /* USB data format */
unsigned int datapipe; /* the data i/o pipe */
unsigned int syncpipe; /* 1 - async out or adaptive in */
unsigned int datainterval; /* log_2 of data packet interval */
unsigned int syncinterval; /* P for adaptive mode, 0 otherwise */
unsigned int freqn; /* nominal sampling rate in fs/fps in Q16.16 format */
unsigned int freqm; /* momentary sampling rate in fs/fps in Q16.16 format */
unsigned int freqmax; /* maximum sampling rate, used for buffer management */
unsigned int phase; /* phase accumulator */
unsigned int maxpacksize; /* max packet size in bytes */
unsigned int maxframesize; /* max packet size in frames */
unsigned int curpacksize; /* current packet size in bytes (for capture) */
unsigned int curframesize; /* current packet size in frames (for capture) */
unsigned int fill_max: 1; /* fill max packet size always */
unsigned int fmt_type; /* USB audio format type (1-3) */
unsigned int packs_per_ms; /* packets per millisecond (for playback) */
unsigned int running: 1; /* running status */
unsigned int hwptr_done; /* processed frame position in the buffer */
unsigned int transfer_done; /* processed frames since last period update */
unsigned long active_mask; /* bitmask of active urbs */
unsigned long unlink_mask; /* bitmask of unlinked urbs */
unsigned int nurbs; /* # urbs */
struct snd_urb_ctx dataurb[MAX_URBS]; /* data urb table */
struct snd_urb_ctx syncurb[SYNC_URBS]; /* sync urb table */
char *syncbuf; /* sync buffer for all sync URBs */
dma_addr_t sync_dma; /* DMA address of syncbuf */
u64 formats; /* format bitmasks (all or'ed) */
unsigned int num_formats; /* number of supported audio formats (list) */
struct list_head fmt_list; /* format list */
spinlock_t lock;
struct snd_urb_ops ops; /* callbacks (must be filled at init) */
};
struct snd_usb_stream {
struct snd_usb_audio *chip;
struct snd_pcm *pcm;
int pcm_index;
unsigned int fmt_type; /* USB audio format type (1-3) */
struct snd_usb_substream substream[2];
struct list_head list;
};
/*
* we keep the snd_usb_audio_t instances by ourselves for merging
* the all interfaces on the same card as one sound device.
*/
static DECLARE_MUTEX(register_mutex);
static struct snd_usb_audio *usb_chip[SNDRV_CARDS];
/*
* convert a sampling rate into our full speed format (fs/1000 in Q16.16)
* this will overflow at approx 524 kHz
*/
static inline unsigned get_usb_full_speed_rate(unsigned int rate)
{
return ((rate << 13) + 62) / 125;
}
/*
* convert a sampling rate into USB high speed format (fs/8000 in Q16.16)
* this will overflow at approx 4 MHz
*/
static inline unsigned get_usb_high_speed_rate(unsigned int rate)
{
return ((rate << 10) + 62) / 125;
}
/* convert our full speed USB rate into sampling rate in Hz */
static inline unsigned get_full_speed_hz(unsigned int usb_rate)
{
return (usb_rate * 125 + (1 << 12)) >> 13;
}
/* convert our high speed USB rate into sampling rate in Hz */
static inline unsigned get_high_speed_hz(unsigned int usb_rate)
{
return (usb_rate * 125 + (1 << 9)) >> 10;
}
/*
* prepare urb for full speed capture sync pipe
*
* fill the length and offset of each urb descriptor.
* the fixed 10.14 frequency is passed through the pipe.
*/
static int prepare_capture_sync_urb(struct snd_usb_substream *subs,
struct snd_pcm_runtime *runtime,
struct urb *urb)
{
unsigned char *cp = urb->transfer_buffer;
struct snd_urb_ctx *ctx = (struct snd_urb_ctx *)urb->context;
urb->dev = ctx->subs->dev; /* we need to set this at each time */
urb->iso_frame_desc[0].length = 3;
urb->iso_frame_desc[0].offset = 0;
cp[0] = subs->freqn >> 2;
cp[1] = subs->freqn >> 10;
cp[2] = subs->freqn >> 18;
return 0;
}
/*
* prepare urb for high speed capture sync pipe
*
* fill the length and offset of each urb descriptor.
* the fixed 12.13 frequency is passed as 16.16 through the pipe.
*/
static int prepare_capture_sync_urb_hs(struct snd_usb_substream *subs,
struct snd_pcm_runtime *runtime,
struct urb *urb)
{
unsigned char *cp = urb->transfer_buffer;
struct snd_urb_ctx *ctx = (struct snd_urb_ctx *)urb->context;
urb->dev = ctx->subs->dev; /* we need to set this at each time */
urb->iso_frame_desc[0].length = 4;
urb->iso_frame_desc[0].offset = 0;
cp[0] = subs->freqn;
cp[1] = subs->freqn >> 8;
cp[2] = subs->freqn >> 16;
cp[3] = subs->freqn >> 24;
return 0;
}
/*
* process after capture sync complete
* - nothing to do
*/
static int retire_capture_sync_urb(struct snd_usb_substream *subs,
struct snd_pcm_runtime *runtime,
struct urb *urb)
{
return 0;
}
/*
* prepare urb for capture data pipe
*
* fill the offset and length of each descriptor.
*
* we use a temporary buffer to write the captured data.
* since the length of written data is determined by host, we cannot
* write onto the pcm buffer directly... the data is thus copied
* later at complete callback to the global buffer.
*/
static int prepare_capture_urb(struct snd_usb_substream *subs,
struct snd_pcm_runtime *runtime,
struct urb *urb)
{
int i, offs;
struct snd_urb_ctx *ctx = (struct snd_urb_ctx *)urb->context;
offs = 0;
urb->dev = ctx->subs->dev; /* we need to set this at each time */
for (i = 0; i < ctx->packets; i++) {
urb->iso_frame_desc[i].offset = offs;
urb->iso_frame_desc[i].length = subs->curpacksize;
offs += subs->curpacksize;
}
urb->transfer_buffer_length = offs;
urb->number_of_packets = ctx->packets;
#if 0 // for check
if (! urb->bandwidth) {
int bustime;
bustime = usb_check_bandwidth(urb->dev, urb);
if (bustime < 0)
return bustime;
printk("urb %d: bandwidth = %d (packets = %d)\n", ctx->index, bustime, urb->number_of_packets);
usb_claim_bandwidth(urb->dev, urb, bustime, 1);
}
#endif // for check
return 0;
}
/*
* process after capture complete
*
* copy the data from each desctiptor to the pcm buffer, and
* update the current position.
*/
static int retire_capture_urb(struct snd_usb_substream *subs,
struct snd_pcm_runtime *runtime,
struct urb *urb)
{
unsigned long flags;
unsigned char *cp;
int i;
unsigned int stride, len, oldptr;
int period_elapsed = 0;
stride = runtime->frame_bits >> 3;
for (i = 0; i < urb->number_of_packets; i++) {
cp = (unsigned char *)urb->transfer_buffer + urb->iso_frame_desc[i].offset;
if (urb->iso_frame_desc[i].status) {
snd_printd(KERN_ERR "frame %d active: %d\n", i, urb->iso_frame_desc[i].status);
// continue;
}
len = urb->iso_frame_desc[i].actual_length / stride;
if (! len)
continue;
/* update the current pointer */
spin_lock_irqsave(&subs->lock, flags);
oldptr = subs->hwptr_done;
subs->hwptr_done += len;
if (subs->hwptr_done >= runtime->buffer_size)
subs->hwptr_done -= runtime->buffer_size;
subs->transfer_done += len;
if (subs->transfer_done >= runtime->period_size) {
subs->transfer_done -= runtime->period_size;
period_elapsed = 1;
}
spin_unlock_irqrestore(&subs->lock, flags);
/* copy a data chunk */
if (oldptr + len > runtime->buffer_size) {
unsigned int cnt = runtime->buffer_size - oldptr;
unsigned int blen = cnt * stride;
memcpy(runtime->dma_area + oldptr * stride, cp, blen);
memcpy(runtime->dma_area, cp + blen, len * stride - blen);
} else {
memcpy(runtime->dma_area + oldptr * stride, cp, len * stride);
}
}
if (period_elapsed)
snd_pcm_period_elapsed(subs->pcm_substream);
return 0;
}
/*
* prepare urb for full speed playback sync pipe
*
* set up the offset and length to receive the current frequency.
*/
static int prepare_playback_sync_urb(struct snd_usb_substream *subs,
struct snd_pcm_runtime *runtime,
struct urb *urb)
{
struct snd_urb_ctx *ctx = (struct snd_urb_ctx *)urb->context;
urb->dev = ctx->subs->dev; /* we need to set this at each time */
urb->iso_frame_desc[0].length = 3;
urb->iso_frame_desc[0].offset = 0;
return 0;
}
/*
* prepare urb for high speed playback sync pipe
*
* set up the offset and length to receive the current frequency.
*/
static int prepare_playback_sync_urb_hs(struct snd_usb_substream *subs,
struct snd_pcm_runtime *runtime,
struct urb *urb)
{
struct snd_urb_ctx *ctx = (struct snd_urb_ctx *)urb->context;
urb->dev = ctx->subs->dev; /* we need to set this at each time */
urb->iso_frame_desc[0].length = 4;
urb->iso_frame_desc[0].offset = 0;
return 0;
}
/*
* process after full speed playback sync complete
*
* retrieve the current 10.14 frequency from pipe, and set it.
* the value is referred in prepare_playback_urb().
*/
static int retire_playback_sync_urb(struct snd_usb_substream *subs,
struct snd_pcm_runtime *runtime,
struct urb *urb)
{
unsigned int f;
unsigned long flags;
if (urb->iso_frame_desc[0].status == 0 &&
urb->iso_frame_desc[0].actual_length == 3) {
f = combine_triple((u8*)urb->transfer_buffer) << 2;
if (f >= subs->freqn - subs->freqn / 8 && f <= subs->freqmax) {
spin_lock_irqsave(&subs->lock, flags);
subs->freqm = f;
spin_unlock_irqrestore(&subs->lock, flags);
}
}
return 0;
}
/*
* process after high speed playback sync complete
*
* retrieve the current 12.13 frequency from pipe, and set it.
* the value is referred in prepare_playback_urb().
*/
static int retire_playback_sync_urb_hs(struct snd_usb_substream *subs,
struct snd_pcm_runtime *runtime,
struct urb *urb)
{
unsigned int f;
unsigned long flags;
if (urb->iso_frame_desc[0].status == 0 &&
urb->iso_frame_desc[0].actual_length == 4) {
f = combine_quad((u8*)urb->transfer_buffer) & 0x0fffffff;
if (f >= subs->freqn - subs->freqn / 8 && f <= subs->freqmax) {
spin_lock_irqsave(&subs->lock, flags);
subs->freqm = f;
spin_unlock_irqrestore(&subs->lock, flags);
}
}
return 0;
}
/*
* Prepare urb for streaming before playback starts.
*
* We don't yet have data, so we send a frame of silence.
*/
static int prepare_startup_playback_urb(struct snd_usb_substream *subs,
struct snd_pcm_runtime *runtime,
struct urb *urb)
{
unsigned int i, offs, counts;
struct snd_urb_ctx *ctx = urb->context;
int stride = runtime->frame_bits >> 3;
offs = 0;
urb->dev = ctx->subs->dev;
urb->number_of_packets = subs->packs_per_ms;
for (i = 0; i < subs->packs_per_ms; ++i) {
/* calculate the size of a packet */
if (subs->fill_max)
counts = subs->maxframesize; /* fixed */
else {
subs->phase = (subs->phase & 0xffff)
+ (subs->freqm << subs->datainterval);
counts = subs->phase >> 16;
if (counts > subs->maxframesize)
counts = subs->maxframesize;
}
urb->iso_frame_desc[i].offset = offs * stride;
urb->iso_frame_desc[i].length = counts * stride;
offs += counts;
}
urb->transfer_buffer_length = offs * stride;
memset(urb->transfer_buffer,
subs->cur_audiofmt->format == SNDRV_PCM_FORMAT_U8 ? 0x80 : 0,
offs * stride);
return 0;
}
/*
* prepare urb for playback data pipe
*
* Since a URB can handle only a single linear buffer, we must use double
* buffering when the data to be transferred overflows the buffer boundary.
* To avoid inconsistencies when updating hwptr_done, we use double buffering
* for all URBs.
*/
static int prepare_playback_urb(struct snd_usb_substream *subs,
struct snd_pcm_runtime *runtime,
struct urb *urb)
{
int i, stride, offs;
unsigned int counts;
unsigned long flags;
int period_elapsed = 0;
struct snd_urb_ctx *ctx = (struct snd_urb_ctx *)urb->context;
stride = runtime->frame_bits >> 3;
offs = 0;
urb->dev = ctx->subs->dev; /* we need to set this at each time */
urb->number_of_packets = 0;
spin_lock_irqsave(&subs->lock, flags);
for (i = 0; i < ctx->packets; i++) {
/* calculate the size of a packet */
if (subs->fill_max)
counts = subs->maxframesize; /* fixed */
else {
subs->phase = (subs->phase & 0xffff)
+ (subs->freqm << subs->datainterval);
counts = subs->phase >> 16;
if (counts > subs->maxframesize)
counts = subs->maxframesize;
}
/* set up descriptor */
urb->iso_frame_desc[i].offset = offs * stride;
urb->iso_frame_desc[i].length = counts * stride;
offs += counts;
urb->number_of_packets++;
subs->transfer_done += counts;
if (subs->transfer_done >= runtime->period_size) {
subs->transfer_done -= runtime->period_size;
period_elapsed = 1;
if (subs->fmt_type == USB_FORMAT_TYPE_II) {
if (subs->transfer_done > 0) {
/* FIXME: fill-max mode is not
* supported yet */
offs -= subs->transfer_done;
counts -= subs->transfer_done;
urb->iso_frame_desc[i].length =
counts * stride;
subs->transfer_done = 0;
}
i++;
if (i < ctx->packets) {
/* add a transfer delimiter */
urb->iso_frame_desc[i].offset =
offs * stride;
urb->iso_frame_desc[i].length = 0;
urb->number_of_packets++;
}
break;
}
}
/* finish at the frame boundary at/after the period boundary */
if (period_elapsed &&
(i & (subs->packs_per_ms - 1)) == subs->packs_per_ms - 1)
break;
}
if (subs->hwptr_done + offs > runtime->buffer_size) {
/* err, the transferred area goes over buffer boundary. */
unsigned int len = runtime->buffer_size - subs->hwptr_done;
memcpy(urb->transfer_buffer,
runtime->dma_area + subs->hwptr_done * stride,
len * stride);
memcpy(urb->transfer_buffer + len * stride,
runtime->dma_area,
(offs - len) * stride);
} else {
memcpy(urb->transfer_buffer,
runtime->dma_area + subs->hwptr_done * stride,
offs * stride);
}
subs->hwptr_done += offs;
if (subs->hwptr_done >= runtime->buffer_size)
subs->hwptr_done -= runtime->buffer_size;
spin_unlock_irqrestore(&subs->lock, flags);
urb->transfer_buffer_length = offs * stride;
if (period_elapsed)
snd_pcm_period_elapsed(subs->pcm_substream);
return 0;
}
/*
* process after playback data complete
* - nothing to do
*/
static int retire_playback_urb(struct snd_usb_substream *subs,
struct snd_pcm_runtime *runtime,
struct urb *urb)
{
return 0;
}
/*
*/
static struct snd_urb_ops audio_urb_ops[2] = {
{
.prepare = prepare_startup_playback_urb,
.retire = retire_playback_urb,
.prepare_sync = prepare_playback_sync_urb,
.retire_sync = retire_playback_sync_urb,
},
{
.prepare = prepare_capture_urb,
.retire = retire_capture_urb,
.prepare_sync = prepare_capture_sync_urb,
.retire_sync = retire_capture_sync_urb,
},
};
static struct snd_urb_ops audio_urb_ops_high_speed[2] = {
{
.prepare = prepare_startup_playback_urb,
.retire = retire_playback_urb,
.prepare_sync = prepare_playback_sync_urb_hs,
.retire_sync = retire_playback_sync_urb_hs,
},
{
.prepare = prepare_capture_urb,
.retire = retire_capture_urb,
.prepare_sync = prepare_capture_sync_urb_hs,
.retire_sync = retire_capture_sync_urb,
},
};
/*
* complete callback from data urb
*/
static void snd_complete_urb(struct urb *urb, struct pt_regs *regs)
{
struct snd_urb_ctx *ctx = (struct snd_urb_ctx *)urb->context;
struct snd_usb_substream *subs = ctx->subs;
struct snd_pcm_substream *substream = ctx->subs->pcm_substream;
int err = 0;
if ((subs->running && subs->ops.retire(subs, substream->runtime, urb)) ||
! subs->running || /* can be stopped during retire callback */
(err = subs->ops.prepare(subs, substream->runtime, urb)) < 0 ||
(err = usb_submit_urb(urb, GFP_ATOMIC)) < 0) {
clear_bit(ctx->index, &subs->active_mask);
if (err < 0) {
snd_printd(KERN_ERR "cannot submit urb (err = %d)\n", err);
snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
}
}
}
/*
* complete callback from sync urb
*/
static void snd_complete_sync_urb(struct urb *urb, struct pt_regs *regs)
{
struct snd_urb_ctx *ctx = (struct snd_urb_ctx *)urb->context;
struct snd_usb_substream *subs = ctx->subs;
struct snd_pcm_substream *substream = ctx->subs->pcm_substream;
int err = 0;
if ((subs->running && subs->ops.retire_sync(subs, substream->runtime, urb)) ||
! subs->running || /* can be stopped during retire callback */
(err = subs->ops.prepare_sync(subs, substream->runtime, urb)) < 0 ||
(err = usb_submit_urb(urb, GFP_ATOMIC)) < 0) {
clear_bit(ctx->index + 16, &subs->active_mask);
if (err < 0) {
snd_printd(KERN_ERR "cannot submit sync urb (err = %d)\n", err);
snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
}
}
}
/* get the physical page pointer at the given offset */
static struct page *snd_pcm_get_vmalloc_page(struct snd_pcm_substream *subs,
unsigned long offset)
{
void *pageptr = subs->runtime->dma_area + offset;
return vmalloc_to_page(pageptr);
}
/* allocate virtual buffer; may be called more than once */
static int snd_pcm_alloc_vmalloc_buffer(struct snd_pcm_substream *subs, size_t size)
{
struct snd_pcm_runtime *runtime = subs->runtime;
if (runtime->dma_area) {
if (runtime->dma_bytes >= size)
return 0; /* already large enough */
vfree(runtime->dma_area);
}
runtime->dma_area = vmalloc(size);
if (! runtime->dma_area)
return -ENOMEM;
runtime->dma_bytes = size;
return 0;
}
/* free virtual buffer; may be called more than once */
static int snd_pcm_free_vmalloc_buffer(struct snd_pcm_substream *subs)
{
struct snd_pcm_runtime *runtime = subs->runtime;
if (runtime->dma_area) {
vfree(runtime->dma_area);
runtime->dma_area = NULL;
}
return 0;
}
/*
* unlink active urbs.
*/
static int deactivate_urbs(struct snd_usb_substream *subs, int force, int can_sleep)
{
unsigned int i;
int async;
subs->running = 0;
if (!force && subs->stream->chip->shutdown) /* to be sure... */
return -EBADFD;
async = !can_sleep && async_unlink;
if (! async && in_interrupt())
return 0;
for (i = 0; i < subs->nurbs; i++) {
if (test_bit(i, &subs->active_mask)) {
if (! test_and_set_bit(i, &subs->unlink_mask)) {
struct urb *u = subs->dataurb[i].urb;
if (async)
usb_unlink_urb(u);
else
usb_kill_urb(u);
}
}
}
if (subs->syncpipe) {
for (i = 0; i < SYNC_URBS; i++) {
if (test_bit(i+16, &subs->active_mask)) {
if (! test_and_set_bit(i+16, &subs->unlink_mask)) {
struct urb *u = subs->syncurb[i].urb;
if (async)
usb_unlink_urb(u);
else
usb_kill_urb(u);
}
}
}
}
return 0;
}
/*
* set up and start data/sync urbs
*/
static int start_urbs(struct snd_usb_substream *subs, struct snd_pcm_runtime *runtime)
{
unsigned int i;
int err;
if (subs->stream->chip->shutdown)
return -EBADFD;
for (i = 0; i < subs->nurbs; i++) {
snd_assert(subs->dataurb[i].urb, return -EINVAL);
if (subs->ops.prepare(subs, runtime, subs->dataurb[i].urb) < 0) {
snd_printk(KERN_ERR "cannot prepare datapipe for urb %d\n", i);
goto __error;
}
}
if (subs->syncpipe) {
for (i = 0; i < SYNC_URBS; i++) {
snd_assert(subs->syncurb[i].urb, return -EINVAL);
if (subs->ops.prepare_sync(subs, runtime, subs->syncurb[i].urb) < 0) {
snd_printk(KERN_ERR "cannot prepare syncpipe for urb %d\n", i);
goto __error;
}
}
}
subs->active_mask = 0;
subs->unlink_mask = 0;
subs->running = 1;
for (i = 0; i < subs->nurbs; i++) {
if ((err = usb_submit_urb(subs->dataurb[i].urb, GFP_ATOMIC)) < 0) {
snd_printk(KERN_ERR "cannot submit datapipe for urb %d, err = %d\n", i, err);
goto __error;
}
set_bit(i, &subs->active_mask);
}
if (subs->syncpipe) {
for (i = 0; i < SYNC_URBS; i++) {
if ((err = usb_submit_urb(subs->syncurb[i].urb, GFP_ATOMIC)) < 0) {
snd_printk(KERN_ERR "cannot submit syncpipe for urb %d, err = %d\n", i, err);
goto __error;
}
set_bit(i + 16, &subs->active_mask);
}
}
return 0;
__error:
// snd_pcm_stop(subs->pcm_substream, SNDRV_PCM_STATE_XRUN);
deactivate_urbs(subs, 0, 0);
return -EPIPE;
}
/*
* wait until all urbs are processed.
*/
static int wait_clear_urbs(struct snd_usb_substream *subs)
{
unsigned long end_time = jiffies + msecs_to_jiffies(1000);
unsigned int i;
int alive;
do {
alive = 0;
for (i = 0; i < subs->nurbs; i++) {
if (test_bit(i, &subs->active_mask))
alive++;
}
if (subs->syncpipe) {
for (i = 0; i < SYNC_URBS; i++) {
if (test_bit(i + 16, &subs->active_mask))
alive++;
}
}
if (! alive)
break;
schedule_timeout_uninterruptible(1);
} while (time_before(jiffies, end_time));
if (alive)
snd_printk(KERN_ERR "timeout: still %d active urbs..\n", alive);
return 0;
}
/*
* return the current pcm pointer. just return the hwptr_done value.
*/
static snd_pcm_uframes_t snd_usb_pcm_pointer(struct snd_pcm_substream *substream)
{
struct snd_usb_substream *subs;
snd_pcm_uframes_t hwptr_done;
subs = (struct snd_usb_substream *)substream->runtime->private_data;
spin_lock(&subs->lock);
hwptr_done = subs->hwptr_done;
spin_unlock(&subs->lock);
return hwptr_done;
}
/*
* start/stop playback substream
*/
static int snd_usb_pcm_playback_trigger(struct snd_pcm_substream *substream,
int cmd)
{
struct snd_usb_substream *subs = substream->runtime->private_data;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
subs->ops.prepare = prepare_playback_urb;
return 0;
case SNDRV_PCM_TRIGGER_STOP:
return deactivate_urbs(subs, 0, 0);
default:
return -EINVAL;
}
}
/*
* start/stop capture substream
*/
static int snd_usb_pcm_capture_trigger(struct snd_pcm_substream *substream,
int cmd)
{
struct snd_usb_substream *subs = substream->runtime->private_data;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
return start_urbs(subs, substream->runtime);
case SNDRV_PCM_TRIGGER_STOP:
return deactivate_urbs(subs, 0, 0);
default:
return -EINVAL;
}
}
/*
* release a urb data
*/
static void release_urb_ctx(struct snd_urb_ctx *u)
{
if (u->urb) {
if (u->buffer_size)
usb_buffer_free(u->subs->dev, u->buffer_size,
u->urb->transfer_buffer,
u->urb->transfer_dma);
usb_free_urb(u->urb);
u->urb = NULL;
}
}
/*
* release a substream
*/
static void release_substream_urbs(struct snd_usb_substream *subs, int force)
{
int i;
/* stop urbs (to be sure) */
deactivate_urbs(subs, force, 1);
wait_clear_urbs(subs);
for (i = 0; i < MAX_URBS; i++)
release_urb_ctx(&subs->dataurb[i]);
for (i = 0; i < SYNC_URBS; i++)
release_urb_ctx(&subs->syncurb[i]);
usb_buffer_free(subs->dev, SYNC_URBS * 4,
subs->syncbuf, subs->sync_dma);
subs->syncbuf = NULL;
subs->nurbs = 0;
}
/*
* initialize a substream for plaback/capture
*/
static int init_substream_urbs(struct snd_usb_substream *subs, unsigned int period_bytes,
unsigned int rate, unsigned int frame_bits)
{
unsigned int maxsize, n, i;
int is_playback = subs->direction == SNDRV_PCM_STREAM_PLAYBACK;
unsigned int npacks[MAX_URBS], urb_packs, total_packs, packs_per_ms;
/* calculate the frequency in 16.16 format */
if (snd_usb_get_speed(subs->dev) == USB_SPEED_FULL)
subs->freqn = get_usb_full_speed_rate(rate);
else
subs->freqn = get_usb_high_speed_rate(rate);
subs->freqm = subs->freqn;
/* calculate max. frequency */
if (subs->maxpacksize) {
/* whatever fits into a max. size packet */
maxsize = subs->maxpacksize;
subs->freqmax = (maxsize / (frame_bits >> 3))
<< (16 - subs->datainterval);
} else {
/* no max. packet size: just take 25% higher than nominal */
subs->freqmax = subs->freqn + (subs->freqn >> 2);
maxsize = ((subs->freqmax + 0xffff) * (frame_bits >> 3))
>> (16 - subs->datainterval);
}
subs->phase = 0;
if (subs->fill_max)
subs->curpacksize = subs->maxpacksize;
else
subs->curpacksize = maxsize;
if (snd_usb_get_speed(subs->dev) == USB_SPEED_HIGH)
packs_per_ms = 8 >> subs->datainterval;
else
packs_per_ms = 1;
subs->packs_per_ms = packs_per_ms;
if (is_playback) {
urb_packs = nrpacks;
urb_packs = max(urb_packs, (unsigned int)MIN_PACKS_URB);
urb_packs = min(urb_packs, (unsigned int)MAX_PACKS);
} else
urb_packs = 1;
urb_packs *= packs_per_ms;
/* decide how many packets to be used */
if (is_playback) {
unsigned int minsize;
/* determine how small a packet can be */
minsize = (subs->freqn >> (16 - subs->datainterval))
* (frame_bits >> 3);
/* with sync from device, assume it can be 12% lower */
if (subs->syncpipe)
minsize -= minsize >> 3;
minsize = max(minsize, 1u);
total_packs = (period_bytes + minsize - 1) / minsize;
/* round up to multiple of packs_per_ms */
total_packs = (total_packs + packs_per_ms - 1)
& ~(packs_per_ms - 1);
/* we need at least two URBs for queueing */
if (total_packs < 2 * MIN_PACKS_URB * packs_per_ms)
total_packs = 2 * MIN_PACKS_URB * packs_per_ms;
} else {
total_packs = MAX_URBS * urb_packs;
}
subs->nurbs = (total_packs + urb_packs - 1) / urb_packs;
if (subs->nurbs > MAX_URBS) {
/* too much... */
subs->nurbs = MAX_URBS;
total_packs = MAX_URBS * urb_packs;
}
n = total_packs;
for (i = 0; i < subs->nurbs; i++) {
npacks[i] = n > urb_packs ? urb_packs : n;
n -= urb_packs;
}
if (subs->nurbs <= 1) {
/* too little - we need at least two packets
* to ensure contiguous playback/capture
*/
subs->nurbs = 2;
npacks[0] = (total_packs + 1) / 2;
npacks[1] = total_packs - npacks[0];
} else if (npacks[subs->nurbs-1] < MIN_PACKS_URB * packs_per_ms) {
/* the last packet is too small.. */
if (subs->nurbs > 2) {
/* merge to the first one */
npacks[0] += npacks[subs->nurbs - 1];
subs->nurbs--;
} else {
/* divide to two */
subs->nurbs = 2;
npacks[0] = (total_packs + 1) / 2;
npacks[1] = total_packs - npacks[0];
}
}
/* allocate and initialize data urbs */
for (i = 0; i < subs->nurbs; i++) {
struct snd_urb_ctx *u = &subs->dataurb[i];
u->index = i;
u->subs = subs;
u->packets = npacks[i];
u->buffer_size = maxsize * u->packets;
if (subs->fmt_type == USB_FORMAT_TYPE_II)
u->packets++; /* for transfer delimiter */
u->urb = usb_alloc_urb(u->packets, GFP_KERNEL);
if (! u->urb)
goto out_of_memory;
u->urb->transfer_buffer =
usb_buffer_alloc(subs->dev, u->buffer_size, GFP_KERNEL,
&u->urb->transfer_dma);
if (! u->urb->transfer_buffer)
goto out_of_memory;
u->urb->pipe = subs->datapipe;
u->urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP;
u->urb->interval = 1 << subs->datainterval;
u->urb->context = u;
u->urb->complete = snd_complete_urb;
}
if (subs->syncpipe) {
/* allocate and initialize sync urbs */
subs->syncbuf = usb_buffer_alloc(subs->dev, SYNC_URBS * 4,
GFP_KERNEL, &subs->sync_dma);
if (! subs->syncbuf)
goto out_of_memory;
for (i = 0; i < SYNC_URBS; i++) {
struct snd_urb_ctx *u = &subs->syncurb[i];
u->index = i;
u->subs = subs;
u->packets = 1;
u->urb = usb_alloc_urb(1, GFP_KERNEL);
if (! u->urb)
goto out_of_memory;
u->urb->transfer_buffer = subs->syncbuf + i * 4;
u->urb->transfer_dma = subs->sync_dma + i * 4;
u->urb->transfer_buffer_length = 4;
u->urb->pipe = subs->syncpipe;
u->urb->transfer_flags = URB_ISO_ASAP |
URB_NO_TRANSFER_DMA_MAP;
u->urb->number_of_packets = 1;
u->urb->interval = 1 << subs->syncinterval;
u->urb->context = u;
u->urb->complete = snd_complete_sync_urb;
}
}
return 0;
out_of_memory:
release_substream_urbs(subs, 0);
return -ENOMEM;
}
/*
* find a matching audio format
*/
static struct audioformat *find_format(struct snd_usb_substream *subs, unsigned int format,
unsigned int rate, unsigned int channels)
{
struct list_head *p;
struct audioformat *found = NULL;
int cur_attr = 0, attr;
list_for_each(p, &subs->fmt_list) {
struct audioformat *fp;
fp = list_entry(p, struct audioformat, list);
if (fp->format != format || fp->channels != channels)
continue;
if (rate < fp->rate_min || rate > fp->rate_max)
continue;
if (! (fp->rates & SNDRV_PCM_RATE_CONTINUOUS)) {
unsigned int i;
for (i = 0; i < fp->nr_rates; i++)
if (fp->rate_table[i] == rate)
break;
if (i >= fp->nr_rates)
continue;
}
attr = fp->ep_attr & EP_ATTR_MASK;
if (! found) {
found = fp;
cur_attr = attr;
continue;
}
/* avoid async out and adaptive in if the other method
* supports the same format.
* this is a workaround for the case like
* M-audio audiophile USB.
*/
if (attr != cur_attr) {
if ((attr == EP_ATTR_ASYNC &&
subs->direction == SNDRV_PCM_STREAM_PLAYBACK) ||
(attr == EP_ATTR_ADAPTIVE &&
subs->direction == SNDRV_PCM_STREAM_CAPTURE))
continue;
if ((cur_attr == EP_ATTR_ASYNC &&
subs->direction == SNDRV_PCM_STREAM_PLAYBACK) ||
(cur_attr == EP_ATTR_ADAPTIVE &&
subs->direction == SNDRV_PCM_STREAM_CAPTURE)) {
found = fp;
cur_attr = attr;
continue;
}
}
/* find the format with the largest max. packet size */
if (fp->maxpacksize > found->maxpacksize) {
found = fp;
cur_attr = attr;
}
}
return found;
}
/*
* initialize the picth control and sample rate
*/
static int init_usb_pitch(struct usb_device *dev, int iface,
struct usb_host_interface *alts,
struct audioformat *fmt)
{
unsigned int ep;
unsigned char data[1];
int err;
ep = get_endpoint(alts, 0)->bEndpointAddress;
/* if endpoint has pitch control, enable it */
if (fmt->attributes & EP_CS_ATTR_PITCH_CONTROL) {
data[0] = 1;
if ((err = snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR,
USB_TYPE_CLASS|USB_RECIP_ENDPOINT|USB_DIR_OUT,
PITCH_CONTROL << 8, ep, data, 1, 1000)) < 0) {
snd_printk(KERN_ERR "%d:%d:%d: cannot set enable PITCH\n",
dev->devnum, iface, ep);
return err;
}
}
return 0;
}
static int init_usb_sample_rate(struct usb_device *dev, int iface,
struct usb_host_interface *alts,
struct audioformat *fmt, int rate)
{
unsigned int ep;
unsigned char data[3];
int err;
ep = get_endpoint(alts, 0)->bEndpointAddress;
/* if endpoint has sampling rate control, set it */
if (fmt->attributes & EP_CS_ATTR_SAMPLE_RATE) {
int crate;
data[0] = rate;
data[1] = rate >> 8;
data[2] = rate >> 16;
if ((err = snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR,
USB_TYPE_CLASS|USB_RECIP_ENDPOINT|USB_DIR_OUT,
SAMPLING_FREQ_CONTROL << 8, ep, data, 3, 1000)) < 0) {
snd_printk(KERN_ERR "%d:%d:%d: cannot set freq %d to ep 0x%x\n",
dev->devnum, iface, fmt->altsetting, rate, ep);
return err;
}
if ((err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR,
USB_TYPE_CLASS|USB_RECIP_ENDPOINT|USB_DIR_IN,
SAMPLING_FREQ_CONTROL << 8, ep, data, 3, 1000)) < 0) {
snd_printk(KERN_WARNING "%d:%d:%d: cannot get freq at ep 0x%x\n",
dev->devnum, iface, fmt->altsetting, ep);
return 0; /* some devices don't support reading */
}
crate = data[0] | (data[1] << 8) | (data[2] << 16);
if (crate != rate) {
snd_printd(KERN_WARNING "current rate %d is different from the runtime rate %d\n", crate, rate);
// runtime->rate = crate;
}
}
return 0;
}
/*
* find a matching format and set up the interface
*/
static int set_format(struct snd_usb_substream *subs, struct audioformat *fmt)
{
struct usb_device *dev = subs->dev;
struct usb_host_interface *alts;
struct usb_interface_descriptor *altsd;
struct usb_interface *iface;
unsigned int ep, attr;
int is_playback = subs->direction == SNDRV_PCM_STREAM_PLAYBACK;
int err;
iface = usb_ifnum_to_if(dev, fmt->iface);
snd_assert(iface, return -EINVAL);
alts = &iface->altsetting[fmt->altset_idx];
altsd = get_iface_desc(alts);
snd_assert(altsd->bAlternateSetting == fmt->altsetting, return -EINVAL);
if (fmt == subs->cur_audiofmt)
return 0;
/* close the old interface */
if (subs->interface >= 0 && subs->interface != fmt->iface) {
usb_set_interface(subs->dev, subs->interface, 0);
subs->interface = -1;
subs->format = 0;
}
/* set interface */
if (subs->interface != fmt->iface || subs->format != fmt->altset_idx) {
if (usb_set_interface(dev, fmt->iface, fmt->altsetting) < 0) {
snd_printk(KERN_ERR "%d:%d:%d: usb_set_interface failed\n",
dev->devnum, fmt->iface, fmt->altsetting);
return -EIO;
}
snd_printdd(KERN_INFO "setting usb interface %d:%d\n", fmt->iface, fmt->altsetting);
subs->interface = fmt->iface;
subs->format = fmt->altset_idx;
}
/* create a data pipe */
ep = fmt->endpoint & USB_ENDPOINT_NUMBER_MASK;
if (is_playback)
subs->datapipe = usb_sndisocpipe(dev, ep);
else
subs->datapipe = usb_rcvisocpipe(dev, ep);
if (snd_usb_get_speed(subs->dev) == USB_SPEED_HIGH &&
get_endpoint(alts, 0)->bInterval >= 1 &&
get_endpoint(alts, 0)->bInterval <= 4)
subs->datainterval = get_endpoint(alts, 0)->bInterval - 1;
else
subs->datainterval = 0;
subs->syncpipe = subs->syncinterval = 0;
subs->maxpacksize = fmt->maxpacksize;
subs->fill_max = 0;
/* we need a sync pipe in async OUT or adaptive IN mode */
/* check the number of EP, since some devices have broken
* descriptors which fool us. if it has only one EP,
* assume it as adaptive-out or sync-in.
*/
attr = fmt->ep_attr & EP_ATTR_MASK;
if (((is_playback && attr == EP_ATTR_ASYNC) ||
(! is_playback && attr == EP_ATTR_ADAPTIVE)) &&
altsd->bNumEndpoints >= 2) {
/* check sync-pipe endpoint */
/* ... and check descriptor size before accessing bSynchAddress
because there is a version of the SB Audigy 2 NX firmware lacking
the audio fields in the endpoint descriptors */
if ((get_endpoint(alts, 1)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != 0x01 ||
(get_endpoint(alts, 1)->bLength >= USB_DT_ENDPOINT_AUDIO_SIZE &&
get_endpoint(alts, 1)->bSynchAddress != 0)) {
snd_printk(KERN_ERR "%d:%d:%d : invalid synch pipe\n",
dev->devnum, fmt->iface, fmt->altsetting);
return -EINVAL;
}
ep = get_endpoint(alts, 1)->bEndpointAddress;
if (get_endpoint(alts, 0)->bLength >= USB_DT_ENDPOINT_AUDIO_SIZE &&
(( is_playback && ep != (unsigned int)(get_endpoint(alts, 0)->bSynchAddress | USB_DIR_IN)) ||
(!is_playback && ep != (unsigned int)(get_endpoint(alts, 0)->bSynchAddress & ~USB_DIR_IN)))) {
snd_printk(KERN_ERR "%d:%d:%d : invalid synch pipe\n",
dev->devnum, fmt->iface, fmt->altsetting);
return -EINVAL;
}
ep &= USB_ENDPOINT_NUMBER_MASK;
if (is_playback)
subs->syncpipe = usb_rcvisocpipe(dev, ep);
else
subs->syncpipe = usb_sndisocpipe(dev, ep);
if (get_endpoint(alts, 1)->bLength >= USB_DT_ENDPOINT_AUDIO_SIZE &&
get_endpoint(alts, 1)->bRefresh >= 1 &&
get_endpoint(alts, 1)->bRefresh <= 9)
subs->syncinterval = get_endpoint(alts, 1)->bRefresh;
else if (snd_usb_get_speed(subs->dev) == USB_SPEED_FULL)
subs->syncinterval = 1;
else if (get_endpoint(alts, 1)->bInterval >= 1 &&
get_endpoint(alts, 1)->bInterval <= 16)
subs->syncinterval = get_endpoint(alts, 1)->bInterval - 1;
else
subs->syncinterval = 3;
}
/* always fill max packet size */
if (fmt->attributes & EP_CS_ATTR_FILL_MAX)
subs->fill_max = 1;
if ((err = init_usb_pitch(dev, subs->interface, alts, fmt)) < 0)
return err;
subs->cur_audiofmt = fmt;
#if 0
printk("setting done: format = %d, rate = %d, channels = %d\n",
fmt->format, fmt->rate, fmt->channels);
printk(" datapipe = 0x%0x, syncpipe = 0x%0x\n",
subs->datapipe, subs->syncpipe);
#endif
return 0;
}
/*
* hw_params callback
*
* allocate a buffer and set the given audio format.
*
* so far we use a physically linear buffer although packetize transfer
* doesn't need a continuous area.
* if sg buffer is supported on the later version of alsa, we'll follow
* that.
*/
static int snd_usb_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
struct snd_usb_substream *subs = (struct snd_usb_substream *)substream->runtime->private_data;
struct audioformat *fmt;
unsigned int channels, rate, format;
int ret, changed;
ret = snd_pcm_alloc_vmalloc_buffer(substream,
params_buffer_bytes(hw_params));
if (ret < 0)
return ret;
format = params_format(hw_params);
rate = params_rate(hw_params);
channels = params_channels(hw_params);
fmt = find_format(subs, format, rate, channels);
if (! fmt) {
snd_printd(KERN_DEBUG "cannot set format: format = %s, rate = %d, channels = %d\n",
snd_pcm_format_name(format), rate, channels);
return -EINVAL;
}
changed = subs->cur_audiofmt != fmt ||
subs->period_bytes != params_period_bytes(hw_params) ||
subs->cur_rate != rate;
if ((ret = set_format(subs, fmt)) < 0)
return ret;
if (subs->cur_rate != rate) {
struct usb_host_interface *alts;
struct usb_interface *iface;
iface = usb_ifnum_to_if(subs->dev, fmt->iface);
alts = &iface->altsetting[fmt->altset_idx];
ret = init_usb_sample_rate(subs->dev, subs->interface, alts, fmt, rate);
if (ret < 0)
return ret;
subs->cur_rate = rate;
}
if (changed) {
/* format changed */
release_substream_urbs(subs, 0);
/* influenced: period_bytes, channels, rate, format, */
ret = init_substream_urbs(subs, params_period_bytes(hw_params),
params_rate(hw_params),
snd_pcm_format_physical_width(params_format(hw_params)) * params_channels(hw_params));
}
return ret;
}
/*
* hw_free callback
*
* reset the audio format and release the buffer
*/
static int snd_usb_hw_free(struct snd_pcm_substream *substream)
{
struct snd_usb_substream *subs = (struct snd_usb_substream *)substream->runtime->private_data;
subs->cur_audiofmt = NULL;
subs->cur_rate = 0;
subs->period_bytes = 0;
release_substream_urbs(subs, 0);
return snd_pcm_free_vmalloc_buffer(substream);
}
/*
* prepare callback
*
* only a few subtle things...
*/
static int snd_usb_pcm_prepare(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_usb_substream *subs = runtime->private_data;
if (! subs->cur_audiofmt) {
snd_printk(KERN_ERR "usbaudio: no format is specified!\n");
return -ENXIO;
}
/* some unit conversions in runtime */
subs->maxframesize = bytes_to_frames(runtime, subs->maxpacksize);
subs->curframesize = bytes_to_frames(runtime, subs->curpacksize);
/* reset the pointer */
subs->hwptr_done = 0;
subs->transfer_done = 0;
subs->phase = 0;
/* clear urbs (to be sure) */
deactivate_urbs(subs, 0, 1);
wait_clear_urbs(subs);
/* for playback, submit the URBs now; otherwise, the first hwptr_done
* updates for all URBs would happen at the same time when starting */
if (subs->direction == SNDRV_PCM_STREAM_PLAYBACK) {
subs->ops.prepare = prepare_startup_playback_urb;
return start_urbs(subs, runtime);
} else
return 0;
}
static struct snd_pcm_hardware snd_usb_playback =
{
.info = SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_BATCH |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER,
.buffer_bytes_max = 1024 * 1024,
.period_bytes_min = 64,
.period_bytes_max = 512 * 1024,
.periods_min = 2,
.periods_max = 1024,
};
static struct snd_pcm_hardware snd_usb_capture =
{
.info = SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_BATCH |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER,
.buffer_bytes_max = 1024 * 1024,
.period_bytes_min = 64,
.period_bytes_max = 512 * 1024,
.periods_min = 2,
.periods_max = 1024,
};
/*
* h/w constraints
*/
#ifdef HW_CONST_DEBUG
#define hwc_debug(fmt, args...) printk(KERN_DEBUG fmt, ##args)
#else
#define hwc_debug(fmt, args...) /**/
#endif
static int hw_check_valid_format(struct snd_pcm_hw_params *params, struct audioformat *fp)
{
struct snd_interval *it = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
struct snd_interval *ct = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
struct snd_mask *fmts = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
/* check the format */
if (! snd_mask_test(fmts, fp->format)) {
hwc_debug(" > check: no supported format %d\n", fp->format);
return 0;
}
/* check the channels */
if (fp->channels < ct->min || fp->channels > ct->max) {
hwc_debug(" > check: no valid channels %d (%d/%d)\n", fp->channels, ct->min, ct->max);
return 0;
}
/* check the rate is within the range */
if (fp->rate_min > it->max || (fp->rate_min == it->max && it->openmax)) {
hwc_debug(" > check: rate_min %d > max %d\n", fp->rate_min, it->max);
return 0;
}
if (fp->rate_max < it->min || (fp->rate_max == it->min && it->openmin)) {
hwc_debug(" > check: rate_max %d < min %d\n", fp->rate_max, it->min);
return 0;
}
return 1;
}
static int hw_rule_rate(struct snd_pcm_hw_params *params,
struct snd_pcm_hw_rule *rule)
{
struct snd_usb_substream *subs = rule->private;
struct list_head *p;
struct snd_interval *it = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
unsigned int rmin, rmax;
int changed;
hwc_debug("hw_rule_rate: (%d,%d)\n", it->min, it->max);
changed = 0;
rmin = rmax = 0;
list_for_each(p, &subs->fmt_list) {
struct audioformat *fp;
fp = list_entry(p, struct audioformat, list);
if (! hw_check_valid_format(params, fp))
continue;
if (changed++) {
if (rmin > fp->rate_min)
rmin = fp->rate_min;
if (rmax < fp->rate_max)
rmax = fp->rate_max;
} else {
rmin = fp->rate_min;
rmax = fp->rate_max;
}
}
if (! changed) {
hwc_debug(" --> get empty\n");
it->empty = 1;
return -EINVAL;
}
changed = 0;
if (it->min < rmin) {
it->min = rmin;
it->openmin = 0;
changed = 1;
}
if (it->max > rmax) {
it->max = rmax;
it->openmax = 0;
changed = 1;
}
if (snd_interval_checkempty(it)) {
it->empty = 1;
return -EINVAL;
}
hwc_debug(" --> (%d, %d) (changed = %d)\n", it->min, it->max, changed);
return changed;
}
static int hw_rule_channels(struct snd_pcm_hw_params *params,
struct snd_pcm_hw_rule *rule)
{
struct snd_usb_substream *subs = rule->private;
struct list_head *p;
struct snd_interval *it = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
unsigned int rmin, rmax;
int changed;
hwc_debug("hw_rule_channels: (%d,%d)\n", it->min, it->max);
changed = 0;
rmin = rmax = 0;
list_for_each(p, &subs->fmt_list) {
struct audioformat *fp;
fp = list_entry(p, struct audioformat, list);
if (! hw_check_valid_format(params, fp))
continue;
if (changed++) {
if (rmin > fp->channels)
rmin = fp->channels;
if (rmax < fp->channels)
rmax = fp->channels;
} else {
rmin = fp->channels;
rmax = fp->channels;
}
}
if (! changed) {
hwc_debug(" --> get empty\n");
it->empty = 1;
return -EINVAL;
}
changed = 0;
if (it->min < rmin) {
it->min = rmin;
it->openmin = 0;
changed = 1;
}
if (it->max > rmax) {
it->max = rmax;
it->openmax = 0;
changed = 1;
}
if (snd_interval_checkempty(it)) {
it->empty = 1;
return -EINVAL;
}
hwc_debug(" --> (%d, %d) (changed = %d)\n", it->min, it->max, changed);
return changed;
}
static int hw_rule_format(struct snd_pcm_hw_params *params,
struct snd_pcm_hw_rule *rule)
{
struct snd_usb_substream *subs = rule->private;
struct list_head *p;
struct snd_mask *fmt = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
u64 fbits;
u32 oldbits[2];
int changed;
hwc_debug("hw_rule_format: %x:%x\n", fmt->bits[0], fmt->bits[1]);
fbits = 0;
list_for_each(p, &subs->fmt_list) {
struct audioformat *fp;
fp = list_entry(p, struct audioformat, list);
if (! hw_check_valid_format(params, fp))
continue;
fbits |= (1ULL << fp->format);
}
oldbits[0] = fmt->bits[0];
oldbits[1] = fmt->bits[1];
fmt->bits[0] &= (u32)fbits;
fmt->bits[1] &= (u32)(fbits >> 32);
if (! fmt->bits[0] && ! fmt->bits[1]) {
hwc_debug(" --> get empty\n");
return -EINVAL;
}
changed = (oldbits[0] != fmt->bits[0] || oldbits[1] != fmt->bits[1]);
hwc_debug(" --> %x:%x (changed = %d)\n", fmt->bits[0], fmt->bits[1], changed);
return changed;
}
#define MAX_MASK 64
/*
* check whether the registered audio formats need special hw-constraints
*/
static int check_hw_params_convention(struct snd_usb_substream *subs)
{
int i;
u32 *channels;
u32 *rates;
u32 cmaster, rmaster;
u32 rate_min = 0, rate_max = 0;
struct list_head *p;
int err = 1;
channels = kcalloc(MAX_MASK, sizeof(u32), GFP_KERNEL);
rates = kcalloc(MAX_MASK, sizeof(u32), GFP_KERNEL);
list_for_each(p, &subs->fmt_list) {
struct audioformat *f;
f = list_entry(p, struct audioformat, list);
/* unconventional channels? */
if (f->channels > 32)
goto __out;
/* continuous rate min/max matches? */
if (f->rates & SNDRV_PCM_RATE_CONTINUOUS) {
if (rate_min && f->rate_min != rate_min)
goto __out;
if (rate_max && f->rate_max != rate_max)
goto __out;
rate_min = f->rate_min;
rate_max = f->rate_max;
}
/* combination of continuous rates and fixed rates? */
if (rates[f->format] & SNDRV_PCM_RATE_CONTINUOUS) {
if (f->rates != rates[f->format])
goto __out;
}
if (f->rates & SNDRV_PCM_RATE_CONTINUOUS) {
if (rates[f->format] && rates[f->format] != f->rates)
goto __out;
}
channels[f->format] |= (1 << f->channels);
rates[f->format] |= f->rates;
}
/* check whether channels and rates match for all formats */
cmaster = rmaster = 0;
for (i = 0; i < MAX_MASK; i++) {
if (cmaster != channels[i] && cmaster && channels[i])
goto __out;
if (rmaster != rates[i] && rmaster && rates[i])
goto __out;
if (channels[i])
cmaster = channels[i];
if (rates[i])
rmaster = rates[i];
}
/* check whether channels match for all distinct rates */
memset(channels, 0, MAX_MASK * sizeof(u32));
list_for_each(p, &subs->fmt_list) {
struct audioformat *f;
f = list_entry(p, struct audioformat, list);
if (f->rates & SNDRV_PCM_RATE_CONTINUOUS)
continue;
for (i = 0; i < 32; i++) {
if (f->rates & (1 << i))
channels[i] |= (1 << f->channels);
}
}
cmaster = 0;
for (i = 0; i < 32; i++) {
if (cmaster != channels[i] && cmaster && channels[i])
goto __out;
if (channels[i])
cmaster = channels[i];
}
err = 0;
__out:
kfree(channels);
kfree(rates);
return err;
}
/*
* set up the runtime hardware information.
*/
static int setup_hw_info(struct snd_pcm_runtime *runtime, struct snd_usb_substream *subs)
{
struct list_head *p;
int err;
runtime->hw.formats = subs->formats;
runtime->hw.rate_min = 0x7fffffff;
runtime->hw.rate_max = 0;
runtime->hw.channels_min = 256;
runtime->hw.channels_max = 0;
runtime->hw.rates = 0;
/* check min/max rates and channels */
list_for_each(p, &subs->fmt_list) {
struct audioformat *fp;
fp = list_entry(p, struct audioformat, list);
runtime->hw.rates |= fp->rates;
if (runtime->hw.rate_min > fp->rate_min)
runtime->hw.rate_min = fp->rate_min;
if (runtime->hw.rate_max < fp->rate_max)
runtime->hw.rate_max = fp->rate_max;
if (runtime->hw.channels_min > fp->channels)
runtime->hw.channels_min = fp->channels;
if (runtime->hw.channels_max < fp->channels)
runtime->hw.channels_max = fp->channels;
if (fp->fmt_type == USB_FORMAT_TYPE_II && fp->frame_size > 0) {
/* FIXME: there might be more than one audio formats... */
runtime->hw.period_bytes_min = runtime->hw.period_bytes_max =
fp->frame_size;
}
}
/* set the period time minimum 1ms */
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1000 * MIN_PACKS_URB,
/*(nrpacks * MAX_URBS) * 1000*/ UINT_MAX);
if (check_hw_params_convention(subs)) {
hwc_debug("setting extra hw constraints...\n");
if ((err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
hw_rule_rate, subs,
SNDRV_PCM_HW_PARAM_FORMAT,
SNDRV_PCM_HW_PARAM_CHANNELS,
-1)) < 0)
return err;
if ((err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
hw_rule_channels, subs,
SNDRV_PCM_HW_PARAM_FORMAT,
SNDRV_PCM_HW_PARAM_RATE,
-1)) < 0)
return err;
if ((err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
hw_rule_format, subs,
SNDRV_PCM_HW_PARAM_RATE,
SNDRV_PCM_HW_PARAM_CHANNELS,
-1)) < 0)
return err;
}
return 0;
}
static int snd_usb_pcm_open(struct snd_pcm_substream *substream, int direction,
struct snd_pcm_hardware *hw)
{
struct snd_usb_stream *as = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_usb_substream *subs = &as->substream[direction];
subs->interface = -1;
subs->format = 0;
runtime->hw = *hw;
runtime->private_data = subs;
subs->pcm_substream = substream;
return setup_hw_info(runtime, subs);
}
static int snd_usb_pcm_close(struct snd_pcm_substream *substream, int direction)
{
struct snd_usb_stream *as = snd_pcm_substream_chip(substream);
struct snd_usb_substream *subs = &as->substream[direction];
if (subs->interface >= 0) {
usb_set_interface(subs->dev, subs->interface, 0);
subs->interface = -1;
}
subs->pcm_substream = NULL;
return 0;
}
static int snd_usb_playback_open(struct snd_pcm_substream *substream)
{
return snd_usb_pcm_open(substream, SNDRV_PCM_STREAM_PLAYBACK, &snd_usb_playback);
}
static int snd_usb_playback_close(struct snd_pcm_substream *substream)
{
return snd_usb_pcm_close(substream, SNDRV_PCM_STREAM_PLAYBACK);
}
static int snd_usb_capture_open(struct snd_pcm_substream *substream)
{
return snd_usb_pcm_open(substream, SNDRV_PCM_STREAM_CAPTURE, &snd_usb_capture);
}
static int snd_usb_capture_close(struct snd_pcm_substream *substream)
{
return snd_usb_pcm_close(substream, SNDRV_PCM_STREAM_CAPTURE);
}
static struct snd_pcm_ops snd_usb_playback_ops = {
.open = snd_usb_playback_open,
.close = snd_usb_playback_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_usb_hw_params,
.hw_free = snd_usb_hw_free,
.prepare = snd_usb_pcm_prepare,
.trigger = snd_usb_pcm_playback_trigger,
.pointer = snd_usb_pcm_pointer,
.page = snd_pcm_get_vmalloc_page,
};
static struct snd_pcm_ops snd_usb_capture_ops = {
.open = snd_usb_capture_open,
.close = snd_usb_capture_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_usb_hw_params,
.hw_free = snd_usb_hw_free,
.prepare = snd_usb_pcm_prepare,
.trigger = snd_usb_pcm_capture_trigger,
.pointer = snd_usb_pcm_pointer,
.page = snd_pcm_get_vmalloc_page,
};
/*
* helper functions
*/
/*
* combine bytes and get an integer value
*/
unsigned int snd_usb_combine_bytes(unsigned char *bytes, int size)
{
switch (size) {
case 1: return *bytes;
case 2: return combine_word(bytes);
case 3: return combine_triple(bytes);
case 4: return combine_quad(bytes);
default: return 0;
}
}
/*
* parse descriptor buffer and return the pointer starting the given
* descriptor type.
*/
void *snd_usb_find_desc(void *descstart, int desclen, void *after, u8 dtype)
{
u8 *p, *end, *next;
p = descstart;
end = p + desclen;
for (; p < end;) {
if (p[0] < 2)
return NULL;
next = p + p[0];
if (next > end)
return NULL;
if (p[1] == dtype && (!after || (void *)p > after)) {
return p;
}
p = next;
}
return NULL;
}
/*
* find a class-specified interface descriptor with the given subtype.
*/
void *snd_usb_find_csint_desc(void *buffer, int buflen, void *after, u8 dsubtype)
{
unsigned char *p = after;
while ((p = snd_usb_find_desc(buffer, buflen, p,
USB_DT_CS_INTERFACE)) != NULL) {
if (p[0] >= 3 && p[2] == dsubtype)
return p;
}
return NULL;
}
/*
* Wrapper for usb_control_msg().
* Allocates a temp buffer to prevent dmaing from/to the stack.
*/
int snd_usb_ctl_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
__u8 requesttype, __u16 value, __u16 index, void *data,
__u16 size, int timeout)
{
int err;
void *buf = NULL;
if (size > 0) {
buf = kmalloc(size, GFP_KERNEL);
if (!buf)
return -ENOMEM;
memcpy(buf, data, size);
}
err = usb_control_msg(dev, pipe, request, requesttype,
value, index, buf, size, timeout);
if (size > 0) {
memcpy(data, buf, size);
kfree(buf);
}
return err;
}
/*
* entry point for linux usb interface
*/
static int usb_audio_probe(struct usb_interface *intf,
const struct usb_device_id *id);
static void usb_audio_disconnect(struct usb_interface *intf);
static struct usb_device_id usb_audio_ids [] = {
#include "usbquirks.h"
{ .match_flags = (USB_DEVICE_ID_MATCH_INT_CLASS | USB_DEVICE_ID_MATCH_INT_SUBCLASS),
.bInterfaceClass = USB_CLASS_AUDIO,
.bInterfaceSubClass = USB_SUBCLASS_AUDIO_CONTROL },
{ } /* Terminating entry */
};
MODULE_DEVICE_TABLE (usb, usb_audio_ids);
static struct usb_driver usb_audio_driver = {
.name = "snd-usb-audio",
.probe = usb_audio_probe,
.disconnect = usb_audio_disconnect,
.id_table = usb_audio_ids,
};
/*
* proc interface for list the supported pcm formats
*/
static void proc_dump_substream_formats(struct snd_usb_substream *subs, struct snd_info_buffer *buffer)
{
struct list_head *p;
static char *sync_types[4] = {
"NONE", "ASYNC", "ADAPTIVE", "SYNC"
};
list_for_each(p, &subs->fmt_list) {
struct audioformat *fp;
fp = list_entry(p, struct audioformat, list);
snd_iprintf(buffer, " Interface %d\n", fp->iface);
snd_iprintf(buffer, " Altset %d\n", fp->altsetting);
snd_iprintf(buffer, " Format: %s\n", snd_pcm_format_name(fp->format));
snd_iprintf(buffer, " Channels: %d\n", fp->channels);
snd_iprintf(buffer, " Endpoint: %d %s (%s)\n",
fp->endpoint & USB_ENDPOINT_NUMBER_MASK,
fp->endpoint & USB_DIR_IN ? "IN" : "OUT",
sync_types[(fp->ep_attr & EP_ATTR_MASK) >> 2]);
if (fp->rates & SNDRV_PCM_RATE_CONTINUOUS) {
snd_iprintf(buffer, " Rates: %d - %d (continuous)\n",
fp->rate_min, fp->rate_max);
} else {
unsigned int i;
snd_iprintf(buffer, " Rates: ");
for (i = 0; i < fp->nr_rates; i++) {
if (i > 0)
snd_iprintf(buffer, ", ");
snd_iprintf(buffer, "%d", fp->rate_table[i]);
}
snd_iprintf(buffer, "\n");
}
// snd_iprintf(buffer, " Max Packet Size = %d\n", fp->maxpacksize);
// snd_iprintf(buffer, " EP Attribute = 0x%x\n", fp->attributes);
}
}
static void proc_dump_substream_status(struct snd_usb_substream *subs, struct snd_info_buffer *buffer)
{
if (subs->running) {
unsigned int i;
snd_iprintf(buffer, " Status: Running\n");
snd_iprintf(buffer, " Interface = %d\n", subs->interface);
snd_iprintf(buffer, " Altset = %d\n", subs->format);
snd_iprintf(buffer, " URBs = %d [ ", subs->nurbs);
for (i = 0; i < subs->nurbs; i++)
snd_iprintf(buffer, "%d ", subs->dataurb[i].packets);
snd_iprintf(buffer, "]\n");
snd_iprintf(buffer, " Packet Size = %d\n", subs->curpacksize);
snd_iprintf(buffer, " Momentary freq = %u Hz (%#x.%04x)\n",
snd_usb_get_speed(subs->dev) == USB_SPEED_FULL
? get_full_speed_hz(subs->freqm)
: get_high_speed_hz(subs->freqm),
subs->freqm >> 16, subs->freqm & 0xffff);
} else {
snd_iprintf(buffer, " Status: Stop\n");
}
}
static void proc_pcm_format_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer)
{
struct snd_usb_stream *stream = entry->private_data;
snd_iprintf(buffer, "%s : %s\n", stream->chip->card->longname, stream->pcm->name);
if (stream->substream[SNDRV_PCM_STREAM_PLAYBACK].num_formats) {
snd_iprintf(buffer, "\nPlayback:\n");
proc_dump_substream_status(&stream->substream[SNDRV_PCM_STREAM_PLAYBACK], buffer);
proc_dump_substream_formats(&stream->substream[SNDRV_PCM_STREAM_PLAYBACK], buffer);
}
if (stream->substream[SNDRV_PCM_STREAM_CAPTURE].num_formats) {
snd_iprintf(buffer, "\nCapture:\n");
proc_dump_substream_status(&stream->substream[SNDRV_PCM_STREAM_CAPTURE], buffer);
proc_dump_substream_formats(&stream->substream[SNDRV_PCM_STREAM_CAPTURE], buffer);
}
}
static void proc_pcm_format_add(struct snd_usb_stream *stream)
{
struct snd_info_entry *entry;
char name[32];
struct snd_card *card = stream->chip->card;
sprintf(name, "stream%d", stream->pcm_index);
if (! snd_card_proc_new(card, name, &entry))
snd_info_set_text_ops(entry, stream, 1024, proc_pcm_format_read);
}
/*
* initialize the substream instance.
*/
static void init_substream(struct snd_usb_stream *as, int stream, struct audioformat *fp)
{
struct snd_usb_substream *subs = &as->substream[stream];
INIT_LIST_HEAD(&subs->fmt_list);
spin_lock_init(&subs->lock);
subs->stream = as;
subs->direction = stream;
subs->dev = as->chip->dev;
if (snd_usb_get_speed(subs->dev) == USB_SPEED_FULL)
subs->ops = audio_urb_ops[stream];
else
subs->ops = audio_urb_ops_high_speed[stream];
snd_pcm_set_ops(as->pcm, stream,
stream == SNDRV_PCM_STREAM_PLAYBACK ?
&snd_usb_playback_ops : &snd_usb_capture_ops);
list_add_tail(&fp->list, &subs->fmt_list);
subs->formats |= 1ULL << fp->format;
subs->endpoint = fp->endpoint;
subs->num_formats++;
subs->fmt_type = fp->fmt_type;
}
/*
* free a substream
*/
static void free_substream(struct snd_usb_substream *subs)
{
struct list_head *p, *n;
if (! subs->num_formats)
return; /* not initialized */
list_for_each_safe(p, n, &subs->fmt_list) {
struct audioformat *fp = list_entry(p, struct audioformat, list);
kfree(fp->rate_table);
kfree(fp);
}
}
/*
* free a usb stream instance
*/
static void snd_usb_audio_stream_free(struct snd_usb_stream *stream)
{
free_substream(&stream->substream[0]);
free_substream(&stream->substream[1]);
list_del(&stream->list);
kfree(stream);
}
static void snd_usb_audio_pcm_free(struct snd_pcm *pcm)
{
struct snd_usb_stream *stream = pcm->private_data;
if (stream) {
stream->pcm = NULL;
snd_usb_audio_stream_free(stream);
}
}
/*
* add this endpoint to the chip instance.
* if a stream with the same endpoint already exists, append to it.
* if not, create a new pcm stream.
*/
static int add_audio_endpoint(struct snd_usb_audio *chip, int stream, struct audioformat *fp)
{
struct list_head *p;
struct snd_usb_stream *as;
struct snd_usb_substream *subs;
struct snd_pcm *pcm;
int err;
list_for_each(p, &chip->pcm_list) {
as = list_entry(p, struct snd_usb_stream, list);
if (as->fmt_type != fp->fmt_type)
continue;
subs = &as->substream[stream];
if (! subs->endpoint)
continue;
if (subs->endpoint == fp->endpoint) {
list_add_tail(&fp->list, &subs->fmt_list);
subs->num_formats++;
subs->formats |= 1ULL << fp->format;
return 0;
}
}
/* look for an empty stream */
list_for_each(p, &chip->pcm_list) {
as = list_entry(p, struct snd_usb_stream, list);
if (as->fmt_type != fp->fmt_type)
continue;
subs = &as->substream[stream];
if (subs->endpoint)
continue;
err = snd_pcm_new_stream(as->pcm, stream, 1);
if (err < 0)
return err;
init_substream(as, stream, fp);
return 0;
}
/* create a new pcm */
as = kmalloc(sizeof(*as), GFP_KERNEL);
if (! as)
return -ENOMEM;
memset(as, 0, sizeof(*as));
as->pcm_index = chip->pcm_devs;
as->chip = chip;
as->fmt_type = fp->fmt_type;
err = snd_pcm_new(chip->card, "USB Audio", chip->pcm_devs,
stream == SNDRV_PCM_STREAM_PLAYBACK ? 1 : 0,
stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1,
&pcm);
if (err < 0) {
kfree(as);
return err;
}
as->pcm = pcm;
pcm->private_data = as;
pcm->private_free = snd_usb_audio_pcm_free;
pcm->info_flags = 0;
if (chip->pcm_devs > 0)
sprintf(pcm->name, "USB Audio #%d", chip->pcm_devs);
else
strcpy(pcm->name, "USB Audio");
init_substream(as, stream, fp);
list_add(&as->list, &chip->pcm_list);
chip->pcm_devs++;
proc_pcm_format_add(as);
return 0;
}
/*
* check if the device uses big-endian samples
*/
static int is_big_endian_format(struct snd_usb_audio *chip, struct audioformat *fp)
{
switch (chip->usb_id) {
case USB_ID(0x0763, 0x2001): /* M-Audio Quattro: captured data only */
if (fp->endpoint & USB_DIR_IN)
return 1;
break;
case USB_ID(0x0763, 0x2003): /* M-Audio Audiophile USB */
return 1;
}
return 0;
}
/*
* parse the audio format type I descriptor
* and returns the corresponding pcm format
*
* @dev: usb device
* @fp: audioformat record
* @format: the format tag (wFormatTag)
* @fmt: the format type descriptor
*/
static int parse_audio_format_i_type(struct snd_usb_audio *chip, struct audioformat *fp,
int format, unsigned char *fmt)
{
int pcm_format;
int sample_width, sample_bytes;
/* FIXME: correct endianess and sign? */
pcm_format = -1;
sample_width = fmt[6];
sample_bytes = fmt[5];
switch (format) {
case 0: /* some devices don't define this correctly... */
snd_printdd(KERN_INFO "%d:%u:%d : format type 0 is detected, processed as PCM\n",
chip->dev->devnum, fp->iface, fp->altsetting);
/* fall-through */
case USB_AUDIO_FORMAT_PCM:
if (sample_width > sample_bytes * 8) {
snd_printk(KERN_INFO "%d:%u:%d : sample bitwidth %d in over sample bytes %d\n",
chip->dev->devnum, fp->iface, fp->altsetting,
sample_width, sample_bytes);
}
/* check the format byte size */
switch (fmt[5]) {
case 1:
pcm_format = SNDRV_PCM_FORMAT_S8;
break;
case 2:
if (is_big_endian_format(chip, fp))
pcm_format = SNDRV_PCM_FORMAT_S16_BE; /* grrr, big endian!! */
else
pcm_format = SNDRV_PCM_FORMAT_S16_LE;
break;
case 3:
if (is_big_endian_format(chip, fp))
pcm_format = SNDRV_PCM_FORMAT_S24_3BE; /* grrr, big endian!! */
else
pcm_format = SNDRV_PCM_FORMAT_S24_3LE;
break;
case 4:
pcm_format = SNDRV_PCM_FORMAT_S32_LE;
break;
default:
snd_printk(KERN_INFO "%d:%u:%d : unsupported sample bitwidth %d in %d bytes\n",
chip->dev->devnum, fp->iface,
fp->altsetting, sample_width, sample_bytes);
break;
}
break;
case USB_AUDIO_FORMAT_PCM8:
/* Dallas DS4201 workaround */
if (chip->usb_id == USB_ID(0x04fa, 0x4201))
pcm_format = SNDRV_PCM_FORMAT_S8;
else
pcm_format = SNDRV_PCM_FORMAT_U8;
break;
case USB_AUDIO_FORMAT_IEEE_FLOAT:
pcm_format = SNDRV_PCM_FORMAT_FLOAT_LE;
break;
case USB_AUDIO_FORMAT_ALAW:
pcm_format = SNDRV_PCM_FORMAT_A_LAW;
break;
case USB_AUDIO_FORMAT_MU_LAW:
pcm_format = SNDRV_PCM_FORMAT_MU_LAW;
break;
default:
snd_printk(KERN_INFO "%d:%u:%d : unsupported format type %d\n",
chip->dev->devnum, fp->iface, fp->altsetting, format);
break;
}
return pcm_format;
}
/*
* parse the format descriptor and stores the possible sample rates
* on the audioformat table.
*
* @dev: usb device
* @fp: audioformat record
* @fmt: the format descriptor
* @offset: the start offset of descriptor pointing the rate type
* (7 for type I and II, 8 for type II)
*/
static int parse_audio_format_rates(struct snd_usb_audio *chip, struct audioformat *fp,
unsigned char *fmt, int offset)
{
int nr_rates = fmt[offset];
if (fmt[0] < offset + 1 + 3 * (nr_rates ? nr_rates : 2)) {
snd_printk(KERN_ERR "%d:%u:%d : invalid FORMAT_TYPE desc\n",
chip->dev->devnum, fp->iface, fp->altsetting);
return -1;
}
if (nr_rates) {
/*
* build the rate table and bitmap flags
*/
int r, idx, c;
/* this table corresponds to the SNDRV_PCM_RATE_XXX bit */
static unsigned int conv_rates[] = {
5512, 8000, 11025, 16000, 22050, 32000, 44100, 48000,
64000, 88200, 96000, 176400, 192000
};
fp->rate_table = kmalloc(sizeof(int) * nr_rates, GFP_KERNEL);
if (fp->rate_table == NULL) {
snd_printk(KERN_ERR "cannot malloc\n");
return -1;
}
fp->nr_rates = nr_rates;
fp->rate_min = fp->rate_max = combine_triple(&fmt[8]);
for (r = 0, idx = offset + 1; r < nr_rates; r++, idx += 3) {
unsigned int rate = fp->rate_table[r] = combine_triple(&fmt[idx]);
if (rate < fp->rate_min)
fp->rate_min = rate;
else if (rate > fp->rate_max)
fp->rate_max = rate;
for (c = 0; c < (int)ARRAY_SIZE(conv_rates); c++) {
if (rate == conv_rates[c]) {
fp->rates |= (1 << c);
break;
}
}
}
} else {
/* continuous rates */
fp->rates = SNDRV_PCM_RATE_CONTINUOUS;
fp->rate_min = combine_triple(&fmt[offset + 1]);
fp->rate_max = combine_triple(&fmt[offset + 4]);
}
return 0;
}
/*
* parse the format type I and III descriptors
*/
static int parse_audio_format_i(struct snd_usb_audio *chip, struct audioformat *fp,
int format, unsigned char *fmt)
{
int pcm_format;
if (fmt[3] == USB_FORMAT_TYPE_III) {
/* FIXME: the format type is really IECxxx
* but we give normal PCM format to get the existing
* apps working...
*/
pcm_format = SNDRV_PCM_FORMAT_S16_LE;
} else {
pcm_format = parse_audio_format_i_type(chip, fp, format, fmt);
if (pcm_format < 0)
return -1;
}
fp->format = pcm_format;
fp->channels = fmt[4];
if (fp->channels < 1) {
snd_printk(KERN_ERR "%d:%u:%d : invalid channels %d\n",
chip->dev->devnum, fp->iface, fp->altsetting, fp->channels);
return -1;
}
return parse_audio_format_rates(chip, fp, fmt, 7);
}
/*
* prase the format type II descriptor
*/
static int parse_audio_format_ii(struct snd_usb_audio *chip, struct audioformat *fp,
int format, unsigned char *fmt)
{
int brate, framesize;
switch (format) {
case USB_AUDIO_FORMAT_AC3:
/* FIXME: there is no AC3 format defined yet */
// fp->format = SNDRV_PCM_FORMAT_AC3;
fp->format = SNDRV_PCM_FORMAT_U8; /* temporarily hack to receive byte streams */
break;
case USB_AUDIO_FORMAT_MPEG:
fp->format = SNDRV_PCM_FORMAT_MPEG;
break;
default:
snd_printd(KERN_INFO "%d:%u:%d : unknown format tag 0x%x is detected. processed as MPEG.\n",
chip->dev->devnum, fp->iface, fp->altsetting, format);
fp->format = SNDRV_PCM_FORMAT_MPEG;
break;
}
fp->channels = 1;
brate = combine_word(&fmt[4]); /* fmt[4,5] : wMaxBitRate (in kbps) */
framesize = combine_word(&fmt[6]); /* fmt[6,7]: wSamplesPerFrame */
snd_printd(KERN_INFO "found format II with max.bitrate = %d, frame size=%d\n", brate, framesize);
fp->frame_size = framesize;
return parse_audio_format_rates(chip, fp, fmt, 8); /* fmt[8..] sample rates */
}
static int parse_audio_format(struct snd_usb_audio *chip, struct audioformat *fp,
int format, unsigned char *fmt, int stream)
{
int err;
switch (fmt[3]) {
case USB_FORMAT_TYPE_I:
case USB_FORMAT_TYPE_III:
err = parse_audio_format_i(chip, fp, format, fmt);
break;
case USB_FORMAT_TYPE_II:
err = parse_audio_format_ii(chip, fp, format, fmt);
break;
default:
snd_printd(KERN_INFO "%d:%u:%d : format type %d is not supported yet\n",
chip->dev->devnum, fp->iface, fp->altsetting, fmt[3]);
return -1;
}
fp->fmt_type = fmt[3];
if (err < 0)
return err;
#if 1
/* FIXME: temporary hack for extigy/audigy 2 nx/zs */
/* extigy apparently supports sample rates other than 48k
* but not in ordinary way. so we enable only 48k atm.
*/
if (chip->usb_id == USB_ID(0x041e, 0x3000) ||
chip->usb_id == USB_ID(0x041e, 0x3020) ||
chip->usb_id == USB_ID(0x041e, 0x3061)) {
if (fmt[3] == USB_FORMAT_TYPE_I &&
fp->rates != SNDRV_PCM_RATE_48000 &&
fp->rates != SNDRV_PCM_RATE_96000)
return -1;
}
#endif
return 0;
}
static int parse_audio_endpoints(struct snd_usb_audio *chip, int iface_no)
{
struct usb_device *dev;
struct usb_interface *iface;
struct usb_host_interface *alts;
struct usb_interface_descriptor *altsd;
int i, altno, err, stream;
int format;
struct audioformat *fp;
unsigned char *fmt, *csep;
dev = chip->dev;
/* parse the interface's altsettings */
iface = usb_ifnum_to_if(dev, iface_no);
for (i = 0; i < iface->num_altsetting; i++) {
alts = &iface->altsetting[i];
altsd = get_iface_desc(alts);
/* skip invalid one */
if ((altsd->bInterfaceClass != USB_CLASS_AUDIO &&
altsd->bInterfaceClass != USB_CLASS_VENDOR_SPEC) ||
(altsd->bInterfaceSubClass != USB_SUBCLASS_AUDIO_STREAMING &&
altsd->bInterfaceSubClass != USB_SUBCLASS_VENDOR_SPEC) ||
altsd->bNumEndpoints < 1 ||
le16_to_cpu(get_endpoint(alts, 0)->wMaxPacketSize) == 0)
continue;
/* must be isochronous */
if ((get_endpoint(alts, 0)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) !=
USB_ENDPOINT_XFER_ISOC)
continue;
/* check direction */
stream = (get_endpoint(alts, 0)->bEndpointAddress & USB_DIR_IN) ?
SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
altno = altsd->bAlternateSetting;
/* get audio formats */
fmt = snd_usb_find_csint_desc(alts->extra, alts->extralen, NULL, AS_GENERAL);
if (!fmt) {
snd_printk(KERN_ERR "%d:%u:%d : AS_GENERAL descriptor not found\n",
dev->devnum, iface_no, altno);
continue;
}
if (fmt[0] < 7) {
snd_printk(KERN_ERR "%d:%u:%d : invalid AS_GENERAL desc\n",
dev->devnum, iface_no, altno);
continue;
}
format = (fmt[6] << 8) | fmt[5]; /* remember the format value */
/* get format type */
fmt = snd_usb_find_csint_desc(alts->extra, alts->extralen, NULL, FORMAT_TYPE);
if (!fmt) {
snd_printk(KERN_ERR "%d:%u:%d : no FORMAT_TYPE desc\n",
dev->devnum, iface_no, altno);
continue;
}
if (fmt[0] < 8) {
snd_printk(KERN_ERR "%d:%u:%d : invalid FORMAT_TYPE desc\n",
dev->devnum, iface_no, altno);
continue;
}
csep = snd_usb_find_desc(alts->endpoint[0].extra, alts->endpoint[0].extralen, NULL, USB_DT_CS_ENDPOINT);
/* Creamware Noah has this descriptor after the 2nd endpoint */
if (!csep && altsd->bNumEndpoints >= 2)
csep = snd_usb_find_desc(alts->endpoint[1].extra, alts->endpoint[1].extralen, NULL, USB_DT_CS_ENDPOINT);
if (!csep || csep[0] < 7 || csep[2] != EP_GENERAL) {
snd_printk(KERN_ERR "%d:%u:%d : no or invalid class specific endpoint descriptor\n",
dev->devnum, iface_no, altno);
continue;
}
fp = kmalloc(sizeof(*fp), GFP_KERNEL);
if (! fp) {
snd_printk(KERN_ERR "cannot malloc\n");
return -ENOMEM;
}
memset(fp, 0, sizeof(*fp));
fp->iface = iface_no;
fp->altsetting = altno;
fp->altset_idx = i;
fp->endpoint = get_endpoint(alts, 0)->bEndpointAddress;
fp->ep_attr = get_endpoint(alts, 0)->bmAttributes;
fp->maxpacksize = le16_to_cpu(get_endpoint(alts, 0)->wMaxPacketSize);
if (snd_usb_get_speed(dev) == USB_SPEED_HIGH)
fp->maxpacksize = (((fp->maxpacksize >> 11) & 3) + 1)
* (fp->maxpacksize & 0x7ff);
fp->attributes = csep[3];
/* some quirks for attributes here */
switch (chip->usb_id) {
case USB_ID(0x0a92, 0x0053): /* AudioTrak Optoplay */
/* Optoplay sets the sample rate attribute although
* it seems not supporting it in fact.
*/
fp->attributes &= ~EP_CS_ATTR_SAMPLE_RATE;
break;
case USB_ID(0x041e, 0x3020): /* Creative SB Audigy 2 NX */
case USB_ID(0x0763, 0x2003): /* M-Audio Audiophile USB */
/* doesn't set the sample rate attribute, but supports it */
fp->attributes |= EP_CS_ATTR_SAMPLE_RATE;
break;
case USB_ID(0x047f, 0x0ca1): /* plantronics headset */
case USB_ID(0x077d, 0x07af): /* Griffin iMic (note that there is
an older model 77d:223) */
/*
* plantronics headset and Griffin iMic have set adaptive-in
* although it's really not...
*/
fp->ep_attr &= ~EP_ATTR_MASK;
if (stream == SNDRV_PCM_STREAM_PLAYBACK)
fp->ep_attr |= EP_ATTR_ADAPTIVE;
else
fp->ep_attr |= EP_ATTR_SYNC;
break;
}
/* ok, let's parse further... */
if (parse_audio_format(chip, fp, format, fmt, stream) < 0) {
kfree(fp->rate_table);
kfree(fp);
continue;
}
snd_printdd(KERN_INFO "%d:%u:%d: add audio endpoint 0x%x\n", dev->devnum, iface_no, i, fp->endpoint);
err = add_audio_endpoint(chip, stream, fp);
if (err < 0) {
kfree(fp->rate_table);
kfree(fp);
return err;
}
/* try to set the interface... */
usb_set_interface(chip->dev, iface_no, altno);
init_usb_pitch(chip->dev, iface_no, alts, fp);
init_usb_sample_rate(chip->dev, iface_no, alts, fp, fp->rate_max);
}
return 0;
}
/*
* disconnect streams
* called from snd_usb_audio_disconnect()
*/
static void snd_usb_stream_disconnect(struct list_head *head)
{
int idx;
struct snd_usb_stream *as;
struct snd_usb_substream *subs;
as = list_entry(head, struct snd_usb_stream, list);
for (idx = 0; idx < 2; idx++) {
subs = &as->substream[idx];
if (!subs->num_formats)
return;
release_substream_urbs(subs, 1);
subs->interface = -1;
}
}
/*
* parse audio control descriptor and create pcm/midi streams
*/
static int snd_usb_create_streams(struct snd_usb_audio *chip, int ctrlif)
{
struct usb_device *dev = chip->dev;
struct usb_host_interface *host_iface;
struct usb_interface *iface;
unsigned char *p1;
int i, j;
/* find audiocontrol interface */
host_iface = &usb_ifnum_to_if(dev, ctrlif)->altsetting[0];
if (!(p1 = snd_usb_find_csint_desc(host_iface->extra, host_iface->extralen, NULL, HEADER))) {
snd_printk(KERN_ERR "cannot find HEADER\n");
return -EINVAL;
}
if (! p1[7] || p1[0] < 8 + p1[7]) {
snd_printk(KERN_ERR "invalid HEADER\n");
return -EINVAL;
}
/*
* parse all USB audio streaming interfaces
*/
for (i = 0; i < p1[7]; i++) {
struct usb_host_interface *alts;
struct usb_interface_descriptor *altsd;
j = p1[8 + i];
iface = usb_ifnum_to_if(dev, j);
if (!iface) {
snd_printk(KERN_ERR "%d:%u:%d : does not exist\n",
dev->devnum, ctrlif, j);
continue;
}
if (usb_interface_claimed(iface)) {
snd_printdd(KERN_INFO "%d:%d:%d: skipping, already claimed\n", dev->devnum, ctrlif, j);
continue;
}
alts = &iface->altsetting[0];
altsd = get_iface_desc(alts);
if ((altsd->bInterfaceClass == USB_CLASS_AUDIO ||
altsd->bInterfaceClass == USB_CLASS_VENDOR_SPEC) &&
altsd->bInterfaceSubClass == USB_SUBCLASS_MIDI_STREAMING) {
if (snd_usb_create_midi_interface(chip, iface, NULL) < 0) {
snd_printk(KERN_ERR "%d:%u:%d: cannot create sequencer device\n", dev->devnum, ctrlif, j);
continue;
}
usb_driver_claim_interface(&usb_audio_driver, iface, (void *)-1L);
continue;
}
if ((altsd->bInterfaceClass != USB_CLASS_AUDIO &&
altsd->bInterfaceClass != USB_CLASS_VENDOR_SPEC) ||
altsd->bInterfaceSubClass != USB_SUBCLASS_AUDIO_STREAMING) {
snd_printdd(KERN_ERR "%d:%u:%d: skipping non-supported interface %d\n", dev->devnum, ctrlif, j, altsd->bInterfaceClass);
/* skip non-supported classes */
continue;
}
if (! parse_audio_endpoints(chip, j)) {
usb_set_interface(dev, j, 0); /* reset the current interface */
usb_driver_claim_interface(&usb_audio_driver, iface, (void *)-1L);
}
}
return 0;
}
/*
* create a stream for an endpoint/altsetting without proper descriptors
*/
static int create_fixed_stream_quirk(struct snd_usb_audio *chip,
struct usb_interface *iface,
const struct snd_usb_audio_quirk *quirk)
{
struct audioformat *fp;
struct usb_host_interface *alts;
int stream, err;
int *rate_table = NULL;
fp = kmalloc(sizeof(*fp), GFP_KERNEL);
if (! fp) {
snd_printk(KERN_ERR "cannot malloc\n");
return -ENOMEM;
}
memcpy(fp, quirk->data, sizeof(*fp));
if (fp->nr_rates > 0) {
rate_table = kmalloc(sizeof(int) * fp->nr_rates, GFP_KERNEL);
if (!rate_table) {
kfree(fp);
return -ENOMEM;
}
memcpy(rate_table, fp->rate_table, sizeof(int) * fp->nr_rates);
fp->rate_table = rate_table;
}
stream = (fp->endpoint & USB_DIR_IN)
? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
err = add_audio_endpoint(chip, stream, fp);
if (err < 0) {
kfree(fp);
kfree(rate_table);
return err;
}
if (fp->iface != get_iface_desc(&iface->altsetting[0])->bInterfaceNumber ||
fp->altset_idx >= iface->num_altsetting) {
kfree(fp);
kfree(rate_table);
return -EINVAL;
}
alts = &iface->altsetting[fp->altset_idx];
usb_set_interface(chip->dev, fp->iface, 0);
init_usb_pitch(chip->dev, fp->iface, alts, fp);
init_usb_sample_rate(chip->dev, fp->iface, alts, fp, fp->rate_max);
return 0;
}
/*
* create a stream for an interface with proper descriptors
*/
static int create_standard_audio_quirk(struct snd_usb_audio *chip,
struct usb_interface *iface,
const struct snd_usb_audio_quirk *quirk)
{
struct usb_host_interface *alts;
struct usb_interface_descriptor *altsd;
int err;
alts = &iface->altsetting[0];
altsd = get_iface_desc(alts);
err = parse_audio_endpoints(chip, altsd->bInterfaceNumber);
if (err < 0) {
snd_printk(KERN_ERR "cannot setup if %d: error %d\n",
altsd->bInterfaceNumber, err);
return err;
}
/* reset the current interface */
usb_set_interface(chip->dev, altsd->bInterfaceNumber, 0);
return 0;
}
/*
* Create a stream for an Edirol UA-700/UA-25 interface. The only way
* to detect the sample rate is by looking at wMaxPacketSize.
*/
static int create_ua700_ua25_quirk(struct snd_usb_audio *chip,
struct usb_interface *iface,
const struct snd_usb_audio_quirk *quirk)
{
static const struct audioformat ua_format = {
.format = SNDRV_PCM_FORMAT_S24_3LE,
.channels = 2,
.fmt_type = USB_FORMAT_TYPE_I,
.altsetting = 1,
.altset_idx = 1,
.rates = SNDRV_PCM_RATE_CONTINUOUS,
};
struct usb_host_interface *alts;
struct usb_interface_descriptor *altsd;
struct audioformat *fp;
int stream, err;
/* both PCM and MIDI interfaces have 2 altsettings */
if (iface->num_altsetting != 2)
return -ENXIO;
alts = &iface->altsetting[1];
altsd = get_iface_desc(alts);
if (altsd->bNumEndpoints == 2) {
static const struct snd_usb_midi_endpoint_info ua700_ep = {
.out_cables = 0x0003,
.in_cables = 0x0003
};
static const struct snd_usb_audio_quirk ua700_quirk = {
.type = QUIRK_MIDI_FIXED_ENDPOINT,
.data = &ua700_ep
};
static const struct snd_usb_midi_endpoint_info ua25_ep = {
.out_cables = 0x0001,
.in_cables = 0x0001
};
static const struct snd_usb_audio_quirk ua25_quirk = {
.type = QUIRK_MIDI_FIXED_ENDPOINT,
.data = &ua25_ep
};
if (chip->usb_id == USB_ID(0x0582, 0x002b))
return snd_usb_create_midi_interface(chip, iface,
&ua700_quirk);
else
return snd_usb_create_midi_interface(chip, iface,
&ua25_quirk);
}
if (altsd->bNumEndpoints != 1)
return -ENXIO;
fp = kmalloc(sizeof(*fp), GFP_KERNEL);
if (!fp)
return -ENOMEM;
memcpy(fp, &ua_format, sizeof(*fp));
fp->iface = altsd->bInterfaceNumber;
fp->endpoint = get_endpoint(alts, 0)->bEndpointAddress;
fp->ep_attr = get_endpoint(alts, 0)->bmAttributes;
fp->maxpacksize = le16_to_cpu(get_endpoint(alts, 0)->wMaxPacketSize);
switch (fp->maxpacksize) {
case 0x120:
fp->rate_max = fp->rate_min = 44100;
break;
case 0x138:
case 0x140:
fp->rate_max = fp->rate_min = 48000;
break;
case 0x258:
case 0x260:
fp->rate_max = fp->rate_min = 96000;
break;
default:
snd_printk(KERN_ERR "unknown sample rate\n");
kfree(fp);
return -ENXIO;
}
stream = (fp->endpoint & USB_DIR_IN)
? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
err = add_audio_endpoint(chip, stream, fp);
if (err < 0) {
kfree(fp);
return err;
}
usb_set_interface(chip->dev, fp->iface, 0);
return 0;
}
/*
* Create a stream for an Edirol UA-1000 interface.
*/
static int create_ua1000_quirk(struct snd_usb_audio *chip,
struct usb_interface *iface,
const struct snd_usb_audio_quirk *quirk)
{
static const struct audioformat ua1000_format = {
.format = SNDRV_PCM_FORMAT_S32_LE,
.fmt_type = USB_FORMAT_TYPE_I,
.altsetting = 1,
.altset_idx = 1,
.attributes = 0,
.rates = SNDRV_PCM_RATE_CONTINUOUS,
};
struct usb_host_interface *alts;
struct usb_interface_descriptor *altsd;
struct audioformat *fp;
int stream, err;
if (iface->num_altsetting != 2)
return -ENXIO;
alts = &iface->altsetting[1];
altsd = get_iface_desc(alts);
if (alts->extralen != 11 || alts->extra[1] != CS_AUDIO_INTERFACE ||
altsd->bNumEndpoints != 1)
return -ENXIO;
fp = kmalloc(sizeof(*fp), GFP_KERNEL);
if (!fp)
return -ENOMEM;
memcpy(fp, &ua1000_format, sizeof(*fp));
fp->channels = alts->extra[4];
fp->iface = altsd->bInterfaceNumber;
fp->endpoint = get_endpoint(alts, 0)->bEndpointAddress;
fp->ep_attr = get_endpoint(alts, 0)->bmAttributes;
fp->maxpacksize = le16_to_cpu(get_endpoint(alts, 0)->wMaxPacketSize);
fp->rate_max = fp->rate_min = combine_triple(&alts->extra[8]);
stream = (fp->endpoint & USB_DIR_IN)
? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
err = add_audio_endpoint(chip, stream, fp);
if (err < 0) {
kfree(fp);
return err;
}
/* FIXME: playback must be synchronized to capture */
usb_set_interface(chip->dev, fp->iface, 0);
return 0;
}
static int snd_usb_create_quirk(struct snd_usb_audio *chip,
struct usb_interface *iface,
const struct snd_usb_audio_quirk *quirk);
/*
* handle the quirks for the contained interfaces
*/
static int create_composite_quirk(struct snd_usb_audio *chip,
struct usb_interface *iface,
const struct snd_usb_audio_quirk *quirk)
{
int probed_ifnum = get_iface_desc(iface->altsetting)->bInterfaceNumber;
int err;
for (quirk = quirk->data; quirk->ifnum >= 0; ++quirk) {
iface = usb_ifnum_to_if(chip->dev, quirk->ifnum);
if (!iface)
continue;
if (quirk->ifnum != probed_ifnum &&
usb_interface_claimed(iface))
continue;
err = snd_usb_create_quirk(chip, iface, quirk);
if (err < 0)
return err;
if (quirk->ifnum != probed_ifnum)
usb_driver_claim_interface(&usb_audio_driver, iface, (void *)-1L);
}
return 0;
}
static int ignore_interface_quirk(struct snd_usb_audio *chip,
struct usb_interface *iface,
const struct snd_usb_audio_quirk *quirk)
{
return 0;
}
/*
* boot quirks
*/
#define EXTIGY_FIRMWARE_SIZE_OLD 794
#define EXTIGY_FIRMWARE_SIZE_NEW 483
static int snd_usb_extigy_boot_quirk(struct usb_device *dev, struct usb_interface *intf)
{
struct usb_host_config *config = dev->actconfig;
int err;
if (le16_to_cpu(get_cfg_desc(config)->wTotalLength) == EXTIGY_FIRMWARE_SIZE_OLD ||
le16_to_cpu(get_cfg_desc(config)->wTotalLength) == EXTIGY_FIRMWARE_SIZE_NEW) {
snd_printdd("sending Extigy boot sequence...\n");
/* Send message to force it to reconnect with full interface. */
err = snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev,0),
0x10, 0x43, 0x0001, 0x000a, NULL, 0, 1000);
if (err < 0) snd_printdd("error sending boot message: %d\n", err);
err = usb_get_descriptor(dev, USB_DT_DEVICE, 0,
&dev->descriptor, sizeof(dev->descriptor));
config = dev->actconfig;
if (err < 0) snd_printdd("error usb_get_descriptor: %d\n", err);
err = usb_reset_configuration(dev);
if (err < 0) snd_printdd("error usb_reset_configuration: %d\n", err);
snd_printdd("extigy_boot: new boot length = %d\n",
le16_to_cpu(get_cfg_desc(config)->wTotalLength));
return -ENODEV; /* quit this anyway */
}
return 0;
}
static int snd_usb_audigy2nx_boot_quirk(struct usb_device *dev)
{
u8 buf = 1;
snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0), 0x2a,
USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_OTHER,
0, 0, &buf, 1, 1000);
if (buf == 0) {
snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev, 0), 0x29,
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
1, 2000, NULL, 0, 1000);
return -ENODEV;
}
return 0;
}
/*
* audio-interface quirks
*
* returns zero if no standard audio/MIDI parsing is needed.
* returns a postive value if standard audio/midi interfaces are parsed
* after this.
* returns a negative value at error.
*/
static int snd_usb_create_quirk(struct snd_usb_audio *chip,
struct usb_interface *iface,
const struct snd_usb_audio_quirk *quirk)
{
typedef int (*quirk_func_t)(struct snd_usb_audio *, struct usb_interface *,
const struct snd_usb_audio_quirk *);
static const quirk_func_t quirk_funcs[] = {
[QUIRK_IGNORE_INTERFACE] = ignore_interface_quirk,
[QUIRK_COMPOSITE] = create_composite_quirk,
[QUIRK_MIDI_STANDARD_INTERFACE] = snd_usb_create_midi_interface,
[QUIRK_MIDI_FIXED_ENDPOINT] = snd_usb_create_midi_interface,
[QUIRK_MIDI_YAMAHA] = snd_usb_create_midi_interface,
[QUIRK_MIDI_MIDIMAN] = snd_usb_create_midi_interface,
[QUIRK_MIDI_NOVATION] = snd_usb_create_midi_interface,
[QUIRK_MIDI_RAW] = snd_usb_create_midi_interface,
[QUIRK_MIDI_EMAGIC] = snd_usb_create_midi_interface,
[QUIRK_MIDI_MIDITECH] = snd_usb_create_midi_interface,
[QUIRK_AUDIO_STANDARD_INTERFACE] = create_standard_audio_quirk,
[QUIRK_AUDIO_FIXED_ENDPOINT] = create_fixed_stream_quirk,
[QUIRK_AUDIO_EDIROL_UA700_UA25] = create_ua700_ua25_quirk,
[QUIRK_AUDIO_EDIROL_UA1000] = create_ua1000_quirk,
};
if (quirk->type < QUIRK_TYPE_COUNT) {
return quirk_funcs[quirk->type](chip, iface, quirk);
} else {
snd_printd(KERN_ERR "invalid quirk type %d\n", quirk->type);
return -ENXIO;
}
}
/*
* common proc files to show the usb device info
*/
static void proc_audio_usbbus_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer)
{
struct snd_usb_audio *chip = entry->private_data;
if (! chip->shutdown)
snd_iprintf(buffer, "%03d/%03d\n", chip->dev->bus->busnum, chip->dev->devnum);
}
static void proc_audio_usbid_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer)
{
struct snd_usb_audio *chip = entry->private_data;
if (! chip->shutdown)
snd_iprintf(buffer, "%04x:%04x\n",
USB_ID_VENDOR(chip->usb_id),
USB_ID_PRODUCT(chip->usb_id));
}
static void snd_usb_audio_create_proc(struct snd_usb_audio *chip)
{
struct snd_info_entry *entry;
if (! snd_card_proc_new(chip->card, "usbbus", &entry))
snd_info_set_text_ops(entry, chip, 1024, proc_audio_usbbus_read);
if (! snd_card_proc_new(chip->card, "usbid", &entry))
snd_info_set_text_ops(entry, chip, 1024, proc_audio_usbid_read);
}
/*
* free the chip instance
*
* here we have to do not much, since pcm and controls are already freed
*
*/
static int snd_usb_audio_free(struct snd_usb_audio *chip)
{
kfree(chip);
return 0;
}
static int snd_usb_audio_dev_free(struct snd_device *device)
{
struct snd_usb_audio *chip = device->device_data;
return snd_usb_audio_free(chip);
}
/*
* create a chip instance and set its names.
*/
static int snd_usb_audio_create(struct usb_device *dev, int idx,
const struct snd_usb_audio_quirk *quirk,
struct snd_usb_audio **rchip)
{
struct snd_card *card;
struct snd_usb_audio *chip;
int err, len;
char component[14];
static struct snd_device_ops ops = {
.dev_free = snd_usb_audio_dev_free,
};
*rchip = NULL;
if (snd_usb_get_speed(dev) != USB_SPEED_FULL &&
snd_usb_get_speed(dev) != USB_SPEED_HIGH) {
snd_printk(KERN_ERR "unknown device speed %d\n", snd_usb_get_speed(dev));
return -ENXIO;
}
card = snd_card_new(index[idx], id[idx], THIS_MODULE, 0);
if (card == NULL) {
snd_printk(KERN_ERR "cannot create card instance %d\n", idx);
return -ENOMEM;
}
chip = kzalloc(sizeof(*chip), GFP_KERNEL);
if (! chip) {
snd_card_free(card);
return -ENOMEM;
}
chip->index = idx;
chip->dev = dev;
chip->card = card;
chip->usb_id = USB_ID(le16_to_cpu(dev->descriptor.idVendor),
le16_to_cpu(dev->descriptor.idProduct));
INIT_LIST_HEAD(&chip->pcm_list);
INIT_LIST_HEAD(&chip->midi_list);
INIT_LIST_HEAD(&chip->mixer_list);
if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) {
snd_usb_audio_free(chip);
snd_card_free(card);
return err;
}
strcpy(card->driver, "USB-Audio");
sprintf(component, "USB%04x:%04x",
USB_ID_VENDOR(chip->usb_id), USB_ID_PRODUCT(chip->usb_id));
snd_component_add(card, component);
/* retrieve the device string as shortname */
if (quirk && quirk->product_name) {
strlcpy(card->shortname, quirk->product_name, sizeof(card->shortname));
} else {
if (!dev->descriptor.iProduct ||
usb_string(dev, dev->descriptor.iProduct,
card->shortname, sizeof(card->shortname)) <= 0) {
/* no name available from anywhere, so use ID */
sprintf(card->shortname, "USB Device %#04x:%#04x",
USB_ID_VENDOR(chip->usb_id),
USB_ID_PRODUCT(chip->usb_id));
}
}
/* retrieve the vendor and device strings as longname */
if (quirk && quirk->vendor_name) {
len = strlcpy(card->longname, quirk->vendor_name, sizeof(card->longname));
} else {
if (dev->descriptor.iManufacturer)
len = usb_string(dev, dev->descriptor.iManufacturer,
card->longname, sizeof(card->longname));
else
len = 0;
/* we don't really care if there isn't any vendor string */
}
if (len > 0)
strlcat(card->longname, " ", sizeof(card->longname));
strlcat(card->longname, card->shortname, sizeof(card->longname));
len = strlcat(card->longname, " at ", sizeof(card->longname));
if (len < sizeof(card->longname))
usb_make_path(dev, card->longname + len, sizeof(card->longname) - len);
strlcat(card->longname,
snd_usb_get_speed(dev) == USB_SPEED_FULL ? ", full speed" : ", high speed",
sizeof(card->longname));
snd_usb_audio_create_proc(chip);
*rchip = chip;
return 0;
}
/*
* probe the active usb device
*
* note that this can be called multiple times per a device, when it
* includes multiple audio control interfaces.
*
* thus we check the usb device pointer and creates the card instance
* only at the first time. the successive calls of this function will
* append the pcm interface to the corresponding card.
*/
static void *snd_usb_audio_probe(struct usb_device *dev,
struct usb_interface *intf,
const struct usb_device_id *usb_id)
{
const struct snd_usb_audio_quirk *quirk = (const struct snd_usb_audio_quirk *)usb_id->driver_info;
int i, err;
struct snd_usb_audio *chip;
struct usb_host_interface *alts;
int ifnum;
u32 id;
alts = &intf->altsetting[0];
ifnum = get_iface_desc(alts)->bInterfaceNumber;
id = USB_ID(le16_to_cpu(dev->descriptor.idVendor),
le16_to_cpu(dev->descriptor.idProduct));
if (quirk && quirk->ifnum >= 0 && ifnum != quirk->ifnum)
goto __err_val;
/* SB Extigy needs special boot-up sequence */
/* if more models come, this will go to the quirk list. */
if (id == USB_ID(0x041e, 0x3000)) {
if (snd_usb_extigy_boot_quirk(dev, intf) < 0)
goto __err_val;
}
/* SB Audigy 2 NX needs its own boot-up magic, too */
if (id == USB_ID(0x041e, 0x3020)) {
if (snd_usb_audigy2nx_boot_quirk(dev) < 0)
goto __err_val;
}
/*
* found a config. now register to ALSA
*/
/* check whether it's already registered */
chip = NULL;
down(&register_mutex);
for (i = 0; i < SNDRV_CARDS; i++) {
if (usb_chip[i] && usb_chip[i]->dev == dev) {
if (usb_chip[i]->shutdown) {
snd_printk(KERN_ERR "USB device is in the shutdown state, cannot create a card instance\n");
goto __error;
}
chip = usb_chip[i];
break;
}
}
if (! chip) {
/* it's a fresh one.
* now look for an empty slot and create a new card instance
*/
for (i = 0; i < SNDRV_CARDS; i++)
if (enable[i] && ! usb_chip[i] &&
(vid[i] == -1 || vid[i] == USB_ID_VENDOR(id)) &&
(pid[i] == -1 || pid[i] == USB_ID_PRODUCT(id))) {
if (snd_usb_audio_create(dev, i, quirk, &chip) < 0) {
goto __error;
}
snd_card_set_dev(chip->card, &intf->dev);
break;
}
if (! chip) {
snd_printk(KERN_ERR "no available usb audio device\n");
goto __error;
}
}
err = 1; /* continue */
if (quirk && quirk->ifnum != QUIRK_NO_INTERFACE) {
/* need some special handlings */
if ((err = snd_usb_create_quirk(chip, intf, quirk)) < 0)
goto __error;
}
if (err > 0) {
/* create normal USB audio interfaces */
if (snd_usb_create_streams(chip, ifnum) < 0 ||
snd_usb_create_mixer(chip, ifnum) < 0) {
goto __error;
}
}
/* we are allowed to call snd_card_register() many times */
if (snd_card_register(chip->card) < 0) {
goto __error;
}
usb_chip[chip->index] = chip;
chip->num_interfaces++;
up(&register_mutex);
return chip;
__error:
if (chip && !chip->num_interfaces)
snd_card_free(chip->card);
up(&register_mutex);
__err_val:
return NULL;
}
/*
* we need to take care of counter, since disconnection can be called also
* many times as well as usb_audio_probe().
*/
static void snd_usb_audio_disconnect(struct usb_device *dev, void *ptr)
{
struct snd_usb_audio *chip;
struct snd_card *card;
struct list_head *p;
if (ptr == (void *)-1L)
return;
chip = ptr;
card = chip->card;
down(&register_mutex);
chip->shutdown = 1;
chip->num_interfaces--;
if (chip->num_interfaces <= 0) {
snd_card_disconnect(card);
/* release the pcm resources */
list_for_each(p, &chip->pcm_list) {
snd_usb_stream_disconnect(p);
}
/* release the midi resources */
list_for_each(p, &chip->midi_list) {
snd_usbmidi_disconnect(p);
}
/* release mixer resources */
list_for_each(p, &chip->mixer_list) {
snd_usb_mixer_disconnect(p);
}
usb_chip[chip->index] = NULL;
up(&register_mutex);
snd_card_free(card);
} else {
up(&register_mutex);
}
}
/*
* new 2.5 USB kernel API
*/
static int usb_audio_probe(struct usb_interface *intf,
const struct usb_device_id *id)
{
void *chip;
chip = snd_usb_audio_probe(interface_to_usbdev(intf), intf, id);
if (chip) {
dev_set_drvdata(&intf->dev, chip);
return 0;
} else
return -EIO;
}
static void usb_audio_disconnect(struct usb_interface *intf)
{
snd_usb_audio_disconnect(interface_to_usbdev(intf),
dev_get_drvdata(&intf->dev));
}
static int __init snd_usb_audio_init(void)
{
if (nrpacks < MIN_PACKS_URB || nrpacks > MAX_PACKS) {
printk(KERN_WARNING "invalid nrpacks value.\n");
return -EINVAL;
}
usb_register(&usb_audio_driver);
return 0;
}
static void __exit snd_usb_audio_cleanup(void)
{
usb_deregister(&usb_audio_driver);
}
module_init(snd_usb_audio_init);
module_exit(snd_usb_audio_cleanup);