linux/drivers/net/wireless/ath9k/core.c
Luis R. Rodriguez 92cccc2cda ath9k: disable MIB interrupts to fix interrupt storm
Enabling the MIB interrupts has proven to cause an
interrupt storm after 7 hours of run. We will make use of the
MIB interrupt once we have ANI supported added so for now
to cure this we disable the interrupt.

The interrupt storm can be seen as follows after 7 hours of run
as reported by  Steven Noonan <steven@uplinklabs.net>:

18:28:38          sum   1106.00
18:28:39          sum   1037.62
18:28:40          sum   1069.00
18:28:41          sum   1167.00
18:28:42          sum   1155.00
18:28:43          sum   1339.00
18:28:44          sum  18355.00
18:28:45          sum  17845.45
18:28:46          sum  15285.00
18:28:47          sum  17511.00
18:28:48          sum  17568.69
18:28:49          sum  17704.04
18:28:50          sum  18566.67
18:28:51          sum  18913.13

at 18:28:44 the MIB interrupt kicked off and caused huge
latency which can be seen even on a video he submitted:

http://www.youtube.com/watch?v=4GeCx1gZMpA

Signed-off-by: Luis R. Rodriguez <lrodriguez@atheros.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2008-09-24 15:55:24 -04:00

1931 lines
48 KiB
C

/*
* Copyright (c) 2008, Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/* Implementation of the main "ATH" layer. */
#include "core.h"
#include "regd.h"
static int ath_outdoor; /* enable outdoor use */
static const u8 ath_bcast_mac[ETH_ALEN] =
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
static u32 ath_chainmask_sel_up_rssi_thres =
ATH_CHAINMASK_SEL_UP_RSSI_THRES;
static u32 ath_chainmask_sel_down_rssi_thres =
ATH_CHAINMASK_SEL_DOWN_RSSI_THRES;
static u32 ath_chainmask_sel_period =
ATH_CHAINMASK_SEL_TIMEOUT;
/* return bus cachesize in 4B word units */
static void bus_read_cachesize(struct ath_softc *sc, int *csz)
{
u8 u8tmp;
pci_read_config_byte(sc->pdev, PCI_CACHE_LINE_SIZE, (u8 *)&u8tmp);
*csz = (int)u8tmp;
/*
* This check was put in to avoid "unplesant" consequences if
* the bootrom has not fully initialized all PCI devices.
* Sometimes the cache line size register is not set
*/
if (*csz == 0)
*csz = DEFAULT_CACHELINE >> 2; /* Use the default size */
}
/*
* Set current operating mode
*
* This function initializes and fills the rate table in the ATH object based
* on the operating mode. The blink rates are also set up here, although
* they have been superceeded by the ath_led module.
*/
static void ath_setcurmode(struct ath_softc *sc, enum wireless_mode mode)
{
const struct ath9k_rate_table *rt;
int i;
memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
rt = ath9k_hw_getratetable(sc->sc_ah, mode);
BUG_ON(!rt);
for (i = 0; i < rt->rateCount; i++)
sc->sc_rixmap[rt->info[i].rateCode] = (u8) i;
memzero(sc->sc_hwmap, sizeof(sc->sc_hwmap));
for (i = 0; i < 256; i++) {
u8 ix = rt->rateCodeToIndex[i];
if (ix == 0xff)
continue;
sc->sc_hwmap[i].ieeerate =
rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
sc->sc_hwmap[i].rateKbps = rt->info[ix].rateKbps;
if (rt->info[ix].shortPreamble ||
rt->info[ix].phy == PHY_OFDM) {
/* XXX: Handle this */
}
/* NB: this uses the last entry if the rate isn't found */
/* XXX beware of overlow */
}
sc->sc_currates = rt;
sc->sc_curmode = mode;
/*
* All protection frames are transmited at 2Mb/s for
* 11g, otherwise at 1Mb/s.
* XXX select protection rate index from rate table.
*/
sc->sc_protrix = (mode == ATH9K_MODE_11G ? 1 : 0);
}
/*
* Set up rate table (legacy rates)
*/
static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
{
struct ath_hal *ah = sc->sc_ah;
const struct ath9k_rate_table *rt = NULL;
struct ieee80211_supported_band *sband;
struct ieee80211_rate *rate;
int i, maxrates;
switch (band) {
case IEEE80211_BAND_2GHZ:
rt = ath9k_hw_getratetable(ah, ATH9K_MODE_11G);
break;
case IEEE80211_BAND_5GHZ:
rt = ath9k_hw_getratetable(ah, ATH9K_MODE_11A);
break;
default:
break;
}
if (rt == NULL)
return;
sband = &sc->sbands[band];
rate = sc->rates[band];
if (rt->rateCount > ATH_RATE_MAX)
maxrates = ATH_RATE_MAX;
else
maxrates = rt->rateCount;
for (i = 0; i < maxrates; i++) {
rate[i].bitrate = rt->info[i].rateKbps / 100;
rate[i].hw_value = rt->info[i].rateCode;
sband->n_bitrates++;
DPRINTF(sc, ATH_DBG_CONFIG,
"%s: Rate: %2dMbps, ratecode: %2d\n",
__func__,
rate[i].bitrate / 10,
rate[i].hw_value);
}
}
/*
* Set up channel list
*/
static int ath_setup_channels(struct ath_softc *sc)
{
struct ath_hal *ah = sc->sc_ah;
int nchan, i, a = 0, b = 0;
u8 regclassids[ATH_REGCLASSIDS_MAX];
u32 nregclass = 0;
struct ieee80211_supported_band *band_2ghz;
struct ieee80211_supported_band *band_5ghz;
struct ieee80211_channel *chan_2ghz;
struct ieee80211_channel *chan_5ghz;
struct ath9k_channel *c;
/* Fill in ah->ah_channels */
if (!ath9k_regd_init_channels(ah,
ATH_CHAN_MAX,
(u32 *)&nchan,
regclassids,
ATH_REGCLASSIDS_MAX,
&nregclass,
CTRY_DEFAULT,
false,
1)) {
u32 rd = ah->ah_currentRD;
DPRINTF(sc, ATH_DBG_FATAL,
"%s: unable to collect channel list; "
"regdomain likely %u country code %u\n",
__func__, rd, CTRY_DEFAULT);
return -EINVAL;
}
band_2ghz = &sc->sbands[IEEE80211_BAND_2GHZ];
band_5ghz = &sc->sbands[IEEE80211_BAND_5GHZ];
chan_2ghz = sc->channels[IEEE80211_BAND_2GHZ];
chan_5ghz = sc->channels[IEEE80211_BAND_5GHZ];
for (i = 0; i < nchan; i++) {
c = &ah->ah_channels[i];
if (IS_CHAN_2GHZ(c)) {
chan_2ghz[a].band = IEEE80211_BAND_2GHZ;
chan_2ghz[a].center_freq = c->channel;
chan_2ghz[a].max_power = c->maxTxPower;
if (c->privFlags & CHANNEL_DISALLOW_ADHOC)
chan_2ghz[a].flags |=
IEEE80211_CHAN_NO_IBSS;
if (c->channelFlags & CHANNEL_PASSIVE)
chan_2ghz[a].flags |=
IEEE80211_CHAN_PASSIVE_SCAN;
band_2ghz->n_channels = ++a;
DPRINTF(sc, ATH_DBG_CONFIG,
"%s: 2MHz channel: %d, "
"channelFlags: 0x%x\n",
__func__,
c->channel,
c->channelFlags);
} else if (IS_CHAN_5GHZ(c)) {
chan_5ghz[b].band = IEEE80211_BAND_5GHZ;
chan_5ghz[b].center_freq = c->channel;
chan_5ghz[b].max_power = c->maxTxPower;
if (c->privFlags & CHANNEL_DISALLOW_ADHOC)
chan_5ghz[b].flags |=
IEEE80211_CHAN_NO_IBSS;
if (c->channelFlags & CHANNEL_PASSIVE)
chan_5ghz[b].flags |=
IEEE80211_CHAN_PASSIVE_SCAN;
band_5ghz->n_channels = ++b;
DPRINTF(sc, ATH_DBG_CONFIG,
"%s: 5MHz channel: %d, "
"channelFlags: 0x%x\n",
__func__,
c->channel,
c->channelFlags);
}
}
return 0;
}
/*
* Determine mode from channel flags
*
* This routine will provide the enumerated WIRELESSS_MODE value based
* on the settings of the channel flags. If ho valid set of flags
* exist, the lowest mode (11b) is selected.
*/
static enum wireless_mode ath_chan2mode(struct ath9k_channel *chan)
{
if (chan->chanmode == CHANNEL_A)
return ATH9K_MODE_11A;
else if (chan->chanmode == CHANNEL_G)
return ATH9K_MODE_11G;
else if (chan->chanmode == CHANNEL_B)
return ATH9K_MODE_11B;
else if (chan->chanmode == CHANNEL_A_HT20)
return ATH9K_MODE_11NA_HT20;
else if (chan->chanmode == CHANNEL_G_HT20)
return ATH9K_MODE_11NG_HT20;
else if (chan->chanmode == CHANNEL_A_HT40PLUS)
return ATH9K_MODE_11NA_HT40PLUS;
else if (chan->chanmode == CHANNEL_A_HT40MINUS)
return ATH9K_MODE_11NA_HT40MINUS;
else if (chan->chanmode == CHANNEL_G_HT40PLUS)
return ATH9K_MODE_11NG_HT40PLUS;
else if (chan->chanmode == CHANNEL_G_HT40MINUS)
return ATH9K_MODE_11NG_HT40MINUS;
/* NB: should not get here */
return ATH9K_MODE_11B;
}
/*
* Stop the device, grabbing the top-level lock to protect
* against concurrent entry through ath_init (which can happen
* if another thread does a system call and the thread doing the
* stop is preempted).
*/
static int ath_stop(struct ath_softc *sc)
{
struct ath_hal *ah = sc->sc_ah;
DPRINTF(sc, ATH_DBG_CONFIG, "%s: invalid %u\n",
__func__, sc->sc_invalid);
/*
* Shutdown the hardware and driver:
* stop output from above
* reset 802.11 state machine
* (sends station deassoc/deauth frames)
* turn off timers
* disable interrupts
* clear transmit machinery
* clear receive machinery
* turn off the radio
* reclaim beacon resources
*
* Note that some of this work is not possible if the
* hardware is gone (invalid).
*/
ath_draintxq(sc, false);
if (!sc->sc_invalid) {
ath_stoprecv(sc);
ath9k_hw_phy_disable(ah);
} else
sc->sc_rxlink = NULL;
return 0;
}
/*
* Start Scan
*
* This function is called when starting a channel scan. It will perform
* power save wakeup processing, set the filter for the scan, and get the
* chip ready to send broadcast packets out during the scan.
*/
void ath_scan_start(struct ath_softc *sc)
{
struct ath_hal *ah = sc->sc_ah;
u32 rfilt;
u32 now = (u32) jiffies_to_msecs(get_timestamp());
sc->sc_scanning = 1;
rfilt = ath_calcrxfilter(sc);
ath9k_hw_setrxfilter(ah, rfilt);
ath9k_hw_write_associd(ah, ath_bcast_mac, 0);
/* Restore previous power management state. */
DPRINTF(sc, ATH_DBG_CONFIG, "%d.%03d | %s: RX filter 0x%x aid 0\n",
now / 1000, now % 1000, __func__, rfilt);
}
/*
* Scan End
*
* This routine is called by the upper layer when the scan is completed. This
* will set the filters back to normal operating mode, set the BSSID to the
* correct value, and restore the power save state.
*/
void ath_scan_end(struct ath_softc *sc)
{
struct ath_hal *ah = sc->sc_ah;
u32 rfilt;
u32 now = (u32) jiffies_to_msecs(get_timestamp());
sc->sc_scanning = 0;
/* Request for a full reset due to rx packet filter changes */
sc->sc_full_reset = 1;
rfilt = ath_calcrxfilter(sc);
ath9k_hw_setrxfilter(ah, rfilt);
ath9k_hw_write_associd(ah, sc->sc_curbssid, sc->sc_curaid);
DPRINTF(sc, ATH_DBG_CONFIG, "%d.%03d | %s: RX filter 0x%x aid 0x%x\n",
now / 1000, now % 1000, __func__, rfilt, sc->sc_curaid);
}
/*
* Set the current channel
*
* Set/change channels. If the channel is really being changed, it's done
* by reseting the chip. To accomplish this we must first cleanup any pending
* DMA, then restart stuff after a la ath_init.
*/
int ath_set_channel(struct ath_softc *sc, struct ath9k_channel *hchan)
{
struct ath_hal *ah = sc->sc_ah;
bool fastcc = true, stopped;
enum ath9k_ht_macmode ht_macmode;
if (sc->sc_invalid) /* if the device is invalid or removed */
return -EIO;
DPRINTF(sc, ATH_DBG_CONFIG,
"%s: %u (%u MHz) -> %u (%u MHz), cflags:%x\n",
__func__,
ath9k_hw_mhz2ieee(ah, sc->sc_curchan.channel,
sc->sc_curchan.channelFlags),
sc->sc_curchan.channel,
ath9k_hw_mhz2ieee(ah, hchan->channel, hchan->channelFlags),
hchan->channel, hchan->channelFlags);
ht_macmode = ath_cwm_macmode(sc);
if (hchan->channel != sc->sc_curchan.channel ||
hchan->channelFlags != sc->sc_curchan.channelFlags ||
sc->sc_update_chainmask || sc->sc_full_reset) {
int status;
/*
* This is only performed if the channel settings have
* actually changed.
*
* To switch channels clear any pending DMA operations;
* wait long enough for the RX fifo to drain, reset the
* hardware at the new frequency, and then re-enable
* the relevant bits of the h/w.
*/
ath9k_hw_set_interrupts(ah, 0); /* disable interrupts */
ath_draintxq(sc, false); /* clear pending tx frames */
stopped = ath_stoprecv(sc); /* turn off frame recv */
/* XXX: do not flush receive queue here. We don't want
* to flush data frames already in queue because of
* changing channel. */
if (!stopped || sc->sc_full_reset)
fastcc = false;
spin_lock_bh(&sc->sc_resetlock);
if (!ath9k_hw_reset(ah, sc->sc_opmode, hchan,
ht_macmode, sc->sc_tx_chainmask,
sc->sc_rx_chainmask,
sc->sc_ht_extprotspacing,
fastcc, &status)) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: unable to reset channel %u (%uMhz) "
"flags 0x%x hal status %u\n", __func__,
ath9k_hw_mhz2ieee(ah, hchan->channel,
hchan->channelFlags),
hchan->channel, hchan->channelFlags, status);
spin_unlock_bh(&sc->sc_resetlock);
return -EIO;
}
spin_unlock_bh(&sc->sc_resetlock);
sc->sc_curchan = *hchan;
sc->sc_update_chainmask = 0;
sc->sc_full_reset = 0;
/* Re-enable rx framework */
if (ath_startrecv(sc) != 0) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: unable to restart recv logic\n", __func__);
return -EIO;
}
/*
* Change channels and update the h/w rate map
* if we're switching; e.g. 11a to 11b/g.
*/
ath_setcurmode(sc, ath_chan2mode(hchan));
ath_update_txpow(sc); /* update tx power state */
/*
* Re-enable interrupts.
*/
ath9k_hw_set_interrupts(ah, sc->sc_imask);
}
return 0;
}
/**********************/
/* Chainmask Handling */
/**********************/
static void ath_chainmask_sel_timertimeout(unsigned long data)
{
struct ath_chainmask_sel *cm = (struct ath_chainmask_sel *)data;
cm->switch_allowed = 1;
}
/* Start chainmask select timer */
static void ath_chainmask_sel_timerstart(struct ath_chainmask_sel *cm)
{
cm->switch_allowed = 0;
mod_timer(&cm->timer, ath_chainmask_sel_period);
}
/* Stop chainmask select timer */
static void ath_chainmask_sel_timerstop(struct ath_chainmask_sel *cm)
{
cm->switch_allowed = 0;
del_timer_sync(&cm->timer);
}
static void ath_chainmask_sel_init(struct ath_softc *sc, struct ath_node *an)
{
struct ath_chainmask_sel *cm = &an->an_chainmask_sel;
memzero(cm, sizeof(struct ath_chainmask_sel));
cm->cur_tx_mask = sc->sc_tx_chainmask;
cm->cur_rx_mask = sc->sc_rx_chainmask;
cm->tx_avgrssi = ATH_RSSI_DUMMY_MARKER;
setup_timer(&cm->timer,
ath_chainmask_sel_timertimeout, (unsigned long) cm);
}
int ath_chainmask_sel_logic(struct ath_softc *sc, struct ath_node *an)
{
struct ath_chainmask_sel *cm = &an->an_chainmask_sel;
/*
* Disable auto-swtiching in one of the following if conditions.
* sc_chainmask_auto_sel is used for internal global auto-switching
* enabled/disabled setting
*/
if (sc->sc_ah->ah_caps.tx_chainmask != ATH_CHAINMASK_SEL_3X3) {
cm->cur_tx_mask = sc->sc_tx_chainmask;
return cm->cur_tx_mask;
}
if (cm->tx_avgrssi == ATH_RSSI_DUMMY_MARKER)
return cm->cur_tx_mask;
if (cm->switch_allowed) {
/* Switch down from tx 3 to tx 2. */
if (cm->cur_tx_mask == ATH_CHAINMASK_SEL_3X3 &&
ATH_RSSI_OUT(cm->tx_avgrssi) >=
ath_chainmask_sel_down_rssi_thres) {
cm->cur_tx_mask = sc->sc_tx_chainmask;
/* Don't let another switch happen until
* this timer expires */
ath_chainmask_sel_timerstart(cm);
}
/* Switch up from tx 2 to 3. */
else if (cm->cur_tx_mask == sc->sc_tx_chainmask &&
ATH_RSSI_OUT(cm->tx_avgrssi) <=
ath_chainmask_sel_up_rssi_thres) {
cm->cur_tx_mask = ATH_CHAINMASK_SEL_3X3;
/* Don't let another switch happen
* until this timer expires */
ath_chainmask_sel_timerstart(cm);
}
}
return cm->cur_tx_mask;
}
/*
* Update tx/rx chainmask. For legacy association,
* hard code chainmask to 1x1, for 11n association, use
* the chainmask configuration.
*/
void ath_update_chainmask(struct ath_softc *sc, int is_ht)
{
sc->sc_update_chainmask = 1;
if (is_ht) {
sc->sc_tx_chainmask = sc->sc_ah->ah_caps.tx_chainmask;
sc->sc_rx_chainmask = sc->sc_ah->ah_caps.rx_chainmask;
} else {
sc->sc_tx_chainmask = 1;
sc->sc_rx_chainmask = 1;
}
DPRINTF(sc, ATH_DBG_CONFIG, "%s: tx chmask: %d, rx chmask: %d\n",
__func__, sc->sc_tx_chainmask, sc->sc_rx_chainmask);
}
/******************/
/* VAP management */
/******************/
/*
* VAP in Listen mode
*
* This routine brings the VAP out of the down state into a "listen" state
* where it waits for association requests. This is used in AP and AdHoc
* modes.
*/
int ath_vap_listen(struct ath_softc *sc, int if_id)
{
struct ath_hal *ah = sc->sc_ah;
struct ath_vap *avp;
u32 rfilt = 0;
DECLARE_MAC_BUF(mac);
avp = sc->sc_vaps[if_id];
if (avp == NULL) {
DPRINTF(sc, ATH_DBG_FATAL, "%s: invalid interface id %u\n",
__func__, if_id);
return -EINVAL;
}
#ifdef CONFIG_SLOW_ANT_DIV
ath_slow_ant_div_stop(&sc->sc_antdiv);
#endif
/* update ratectrl about the new state */
ath_rate_newstate(sc, avp);
rfilt = ath_calcrxfilter(sc);
ath9k_hw_setrxfilter(ah, rfilt);
if (sc->sc_opmode == ATH9K_M_STA || sc->sc_opmode == ATH9K_M_IBSS) {
memcpy(sc->sc_curbssid, ath_bcast_mac, ETH_ALEN);
ath9k_hw_write_associd(ah, sc->sc_curbssid, sc->sc_curaid);
} else
sc->sc_curaid = 0;
DPRINTF(sc, ATH_DBG_CONFIG,
"%s: RX filter 0x%x bssid %s aid 0x%x\n",
__func__, rfilt, print_mac(mac,
sc->sc_curbssid), sc->sc_curaid);
/*
* XXXX
* Disable BMISS interrupt when we're not associated
*/
ath9k_hw_set_interrupts(ah,
sc->sc_imask & ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS));
sc->sc_imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
/* need to reconfigure the beacons when it moves to RUN */
sc->sc_beacons = 0;
return 0;
}
int ath_vap_attach(struct ath_softc *sc,
int if_id,
struct ieee80211_vif *if_data,
enum ath9k_opmode opmode)
{
struct ath_vap *avp;
if (if_id >= ATH_BCBUF || sc->sc_vaps[if_id] != NULL) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: Invalid interface id = %u\n", __func__, if_id);
return -EINVAL;
}
switch (opmode) {
case ATH9K_M_STA:
case ATH9K_M_IBSS:
case ATH9K_M_MONITOR:
break;
case ATH9K_M_HOSTAP:
/* XXX not right, beacon buffer is allocated on RUN trans */
if (list_empty(&sc->sc_bbuf))
return -ENOMEM;
break;
default:
return -EINVAL;
}
/* create ath_vap */
avp = kmalloc(sizeof(struct ath_vap), GFP_KERNEL);
if (avp == NULL)
return -ENOMEM;
memzero(avp, sizeof(struct ath_vap));
avp->av_if_data = if_data;
/* Set the VAP opmode */
avp->av_opmode = opmode;
avp->av_bslot = -1;
INIT_LIST_HEAD(&avp->av_mcastq.axq_q);
INIT_LIST_HEAD(&avp->av_mcastq.axq_acq);
spin_lock_init(&avp->av_mcastq.axq_lock);
ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
sc->sc_vaps[if_id] = avp;
sc->sc_nvaps++;
/* Set the device opmode */
sc->sc_opmode = opmode;
/* default VAP configuration */
avp->av_config.av_fixed_rateset = IEEE80211_FIXED_RATE_NONE;
avp->av_config.av_fixed_retryset = 0x03030303;
return 0;
}
int ath_vap_detach(struct ath_softc *sc, int if_id)
{
struct ath_hal *ah = sc->sc_ah;
struct ath_vap *avp;
avp = sc->sc_vaps[if_id];
if (avp == NULL) {
DPRINTF(sc, ATH_DBG_FATAL, "%s: invalid interface id %u\n",
__func__, if_id);
return -EINVAL;
}
/*
* Quiesce the hardware while we remove the vap. In
* particular we need to reclaim all references to the
* vap state by any frames pending on the tx queues.
*
* XXX can we do this w/o affecting other vap's?
*/
ath9k_hw_set_interrupts(ah, 0); /* disable interrupts */
ath_draintxq(sc, false); /* stop xmit side */
ath_stoprecv(sc); /* stop recv side */
ath_flushrecv(sc); /* flush recv queue */
/* Reclaim any pending mcast bufs on the vap. */
ath_tx_draintxq(sc, &avp->av_mcastq, false);
kfree(avp);
sc->sc_vaps[if_id] = NULL;
sc->sc_nvaps--;
return 0;
}
int ath_vap_config(struct ath_softc *sc,
int if_id, struct ath_vap_config *if_config)
{
struct ath_vap *avp;
if (if_id >= ATH_BCBUF) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: Invalid interface id = %u\n", __func__, if_id);
return -EINVAL;
}
avp = sc->sc_vaps[if_id];
ASSERT(avp != NULL);
if (avp)
memcpy(&avp->av_config, if_config, sizeof(avp->av_config));
return 0;
}
/********/
/* Core */
/********/
int ath_open(struct ath_softc *sc, struct ath9k_channel *initial_chan)
{
struct ath_hal *ah = sc->sc_ah;
int status;
int error = 0;
enum ath9k_ht_macmode ht_macmode = ath_cwm_macmode(sc);
DPRINTF(sc, ATH_DBG_CONFIG, "%s: mode %d\n", __func__, sc->sc_opmode);
/*
* Stop anything previously setup. This is safe
* whether this is the first time through or not.
*/
ath_stop(sc);
/* Initialize chanmask selection */
sc->sc_tx_chainmask = ah->ah_caps.tx_chainmask;
sc->sc_rx_chainmask = ah->ah_caps.rx_chainmask;
/* Reset SERDES registers */
ath9k_hw_configpcipowersave(ah, 0);
/*
* The basic interface to setting the hardware in a good
* state is ``reset''. On return the hardware is known to
* be powered up and with interrupts disabled. This must
* be followed by initialization of the appropriate bits
* and then setup of the interrupt mask.
*/
sc->sc_curchan = *initial_chan;
spin_lock_bh(&sc->sc_resetlock);
if (!ath9k_hw_reset(ah, sc->sc_opmode, &sc->sc_curchan, ht_macmode,
sc->sc_tx_chainmask, sc->sc_rx_chainmask,
sc->sc_ht_extprotspacing, false, &status)) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: unable to reset hardware; hal status %u "
"(freq %u flags 0x%x)\n", __func__, status,
sc->sc_curchan.channel, sc->sc_curchan.channelFlags);
error = -EIO;
spin_unlock_bh(&sc->sc_resetlock);
goto done;
}
spin_unlock_bh(&sc->sc_resetlock);
/*
* This is needed only to setup initial state
* but it's best done after a reset.
*/
ath_update_txpow(sc);
/*
* Setup the hardware after reset:
* The receive engine is set going.
* Frame transmit is handled entirely
* in the frame output path; there's nothing to do
* here except setup the interrupt mask.
*/
if (ath_startrecv(sc) != 0) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: unable to start recv logic\n", __func__);
error = -EIO;
goto done;
}
/* Setup our intr mask. */
sc->sc_imask = ATH9K_INT_RX | ATH9K_INT_TX
| ATH9K_INT_RXEOL | ATH9K_INT_RXORN
| ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_GTT)
sc->sc_imask |= ATH9K_INT_GTT;
if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT)
sc->sc_imask |= ATH9K_INT_CST;
/* Note: We disable MIB interrupts for now as we don't yet
* handle processing ANI, otherwise you will get an interrupt
* storm after about 7 hours of usage making the system unusable
* with huge latency. Once we do have ANI processing included
* we can re-enable this interrupt. */
#if 0
/*
* Enable MIB interrupts when there are hardware phy counters.
* Note we only do this (at the moment) for station mode.
*/
if (ath9k_hw_phycounters(ah) &&
((sc->sc_opmode == ATH9K_M_STA) || (sc->sc_opmode == ATH9K_M_IBSS)))
sc->sc_imask |= ATH9K_INT_MIB;
#endif
/*
* Some hardware processes the TIM IE and fires an
* interrupt when the TIM bit is set. For hardware
* that does, if not overridden by configuration,
* enable the TIM interrupt when operating as station.
*/
if ((ah->ah_caps.hw_caps & ATH9K_HW_CAP_ENHANCEDPM) &&
(sc->sc_opmode == ATH9K_M_STA) &&
!sc->sc_config.swBeaconProcess)
sc->sc_imask |= ATH9K_INT_TIM;
/*
* Don't enable interrupts here as we've not yet built our
* vap and node data structures, which will be needed as soon
* as we start receiving.
*/
ath_setcurmode(sc, ath_chan2mode(initial_chan));
/* XXX: we must make sure h/w is ready and clear invalid flag
* before turning on interrupt. */
sc->sc_invalid = 0;
done:
return error;
}
/*
* Reset the hardware w/o losing operational state. This is
* basically a more efficient way of doing ath_stop, ath_init,
* followed by state transitions to the current 802.11
* operational state. Used to recover from errors rx overrun
* and to reset the hardware when rf gain settings must be reset.
*/
static int ath_reset_start(struct ath_softc *sc, u32 flag)
{
struct ath_hal *ah = sc->sc_ah;
ath9k_hw_set_interrupts(ah, 0); /* disable interrupts */
ath_draintxq(sc, flag & RESET_RETRY_TXQ); /* stop xmit side */
ath_stoprecv(sc); /* stop recv side */
ath_flushrecv(sc); /* flush recv queue */
return 0;
}
static int ath_reset_end(struct ath_softc *sc, u32 flag)
{
struct ath_hal *ah = sc->sc_ah;
if (ath_startrecv(sc) != 0) /* restart recv */
DPRINTF(sc, ATH_DBG_FATAL,
"%s: unable to start recv logic\n", __func__);
/*
* We may be doing a reset in response to a request
* that changes the channel so update any state that
* might change as a result.
*/
ath_setcurmode(sc, ath_chan2mode(&sc->sc_curchan));
ath_update_txpow(sc); /* update tx power state */
if (sc->sc_beacons)
ath_beacon_config(sc, ATH_IF_ID_ANY); /* restart beacons */
ath9k_hw_set_interrupts(ah, sc->sc_imask);
/* Restart the txq */
if (flag & RESET_RETRY_TXQ) {
int i;
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
if (ATH_TXQ_SETUP(sc, i)) {
spin_lock_bh(&sc->sc_txq[i].axq_lock);
ath_txq_schedule(sc, &sc->sc_txq[i]);
spin_unlock_bh(&sc->sc_txq[i].axq_lock);
}
}
}
return 0;
}
int ath_reset(struct ath_softc *sc)
{
struct ath_hal *ah = sc->sc_ah;
int status;
int error = 0;
enum ath9k_ht_macmode ht_macmode = ath_cwm_macmode(sc);
/* NB: indicate channel change so we do a full reset */
spin_lock_bh(&sc->sc_resetlock);
if (!ath9k_hw_reset(ah, sc->sc_opmode, &sc->sc_curchan,
ht_macmode,
sc->sc_tx_chainmask, sc->sc_rx_chainmask,
sc->sc_ht_extprotspacing, false, &status)) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: unable to reset hardware; hal status %u\n",
__func__, status);
error = -EIO;
}
spin_unlock_bh(&sc->sc_resetlock);
return error;
}
int ath_suspend(struct ath_softc *sc)
{
struct ath_hal *ah = sc->sc_ah;
/* No I/O if device has been surprise removed */
if (sc->sc_invalid)
return -EIO;
/* Shut off the interrupt before setting sc->sc_invalid to '1' */
ath9k_hw_set_interrupts(ah, 0);
/* XXX: we must make sure h/w will not generate any interrupt
* before setting the invalid flag. */
sc->sc_invalid = 1;
/* disable HAL and put h/w to sleep */
ath9k_hw_disable(sc->sc_ah);
ath9k_hw_configpcipowersave(sc->sc_ah, 1);
return 0;
}
/* Interrupt handler. Most of the actual processing is deferred.
* It's the caller's responsibility to ensure the chip is awake. */
irqreturn_t ath_isr(int irq, void *dev)
{
struct ath_softc *sc = dev;
struct ath_hal *ah = sc->sc_ah;
enum ath9k_int status;
bool sched = false;
do {
if (sc->sc_invalid) {
/*
* The hardware is not ready/present, don't
* touch anything. Note this can happen early
* on if the IRQ is shared.
*/
return IRQ_NONE;
}
if (!ath9k_hw_intrpend(ah)) { /* shared irq, not for us */
return IRQ_NONE;
}
/*
* Figure out the reason(s) for the interrupt. Note
* that the hal returns a pseudo-ISR that may include
* bits we haven't explicitly enabled so we mask the
* value to insure we only process bits we requested.
*/
ath9k_hw_getisr(ah, &status); /* NB: clears ISR too */
status &= sc->sc_imask; /* discard unasked-for bits */
/*
* If there are no status bits set, then this interrupt was not
* for me (should have been caught above).
*/
if (!status)
return IRQ_NONE;
sc->sc_intrstatus = status;
if (status & ATH9K_INT_FATAL) {
/* need a chip reset */
sched = true;
} else if (status & ATH9K_INT_RXORN) {
/* need a chip reset */
sched = true;
} else {
if (status & ATH9K_INT_SWBA) {
/* schedule a tasklet for beacon handling */
tasklet_schedule(&sc->bcon_tasklet);
}
if (status & ATH9K_INT_RXEOL) {
/*
* NB: the hardware should re-read the link when
* RXE bit is written, but it doesn't work
* at least on older hardware revs.
*/
sched = true;
}
if (status & ATH9K_INT_TXURN)
/* bump tx trigger level */
ath9k_hw_updatetxtriglevel(ah, true);
/* XXX: optimize this */
if (status & ATH9K_INT_RX)
sched = true;
if (status & ATH9K_INT_TX)
sched = true;
if (status & ATH9K_INT_BMISS)
sched = true;
/* carrier sense timeout */
if (status & ATH9K_INT_CST)
sched = true;
if (status & ATH9K_INT_MIB) {
/*
* Disable interrupts until we service the MIB
* interrupt; otherwise it will continue to
* fire.
*/
ath9k_hw_set_interrupts(ah, 0);
/*
* Let the hal handle the event. We assume
* it will clear whatever condition caused
* the interrupt.
*/
ath9k_hw_procmibevent(ah, &sc->sc_halstats);
ath9k_hw_set_interrupts(ah, sc->sc_imask);
}
if (status & ATH9K_INT_TIM_TIMER) {
if (!(ah->ah_caps.hw_caps &
ATH9K_HW_CAP_AUTOSLEEP)) {
/* Clear RxAbort bit so that we can
* receive frames */
ath9k_hw_setrxabort(ah, 0);
sched = true;
}
}
}
} while (0);
if (sched) {
/* turn off every interrupt except SWBA */
ath9k_hw_set_interrupts(ah, (sc->sc_imask & ATH9K_INT_SWBA));
tasklet_schedule(&sc->intr_tq);
}
return IRQ_HANDLED;
}
/* Deferred interrupt processing */
static void ath9k_tasklet(unsigned long data)
{
struct ath_softc *sc = (struct ath_softc *)data;
u32 status = sc->sc_intrstatus;
if (status & ATH9K_INT_FATAL) {
/* need a chip reset */
ath_internal_reset(sc);
return;
} else {
if (status &
(ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
/* XXX: fill me in */
/*
if (status & ATH9K_INT_RXORN) {
}
if (status & ATH9K_INT_RXEOL) {
}
*/
spin_lock_bh(&sc->sc_rxflushlock);
ath_rx_tasklet(sc, 0);
spin_unlock_bh(&sc->sc_rxflushlock);
}
/* XXX: optimize this */
if (status & ATH9K_INT_TX)
ath_tx_tasklet(sc);
/* XXX: fill me in */
/*
if (status & ATH9K_INT_BMISS) {
}
if (status & (ATH9K_INT_TIM | ATH9K_INT_DTIMSYNC)) {
if (status & ATH9K_INT_TIM) {
}
if (status & ATH9K_INT_DTIMSYNC) {
}
}
*/
}
/* re-enable hardware interrupt */
ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask);
}
int ath_init(u16 devid, struct ath_softc *sc)
{
struct ath_hal *ah = NULL;
int status;
int error = 0, i;
int csz = 0;
u32 rd;
/* XXX: hardware will not be ready until ath_open() being called */
sc->sc_invalid = 1;
sc->sc_debug = DBG_DEFAULT;
DPRINTF(sc, ATH_DBG_CONFIG, "%s: devid 0x%x\n", __func__, devid);
/* Initialize tasklet */
tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
tasklet_init(&sc->bcon_tasklet, ath9k_beacon_tasklet,
(unsigned long)sc);
/*
* Cache line size is used to size and align various
* structures used to communicate with the hardware.
*/
bus_read_cachesize(sc, &csz);
/* XXX assert csz is non-zero */
sc->sc_cachelsz = csz << 2; /* convert to bytes */
spin_lock_init(&sc->sc_resetlock);
ah = ath9k_hw_attach(devid, sc, sc->mem, &status);
if (ah == NULL) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: unable to attach hardware; HAL status %u\n",
__func__, status);
error = -ENXIO;
goto bad;
}
sc->sc_ah = ah;
/* Get the chipset-specific aggr limit. */
sc->sc_rtsaggrlimit = ah->ah_caps.rts_aggr_limit;
/* Get the hardware key cache size. */
sc->sc_keymax = ah->ah_caps.keycache_size;
if (sc->sc_keymax > ATH_KEYMAX) {
DPRINTF(sc, ATH_DBG_KEYCACHE,
"%s: Warning, using only %u entries in %u key cache\n",
__func__, ATH_KEYMAX, sc->sc_keymax);
sc->sc_keymax = ATH_KEYMAX;
}
/*
* Reset the key cache since some parts do not
* reset the contents on initial power up.
*/
for (i = 0; i < sc->sc_keymax; i++)
ath9k_hw_keyreset(ah, (u16) i);
/*
* Mark key cache slots associated with global keys
* as in use. If we knew TKIP was not to be used we
* could leave the +32, +64, and +32+64 slots free.
* XXX only for splitmic.
*/
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
set_bit(i, sc->sc_keymap);
set_bit(i + 32, sc->sc_keymap);
set_bit(i + 64, sc->sc_keymap);
set_bit(i + 32 + 64, sc->sc_keymap);
}
/*
* Collect the channel list using the default country
* code and including outdoor channels. The 802.11 layer
* is resposible for filtering this list based on settings
* like the phy mode.
*/
rd = ah->ah_currentRD;
error = ath_setup_channels(sc);
if (error)
goto bad;
/* default to STA mode */
sc->sc_opmode = ATH9K_M_MONITOR;
/* Setup rate tables */
ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
/* NB: setup here so ath_rate_update is happy */
ath_setcurmode(sc, ATH9K_MODE_11A);
/*
* Allocate hardware transmit queues: one queue for
* beacon frames and one data queue for each QoS
* priority. Note that the hal handles reseting
* these queues at the needed time.
*/
sc->sc_bhalq = ath_beaconq_setup(ah);
if (sc->sc_bhalq == -1) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: unable to setup a beacon xmit queue\n", __func__);
error = -EIO;
goto bad2;
}
sc->sc_cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
if (sc->sc_cabq == NULL) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: unable to setup CAB xmit queue\n", __func__);
error = -EIO;
goto bad2;
}
sc->sc_config.cabqReadytime = ATH_CABQ_READY_TIME;
ath_cabq_update(sc);
for (i = 0; i < ARRAY_SIZE(sc->sc_haltype2q); i++)
sc->sc_haltype2q[i] = -1;
/* Setup data queues */
/* NB: ensure BK queue is the lowest priority h/w queue */
if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: unable to setup xmit queue for BK traffic\n",
__func__);
error = -EIO;
goto bad2;
}
if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: unable to setup xmit queue for BE traffic\n",
__func__);
error = -EIO;
goto bad2;
}
if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: unable to setup xmit queue for VI traffic\n",
__func__);
error = -EIO;
goto bad2;
}
if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: unable to setup xmit queue for VO traffic\n",
__func__);
error = -EIO;
goto bad2;
}
sc->sc_rc = ath_rate_attach(ah);
if (sc->sc_rc == NULL) {
error = EIO;
goto bad2;
}
if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
ATH9K_CIPHER_TKIP, NULL)) {
/*
* Whether we should enable h/w TKIP MIC.
* XXX: if we don't support WME TKIP MIC, then we wouldn't
* report WMM capable, so it's always safe to turn on
* TKIP MIC in this case.
*/
ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
0, 1, NULL);
}
/*
* Check whether the separate key cache entries
* are required to handle both tx+rx MIC keys.
* With split mic keys the number of stations is limited
* to 27 otherwise 59.
*/
if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
ATH9K_CIPHER_TKIP, NULL)
&& ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
ATH9K_CIPHER_MIC, NULL)
&& ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
0, NULL))
sc->sc_splitmic = 1;
/* turn on mcast key search if possible */
if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
(void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1, NULL);
sc->sc_config.txpowlimit = ATH_TXPOWER_MAX;
sc->sc_config.txpowlimit_override = 0;
/* 11n Capabilities */
if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) {
sc->sc_txaggr = 1;
sc->sc_rxaggr = 1;
}
sc->sc_tx_chainmask = ah->ah_caps.tx_chainmask;
sc->sc_rx_chainmask = ah->ah_caps.rx_chainmask;
/* Configuration for rx chain detection */
sc->sc_rxchaindetect_ref = 0;
sc->sc_rxchaindetect_thresh5GHz = 35;
sc->sc_rxchaindetect_thresh2GHz = 35;
sc->sc_rxchaindetect_delta5GHz = 30;
sc->sc_rxchaindetect_delta2GHz = 30;
ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
sc->sc_defant = ath9k_hw_getdefantenna(ah);
ath9k_hw_getmac(ah, sc->sc_myaddr);
if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) {
ath9k_hw_getbssidmask(ah, sc->sc_bssidmask);
ATH_SET_VAP_BSSID_MASK(sc->sc_bssidmask);
ath9k_hw_setbssidmask(ah, sc->sc_bssidmask);
}
sc->sc_slottime = ATH9K_SLOT_TIME_9; /* default to short slot time */
/* initialize beacon slots */
for (i = 0; i < ARRAY_SIZE(sc->sc_bslot); i++)
sc->sc_bslot[i] = ATH_IF_ID_ANY;
/* save MISC configurations */
sc->sc_config.swBeaconProcess = 1;
#ifdef CONFIG_SLOW_ANT_DIV
/* range is 40 - 255, we use something in the middle */
ath_slow_ant_div_init(&sc->sc_antdiv, sc, 0x127);
#endif
return 0;
bad2:
/* cleanup tx queues */
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
if (ATH_TXQ_SETUP(sc, i))
ath_tx_cleanupq(sc, &sc->sc_txq[i]);
bad:
if (ah)
ath9k_hw_detach(ah);
return error;
}
void ath_deinit(struct ath_softc *sc)
{
struct ath_hal *ah = sc->sc_ah;
int i;
DPRINTF(sc, ATH_DBG_CONFIG, "%s\n", __func__);
tasklet_kill(&sc->intr_tq);
tasklet_kill(&sc->bcon_tasklet);
ath_stop(sc);
if (!sc->sc_invalid)
ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
ath_rate_detach(sc->sc_rc);
/* cleanup tx queues */
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
if (ATH_TXQ_SETUP(sc, i))
ath_tx_cleanupq(sc, &sc->sc_txq[i]);
ath9k_hw_detach(ah);
}
/*******************/
/* Node Management */
/*******************/
struct ath_node *ath_node_attach(struct ath_softc *sc, u8 *addr, int if_id)
{
struct ath_vap *avp;
struct ath_node *an;
DECLARE_MAC_BUF(mac);
avp = sc->sc_vaps[if_id];
ASSERT(avp != NULL);
/* mac80211 sta_notify callback is from an IRQ context, so no sleep */
an = kmalloc(sizeof(struct ath_node), GFP_ATOMIC);
if (an == NULL)
return NULL;
memzero(an, sizeof(*an));
an->an_sc = sc;
memcpy(an->an_addr, addr, ETH_ALEN);
atomic_set(&an->an_refcnt, 1);
/* set up per-node tx/rx state */
ath_tx_node_init(sc, an);
ath_rx_node_init(sc, an);
ath_chainmask_sel_init(sc, an);
ath_chainmask_sel_timerstart(&an->an_chainmask_sel);
list_add(&an->list, &sc->node_list);
return an;
}
void ath_node_detach(struct ath_softc *sc, struct ath_node *an, bool bh_flag)
{
unsigned long flags;
DECLARE_MAC_BUF(mac);
ath_chainmask_sel_timerstop(&an->an_chainmask_sel);
an->an_flags |= ATH_NODE_CLEAN;
ath_tx_node_cleanup(sc, an, bh_flag);
ath_rx_node_cleanup(sc, an);
ath_tx_node_free(sc, an);
ath_rx_node_free(sc, an);
spin_lock_irqsave(&sc->node_lock, flags);
list_del(&an->list);
spin_unlock_irqrestore(&sc->node_lock, flags);
kfree(an);
}
/* Finds a node and increases the refcnt if found */
struct ath_node *ath_node_get(struct ath_softc *sc, u8 *addr)
{
struct ath_node *an = NULL, *an_found = NULL;
if (list_empty(&sc->node_list)) /* FIXME */
goto out;
list_for_each_entry(an, &sc->node_list, list) {
if (!compare_ether_addr(an->an_addr, addr)) {
atomic_inc(&an->an_refcnt);
an_found = an;
break;
}
}
out:
return an_found;
}
/* Decrements the refcnt and if it drops to zero, detach the node */
void ath_node_put(struct ath_softc *sc, struct ath_node *an, bool bh_flag)
{
if (atomic_dec_and_test(&an->an_refcnt))
ath_node_detach(sc, an, bh_flag);
}
/* Finds a node, doesn't increment refcnt. Caller must hold sc->node_lock */
struct ath_node *ath_node_find(struct ath_softc *sc, u8 *addr)
{
struct ath_node *an = NULL, *an_found = NULL;
if (list_empty(&sc->node_list))
return NULL;
list_for_each_entry(an, &sc->node_list, list)
if (!compare_ether_addr(an->an_addr, addr)) {
an_found = an;
break;
}
return an_found;
}
/*
* Set up New Node
*
* Setup driver-specific state for a newly associated node. This routine
* really only applies if compression or XR are enabled, there is no code
* covering any other cases.
*/
void ath_newassoc(struct ath_softc *sc,
struct ath_node *an, int isnew, int isuapsd)
{
int tidno;
/* if station reassociates, tear down the aggregation state. */
if (!isnew) {
for (tidno = 0; tidno < WME_NUM_TID; tidno++) {
if (sc->sc_txaggr)
ath_tx_aggr_teardown(sc, an, tidno);
if (sc->sc_rxaggr)
ath_rx_aggr_teardown(sc, an, tidno);
}
}
an->an_flags = 0;
}
/**************/
/* Encryption */
/**************/
void ath_key_reset(struct ath_softc *sc, u16 keyix, int freeslot)
{
ath9k_hw_keyreset(sc->sc_ah, keyix);
if (freeslot)
clear_bit(keyix, sc->sc_keymap);
}
int ath_keyset(struct ath_softc *sc,
u16 keyix,
struct ath9k_keyval *hk,
const u8 mac[ETH_ALEN])
{
bool status;
status = ath9k_hw_set_keycache_entry(sc->sc_ah,
keyix, hk, mac, false);
return status != false;
}
/***********************/
/* TX Power/Regulatory */
/***********************/
/*
* Set Transmit power in HAL
*
* This routine makes the actual HAL calls to set the new transmit power
* limit.
*/
void ath_update_txpow(struct ath_softc *sc)
{
struct ath_hal *ah = sc->sc_ah;
u32 txpow;
if (sc->sc_curtxpow != sc->sc_config.txpowlimit) {
ath9k_hw_set_txpowerlimit(ah, sc->sc_config.txpowlimit);
/* read back in case value is clamped */
ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
sc->sc_curtxpow = txpow;
}
}
/* Return the current country and domain information */
void ath_get_currentCountry(struct ath_softc *sc,
struct ath9k_country_entry *ctry)
{
ath9k_regd_get_current_country(sc->sc_ah, ctry);
/* If HAL not specific yet, since it is band dependent,
* use the one we passed in. */
if (ctry->countryCode == CTRY_DEFAULT) {
ctry->iso[0] = 0;
ctry->iso[1] = 0;
} else if (ctry->iso[0] && ctry->iso[1]) {
if (!ctry->iso[2]) {
if (ath_outdoor)
ctry->iso[2] = 'O';
else
ctry->iso[2] = 'I';
}
}
}
/**************************/
/* Slow Antenna Diversity */
/**************************/
void ath_slow_ant_div_init(struct ath_antdiv *antdiv,
struct ath_softc *sc,
int32_t rssitrig)
{
int trig;
/* antdivf_rssitrig can range from 40 - 0xff */
trig = (rssitrig > 0xff) ? 0xff : rssitrig;
trig = (rssitrig < 40) ? 40 : rssitrig;
antdiv->antdiv_sc = sc;
antdiv->antdivf_rssitrig = trig;
}
void ath_slow_ant_div_start(struct ath_antdiv *antdiv,
u8 num_antcfg,
const u8 *bssid)
{
antdiv->antdiv_num_antcfg =
num_antcfg < ATH_ANT_DIV_MAX_CFG ?
num_antcfg : ATH_ANT_DIV_MAX_CFG;
antdiv->antdiv_state = ATH_ANT_DIV_IDLE;
antdiv->antdiv_curcfg = 0;
antdiv->antdiv_bestcfg = 0;
antdiv->antdiv_laststatetsf = 0;
memcpy(antdiv->antdiv_bssid, bssid, sizeof(antdiv->antdiv_bssid));
antdiv->antdiv_start = 1;
}
void ath_slow_ant_div_stop(struct ath_antdiv *antdiv)
{
antdiv->antdiv_start = 0;
}
static int32_t ath_find_max_val(int32_t *val,
u8 num_val, u8 *max_index)
{
u32 MaxVal = *val++;
u32 cur_index = 0;
*max_index = 0;
while (++cur_index < num_val) {
if (*val > MaxVal) {
MaxVal = *val;
*max_index = cur_index;
}
val++;
}
return MaxVal;
}
void ath_slow_ant_div(struct ath_antdiv *antdiv,
struct ieee80211_hdr *hdr,
struct ath_rx_status *rx_stats)
{
struct ath_softc *sc = antdiv->antdiv_sc;
struct ath_hal *ah = sc->sc_ah;
u64 curtsf = 0;
u8 bestcfg, curcfg = antdiv->antdiv_curcfg;
__le16 fc = hdr->frame_control;
if (antdiv->antdiv_start && ieee80211_is_beacon(fc)
&& !compare_ether_addr(hdr->addr3, antdiv->antdiv_bssid)) {
antdiv->antdiv_lastbrssi[curcfg] = rx_stats->rs_rssi;
antdiv->antdiv_lastbtsf[curcfg] = ath9k_hw_gettsf64(sc->sc_ah);
curtsf = antdiv->antdiv_lastbtsf[curcfg];
} else {
return;
}
switch (antdiv->antdiv_state) {
case ATH_ANT_DIV_IDLE:
if ((antdiv->antdiv_lastbrssi[curcfg] <
antdiv->antdivf_rssitrig)
&& ((curtsf - antdiv->antdiv_laststatetsf) >
ATH_ANT_DIV_MIN_IDLE_US)) {
curcfg++;
if (curcfg == antdiv->antdiv_num_antcfg)
curcfg = 0;
if (!ath9k_hw_select_antconfig(ah, curcfg)) {
antdiv->antdiv_bestcfg = antdiv->antdiv_curcfg;
antdiv->antdiv_curcfg = curcfg;
antdiv->antdiv_laststatetsf = curtsf;
antdiv->antdiv_state = ATH_ANT_DIV_SCAN;
}
}
break;
case ATH_ANT_DIV_SCAN:
if ((curtsf - antdiv->antdiv_laststatetsf) <
ATH_ANT_DIV_MIN_SCAN_US)
break;
curcfg++;
if (curcfg == antdiv->antdiv_num_antcfg)
curcfg = 0;
if (curcfg == antdiv->antdiv_bestcfg) {
ath_find_max_val(antdiv->antdiv_lastbrssi,
antdiv->antdiv_num_antcfg, &bestcfg);
if (!ath9k_hw_select_antconfig(ah, bestcfg)) {
antdiv->antdiv_bestcfg = bestcfg;
antdiv->antdiv_curcfg = bestcfg;
antdiv->antdiv_laststatetsf = curtsf;
antdiv->antdiv_state = ATH_ANT_DIV_IDLE;
}
} else {
if (!ath9k_hw_select_antconfig(ah, curcfg)) {
antdiv->antdiv_curcfg = curcfg;
antdiv->antdiv_laststatetsf = curtsf;
antdiv->antdiv_state = ATH_ANT_DIV_SCAN;
}
}
break;
}
}
/***********************/
/* Descriptor Handling */
/***********************/
/*
* Set up DMA descriptors
*
* This function will allocate both the DMA descriptor structure, and the
* buffers it contains. These are used to contain the descriptors used
* by the system.
*/
int ath_descdma_setup(struct ath_softc *sc,
struct ath_descdma *dd,
struct list_head *head,
const char *name,
int nbuf,
int ndesc)
{
#define DS2PHYS(_dd, _ds) \
((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
#define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
#define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
struct ath_desc *ds;
struct ath_buf *bf;
int i, bsize, error;
DPRINTF(sc, ATH_DBG_CONFIG, "%s: %s DMA: %u buffers %u desc/buf\n",
__func__, name, nbuf, ndesc);
/* ath_desc must be a multiple of DWORDs */
if ((sizeof(struct ath_desc) % 4) != 0) {
DPRINTF(sc, ATH_DBG_FATAL, "%s: ath_desc not DWORD aligned\n",
__func__);
ASSERT((sizeof(struct ath_desc) % 4) == 0);
error = -ENOMEM;
goto fail;
}
dd->dd_name = name;
dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
/*
* Need additional DMA memory because we can't use
* descriptors that cross the 4K page boundary. Assume
* one skipped descriptor per 4K page.
*/
if (!(sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
u32 ndesc_skipped =
ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
u32 dma_len;
while (ndesc_skipped) {
dma_len = ndesc_skipped * sizeof(struct ath_desc);
dd->dd_desc_len += dma_len;
ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
};
}
/* allocate descriptors */
dd->dd_desc = pci_alloc_consistent(sc->pdev,
dd->dd_desc_len,
&dd->dd_desc_paddr);
if (dd->dd_desc == NULL) {
error = -ENOMEM;
goto fail;
}
ds = dd->dd_desc;
DPRINTF(sc, ATH_DBG_CONFIG, "%s: %s DMA map: %p (%u) -> %llx (%u)\n",
__func__, dd->dd_name, ds, (u32) dd->dd_desc_len,
ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
/* allocate buffers */
bsize = sizeof(struct ath_buf) * nbuf;
bf = kmalloc(bsize, GFP_KERNEL);
if (bf == NULL) {
error = -ENOMEM;
goto fail2;
}
memzero(bf, bsize);
dd->dd_bufptr = bf;
INIT_LIST_HEAD(head);
for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
bf->bf_desc = ds;
bf->bf_daddr = DS2PHYS(dd, ds);
if (!(sc->sc_ah->ah_caps.hw_caps &
ATH9K_HW_CAP_4KB_SPLITTRANS)) {
/*
* Skip descriptor addresses which can cause 4KB
* boundary crossing (addr + length) with a 32 dword
* descriptor fetch.
*/
while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
ASSERT((caddr_t) bf->bf_desc <
((caddr_t) dd->dd_desc +
dd->dd_desc_len));
ds += ndesc;
bf->bf_desc = ds;
bf->bf_daddr = DS2PHYS(dd, ds);
}
}
list_add_tail(&bf->list, head);
}
return 0;
fail2:
pci_free_consistent(sc->pdev,
dd->dd_desc_len, dd->dd_desc, dd->dd_desc_paddr);
fail:
memzero(dd, sizeof(*dd));
return error;
#undef ATH_DESC_4KB_BOUND_CHECK
#undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
#undef DS2PHYS
}
/*
* Cleanup DMA descriptors
*
* This function will free the DMA block that was allocated for the descriptor
* pool. Since this was allocated as one "chunk", it is freed in the same
* manner.
*/
void ath_descdma_cleanup(struct ath_softc *sc,
struct ath_descdma *dd,
struct list_head *head)
{
/* Free memory associated with descriptors */
pci_free_consistent(sc->pdev,
dd->dd_desc_len, dd->dd_desc, dd->dd_desc_paddr);
INIT_LIST_HEAD(head);
kfree(dd->dd_bufptr);
memzero(dd, sizeof(*dd));
}
/*************/
/* Utilities */
/*************/
void ath_internal_reset(struct ath_softc *sc)
{
ath_reset_start(sc, 0);
ath_reset(sc);
ath_reset_end(sc, 0);
}
int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
{
int qnum;
switch (queue) {
case 0:
qnum = sc->sc_haltype2q[ATH9K_WME_AC_VO];
break;
case 1:
qnum = sc->sc_haltype2q[ATH9K_WME_AC_VI];
break;
case 2:
qnum = sc->sc_haltype2q[ATH9K_WME_AC_BE];
break;
case 3:
qnum = sc->sc_haltype2q[ATH9K_WME_AC_BK];
break;
default:
qnum = sc->sc_haltype2q[ATH9K_WME_AC_BE];
break;
}
return qnum;
}
int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
{
int qnum;
switch (queue) {
case ATH9K_WME_AC_VO:
qnum = 0;
break;
case ATH9K_WME_AC_VI:
qnum = 1;
break;
case ATH9K_WME_AC_BE:
qnum = 2;
break;
case ATH9K_WME_AC_BK:
qnum = 3;
break;
default:
qnum = -1;
break;
}
return qnum;
}
/*
* Expand time stamp to TSF
*
* Extend 15-bit time stamp from rx descriptor to
* a full 64-bit TSF using the current h/w TSF.
*/
u64 ath_extend_tsf(struct ath_softc *sc, u32 rstamp)
{
u64 tsf;
tsf = ath9k_hw_gettsf64(sc->sc_ah);
if ((tsf & 0x7fff) < rstamp)
tsf -= 0x8000;
return (tsf & ~0x7fff) | rstamp;
}
/*
* Set Default Antenna
*
* Call into the HAL to set the default antenna to use. Not really valid for
* MIMO technology.
*/
void ath_setdefantenna(void *context, u32 antenna)
{
struct ath_softc *sc = (struct ath_softc *)context;
struct ath_hal *ah = sc->sc_ah;
/* XXX block beacon interrupts */
ath9k_hw_setantenna(ah, antenna);
sc->sc_defant = antenna;
sc->sc_rxotherant = 0;
}
/*
* Set Slot Time
*
* This will wake up the chip if required, and set the slot time for the
* frame (maximum transmit time). Slot time is assumed to be already set
* in the ATH object member sc_slottime
*/
void ath_setslottime(struct ath_softc *sc)
{
ath9k_hw_setslottime(sc->sc_ah, sc->sc_slottime);
sc->sc_updateslot = OK;
}