linux/drivers/block/swim3.c
Al Viro d4430d62fa [PATCH] beginning of methods conversion
To keep the size of changesets sane we split the switch by drivers;
to keep the damn thing bisectable we do the following:
	1) rename the affected methods, add ones with correct
prototypes, make (few) callers handle both.  That's this changeset.
	2) for each driver convert to new methods.  *ALL* drivers
are converted in this series.
	3) kill the old (renamed) methods.

Note that it _is_ a flagday; all in-tree drivers are converted and by the
end of this series no trace of old methods remain.  The only reason why
we do that this way is to keep the damn thing bisectable and allow per-driver
debugging if anything goes wrong.

New methods:
	open(bdev, mode)
	release(disk, mode)
	ioctl(bdev, mode, cmd, arg)		/* Called without BKL */
	compat_ioctl(bdev, mode, cmd, arg)
	locked_ioctl(bdev, mode, cmd, arg)	/* Called with BKL, legacy */

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2008-10-21 07:47:32 -04:00

1189 lines
29 KiB
C

/*
* Driver for the SWIM3 (Super Woz Integrated Machine 3)
* floppy controller found on Power Macintoshes.
*
* Copyright (C) 1996 Paul Mackerras.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
/*
* TODO:
* handle 2 drives
* handle GCR disks
*/
#include <linux/stddef.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/timer.h>
#include <linux/delay.h>
#include <linux/fd.h>
#include <linux/ioctl.h>
#include <linux/blkdev.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <asm/io.h>
#include <asm/dbdma.h>
#include <asm/prom.h>
#include <asm/uaccess.h>
#include <asm/mediabay.h>
#include <asm/machdep.h>
#include <asm/pmac_feature.h>
static struct request_queue *swim3_queue;
static struct gendisk *disks[2];
static struct request *fd_req;
#define MAX_FLOPPIES 2
enum swim_state {
idle,
locating,
seeking,
settling,
do_transfer,
jogging,
available,
revalidating,
ejecting
};
#define REG(x) unsigned char x; char x ## _pad[15];
/*
* The names for these registers mostly represent speculation on my part.
* It will be interesting to see how close they are to the names Apple uses.
*/
struct swim3 {
REG(data);
REG(timer); /* counts down at 1MHz */
REG(error);
REG(mode);
REG(select); /* controls CA0, CA1, CA2 and LSTRB signals */
REG(setup);
REG(control); /* writing bits clears them */
REG(status); /* writing bits sets them in control */
REG(intr);
REG(nseek); /* # tracks to seek */
REG(ctrack); /* current track number */
REG(csect); /* current sector number */
REG(gap3); /* size of gap 3 in track format */
REG(sector); /* sector # to read or write */
REG(nsect); /* # sectors to read or write */
REG(intr_enable);
};
#define control_bic control
#define control_bis status
/* Bits in select register */
#define CA_MASK 7
#define LSTRB 8
/* Bits in control register */
#define DO_SEEK 0x80
#define FORMAT 0x40
#define SELECT 0x20
#define WRITE_SECTORS 0x10
#define DO_ACTION 0x08
#define DRIVE2_ENABLE 0x04
#define DRIVE_ENABLE 0x02
#define INTR_ENABLE 0x01
/* Bits in status register */
#define FIFO_1BYTE 0x80
#define FIFO_2BYTE 0x40
#define ERROR 0x20
#define DATA 0x08
#define RDDATA 0x04
#define INTR_PENDING 0x02
#define MARK_BYTE 0x01
/* Bits in intr and intr_enable registers */
#define ERROR_INTR 0x20
#define DATA_CHANGED 0x10
#define TRANSFER_DONE 0x08
#define SEEN_SECTOR 0x04
#define SEEK_DONE 0x02
#define TIMER_DONE 0x01
/* Bits in error register */
#define ERR_DATA_CRC 0x80
#define ERR_ADDR_CRC 0x40
#define ERR_OVERRUN 0x04
#define ERR_UNDERRUN 0x01
/* Bits in setup register */
#define S_SW_RESET 0x80
#define S_GCR_WRITE 0x40
#define S_IBM_DRIVE 0x20
#define S_TEST_MODE 0x10
#define S_FCLK_DIV2 0x08
#define S_GCR 0x04
#define S_COPY_PROT 0x02
#define S_INV_WDATA 0x01
/* Select values for swim3_action */
#define SEEK_POSITIVE 0
#define SEEK_NEGATIVE 4
#define STEP 1
#define MOTOR_ON 2
#define MOTOR_OFF 6
#define INDEX 3
#define EJECT 7
#define SETMFM 9
#define SETGCR 13
/* Select values for swim3_select and swim3_readbit */
#define STEP_DIR 0
#define STEPPING 1
#define MOTOR_ON 2
#define RELAX 3 /* also eject in progress */
#define READ_DATA_0 4
#define TWOMEG_DRIVE 5
#define SINGLE_SIDED 6 /* drive or diskette is 4MB type? */
#define DRIVE_PRESENT 7
#define DISK_IN 8
#define WRITE_PROT 9
#define TRACK_ZERO 10
#define TACHO 11
#define READ_DATA_1 12
#define MFM_MODE 13
#define SEEK_COMPLETE 14
#define ONEMEG_MEDIA 15
/* Definitions of values used in writing and formatting */
#define DATA_ESCAPE 0x99
#define GCR_SYNC_EXC 0x3f
#define GCR_SYNC_CONV 0x80
#define GCR_FIRST_MARK 0xd5
#define GCR_SECOND_MARK 0xaa
#define GCR_ADDR_MARK "\xd5\xaa\x00"
#define GCR_DATA_MARK "\xd5\xaa\x0b"
#define GCR_SLIP_BYTE "\x27\xaa"
#define GCR_SELF_SYNC "\x3f\xbf\x1e\x34\x3c\x3f"
#define DATA_99 "\x99\x99"
#define MFM_ADDR_MARK "\x99\xa1\x99\xa1\x99\xa1\x99\xfe"
#define MFM_INDEX_MARK "\x99\xc2\x99\xc2\x99\xc2\x99\xfc"
#define MFM_GAP_LEN 12
struct floppy_state {
enum swim_state state;
spinlock_t lock;
struct swim3 __iomem *swim3; /* hardware registers */
struct dbdma_regs __iomem *dma; /* DMA controller registers */
int swim3_intr; /* interrupt number for SWIM3 */
int dma_intr; /* interrupt number for DMA channel */
int cur_cyl; /* cylinder head is on, or -1 */
int cur_sector; /* last sector we saw go past */
int req_cyl; /* the cylinder for the current r/w request */
int head; /* head number ditto */
int req_sector; /* sector number ditto */
int scount; /* # sectors we're transferring at present */
int retries;
int settle_time;
int secpercyl; /* disk geometry information */
int secpertrack;
int total_secs;
int write_prot; /* 1 if write-protected, 0 if not, -1 dunno */
struct dbdma_cmd *dma_cmd;
int ref_count;
int expect_cyl;
struct timer_list timeout;
int timeout_pending;
int ejected;
wait_queue_head_t wait;
int wanted;
struct device_node* media_bay; /* NULL when not in bay */
char dbdma_cmd_space[5 * sizeof(struct dbdma_cmd)];
};
static struct floppy_state floppy_states[MAX_FLOPPIES];
static int floppy_count = 0;
static DEFINE_SPINLOCK(swim3_lock);
static unsigned short write_preamble[] = {
0x4e4e, 0x4e4e, 0x4e4e, 0x4e4e, 0x4e4e, /* gap field */
0, 0, 0, 0, 0, 0, /* sync field */
0x99a1, 0x99a1, 0x99a1, 0x99fb, /* data address mark */
0x990f /* no escape for 512 bytes */
};
static unsigned short write_postamble[] = {
0x9904, /* insert CRC */
0x4e4e, 0x4e4e,
0x9908, /* stop writing */
0, 0, 0, 0, 0, 0
};
static void swim3_select(struct floppy_state *fs, int sel);
static void swim3_action(struct floppy_state *fs, int action);
static int swim3_readbit(struct floppy_state *fs, int bit);
static void do_fd_request(struct request_queue * q);
static void start_request(struct floppy_state *fs);
static void set_timeout(struct floppy_state *fs, int nticks,
void (*proc)(unsigned long));
static void scan_track(struct floppy_state *fs);
static void seek_track(struct floppy_state *fs, int n);
static void init_dma(struct dbdma_cmd *cp, int cmd, void *buf, int count);
static void setup_transfer(struct floppy_state *fs);
static void act(struct floppy_state *fs);
static void scan_timeout(unsigned long data);
static void seek_timeout(unsigned long data);
static void settle_timeout(unsigned long data);
static void xfer_timeout(unsigned long data);
static irqreturn_t swim3_interrupt(int irq, void *dev_id);
/*static void fd_dma_interrupt(int irq, void *dev_id);*/
static int grab_drive(struct floppy_state *fs, enum swim_state state,
int interruptible);
static void release_drive(struct floppy_state *fs);
static int fd_eject(struct floppy_state *fs);
static int floppy_ioctl(struct inode *inode, struct file *filp,
unsigned int cmd, unsigned long param);
static int floppy_open(struct inode *inode, struct file *filp);
static int floppy_release(struct inode *inode, struct file *filp);
static int floppy_check_change(struct gendisk *disk);
static int floppy_revalidate(struct gendisk *disk);
static void swim3_select(struct floppy_state *fs, int sel)
{
struct swim3 __iomem *sw = fs->swim3;
out_8(&sw->select, RELAX);
if (sel & 8)
out_8(&sw->control_bis, SELECT);
else
out_8(&sw->control_bic, SELECT);
out_8(&sw->select, sel & CA_MASK);
}
static void swim3_action(struct floppy_state *fs, int action)
{
struct swim3 __iomem *sw = fs->swim3;
swim3_select(fs, action);
udelay(1);
out_8(&sw->select, sw->select | LSTRB);
udelay(2);
out_8(&sw->select, sw->select & ~LSTRB);
udelay(1);
}
static int swim3_readbit(struct floppy_state *fs, int bit)
{
struct swim3 __iomem *sw = fs->swim3;
int stat;
swim3_select(fs, bit);
udelay(1);
stat = in_8(&sw->status);
return (stat & DATA) == 0;
}
static void do_fd_request(struct request_queue * q)
{
int i;
for(i=0;i<floppy_count;i++)
{
#ifdef CONFIG_PMAC_MEDIABAY
if (floppy_states[i].media_bay &&
check_media_bay(floppy_states[i].media_bay, MB_FD))
continue;
#endif /* CONFIG_PMAC_MEDIABAY */
start_request(&floppy_states[i]);
}
}
static void start_request(struct floppy_state *fs)
{
struct request *req;
unsigned long x;
if (fs->state == idle && fs->wanted) {
fs->state = available;
wake_up(&fs->wait);
return;
}
while (fs->state == idle && (req = elv_next_request(swim3_queue))) {
#if 0
printk("do_fd_req: dev=%s cmd=%d sec=%ld nr_sec=%ld buf=%p\n",
req->rq_disk->disk_name, req->cmd,
(long)req->sector, req->nr_sectors, req->buffer);
printk(" errors=%d current_nr_sectors=%ld\n",
req->errors, req->current_nr_sectors);
#endif
if (req->sector < 0 || req->sector >= fs->total_secs) {
end_request(req, 0);
continue;
}
if (req->current_nr_sectors == 0) {
end_request(req, 1);
continue;
}
if (fs->ejected) {
end_request(req, 0);
continue;
}
if (rq_data_dir(req) == WRITE) {
if (fs->write_prot < 0)
fs->write_prot = swim3_readbit(fs, WRITE_PROT);
if (fs->write_prot) {
end_request(req, 0);
continue;
}
}
/* Do not remove the cast. req->sector is now a sector_t and
* can be 64 bits, but it will never go past 32 bits for this
* driver anyway, so we can safely cast it down and not have
* to do a 64/32 division
*/
fs->req_cyl = ((long)req->sector) / fs->secpercyl;
x = ((long)req->sector) % fs->secpercyl;
fs->head = x / fs->secpertrack;
fs->req_sector = x % fs->secpertrack + 1;
fd_req = req;
fs->state = do_transfer;
fs->retries = 0;
act(fs);
}
}
static void set_timeout(struct floppy_state *fs, int nticks,
void (*proc)(unsigned long))
{
unsigned long flags;
spin_lock_irqsave(&fs->lock, flags);
if (fs->timeout_pending)
del_timer(&fs->timeout);
fs->timeout.expires = jiffies + nticks;
fs->timeout.function = proc;
fs->timeout.data = (unsigned long) fs;
add_timer(&fs->timeout);
fs->timeout_pending = 1;
spin_unlock_irqrestore(&fs->lock, flags);
}
static inline void scan_track(struct floppy_state *fs)
{
struct swim3 __iomem *sw = fs->swim3;
swim3_select(fs, READ_DATA_0);
in_8(&sw->intr); /* clear SEEN_SECTOR bit */
in_8(&sw->error);
out_8(&sw->intr_enable, SEEN_SECTOR);
out_8(&sw->control_bis, DO_ACTION);
/* enable intr when track found */
set_timeout(fs, HZ, scan_timeout); /* enable timeout */
}
static inline void seek_track(struct floppy_state *fs, int n)
{
struct swim3 __iomem *sw = fs->swim3;
if (n >= 0) {
swim3_action(fs, SEEK_POSITIVE);
sw->nseek = n;
} else {
swim3_action(fs, SEEK_NEGATIVE);
sw->nseek = -n;
}
fs->expect_cyl = (fs->cur_cyl >= 0)? fs->cur_cyl + n: -1;
swim3_select(fs, STEP);
in_8(&sw->error);
/* enable intr when seek finished */
out_8(&sw->intr_enable, SEEK_DONE);
out_8(&sw->control_bis, DO_SEEK);
set_timeout(fs, 3*HZ, seek_timeout); /* enable timeout */
fs->settle_time = 0;
}
static inline void init_dma(struct dbdma_cmd *cp, int cmd,
void *buf, int count)
{
st_le16(&cp->req_count, count);
st_le16(&cp->command, cmd);
st_le32(&cp->phy_addr, virt_to_bus(buf));
cp->xfer_status = 0;
}
static inline void setup_transfer(struct floppy_state *fs)
{
int n;
struct swim3 __iomem *sw = fs->swim3;
struct dbdma_cmd *cp = fs->dma_cmd;
struct dbdma_regs __iomem *dr = fs->dma;
if (fd_req->current_nr_sectors <= 0) {
printk(KERN_ERR "swim3: transfer 0 sectors?\n");
return;
}
if (rq_data_dir(fd_req) == WRITE)
n = 1;
else {
n = fs->secpertrack - fs->req_sector + 1;
if (n > fd_req->current_nr_sectors)
n = fd_req->current_nr_sectors;
}
fs->scount = n;
swim3_select(fs, fs->head? READ_DATA_1: READ_DATA_0);
out_8(&sw->sector, fs->req_sector);
out_8(&sw->nsect, n);
out_8(&sw->gap3, 0);
out_le32(&dr->cmdptr, virt_to_bus(cp));
if (rq_data_dir(fd_req) == WRITE) {
/* Set up 3 dma commands: write preamble, data, postamble */
init_dma(cp, OUTPUT_MORE, write_preamble, sizeof(write_preamble));
++cp;
init_dma(cp, OUTPUT_MORE, fd_req->buffer, 512);
++cp;
init_dma(cp, OUTPUT_LAST, write_postamble, sizeof(write_postamble));
} else {
init_dma(cp, INPUT_LAST, fd_req->buffer, n * 512);
}
++cp;
out_le16(&cp->command, DBDMA_STOP);
out_8(&sw->control_bic, DO_ACTION | WRITE_SECTORS);
in_8(&sw->error);
out_8(&sw->control_bic, DO_ACTION | WRITE_SECTORS);
if (rq_data_dir(fd_req) == WRITE)
out_8(&sw->control_bis, WRITE_SECTORS);
in_8(&sw->intr);
out_le32(&dr->control, (RUN << 16) | RUN);
/* enable intr when transfer complete */
out_8(&sw->intr_enable, TRANSFER_DONE);
out_8(&sw->control_bis, DO_ACTION);
set_timeout(fs, 2*HZ, xfer_timeout); /* enable timeout */
}
static void act(struct floppy_state *fs)
{
for (;;) {
switch (fs->state) {
case idle:
return; /* XXX shouldn't get here */
case locating:
if (swim3_readbit(fs, TRACK_ZERO)) {
fs->cur_cyl = 0;
if (fs->req_cyl == 0)
fs->state = do_transfer;
else
fs->state = seeking;
break;
}
scan_track(fs);
return;
case seeking:
if (fs->cur_cyl < 0) {
fs->expect_cyl = -1;
fs->state = locating;
break;
}
if (fs->req_cyl == fs->cur_cyl) {
printk("whoops, seeking 0\n");
fs->state = do_transfer;
break;
}
seek_track(fs, fs->req_cyl - fs->cur_cyl);
return;
case settling:
/* check for SEEK_COMPLETE after 30ms */
fs->settle_time = (HZ + 32) / 33;
set_timeout(fs, fs->settle_time, settle_timeout);
return;
case do_transfer:
if (fs->cur_cyl != fs->req_cyl) {
if (fs->retries > 5) {
end_request(fd_req, 0);
fs->state = idle;
return;
}
fs->state = seeking;
break;
}
setup_transfer(fs);
return;
case jogging:
seek_track(fs, -5);
return;
default:
printk(KERN_ERR"swim3: unknown state %d\n", fs->state);
return;
}
}
}
static void scan_timeout(unsigned long data)
{
struct floppy_state *fs = (struct floppy_state *) data;
struct swim3 __iomem *sw = fs->swim3;
fs->timeout_pending = 0;
out_8(&sw->control_bic, DO_ACTION | WRITE_SECTORS);
out_8(&sw->select, RELAX);
out_8(&sw->intr_enable, 0);
fs->cur_cyl = -1;
if (fs->retries > 5) {
end_request(fd_req, 0);
fs->state = idle;
start_request(fs);
} else {
fs->state = jogging;
act(fs);
}
}
static void seek_timeout(unsigned long data)
{
struct floppy_state *fs = (struct floppy_state *) data;
struct swim3 __iomem *sw = fs->swim3;
fs->timeout_pending = 0;
out_8(&sw->control_bic, DO_SEEK);
out_8(&sw->select, RELAX);
out_8(&sw->intr_enable, 0);
printk(KERN_ERR "swim3: seek timeout\n");
end_request(fd_req, 0);
fs->state = idle;
start_request(fs);
}
static void settle_timeout(unsigned long data)
{
struct floppy_state *fs = (struct floppy_state *) data;
struct swim3 __iomem *sw = fs->swim3;
fs->timeout_pending = 0;
if (swim3_readbit(fs, SEEK_COMPLETE)) {
out_8(&sw->select, RELAX);
fs->state = locating;
act(fs);
return;
}
out_8(&sw->select, RELAX);
if (fs->settle_time < 2*HZ) {
++fs->settle_time;
set_timeout(fs, 1, settle_timeout);
return;
}
printk(KERN_ERR "swim3: seek settle timeout\n");
end_request(fd_req, 0);
fs->state = idle;
start_request(fs);
}
static void xfer_timeout(unsigned long data)
{
struct floppy_state *fs = (struct floppy_state *) data;
struct swim3 __iomem *sw = fs->swim3;
struct dbdma_regs __iomem *dr = fs->dma;
struct dbdma_cmd *cp = fs->dma_cmd;
unsigned long s;
int n;
fs->timeout_pending = 0;
out_le32(&dr->control, RUN << 16);
/* We must wait a bit for dbdma to stop */
for (n = 0; (in_le32(&dr->status) & ACTIVE) && n < 1000; n++)
udelay(1);
out_8(&sw->intr_enable, 0);
out_8(&sw->control_bic, WRITE_SECTORS | DO_ACTION);
out_8(&sw->select, RELAX);
if (rq_data_dir(fd_req) == WRITE)
++cp;
if (ld_le16(&cp->xfer_status) != 0)
s = fs->scount - ((ld_le16(&cp->res_count) + 511) >> 9);
else
s = 0;
fd_req->sector += s;
fd_req->current_nr_sectors -= s;
printk(KERN_ERR "swim3: timeout %sing sector %ld\n",
(rq_data_dir(fd_req)==WRITE? "writ": "read"), (long)fd_req->sector);
end_request(fd_req, 0);
fs->state = idle;
start_request(fs);
}
static irqreturn_t swim3_interrupt(int irq, void *dev_id)
{
struct floppy_state *fs = (struct floppy_state *) dev_id;
struct swim3 __iomem *sw = fs->swim3;
int intr, err, n;
int stat, resid;
struct dbdma_regs __iomem *dr;
struct dbdma_cmd *cp;
intr = in_8(&sw->intr);
err = (intr & ERROR_INTR)? in_8(&sw->error): 0;
if ((intr & ERROR_INTR) && fs->state != do_transfer)
printk(KERN_ERR "swim3_interrupt, state=%d, dir=%x, intr=%x, err=%x\n",
fs->state, rq_data_dir(fd_req), intr, err);
switch (fs->state) {
case locating:
if (intr & SEEN_SECTOR) {
out_8(&sw->control_bic, DO_ACTION | WRITE_SECTORS);
out_8(&sw->select, RELAX);
out_8(&sw->intr_enable, 0);
del_timer(&fs->timeout);
fs->timeout_pending = 0;
if (sw->ctrack == 0xff) {
printk(KERN_ERR "swim3: seen sector but cyl=ff?\n");
fs->cur_cyl = -1;
if (fs->retries > 5) {
end_request(fd_req, 0);
fs->state = idle;
start_request(fs);
} else {
fs->state = jogging;
act(fs);
}
break;
}
fs->cur_cyl = sw->ctrack;
fs->cur_sector = sw->csect;
if (fs->expect_cyl != -1 && fs->expect_cyl != fs->cur_cyl)
printk(KERN_ERR "swim3: expected cyl %d, got %d\n",
fs->expect_cyl, fs->cur_cyl);
fs->state = do_transfer;
act(fs);
}
break;
case seeking:
case jogging:
if (sw->nseek == 0) {
out_8(&sw->control_bic, DO_SEEK);
out_8(&sw->select, RELAX);
out_8(&sw->intr_enable, 0);
del_timer(&fs->timeout);
fs->timeout_pending = 0;
if (fs->state == seeking)
++fs->retries;
fs->state = settling;
act(fs);
}
break;
case settling:
out_8(&sw->intr_enable, 0);
del_timer(&fs->timeout);
fs->timeout_pending = 0;
act(fs);
break;
case do_transfer:
if ((intr & (ERROR_INTR | TRANSFER_DONE)) == 0)
break;
out_8(&sw->intr_enable, 0);
out_8(&sw->control_bic, WRITE_SECTORS | DO_ACTION);
out_8(&sw->select, RELAX);
del_timer(&fs->timeout);
fs->timeout_pending = 0;
dr = fs->dma;
cp = fs->dma_cmd;
if (rq_data_dir(fd_req) == WRITE)
++cp;
/*
* Check that the main data transfer has finished.
* On writing, the swim3 sometimes doesn't use
* up all the bytes of the postamble, so we can still
* see DMA active here. That doesn't matter as long
* as all the sector data has been transferred.
*/
if ((intr & ERROR_INTR) == 0 && cp->xfer_status == 0) {
/* wait a little while for DMA to complete */
for (n = 0; n < 100; ++n) {
if (cp->xfer_status != 0)
break;
udelay(1);
barrier();
}
}
/* turn off DMA */
out_le32(&dr->control, (RUN | PAUSE) << 16);
stat = ld_le16(&cp->xfer_status);
resid = ld_le16(&cp->res_count);
if (intr & ERROR_INTR) {
n = fs->scount - 1 - resid / 512;
if (n > 0) {
fd_req->sector += n;
fd_req->current_nr_sectors -= n;
fd_req->buffer += n * 512;
fs->req_sector += n;
}
if (fs->retries < 5) {
++fs->retries;
act(fs);
} else {
printk("swim3: error %sing block %ld (err=%x)\n",
rq_data_dir(fd_req) == WRITE? "writ": "read",
(long)fd_req->sector, err);
end_request(fd_req, 0);
fs->state = idle;
}
} else {
if ((stat & ACTIVE) == 0 || resid != 0) {
/* musta been an error */
printk(KERN_ERR "swim3: fd dma: stat=%x resid=%d\n", stat, resid);
printk(KERN_ERR " state=%d, dir=%x, intr=%x, err=%x\n",
fs->state, rq_data_dir(fd_req), intr, err);
end_request(fd_req, 0);
fs->state = idle;
start_request(fs);
break;
}
fd_req->sector += fs->scount;
fd_req->current_nr_sectors -= fs->scount;
fd_req->buffer += fs->scount * 512;
if (fd_req->current_nr_sectors <= 0) {
end_request(fd_req, 1);
fs->state = idle;
} else {
fs->req_sector += fs->scount;
if (fs->req_sector > fs->secpertrack) {
fs->req_sector -= fs->secpertrack;
if (++fs->head > 1) {
fs->head = 0;
++fs->req_cyl;
}
}
act(fs);
}
}
if (fs->state == idle)
start_request(fs);
break;
default:
printk(KERN_ERR "swim3: don't know what to do in state %d\n", fs->state);
}
return IRQ_HANDLED;
}
/*
static void fd_dma_interrupt(int irq, void *dev_id)
{
}
*/
static int grab_drive(struct floppy_state *fs, enum swim_state state,
int interruptible)
{
unsigned long flags;
spin_lock_irqsave(&fs->lock, flags);
if (fs->state != idle) {
++fs->wanted;
while (fs->state != available) {
if (interruptible && signal_pending(current)) {
--fs->wanted;
spin_unlock_irqrestore(&fs->lock, flags);
return -EINTR;
}
interruptible_sleep_on(&fs->wait);
}
--fs->wanted;
}
fs->state = state;
spin_unlock_irqrestore(&fs->lock, flags);
return 0;
}
static void release_drive(struct floppy_state *fs)
{
unsigned long flags;
spin_lock_irqsave(&fs->lock, flags);
fs->state = idle;
start_request(fs);
spin_unlock_irqrestore(&fs->lock, flags);
}
static int fd_eject(struct floppy_state *fs)
{
int err, n;
err = grab_drive(fs, ejecting, 1);
if (err)
return err;
swim3_action(fs, EJECT);
for (n = 20; n > 0; --n) {
if (signal_pending(current)) {
err = -EINTR;
break;
}
swim3_select(fs, RELAX);
schedule_timeout_interruptible(1);
if (swim3_readbit(fs, DISK_IN) == 0)
break;
}
swim3_select(fs, RELAX);
udelay(150);
fs->ejected = 1;
release_drive(fs);
return err;
}
static struct floppy_struct floppy_type =
{ 2880,18,2,80,0,0x1B,0x00,0xCF,0x6C,NULL }; /* 7 1.44MB 3.5" */
static int floppy_ioctl(struct inode *inode, struct file *filp,
unsigned int cmd, unsigned long param)
{
struct floppy_state *fs = inode->i_bdev->bd_disk->private_data;
int err;
if ((cmd & 0x80) && !capable(CAP_SYS_ADMIN))
return -EPERM;
#ifdef CONFIG_PMAC_MEDIABAY
if (fs->media_bay && check_media_bay(fs->media_bay, MB_FD))
return -ENXIO;
#endif
switch (cmd) {
case FDEJECT:
if (fs->ref_count != 1)
return -EBUSY;
err = fd_eject(fs);
return err;
case FDGETPRM:
if (copy_to_user((void __user *) param, &floppy_type,
sizeof(struct floppy_struct)))
return -EFAULT;
return 0;
}
return -ENOTTY;
}
static int floppy_open(struct inode *inode, struct file *filp)
{
struct floppy_state *fs = inode->i_bdev->bd_disk->private_data;
struct swim3 __iomem *sw = fs->swim3;
int n, err = 0;
if (fs->ref_count == 0) {
#ifdef CONFIG_PMAC_MEDIABAY
if (fs->media_bay && check_media_bay(fs->media_bay, MB_FD))
return -ENXIO;
#endif
out_8(&sw->setup, S_IBM_DRIVE | S_FCLK_DIV2);
out_8(&sw->control_bic, 0xff);
out_8(&sw->mode, 0x95);
udelay(10);
out_8(&sw->intr_enable, 0);
out_8(&sw->control_bis, DRIVE_ENABLE | INTR_ENABLE);
swim3_action(fs, MOTOR_ON);
fs->write_prot = -1;
fs->cur_cyl = -1;
for (n = 0; n < 2 * HZ; ++n) {
if (n >= HZ/30 && swim3_readbit(fs, SEEK_COMPLETE))
break;
if (signal_pending(current)) {
err = -EINTR;
break;
}
swim3_select(fs, RELAX);
schedule_timeout_interruptible(1);
}
if (err == 0 && (swim3_readbit(fs, SEEK_COMPLETE) == 0
|| swim3_readbit(fs, DISK_IN) == 0))
err = -ENXIO;
swim3_action(fs, SETMFM);
swim3_select(fs, RELAX);
} else if (fs->ref_count == -1 || filp->f_mode & FMODE_EXCL)
return -EBUSY;
if (err == 0 && (filp->f_mode & FMODE_NDELAY) == 0
&& (filp->f_mode & (FMODE_READ|FMODE_WRITE))) {
check_disk_change(inode->i_bdev);
if (fs->ejected)
err = -ENXIO;
}
if (err == 0 && (filp->f_mode & FMODE_WRITE)) {
if (fs->write_prot < 0)
fs->write_prot = swim3_readbit(fs, WRITE_PROT);
if (fs->write_prot)
err = -EROFS;
}
if (err) {
if (fs->ref_count == 0) {
swim3_action(fs, MOTOR_OFF);
out_8(&sw->control_bic, DRIVE_ENABLE | INTR_ENABLE);
swim3_select(fs, RELAX);
}
return err;
}
if (filp->f_mode & FMODE_EXCL)
fs->ref_count = -1;
else
++fs->ref_count;
return 0;
}
static int floppy_release(struct inode *inode, struct file *filp)
{
struct floppy_state *fs = inode->i_bdev->bd_disk->private_data;
struct swim3 __iomem *sw = fs->swim3;
if (fs->ref_count > 0 && --fs->ref_count == 0) {
swim3_action(fs, MOTOR_OFF);
out_8(&sw->control_bic, 0xff);
swim3_select(fs, RELAX);
}
return 0;
}
static int floppy_check_change(struct gendisk *disk)
{
struct floppy_state *fs = disk->private_data;
return fs->ejected;
}
static int floppy_revalidate(struct gendisk *disk)
{
struct floppy_state *fs = disk->private_data;
struct swim3 __iomem *sw;
int ret, n;
#ifdef CONFIG_PMAC_MEDIABAY
if (fs->media_bay && check_media_bay(fs->media_bay, MB_FD))
return -ENXIO;
#endif
sw = fs->swim3;
grab_drive(fs, revalidating, 0);
out_8(&sw->intr_enable, 0);
out_8(&sw->control_bis, DRIVE_ENABLE);
swim3_action(fs, MOTOR_ON); /* necessary? */
fs->write_prot = -1;
fs->cur_cyl = -1;
mdelay(1);
for (n = HZ; n > 0; --n) {
if (swim3_readbit(fs, SEEK_COMPLETE))
break;
if (signal_pending(current))
break;
swim3_select(fs, RELAX);
schedule_timeout_interruptible(1);
}
ret = swim3_readbit(fs, SEEK_COMPLETE) == 0
|| swim3_readbit(fs, DISK_IN) == 0;
if (ret)
swim3_action(fs, MOTOR_OFF);
else {
fs->ejected = 0;
swim3_action(fs, SETMFM);
}
swim3_select(fs, RELAX);
release_drive(fs);
return ret;
}
static struct block_device_operations floppy_fops = {
.__open = floppy_open,
.__release = floppy_release,
.__ioctl = floppy_ioctl,
.media_changed = floppy_check_change,
.revalidate_disk= floppy_revalidate,
};
static int swim3_add_device(struct macio_dev *mdev, int index)
{
struct device_node *swim = mdev->ofdev.node;
struct device_node *mediabay;
struct floppy_state *fs = &floppy_states[index];
int rc = -EBUSY;
/* Check & Request resources */
if (macio_resource_count(mdev) < 2) {
printk(KERN_WARNING "ifd%d: no address for %s\n",
index, swim->full_name);
return -ENXIO;
}
if (macio_irq_count(mdev) < 2) {
printk(KERN_WARNING "fd%d: no intrs for device %s\n",
index, swim->full_name);
}
if (macio_request_resource(mdev, 0, "swim3 (mmio)")) {
printk(KERN_ERR "fd%d: can't request mmio resource for %s\n",
index, swim->full_name);
return -EBUSY;
}
if (macio_request_resource(mdev, 1, "swim3 (dma)")) {
printk(KERN_ERR "fd%d: can't request dma resource for %s\n",
index, swim->full_name);
macio_release_resource(mdev, 0);
return -EBUSY;
}
dev_set_drvdata(&mdev->ofdev.dev, fs);
mediabay = (strcasecmp(swim->parent->type, "media-bay") == 0) ?
swim->parent : NULL;
if (mediabay == NULL)
pmac_call_feature(PMAC_FTR_SWIM3_ENABLE, swim, 0, 1);
memset(fs, 0, sizeof(*fs));
spin_lock_init(&fs->lock);
fs->state = idle;
fs->swim3 = (struct swim3 __iomem *)
ioremap(macio_resource_start(mdev, 0), 0x200);
if (fs->swim3 == NULL) {
printk("fd%d: couldn't map registers for %s\n",
index, swim->full_name);
rc = -ENOMEM;
goto out_release;
}
fs->dma = (struct dbdma_regs __iomem *)
ioremap(macio_resource_start(mdev, 1), 0x200);
if (fs->dma == NULL) {
printk("fd%d: couldn't map DMA for %s\n",
index, swim->full_name);
iounmap(fs->swim3);
rc = -ENOMEM;
goto out_release;
}
fs->swim3_intr = macio_irq(mdev, 0);
fs->dma_intr = macio_irq(mdev, 1);;
fs->cur_cyl = -1;
fs->cur_sector = -1;
fs->secpercyl = 36;
fs->secpertrack = 18;
fs->total_secs = 2880;
fs->media_bay = mediabay;
init_waitqueue_head(&fs->wait);
fs->dma_cmd = (struct dbdma_cmd *) DBDMA_ALIGN(fs->dbdma_cmd_space);
memset(fs->dma_cmd, 0, 2 * sizeof(struct dbdma_cmd));
st_le16(&fs->dma_cmd[1].command, DBDMA_STOP);
if (request_irq(fs->swim3_intr, swim3_interrupt, 0, "SWIM3", fs)) {
printk(KERN_ERR "fd%d: couldn't request irq %d for %s\n",
index, fs->swim3_intr, swim->full_name);
pmac_call_feature(PMAC_FTR_SWIM3_ENABLE, swim, 0, 0);
goto out_unmap;
return -EBUSY;
}
/*
if (request_irq(fs->dma_intr, fd_dma_interrupt, 0, "SWIM3-dma", fs)) {
printk(KERN_ERR "Couldn't get irq %d for SWIM3 DMA",
fs->dma_intr);
return -EBUSY;
}
*/
init_timer(&fs->timeout);
printk(KERN_INFO "fd%d: SWIM3 floppy controller %s\n", floppy_count,
mediabay ? "in media bay" : "");
return 0;
out_unmap:
iounmap(fs->dma);
iounmap(fs->swim3);
out_release:
macio_release_resource(mdev, 0);
macio_release_resource(mdev, 1);
return rc;
}
static int __devinit swim3_attach(struct macio_dev *mdev, const struct of_device_id *match)
{
int i, rc;
struct gendisk *disk;
/* Add the drive */
rc = swim3_add_device(mdev, floppy_count);
if (rc)
return rc;
/* Now create the queue if not there yet */
if (swim3_queue == NULL) {
/* If we failed, there isn't much we can do as the driver is still
* too dumb to remove the device, just bail out
*/
if (register_blkdev(FLOPPY_MAJOR, "fd"))
return 0;
swim3_queue = blk_init_queue(do_fd_request, &swim3_lock);
if (swim3_queue == NULL) {
unregister_blkdev(FLOPPY_MAJOR, "fd");
return 0;
}
}
/* Now register that disk. Same comment about failure handling */
i = floppy_count++;
disk = disks[i] = alloc_disk(1);
if (disk == NULL)
return 0;
disk->major = FLOPPY_MAJOR;
disk->first_minor = i;
disk->fops = &floppy_fops;
disk->private_data = &floppy_states[i];
disk->queue = swim3_queue;
disk->flags |= GENHD_FL_REMOVABLE;
sprintf(disk->disk_name, "fd%d", i);
set_capacity(disk, 2880);
add_disk(disk);
return 0;
}
static struct of_device_id swim3_match[] =
{
{
.name = "swim3",
},
{
.compatible = "ohare-swim3"
},
{
.compatible = "swim3"
},
};
static struct macio_driver swim3_driver =
{
.name = "swim3",
.match_table = swim3_match,
.probe = swim3_attach,
#if 0
.suspend = swim3_suspend,
.resume = swim3_resume,
#endif
};
int swim3_init(void)
{
macio_register_driver(&swim3_driver);
return 0;
}
module_init(swim3_init)
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Paul Mackerras");
MODULE_ALIAS_BLOCKDEV_MAJOR(FLOPPY_MAJOR);