linux/kernel/time/timekeeping.c
Linus Torvalds dbb381b619 timekeeping and timer updates:
Core:
 
   - Consolidation of the vDSO build infrastructure to address the
     difficulties of cross-builds for ARM64 compat vDSO libraries by
     restricting the exposure of header content to the vDSO build.
 
     This is achieved by splitting out header content into separate
     headers. which contain only the minimaly required information which is
     necessary to build the vDSO. These new headers are included from the
     kernel headers and the vDSO specific files.
 
   - Enhancements to the generic vDSO library allowing more fine grained
     control over the compiled in code, further reducing architecture
     specific storage and preparing for adopting the generic library by PPC.
 
   - Cleanup and consolidation of the exit related code in posix CPU timers.
 
   - Small cleanups and enhancements here and there
 
  Drivers:
 
   - The obligatory new drivers: Ingenic JZ47xx and X1000 TCU support
 
   - Correct the clock rate of PIT64b global clock
 
   - setup_irq() cleanup
 
   - Preparation for PWM and suspend support for the TI DM timer
 
   - Expand the fttmr010 driver to support ast2600 systems
 
   - The usual small fixes, enhancements and cleanups all over the place
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl6B+QETHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYofJ5D/94s5fpaqiuNcaAsLq2D3DRIrTnqxx7
 yEeAOPcbYV1bM1SgY/M83L5yGc2S8ny787e26abwRTCZhZV3eAmRTphIFFIZR0Xk
 xS+i67odscbdJTRtztKj3uQ9rFxefszRuphyaa89pwSY9nnyMWLcahGSQOGs0LJK
 hvmgwPjyM1drNfPxgPiaFg7vDr2XxNATpQr/FBt+BhelvVan8TlAfrkcNPiLr++Y
 Axz925FP7jMaRRbZ1acji34gLiIAZk0jLCUdbix7YkPrqDB4GfO+v8Vez+fGClbJ
 uDOYeR4r1+Be/BtSJtJ2tHqtsKCcAL6agtaE2+epZq5HbzaZFRvBFaxgFNF8WVcn
 3FFibdEMdsRNfZTUVp5wwgOLN0UIqE/7LifE12oLEL2oFB5H2PiNEUw3E02XHO11
 rL3zgHhB6Ke1sXKPCjSGdmIQLbxZmV5kOlQFy7XuSeo5fmRapVzKNffnKcftIliF
 1HNtZbgdA+3tdxMFCqoo1QX+kotl9kgpslmdZ0qHAbaRb3xqLoSskbqEjFRMuSCC
 8bjJrwboD9T5GPfwodSCgqs/58CaSDuqPFbIjCay+p90Fcg6wWAkZtyG04ZLdPRc
 GgNNdN4gjTD9bnrRi8cH47z1g8OO4vt4K4SEbmjo8IlDW+9jYMxuwgR88CMeDXd7
 hu7aKsr2I2q/WQ==
 =5o9G
 -----END PGP SIGNATURE-----

Merge tag 'timers-core-2020-03-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull timekeeping and timer updates from Thomas Gleixner:
 "Core:

   - Consolidation of the vDSO build infrastructure to address the
     difficulties of cross-builds for ARM64 compat vDSO libraries by
     restricting the exposure of header content to the vDSO build.

     This is achieved by splitting out header content into separate
     headers. which contain only the minimaly required information which
     is necessary to build the vDSO. These new headers are included from
     the kernel headers and the vDSO specific files.

   - Enhancements to the generic vDSO library allowing more fine grained
     control over the compiled in code, further reducing architecture
     specific storage and preparing for adopting the generic library by
     PPC.

   - Cleanup and consolidation of the exit related code in posix CPU
     timers.

   - Small cleanups and enhancements here and there

  Drivers:

   - The obligatory new drivers: Ingenic JZ47xx and X1000 TCU support

   - Correct the clock rate of PIT64b global clock

   - setup_irq() cleanup

   - Preparation for PWM and suspend support for the TI DM timer

   - Expand the fttmr010 driver to support ast2600 systems

   - The usual small fixes, enhancements and cleanups all over the
     place"

* tag 'timers-core-2020-03-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (80 commits)
  Revert "clocksource/drivers/timer-probe: Avoid creating dead devices"
  vdso: Fix clocksource.h macro detection
  um: Fix header inclusion
  arm64: vdso32: Enable Clang Compilation
  lib/vdso: Enable common headers
  arm: vdso: Enable arm to use common headers
  x86/vdso: Enable x86 to use common headers
  mips: vdso: Enable mips to use common headers
  arm64: vdso32: Include common headers in the vdso library
  arm64: vdso: Include common headers in the vdso library
  arm64: Introduce asm/vdso/processor.h
  arm64: vdso32: Code clean up
  linux/elfnote.h: Replace elf.h with UAPI equivalent
  scripts: Fix the inclusion order in modpost
  common: Introduce processor.h
  linux/ktime.h: Extract common header for vDSO
  linux/jiffies.h: Extract common header for vDSO
  linux/time64.h: Extract common header for vDSO
  linux/time32.h: Extract common header for vDSO
  linux/time.h: Extract common header for vDSO
  ...
2020-03-30 18:51:47 -07:00

2406 lines
67 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Kernel timekeeping code and accessor functions. Based on code from
* timer.c, moved in commit 8524070b7982.
*/
#include <linux/timekeeper_internal.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/nmi.h>
#include <linux/sched.h>
#include <linux/sched/loadavg.h>
#include <linux/sched/clock.h>
#include <linux/syscore_ops.h>
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
#include <linux/stop_machine.h>
#include <linux/pvclock_gtod.h>
#include <linux/compiler.h>
#include <linux/audit.h>
#include "tick-internal.h"
#include "ntp_internal.h"
#include "timekeeping_internal.h"
#define TK_CLEAR_NTP (1 << 0)
#define TK_MIRROR (1 << 1)
#define TK_CLOCK_WAS_SET (1 << 2)
enum timekeeping_adv_mode {
/* Update timekeeper when a tick has passed */
TK_ADV_TICK,
/* Update timekeeper on a direct frequency change */
TK_ADV_FREQ
};
/*
* The most important data for readout fits into a single 64 byte
* cache line.
*/
static struct {
seqcount_t seq;
struct timekeeper timekeeper;
} tk_core ____cacheline_aligned = {
.seq = SEQCNT_ZERO(tk_core.seq),
};
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
static struct timekeeper shadow_timekeeper;
/**
* struct tk_fast - NMI safe timekeeper
* @seq: Sequence counter for protecting updates. The lowest bit
* is the index for the tk_read_base array
* @base: tk_read_base array. Access is indexed by the lowest bit of
* @seq.
*
* See @update_fast_timekeeper() below.
*/
struct tk_fast {
seqcount_t seq;
struct tk_read_base base[2];
};
/* Suspend-time cycles value for halted fast timekeeper. */
static u64 cycles_at_suspend;
static u64 dummy_clock_read(struct clocksource *cs)
{
return cycles_at_suspend;
}
static struct clocksource dummy_clock = {
.read = dummy_clock_read,
};
static struct tk_fast tk_fast_mono ____cacheline_aligned = {
.base[0] = { .clock = &dummy_clock, },
.base[1] = { .clock = &dummy_clock, },
};
static struct tk_fast tk_fast_raw ____cacheline_aligned = {
.base[0] = { .clock = &dummy_clock, },
.base[1] = { .clock = &dummy_clock, },
};
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
tk->xtime_sec++;
}
while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
tk->raw_sec++;
}
}
static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
{
struct timespec64 ts;
ts.tv_sec = tk->xtime_sec;
ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
return ts;
}
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
{
tk->xtime_sec = ts->tv_sec;
tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
}
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
{
tk->xtime_sec += ts->tv_sec;
tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
tk_normalize_xtime(tk);
}
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
{
struct timespec64 tmp;
/*
* Verify consistency of: offset_real = -wall_to_monotonic
* before modifying anything
*/
set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
-tk->wall_to_monotonic.tv_nsec);
WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
tk->wall_to_monotonic = wtm;
set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
tk->offs_real = timespec64_to_ktime(tmp);
tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
}
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
{
tk->offs_boot = ktime_add(tk->offs_boot, delta);
/*
* Timespec representation for VDSO update to avoid 64bit division
* on every update.
*/
tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
}
/*
* tk_clock_read - atomic clocksource read() helper
*
* This helper is necessary to use in the read paths because, while the
* seqlock ensures we don't return a bad value while structures are updated,
* it doesn't protect from potential crashes. There is the possibility that
* the tkr's clocksource may change between the read reference, and the
* clock reference passed to the read function. This can cause crashes if
* the wrong clocksource is passed to the wrong read function.
* This isn't necessary to use when holding the timekeeper_lock or doing
* a read of the fast-timekeeper tkrs (which is protected by its own locking
* and update logic).
*/
static inline u64 tk_clock_read(const struct tk_read_base *tkr)
{
struct clocksource *clock = READ_ONCE(tkr->clock);
return clock->read(clock);
}
#ifdef CONFIG_DEBUG_TIMEKEEPING
#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
{
u64 max_cycles = tk->tkr_mono.clock->max_cycles;
const char *name = tk->tkr_mono.clock->name;
if (offset > max_cycles) {
printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
offset, name, max_cycles);
printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
} else {
if (offset > (max_cycles >> 1)) {
printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
offset, name, max_cycles >> 1);
printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
}
}
if (tk->underflow_seen) {
if (jiffies - tk->last_warning > WARNING_FREQ) {
printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
printk_deferred(" Your kernel is probably still fine.\n");
tk->last_warning = jiffies;
}
tk->underflow_seen = 0;
}
if (tk->overflow_seen) {
if (jiffies - tk->last_warning > WARNING_FREQ) {
printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
printk_deferred(" Your kernel is probably still fine.\n");
tk->last_warning = jiffies;
}
tk->overflow_seen = 0;
}
}
static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
{
struct timekeeper *tk = &tk_core.timekeeper;
u64 now, last, mask, max, delta;
unsigned int seq;
/*
* Since we're called holding a seqlock, the data may shift
* under us while we're doing the calculation. This can cause
* false positives, since we'd note a problem but throw the
* results away. So nest another seqlock here to atomically
* grab the points we are checking with.
*/
do {
seq = read_seqcount_begin(&tk_core.seq);
now = tk_clock_read(tkr);
last = tkr->cycle_last;
mask = tkr->mask;
max = tkr->clock->max_cycles;
} while (read_seqcount_retry(&tk_core.seq, seq));
delta = clocksource_delta(now, last, mask);
/*
* Try to catch underflows by checking if we are seeing small
* mask-relative negative values.
*/
if (unlikely((~delta & mask) < (mask >> 3))) {
tk->underflow_seen = 1;
delta = 0;
}
/* Cap delta value to the max_cycles values to avoid mult overflows */
if (unlikely(delta > max)) {
tk->overflow_seen = 1;
delta = tkr->clock->max_cycles;
}
return delta;
}
#else
static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
{
}
static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
{
u64 cycle_now, delta;
/* read clocksource */
cycle_now = tk_clock_read(tkr);
/* calculate the delta since the last update_wall_time */
delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
return delta;
}
#endif
/**
* tk_setup_internals - Set up internals to use clocksource clock.
*
* @tk: The target timekeeper to setup.
* @clock: Pointer to clocksource.
*
* Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
* pair and interval request.
*
* Unless you're the timekeeping code, you should not be using this!
*/
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
{
u64 interval;
u64 tmp, ntpinterval;
struct clocksource *old_clock;
++tk->cs_was_changed_seq;
old_clock = tk->tkr_mono.clock;
tk->tkr_mono.clock = clock;
tk->tkr_mono.mask = clock->mask;
tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
tk->tkr_raw.clock = clock;
tk->tkr_raw.mask = clock->mask;
tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
/* Do the ns -> cycle conversion first, using original mult */
tmp = NTP_INTERVAL_LENGTH;
tmp <<= clock->shift;
ntpinterval = tmp;
tmp += clock->mult/2;
do_div(tmp, clock->mult);
if (tmp == 0)
tmp = 1;
interval = (u64) tmp;
tk->cycle_interval = interval;
/* Go back from cycles -> shifted ns */
tk->xtime_interval = interval * clock->mult;
tk->xtime_remainder = ntpinterval - tk->xtime_interval;
tk->raw_interval = interval * clock->mult;
/* if changing clocks, convert xtime_nsec shift units */
if (old_clock) {
int shift_change = clock->shift - old_clock->shift;
if (shift_change < 0) {
tk->tkr_mono.xtime_nsec >>= -shift_change;
tk->tkr_raw.xtime_nsec >>= -shift_change;
} else {
tk->tkr_mono.xtime_nsec <<= shift_change;
tk->tkr_raw.xtime_nsec <<= shift_change;
}
}
tk->tkr_mono.shift = clock->shift;
tk->tkr_raw.shift = clock->shift;
tk->ntp_error = 0;
tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
/*
* The timekeeper keeps its own mult values for the currently
* active clocksource. These value will be adjusted via NTP
* to counteract clock drifting.
*/
tk->tkr_mono.mult = clock->mult;
tk->tkr_raw.mult = clock->mult;
tk->ntp_err_mult = 0;
tk->skip_second_overflow = 0;
}
/* Timekeeper helper functions. */
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
#else
static inline u32 arch_gettimeoffset(void) { return 0; }
#endif
static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
{
u64 nsec;
nsec = delta * tkr->mult + tkr->xtime_nsec;
nsec >>= tkr->shift;
/* If arch requires, add in get_arch_timeoffset() */
return nsec + arch_gettimeoffset();
}
static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
{
u64 delta;
delta = timekeeping_get_delta(tkr);
return timekeeping_delta_to_ns(tkr, delta);
}
static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
{
u64 delta;
/* calculate the delta since the last update_wall_time */
delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
return timekeeping_delta_to_ns(tkr, delta);
}
/**
* update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
* @tkr: Timekeeping readout base from which we take the update
*
* We want to use this from any context including NMI and tracing /
* instrumenting the timekeeping code itself.
*
* Employ the latch technique; see @raw_write_seqcount_latch.
*
* So if a NMI hits the update of base[0] then it will use base[1]
* which is still consistent. In the worst case this can result is a
* slightly wrong timestamp (a few nanoseconds). See
* @ktime_get_mono_fast_ns.
*/
static void update_fast_timekeeper(const struct tk_read_base *tkr,
struct tk_fast *tkf)
{
struct tk_read_base *base = tkf->base;
/* Force readers off to base[1] */
raw_write_seqcount_latch(&tkf->seq);
/* Update base[0] */
memcpy(base, tkr, sizeof(*base));
/* Force readers back to base[0] */
raw_write_seqcount_latch(&tkf->seq);
/* Update base[1] */
memcpy(base + 1, base, sizeof(*base));
}
/**
* ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
*
* This timestamp is not guaranteed to be monotonic across an update.
* The timestamp is calculated by:
*
* now = base_mono + clock_delta * slope
*
* So if the update lowers the slope, readers who are forced to the
* not yet updated second array are still using the old steeper slope.
*
* tmono
* ^
* | o n
* | o n
* | u
* | o
* |o
* |12345678---> reader order
*
* o = old slope
* u = update
* n = new slope
*
* So reader 6 will observe time going backwards versus reader 5.
*
* While other CPUs are likely to be able observe that, the only way
* for a CPU local observation is when an NMI hits in the middle of
* the update. Timestamps taken from that NMI context might be ahead
* of the following timestamps. Callers need to be aware of that and
* deal with it.
*/
static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
{
struct tk_read_base *tkr;
unsigned int seq;
u64 now;
do {
seq = raw_read_seqcount_latch(&tkf->seq);
tkr = tkf->base + (seq & 0x01);
now = ktime_to_ns(tkr->base);
now += timekeeping_delta_to_ns(tkr,
clocksource_delta(
tk_clock_read(tkr),
tkr->cycle_last,
tkr->mask));
} while (read_seqcount_retry(&tkf->seq, seq));
return now;
}
u64 ktime_get_mono_fast_ns(void)
{
return __ktime_get_fast_ns(&tk_fast_mono);
}
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
u64 ktime_get_raw_fast_ns(void)
{
return __ktime_get_fast_ns(&tk_fast_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
/**
* ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
*
* To keep it NMI safe since we're accessing from tracing, we're not using a
* separate timekeeper with updates to monotonic clock and boot offset
* protected with seqlocks. This has the following minor side effects:
*
* (1) Its possible that a timestamp be taken after the boot offset is updated
* but before the timekeeper is updated. If this happens, the new boot offset
* is added to the old timekeeping making the clock appear to update slightly
* earlier:
* CPU 0 CPU 1
* timekeeping_inject_sleeptime64()
* __timekeeping_inject_sleeptime(tk, delta);
* timestamp();
* timekeeping_update(tk, TK_CLEAR_NTP...);
*
* (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
* partially updated. Since the tk->offs_boot update is a rare event, this
* should be a rare occurrence which postprocessing should be able to handle.
*/
u64 notrace ktime_get_boot_fast_ns(void)
{
struct timekeeper *tk = &tk_core.timekeeper;
return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
}
EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
/*
* See comment for __ktime_get_fast_ns() vs. timestamp ordering
*/
static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
{
struct tk_read_base *tkr;
unsigned int seq;
u64 now;
do {
seq = raw_read_seqcount_latch(&tkf->seq);
tkr = tkf->base + (seq & 0x01);
now = ktime_to_ns(tkr->base_real);
now += timekeeping_delta_to_ns(tkr,
clocksource_delta(
tk_clock_read(tkr),
tkr->cycle_last,
tkr->mask));
} while (read_seqcount_retry(&tkf->seq, seq));
return now;
}
/**
* ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
*/
u64 ktime_get_real_fast_ns(void)
{
return __ktime_get_real_fast_ns(&tk_fast_mono);
}
EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
/**
* halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
* @tk: Timekeeper to snapshot.
*
* It generally is unsafe to access the clocksource after timekeeping has been
* suspended, so take a snapshot of the readout base of @tk and use it as the
* fast timekeeper's readout base while suspended. It will return the same
* number of cycles every time until timekeeping is resumed at which time the
* proper readout base for the fast timekeeper will be restored automatically.
*/
static void halt_fast_timekeeper(const struct timekeeper *tk)
{
static struct tk_read_base tkr_dummy;
const struct tk_read_base *tkr = &tk->tkr_mono;
memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
cycles_at_suspend = tk_clock_read(tkr);
tkr_dummy.clock = &dummy_clock;
tkr_dummy.base_real = tkr->base + tk->offs_real;
update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
tkr = &tk->tkr_raw;
memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
tkr_dummy.clock = &dummy_clock;
update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
}
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
{
raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
}
/**
* pvclock_gtod_register_notifier - register a pvclock timedata update listener
*/
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned long flags;
int ret;
raw_spin_lock_irqsave(&timekeeper_lock, flags);
ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
update_pvclock_gtod(tk, true);
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
/**
* pvclock_gtod_unregister_notifier - unregister a pvclock
* timedata update listener
*/
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
unsigned long flags;
int ret;
raw_spin_lock_irqsave(&timekeeper_lock, flags);
ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
/*
* tk_update_leap_state - helper to update the next_leap_ktime
*/
static inline void tk_update_leap_state(struct timekeeper *tk)
{
tk->next_leap_ktime = ntp_get_next_leap();
if (tk->next_leap_ktime != KTIME_MAX)
/* Convert to monotonic time */
tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
}
/*
* Update the ktime_t based scalar nsec members of the timekeeper
*/
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
u64 seconds;
u32 nsec;
/*
* The xtime based monotonic readout is:
* nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
* The ktime based monotonic readout is:
* nsec = base_mono + now();
* ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
*/
seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
nsec = (u32) tk->wall_to_monotonic.tv_nsec;
tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
/*
* The sum of the nanoseconds portions of xtime and
* wall_to_monotonic can be greater/equal one second. Take
* this into account before updating tk->ktime_sec.
*/
nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
if (nsec >= NSEC_PER_SEC)
seconds++;
tk->ktime_sec = seconds;
/* Update the monotonic raw base */
tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
}
/* must hold timekeeper_lock */
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
{
if (action & TK_CLEAR_NTP) {
tk->ntp_error = 0;
ntp_clear();
}
tk_update_leap_state(tk);
tk_update_ktime_data(tk);
update_vsyscall(tk);
update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
if (action & TK_CLOCK_WAS_SET)
tk->clock_was_set_seq++;
/*
* The mirroring of the data to the shadow-timekeeper needs
* to happen last here to ensure we don't over-write the
* timekeeper structure on the next update with stale data
*/
if (action & TK_MIRROR)
memcpy(&shadow_timekeeper, &tk_core.timekeeper,
sizeof(tk_core.timekeeper));
}
/**
* timekeeping_forward_now - update clock to the current time
*
* Forward the current clock to update its state since the last call to
* update_wall_time(). This is useful before significant clock changes,
* as it avoids having to deal with this time offset explicitly.
*/
static void timekeeping_forward_now(struct timekeeper *tk)
{
u64 cycle_now, delta;
cycle_now = tk_clock_read(&tk->tkr_mono);
delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
tk->tkr_mono.cycle_last = cycle_now;
tk->tkr_raw.cycle_last = cycle_now;
tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
/* If arch requires, add in get_arch_timeoffset() */
tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
/* If arch requires, add in get_arch_timeoffset() */
tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
tk_normalize_xtime(tk);
}
/**
* ktime_get_real_ts64 - Returns the time of day in a timespec64.
* @ts: pointer to the timespec to be set
*
* Returns the time of day in a timespec64 (WARN if suspended).
*/
void ktime_get_real_ts64(struct timespec64 *ts)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned int seq;
u64 nsecs;
WARN_ON(timekeeping_suspended);
do {
seq = read_seqcount_begin(&tk_core.seq);
ts->tv_sec = tk->xtime_sec;
nsecs = timekeeping_get_ns(&tk->tkr_mono);
} while (read_seqcount_retry(&tk_core.seq, seq));
ts->tv_nsec = 0;
timespec64_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(ktime_get_real_ts64);
ktime_t ktime_get(void)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned int seq;
ktime_t base;
u64 nsecs;
WARN_ON(timekeeping_suspended);
do {
seq = read_seqcount_begin(&tk_core.seq);
base = tk->tkr_mono.base;
nsecs = timekeeping_get_ns(&tk->tkr_mono);
} while (read_seqcount_retry(&tk_core.seq, seq));
return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get);
u32 ktime_get_resolution_ns(void)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned int seq;
u32 nsecs;
WARN_ON(timekeeping_suspended);
do {
seq = read_seqcount_begin(&tk_core.seq);
nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
} while (read_seqcount_retry(&tk_core.seq, seq));
return nsecs;
}
EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
static ktime_t *offsets[TK_OFFS_MAX] = {
[TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
[TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
[TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
};
ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned int seq;
ktime_t base, *offset = offsets[offs];
u64 nsecs;
WARN_ON(timekeeping_suspended);
do {
seq = read_seqcount_begin(&tk_core.seq);
base = ktime_add(tk->tkr_mono.base, *offset);
nsecs = timekeeping_get_ns(&tk->tkr_mono);
} while (read_seqcount_retry(&tk_core.seq, seq));
return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);
ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned int seq;
ktime_t base, *offset = offsets[offs];
u64 nsecs;
WARN_ON(timekeeping_suspended);
do {
seq = read_seqcount_begin(&tk_core.seq);
base = ktime_add(tk->tkr_mono.base, *offset);
nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
} while (read_seqcount_retry(&tk_core.seq, seq));
return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
/**
* ktime_mono_to_any() - convert mononotic time to any other time
* @tmono: time to convert.
* @offs: which offset to use
*/
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
ktime_t *offset = offsets[offs];
unsigned int seq;
ktime_t tconv;
do {
seq = read_seqcount_begin(&tk_core.seq);
tconv = ktime_add(tmono, *offset);
} while (read_seqcount_retry(&tk_core.seq, seq));
return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);
/**
* ktime_get_raw - Returns the raw monotonic time in ktime_t format
*/
ktime_t ktime_get_raw(void)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned int seq;
ktime_t base;
u64 nsecs;
do {
seq = read_seqcount_begin(&tk_core.seq);
base = tk->tkr_raw.base;
nsecs = timekeeping_get_ns(&tk->tkr_raw);
} while (read_seqcount_retry(&tk_core.seq, seq));
return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);
/**
* ktime_get_ts64 - get the monotonic clock in timespec64 format
* @ts: pointer to timespec variable
*
* The function calculates the monotonic clock from the realtime
* clock and the wall_to_monotonic offset and stores the result
* in normalized timespec64 format in the variable pointed to by @ts.
*/
void ktime_get_ts64(struct timespec64 *ts)
{
struct timekeeper *tk = &tk_core.timekeeper;
struct timespec64 tomono;
unsigned int seq;
u64 nsec;
WARN_ON(timekeeping_suspended);
do {
seq = read_seqcount_begin(&tk_core.seq);
ts->tv_sec = tk->xtime_sec;
nsec = timekeeping_get_ns(&tk->tkr_mono);
tomono = tk->wall_to_monotonic;
} while (read_seqcount_retry(&tk_core.seq, seq));
ts->tv_sec += tomono.tv_sec;
ts->tv_nsec = 0;
timespec64_add_ns(ts, nsec + tomono.tv_nsec);
}
EXPORT_SYMBOL_GPL(ktime_get_ts64);
/**
* ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
*
* Returns the seconds portion of CLOCK_MONOTONIC with a single non
* serialized read. tk->ktime_sec is of type 'unsigned long' so this
* works on both 32 and 64 bit systems. On 32 bit systems the readout
* covers ~136 years of uptime which should be enough to prevent
* premature wrap arounds.
*/
time64_t ktime_get_seconds(void)
{
struct timekeeper *tk = &tk_core.timekeeper;
WARN_ON(timekeeping_suspended);
return tk->ktime_sec;
}
EXPORT_SYMBOL_GPL(ktime_get_seconds);
/**
* ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
*
* Returns the wall clock seconds since 1970. This replaces the
* get_seconds() interface which is not y2038 safe on 32bit systems.
*
* For 64bit systems the fast access to tk->xtime_sec is preserved. On
* 32bit systems the access must be protected with the sequence
* counter to provide "atomic" access to the 64bit tk->xtime_sec
* value.
*/
time64_t ktime_get_real_seconds(void)
{
struct timekeeper *tk = &tk_core.timekeeper;
time64_t seconds;
unsigned int seq;
if (IS_ENABLED(CONFIG_64BIT))
return tk->xtime_sec;
do {
seq = read_seqcount_begin(&tk_core.seq);
seconds = tk->xtime_sec;
} while (read_seqcount_retry(&tk_core.seq, seq));
return seconds;
}
EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
/**
* __ktime_get_real_seconds - The same as ktime_get_real_seconds
* but without the sequence counter protect. This internal function
* is called just when timekeeping lock is already held.
*/
time64_t __ktime_get_real_seconds(void)
{
struct timekeeper *tk = &tk_core.timekeeper;
return tk->xtime_sec;
}
/**
* ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
* @systime_snapshot: pointer to struct receiving the system time snapshot
*/
void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned int seq;
ktime_t base_raw;
ktime_t base_real;
u64 nsec_raw;
u64 nsec_real;
u64 now;
WARN_ON_ONCE(timekeeping_suspended);
do {
seq = read_seqcount_begin(&tk_core.seq);
now = tk_clock_read(&tk->tkr_mono);
systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
base_real = ktime_add(tk->tkr_mono.base,
tk_core.timekeeper.offs_real);
base_raw = tk->tkr_raw.base;
nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
} while (read_seqcount_retry(&tk_core.seq, seq));
systime_snapshot->cycles = now;
systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_snapshot);
/* Scale base by mult/div checking for overflow */
static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
{
u64 tmp, rem;
tmp = div64_u64_rem(*base, div, &rem);
if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
return -EOVERFLOW;
tmp *= mult;
rem = div64_u64(rem * mult, div);
*base = tmp + rem;
return 0;
}
/**
* adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
* @history: Snapshot representing start of history
* @partial_history_cycles: Cycle offset into history (fractional part)
* @total_history_cycles: Total history length in cycles
* @discontinuity: True indicates clock was set on history period
* @ts: Cross timestamp that should be adjusted using
* partial/total ratio
*
* Helper function used by get_device_system_crosststamp() to correct the
* crosstimestamp corresponding to the start of the current interval to the
* system counter value (timestamp point) provided by the driver. The
* total_history_* quantities are the total history starting at the provided
* reference point and ending at the start of the current interval. The cycle
* count between the driver timestamp point and the start of the current
* interval is partial_history_cycles.
*/
static int adjust_historical_crosststamp(struct system_time_snapshot *history,
u64 partial_history_cycles,
u64 total_history_cycles,
bool discontinuity,
struct system_device_crosststamp *ts)
{
struct timekeeper *tk = &tk_core.timekeeper;
u64 corr_raw, corr_real;
bool interp_forward;
int ret;
if (total_history_cycles == 0 || partial_history_cycles == 0)
return 0;
/* Interpolate shortest distance from beginning or end of history */
interp_forward = partial_history_cycles > total_history_cycles / 2;
partial_history_cycles = interp_forward ?
total_history_cycles - partial_history_cycles :
partial_history_cycles;
/*
* Scale the monotonic raw time delta by:
* partial_history_cycles / total_history_cycles
*/
corr_raw = (u64)ktime_to_ns(
ktime_sub(ts->sys_monoraw, history->raw));
ret = scale64_check_overflow(partial_history_cycles,
total_history_cycles, &corr_raw);
if (ret)
return ret;
/*
* If there is a discontinuity in the history, scale monotonic raw
* correction by:
* mult(real)/mult(raw) yielding the realtime correction
* Otherwise, calculate the realtime correction similar to monotonic
* raw calculation
*/
if (discontinuity) {
corr_real = mul_u64_u32_div
(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
} else {
corr_real = (u64)ktime_to_ns(
ktime_sub(ts->sys_realtime, history->real));
ret = scale64_check_overflow(partial_history_cycles,
total_history_cycles, &corr_real);
if (ret)
return ret;
}
/* Fixup monotonic raw and real time time values */
if (interp_forward) {
ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
ts->sys_realtime = ktime_add_ns(history->real, corr_real);
} else {
ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
}
return 0;
}
/*
* cycle_between - true if test occurs chronologically between before and after
*/
static bool cycle_between(u64 before, u64 test, u64 after)
{
if (test > before && test < after)
return true;
if (test < before && before > after)
return true;
return false;
}
/**
* get_device_system_crosststamp - Synchronously capture system/device timestamp
* @get_time_fn: Callback to get simultaneous device time and
* system counter from the device driver
* @ctx: Context passed to get_time_fn()
* @history_begin: Historical reference point used to interpolate system
* time when counter provided by the driver is before the current interval
* @xtstamp: Receives simultaneously captured system and device time
*
* Reads a timestamp from a device and correlates it to system time
*/
int get_device_system_crosststamp(int (*get_time_fn)
(ktime_t *device_time,
struct system_counterval_t *sys_counterval,
void *ctx),
void *ctx,
struct system_time_snapshot *history_begin,
struct system_device_crosststamp *xtstamp)
{
struct system_counterval_t system_counterval;
struct timekeeper *tk = &tk_core.timekeeper;
u64 cycles, now, interval_start;
unsigned int clock_was_set_seq = 0;
ktime_t base_real, base_raw;
u64 nsec_real, nsec_raw;
u8 cs_was_changed_seq;
unsigned int seq;
bool do_interp;
int ret;
do {
seq = read_seqcount_begin(&tk_core.seq);
/*
* Try to synchronously capture device time and a system
* counter value calling back into the device driver
*/
ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
if (ret)
return ret;
/*
* Verify that the clocksource associated with the captured
* system counter value is the same as the currently installed
* timekeeper clocksource
*/
if (tk->tkr_mono.clock != system_counterval.cs)
return -ENODEV;
cycles = system_counterval.cycles;
/*
* Check whether the system counter value provided by the
* device driver is on the current timekeeping interval.
*/
now = tk_clock_read(&tk->tkr_mono);
interval_start = tk->tkr_mono.cycle_last;
if (!cycle_between(interval_start, cycles, now)) {
clock_was_set_seq = tk->clock_was_set_seq;
cs_was_changed_seq = tk->cs_was_changed_seq;
cycles = interval_start;
do_interp = true;
} else {
do_interp = false;
}
base_real = ktime_add(tk->tkr_mono.base,
tk_core.timekeeper.offs_real);
base_raw = tk->tkr_raw.base;
nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
system_counterval.cycles);
nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
system_counterval.cycles);
} while (read_seqcount_retry(&tk_core.seq, seq));
xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
/*
* Interpolate if necessary, adjusting back from the start of the
* current interval
*/
if (do_interp) {
u64 partial_history_cycles, total_history_cycles;
bool discontinuity;
/*
* Check that the counter value occurs after the provided
* history reference and that the history doesn't cross a
* clocksource change
*/
if (!history_begin ||
!cycle_between(history_begin->cycles,
system_counterval.cycles, cycles) ||
history_begin->cs_was_changed_seq != cs_was_changed_seq)
return -EINVAL;
partial_history_cycles = cycles - system_counterval.cycles;
total_history_cycles = cycles - history_begin->cycles;
discontinuity =
history_begin->clock_was_set_seq != clock_was_set_seq;
ret = adjust_historical_crosststamp(history_begin,
partial_history_cycles,
total_history_cycles,
discontinuity, xtstamp);
if (ret)
return ret;
}
return 0;
}
EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
/**
* do_settimeofday64 - Sets the time of day.
* @ts: pointer to the timespec64 variable containing the new time
*
* Sets the time of day to the new time and update NTP and notify hrtimers
*/
int do_settimeofday64(const struct timespec64 *ts)
{
struct timekeeper *tk = &tk_core.timekeeper;
struct timespec64 ts_delta, xt;
unsigned long flags;
int ret = 0;
if (!timespec64_valid_settod(ts))
return -EINVAL;
raw_spin_lock_irqsave(&timekeeper_lock, flags);
write_seqcount_begin(&tk_core.seq);
timekeeping_forward_now(tk);
xt = tk_xtime(tk);
ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
ret = -EINVAL;
goto out;
}
tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
tk_set_xtime(tk, ts);
out:
timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
write_seqcount_end(&tk_core.seq);
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
/* signal hrtimers about time change */
clock_was_set();
if (!ret)
audit_tk_injoffset(ts_delta);
return ret;
}
EXPORT_SYMBOL(do_settimeofday64);
/**
* timekeeping_inject_offset - Adds or subtracts from the current time.
* @tv: pointer to the timespec variable containing the offset
*
* Adds or subtracts an offset value from the current time.
*/
static int timekeeping_inject_offset(const struct timespec64 *ts)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned long flags;
struct timespec64 tmp;
int ret = 0;
if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
return -EINVAL;
raw_spin_lock_irqsave(&timekeeper_lock, flags);
write_seqcount_begin(&tk_core.seq);
timekeeping_forward_now(tk);
/* Make sure the proposed value is valid */
tmp = timespec64_add(tk_xtime(tk), *ts);
if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
!timespec64_valid_settod(&tmp)) {
ret = -EINVAL;
goto error;
}
tk_xtime_add(tk, ts);
tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
error: /* even if we error out, we forwarded the time, so call update */
timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
write_seqcount_end(&tk_core.seq);
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
/* signal hrtimers about time change */
clock_was_set();
return ret;
}
/*
* Indicates if there is an offset between the system clock and the hardware
* clock/persistent clock/rtc.
*/
int persistent_clock_is_local;
/*
* Adjust the time obtained from the CMOS to be UTC time instead of
* local time.
*
* This is ugly, but preferable to the alternatives. Otherwise we
* would either need to write a program to do it in /etc/rc (and risk
* confusion if the program gets run more than once; it would also be
* hard to make the program warp the clock precisely n hours) or
* compile in the timezone information into the kernel. Bad, bad....
*
* - TYT, 1992-01-01
*
* The best thing to do is to keep the CMOS clock in universal time (UTC)
* as real UNIX machines always do it. This avoids all headaches about
* daylight saving times and warping kernel clocks.
*/
void timekeeping_warp_clock(void)
{
if (sys_tz.tz_minuteswest != 0) {
struct timespec64 adjust;
persistent_clock_is_local = 1;
adjust.tv_sec = sys_tz.tz_minuteswest * 60;
adjust.tv_nsec = 0;
timekeeping_inject_offset(&adjust);
}
}
/**
* __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
*
*/
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
{
tk->tai_offset = tai_offset;
tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
}
/**
* change_clocksource - Swaps clocksources if a new one is available
*
* Accumulates current time interval and initializes new clocksource
*/
static int change_clocksource(void *data)
{
struct timekeeper *tk = &tk_core.timekeeper;
struct clocksource *new, *old;
unsigned long flags;
new = (struct clocksource *) data;
raw_spin_lock_irqsave(&timekeeper_lock, flags);
write_seqcount_begin(&tk_core.seq);
timekeeping_forward_now(tk);
/*
* If the cs is in module, get a module reference. Succeeds
* for built-in code (owner == NULL) as well.
*/
if (try_module_get(new->owner)) {
if (!new->enable || new->enable(new) == 0) {
old = tk->tkr_mono.clock;
tk_setup_internals(tk, new);
if (old->disable)
old->disable(old);
module_put(old->owner);
} else {
module_put(new->owner);
}
}
timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
write_seqcount_end(&tk_core.seq);
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
return 0;
}
/**
* timekeeping_notify - Install a new clock source
* @clock: pointer to the clock source
*
* This function is called from clocksource.c after a new, better clock
* source has been registered. The caller holds the clocksource_mutex.
*/
int timekeeping_notify(struct clocksource *clock)
{
struct timekeeper *tk = &tk_core.timekeeper;
if (tk->tkr_mono.clock == clock)
return 0;
stop_machine(change_clocksource, clock, NULL);
tick_clock_notify();
return tk->tkr_mono.clock == clock ? 0 : -1;
}
/**
* ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
* @ts: pointer to the timespec64 to be set
*
* Returns the raw monotonic time (completely un-modified by ntp)
*/
void ktime_get_raw_ts64(struct timespec64 *ts)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned int seq;
u64 nsecs;
do {
seq = read_seqcount_begin(&tk_core.seq);
ts->tv_sec = tk->raw_sec;
nsecs = timekeeping_get_ns(&tk->tkr_raw);
} while (read_seqcount_retry(&tk_core.seq, seq));
ts->tv_nsec = 0;
timespec64_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(ktime_get_raw_ts64);
/**
* timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
*/
int timekeeping_valid_for_hres(void)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned int seq;
int ret;
do {
seq = read_seqcount_begin(&tk_core.seq);
ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
} while (read_seqcount_retry(&tk_core.seq, seq));
return ret;
}
/**
* timekeeping_max_deferment - Returns max time the clocksource can be deferred
*/
u64 timekeeping_max_deferment(void)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned int seq;
u64 ret;
do {
seq = read_seqcount_begin(&tk_core.seq);
ret = tk->tkr_mono.clock->max_idle_ns;
} while (read_seqcount_retry(&tk_core.seq, seq));
return ret;
}
/**
* read_persistent_clock64 - Return time from the persistent clock.
*
* Weak dummy function for arches that do not yet support it.
* Reads the time from the battery backed persistent clock.
* Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
*
* XXX - Do be sure to remove it once all arches implement it.
*/
void __weak read_persistent_clock64(struct timespec64 *ts)
{
ts->tv_sec = 0;
ts->tv_nsec = 0;
}
/**
* read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
* from the boot.
*
* Weak dummy function for arches that do not yet support it.
* wall_time - current time as returned by persistent clock
* boot_offset - offset that is defined as wall_time - boot_time
* The default function calculates offset based on the current value of
* local_clock(). This way architectures that support sched_clock() but don't
* support dedicated boot time clock will provide the best estimate of the
* boot time.
*/
void __weak __init
read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
struct timespec64 *boot_offset)
{
read_persistent_clock64(wall_time);
*boot_offset = ns_to_timespec64(local_clock());
}
/*
* Flag reflecting whether timekeeping_resume() has injected sleeptime.
*
* The flag starts of false and is only set when a suspend reaches
* timekeeping_suspend(), timekeeping_resume() sets it to false when the
* timekeeper clocksource is not stopping across suspend and has been
* used to update sleep time. If the timekeeper clocksource has stopped
* then the flag stays true and is used by the RTC resume code to decide
* whether sleeptime must be injected and if so the flag gets false then.
*
* If a suspend fails before reaching timekeeping_resume() then the flag
* stays false and prevents erroneous sleeptime injection.
*/
static bool suspend_timing_needed;
/* Flag for if there is a persistent clock on this platform */
static bool persistent_clock_exists;
/*
* timekeeping_init - Initializes the clocksource and common timekeeping values
*/
void __init timekeeping_init(void)
{
struct timespec64 wall_time, boot_offset, wall_to_mono;
struct timekeeper *tk = &tk_core.timekeeper;
struct clocksource *clock;
unsigned long flags;
read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
if (timespec64_valid_settod(&wall_time) &&
timespec64_to_ns(&wall_time) > 0) {
persistent_clock_exists = true;
} else if (timespec64_to_ns(&wall_time) != 0) {
pr_warn("Persistent clock returned invalid value");
wall_time = (struct timespec64){0};
}
if (timespec64_compare(&wall_time, &boot_offset) < 0)
boot_offset = (struct timespec64){0};
/*
* We want set wall_to_mono, so the following is true:
* wall time + wall_to_mono = boot time
*/
wall_to_mono = timespec64_sub(boot_offset, wall_time);
raw_spin_lock_irqsave(&timekeeper_lock, flags);
write_seqcount_begin(&tk_core.seq);
ntp_init();
clock = clocksource_default_clock();
if (clock->enable)
clock->enable(clock);
tk_setup_internals(tk, clock);
tk_set_xtime(tk, &wall_time);
tk->raw_sec = 0;
tk_set_wall_to_mono(tk, wall_to_mono);
timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
write_seqcount_end(&tk_core.seq);
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
}
/* time in seconds when suspend began for persistent clock */
static struct timespec64 timekeeping_suspend_time;
/**
* __timekeeping_inject_sleeptime - Internal function to add sleep interval
* @delta: pointer to a timespec delta value
*
* Takes a timespec offset measuring a suspend interval and properly
* adds the sleep offset to the timekeeping variables.
*/
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
const struct timespec64 *delta)
{
if (!timespec64_valid_strict(delta)) {
printk_deferred(KERN_WARNING
"__timekeeping_inject_sleeptime: Invalid "
"sleep delta value!\n");
return;
}
tk_xtime_add(tk, delta);
tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
tk_debug_account_sleep_time(delta);
}
#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
/**
* We have three kinds of time sources to use for sleep time
* injection, the preference order is:
* 1) non-stop clocksource
* 2) persistent clock (ie: RTC accessible when irqs are off)
* 3) RTC
*
* 1) and 2) are used by timekeeping, 3) by RTC subsystem.
* If system has neither 1) nor 2), 3) will be used finally.
*
*
* If timekeeping has injected sleeptime via either 1) or 2),
* 3) becomes needless, so in this case we don't need to call
* rtc_resume(), and this is what timekeeping_rtc_skipresume()
* means.
*/
bool timekeeping_rtc_skipresume(void)
{
return !suspend_timing_needed;
}
/**
* 1) can be determined whether to use or not only when doing
* timekeeping_resume() which is invoked after rtc_suspend(),
* so we can't skip rtc_suspend() surely if system has 1).
*
* But if system has 2), 2) will definitely be used, so in this
* case we don't need to call rtc_suspend(), and this is what
* timekeeping_rtc_skipsuspend() means.
*/
bool timekeeping_rtc_skipsuspend(void)
{
return persistent_clock_exists;
}
/**
* timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
* @delta: pointer to a timespec64 delta value
*
* This hook is for architectures that cannot support read_persistent_clock64
* because their RTC/persistent clock is only accessible when irqs are enabled.
* and also don't have an effective nonstop clocksource.
*
* This function should only be called by rtc_resume(), and allows
* a suspend offset to be injected into the timekeeping values.
*/
void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned long flags;
raw_spin_lock_irqsave(&timekeeper_lock, flags);
write_seqcount_begin(&tk_core.seq);
suspend_timing_needed = false;
timekeeping_forward_now(tk);
__timekeeping_inject_sleeptime(tk, delta);
timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
write_seqcount_end(&tk_core.seq);
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
/* signal hrtimers about time change */
clock_was_set();
}
#endif
/**
* timekeeping_resume - Resumes the generic timekeeping subsystem.
*/
void timekeeping_resume(void)
{
struct timekeeper *tk = &tk_core.timekeeper;
struct clocksource *clock = tk->tkr_mono.clock;
unsigned long flags;
struct timespec64 ts_new, ts_delta;
u64 cycle_now, nsec;
bool inject_sleeptime = false;
read_persistent_clock64(&ts_new);
clockevents_resume();
clocksource_resume();
raw_spin_lock_irqsave(&timekeeper_lock, flags);
write_seqcount_begin(&tk_core.seq);
/*
* After system resumes, we need to calculate the suspended time and
* compensate it for the OS time. There are 3 sources that could be
* used: Nonstop clocksource during suspend, persistent clock and rtc
* device.
*
* One specific platform may have 1 or 2 or all of them, and the
* preference will be:
* suspend-nonstop clocksource -> persistent clock -> rtc
* The less preferred source will only be tried if there is no better
* usable source. The rtc part is handled separately in rtc core code.
*/
cycle_now = tk_clock_read(&tk->tkr_mono);
nsec = clocksource_stop_suspend_timing(clock, cycle_now);
if (nsec > 0) {
ts_delta = ns_to_timespec64(nsec);
inject_sleeptime = true;
} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
inject_sleeptime = true;
}
if (inject_sleeptime) {
suspend_timing_needed = false;
__timekeeping_inject_sleeptime(tk, &ts_delta);
}
/* Re-base the last cycle value */
tk->tkr_mono.cycle_last = cycle_now;
tk->tkr_raw.cycle_last = cycle_now;
tk->ntp_error = 0;
timekeeping_suspended = 0;
timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
write_seqcount_end(&tk_core.seq);
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
touch_softlockup_watchdog();
tick_resume();
hrtimers_resume();
}
int timekeeping_suspend(void)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned long flags;
struct timespec64 delta, delta_delta;
static struct timespec64 old_delta;
struct clocksource *curr_clock;
u64 cycle_now;
read_persistent_clock64(&timekeeping_suspend_time);
/*
* On some systems the persistent_clock can not be detected at
* timekeeping_init by its return value, so if we see a valid
* value returned, update the persistent_clock_exists flag.
*/
if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
persistent_clock_exists = true;
suspend_timing_needed = true;
raw_spin_lock_irqsave(&timekeeper_lock, flags);
write_seqcount_begin(&tk_core.seq);
timekeeping_forward_now(tk);
timekeeping_suspended = 1;
/*
* Since we've called forward_now, cycle_last stores the value
* just read from the current clocksource. Save this to potentially
* use in suspend timing.
*/
curr_clock = tk->tkr_mono.clock;
cycle_now = tk->tkr_mono.cycle_last;
clocksource_start_suspend_timing(curr_clock, cycle_now);
if (persistent_clock_exists) {
/*
* To avoid drift caused by repeated suspend/resumes,
* which each can add ~1 second drift error,
* try to compensate so the difference in system time
* and persistent_clock time stays close to constant.
*/
delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
delta_delta = timespec64_sub(delta, old_delta);
if (abs(delta_delta.tv_sec) >= 2) {
/*
* if delta_delta is too large, assume time correction
* has occurred and set old_delta to the current delta.
*/
old_delta = delta;
} else {
/* Otherwise try to adjust old_system to compensate */
timekeeping_suspend_time =
timespec64_add(timekeeping_suspend_time, delta_delta);
}
}
timekeeping_update(tk, TK_MIRROR);
halt_fast_timekeeper(tk);
write_seqcount_end(&tk_core.seq);
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
tick_suspend();
clocksource_suspend();
clockevents_suspend();
return 0;
}
/* sysfs resume/suspend bits for timekeeping */
static struct syscore_ops timekeeping_syscore_ops = {
.resume = timekeeping_resume,
.suspend = timekeeping_suspend,
};
static int __init timekeeping_init_ops(void)
{
register_syscore_ops(&timekeeping_syscore_ops);
return 0;
}
device_initcall(timekeeping_init_ops);
/*
* Apply a multiplier adjustment to the timekeeper
*/
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
s64 offset,
s32 mult_adj)
{
s64 interval = tk->cycle_interval;
if (mult_adj == 0) {
return;
} else if (mult_adj == -1) {
interval = -interval;
offset = -offset;
} else if (mult_adj != 1) {
interval *= mult_adj;
offset *= mult_adj;
}
/*
* So the following can be confusing.
*
* To keep things simple, lets assume mult_adj == 1 for now.
*
* When mult_adj != 1, remember that the interval and offset values
* have been appropriately scaled so the math is the same.
*
* The basic idea here is that we're increasing the multiplier
* by one, this causes the xtime_interval to be incremented by
* one cycle_interval. This is because:
* xtime_interval = cycle_interval * mult
* So if mult is being incremented by one:
* xtime_interval = cycle_interval * (mult + 1)
* Its the same as:
* xtime_interval = (cycle_interval * mult) + cycle_interval
* Which can be shortened to:
* xtime_interval += cycle_interval
*
* So offset stores the non-accumulated cycles. Thus the current
* time (in shifted nanoseconds) is:
* now = (offset * adj) + xtime_nsec
* Now, even though we're adjusting the clock frequency, we have
* to keep time consistent. In other words, we can't jump back
* in time, and we also want to avoid jumping forward in time.
*
* So given the same offset value, we need the time to be the same
* both before and after the freq adjustment.
* now = (offset * adj_1) + xtime_nsec_1
* now = (offset * adj_2) + xtime_nsec_2
* So:
* (offset * adj_1) + xtime_nsec_1 =
* (offset * adj_2) + xtime_nsec_2
* And we know:
* adj_2 = adj_1 + 1
* So:
* (offset * adj_1) + xtime_nsec_1 =
* (offset * (adj_1+1)) + xtime_nsec_2
* (offset * adj_1) + xtime_nsec_1 =
* (offset * adj_1) + offset + xtime_nsec_2
* Canceling the sides:
* xtime_nsec_1 = offset + xtime_nsec_2
* Which gives us:
* xtime_nsec_2 = xtime_nsec_1 - offset
* Which simplfies to:
* xtime_nsec -= offset
*/
if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
/* NTP adjustment caused clocksource mult overflow */
WARN_ON_ONCE(1);
return;
}
tk->tkr_mono.mult += mult_adj;
tk->xtime_interval += interval;
tk->tkr_mono.xtime_nsec -= offset;
}
/*
* Adjust the timekeeper's multiplier to the correct frequency
* and also to reduce the accumulated error value.
*/
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
{
u32 mult;
/*
* Determine the multiplier from the current NTP tick length.
* Avoid expensive division when the tick length doesn't change.
*/
if (likely(tk->ntp_tick == ntp_tick_length())) {
mult = tk->tkr_mono.mult - tk->ntp_err_mult;
} else {
tk->ntp_tick = ntp_tick_length();
mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
tk->xtime_remainder, tk->cycle_interval);
}
/*
* If the clock is behind the NTP time, increase the multiplier by 1
* to catch up with it. If it's ahead and there was a remainder in the
* tick division, the clock will slow down. Otherwise it will stay
* ahead until the tick length changes to a non-divisible value.
*/
tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
mult += tk->ntp_err_mult;
timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
if (unlikely(tk->tkr_mono.clock->maxadj &&
(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
> tk->tkr_mono.clock->maxadj))) {
printk_once(KERN_WARNING
"Adjusting %s more than 11%% (%ld vs %ld)\n",
tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
}
/*
* It may be possible that when we entered this function, xtime_nsec
* was very small. Further, if we're slightly speeding the clocksource
* in the code above, its possible the required corrective factor to
* xtime_nsec could cause it to underflow.
*
* Now, since we have already accumulated the second and the NTP
* subsystem has been notified via second_overflow(), we need to skip
* the next update.
*/
if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
tk->tkr_mono.shift;
tk->xtime_sec--;
tk->skip_second_overflow = 1;
}
}
/**
* accumulate_nsecs_to_secs - Accumulates nsecs into secs
*
* Helper function that accumulates the nsecs greater than a second
* from the xtime_nsec field to the xtime_secs field.
* It also calls into the NTP code to handle leapsecond processing.
*
*/
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
{
u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
unsigned int clock_set = 0;
while (tk->tkr_mono.xtime_nsec >= nsecps) {
int leap;
tk->tkr_mono.xtime_nsec -= nsecps;
tk->xtime_sec++;
/*
* Skip NTP update if this second was accumulated before,
* i.e. xtime_nsec underflowed in timekeeping_adjust()
*/
if (unlikely(tk->skip_second_overflow)) {
tk->skip_second_overflow = 0;
continue;
}
/* Figure out if its a leap sec and apply if needed */
leap = second_overflow(tk->xtime_sec);
if (unlikely(leap)) {
struct timespec64 ts;
tk->xtime_sec += leap;
ts.tv_sec = leap;
ts.tv_nsec = 0;
tk_set_wall_to_mono(tk,
timespec64_sub(tk->wall_to_monotonic, ts));
__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
clock_set = TK_CLOCK_WAS_SET;
}
}
return clock_set;
}
/**
* logarithmic_accumulation - shifted accumulation of cycles
*
* This functions accumulates a shifted interval of cycles into
* into a shifted interval nanoseconds. Allows for O(log) accumulation
* loop.
*
* Returns the unconsumed cycles.
*/
static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
u32 shift, unsigned int *clock_set)
{
u64 interval = tk->cycle_interval << shift;
u64 snsec_per_sec;
/* If the offset is smaller than a shifted interval, do nothing */
if (offset < interval)
return offset;
/* Accumulate one shifted interval */
offset -= interval;
tk->tkr_mono.cycle_last += interval;
tk->tkr_raw.cycle_last += interval;
tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
*clock_set |= accumulate_nsecs_to_secs(tk);
/* Accumulate raw time */
tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
tk->tkr_raw.xtime_nsec -= snsec_per_sec;
tk->raw_sec++;
}
/* Accumulate error between NTP and clock interval */
tk->ntp_error += tk->ntp_tick << shift;
tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
(tk->ntp_error_shift + shift);
return offset;
}
/*
* timekeeping_advance - Updates the timekeeper to the current time and
* current NTP tick length
*/
static void timekeeping_advance(enum timekeeping_adv_mode mode)
{
struct timekeeper *real_tk = &tk_core.timekeeper;
struct timekeeper *tk = &shadow_timekeeper;
u64 offset;
int shift = 0, maxshift;
unsigned int clock_set = 0;
unsigned long flags;
raw_spin_lock_irqsave(&timekeeper_lock, flags);
/* Make sure we're fully resumed: */
if (unlikely(timekeeping_suspended))
goto out;
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
offset = real_tk->cycle_interval;
if (mode != TK_ADV_TICK)
goto out;
#else
offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
/* Check if there's really nothing to do */
if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
goto out;
#endif
/* Do some additional sanity checking */
timekeeping_check_update(tk, offset);
/*
* With NO_HZ we may have to accumulate many cycle_intervals
* (think "ticks") worth of time at once. To do this efficiently,
* we calculate the largest doubling multiple of cycle_intervals
* that is smaller than the offset. We then accumulate that
* chunk in one go, and then try to consume the next smaller
* doubled multiple.
*/
shift = ilog2(offset) - ilog2(tk->cycle_interval);
shift = max(0, shift);
/* Bound shift to one less than what overflows tick_length */
maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
shift = min(shift, maxshift);
while (offset >= tk->cycle_interval) {
offset = logarithmic_accumulation(tk, offset, shift,
&clock_set);
if (offset < tk->cycle_interval<<shift)
shift--;
}
/* Adjust the multiplier to correct NTP error */
timekeeping_adjust(tk, offset);
/*
* Finally, make sure that after the rounding
* xtime_nsec isn't larger than NSEC_PER_SEC
*/
clock_set |= accumulate_nsecs_to_secs(tk);
write_seqcount_begin(&tk_core.seq);
/*
* Update the real timekeeper.
*
* We could avoid this memcpy by switching pointers, but that
* requires changes to all other timekeeper usage sites as
* well, i.e. move the timekeeper pointer getter into the
* spinlocked/seqcount protected sections. And we trade this
* memcpy under the tk_core.seq against one before we start
* updating.
*/
timekeeping_update(tk, clock_set);
memcpy(real_tk, tk, sizeof(*tk));
/* The memcpy must come last. Do not put anything here! */
write_seqcount_end(&tk_core.seq);
out:
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
if (clock_set)
/* Have to call _delayed version, since in irq context*/
clock_was_set_delayed();
}
/**
* update_wall_time - Uses the current clocksource to increment the wall time
*
*/
void update_wall_time(void)
{
timekeeping_advance(TK_ADV_TICK);
}
/**
* getboottime64 - Return the real time of system boot.
* @ts: pointer to the timespec64 to be set
*
* Returns the wall-time of boot in a timespec64.
*
* This is based on the wall_to_monotonic offset and the total suspend
* time. Calls to settimeofday will affect the value returned (which
* basically means that however wrong your real time clock is at boot time,
* you get the right time here).
*/
void getboottime64(struct timespec64 *ts)
{
struct timekeeper *tk = &tk_core.timekeeper;
ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
*ts = ktime_to_timespec64(t);
}
EXPORT_SYMBOL_GPL(getboottime64);
void ktime_get_coarse_real_ts64(struct timespec64 *ts)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned int seq;
do {
seq = read_seqcount_begin(&tk_core.seq);
*ts = tk_xtime(tk);
} while (read_seqcount_retry(&tk_core.seq, seq));
}
EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
void ktime_get_coarse_ts64(struct timespec64 *ts)
{
struct timekeeper *tk = &tk_core.timekeeper;
struct timespec64 now, mono;
unsigned int seq;
do {
seq = read_seqcount_begin(&tk_core.seq);
now = tk_xtime(tk);
mono = tk->wall_to_monotonic;
} while (read_seqcount_retry(&tk_core.seq, seq));
set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
now.tv_nsec + mono.tv_nsec);
}
EXPORT_SYMBOL(ktime_get_coarse_ts64);
/*
* Must hold jiffies_lock
*/
void do_timer(unsigned long ticks)
{
jiffies_64 += ticks;
calc_global_load(ticks);
}
/**
* ktime_get_update_offsets_now - hrtimer helper
* @cwsseq: pointer to check and store the clock was set sequence number
* @offs_real: pointer to storage for monotonic -> realtime offset
* @offs_boot: pointer to storage for monotonic -> boottime offset
* @offs_tai: pointer to storage for monotonic -> clock tai offset
*
* Returns current monotonic time and updates the offsets if the
* sequence number in @cwsseq and timekeeper.clock_was_set_seq are
* different.
*
* Called from hrtimer_interrupt() or retrigger_next_event()
*/
ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
ktime_t *offs_boot, ktime_t *offs_tai)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned int seq;
ktime_t base;
u64 nsecs;
do {
seq = read_seqcount_begin(&tk_core.seq);
base = tk->tkr_mono.base;
nsecs = timekeeping_get_ns(&tk->tkr_mono);
base = ktime_add_ns(base, nsecs);
if (*cwsseq != tk->clock_was_set_seq) {
*cwsseq = tk->clock_was_set_seq;
*offs_real = tk->offs_real;
*offs_boot = tk->offs_boot;
*offs_tai = tk->offs_tai;
}
/* Handle leapsecond insertion adjustments */
if (unlikely(base >= tk->next_leap_ktime))
*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
} while (read_seqcount_retry(&tk_core.seq, seq));
return base;
}
/**
* timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
*/
static int timekeeping_validate_timex(const struct __kernel_timex *txc)
{
if (txc->modes & ADJ_ADJTIME) {
/* singleshot must not be used with any other mode bits */
if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
return -EINVAL;
if (!(txc->modes & ADJ_OFFSET_READONLY) &&
!capable(CAP_SYS_TIME))
return -EPERM;
} else {
/* In order to modify anything, you gotta be super-user! */
if (txc->modes && !capable(CAP_SYS_TIME))
return -EPERM;
/*
* if the quartz is off by more than 10% then
* something is VERY wrong!
*/
if (txc->modes & ADJ_TICK &&
(txc->tick < 900000/USER_HZ ||
txc->tick > 1100000/USER_HZ))
return -EINVAL;
}
if (txc->modes & ADJ_SETOFFSET) {
/* In order to inject time, you gotta be super-user! */
if (!capable(CAP_SYS_TIME))
return -EPERM;
/*
* Validate if a timespec/timeval used to inject a time
* offset is valid. Offsets can be postive or negative, so
* we don't check tv_sec. The value of the timeval/timespec
* is the sum of its fields,but *NOTE*:
* The field tv_usec/tv_nsec must always be non-negative and
* we can't have more nanoseconds/microseconds than a second.
*/
if (txc->time.tv_usec < 0)
return -EINVAL;
if (txc->modes & ADJ_NANO) {
if (txc->time.tv_usec >= NSEC_PER_SEC)
return -EINVAL;
} else {
if (txc->time.tv_usec >= USEC_PER_SEC)
return -EINVAL;
}
}
/*
* Check for potential multiplication overflows that can
* only happen on 64-bit systems:
*/
if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
if (LLONG_MIN / PPM_SCALE > txc->freq)
return -EINVAL;
if (LLONG_MAX / PPM_SCALE < txc->freq)
return -EINVAL;
}
return 0;
}
/**
* do_adjtimex() - Accessor function to NTP __do_adjtimex function
*/
int do_adjtimex(struct __kernel_timex *txc)
{
struct timekeeper *tk = &tk_core.timekeeper;
struct audit_ntp_data ad;
unsigned long flags;
struct timespec64 ts;
s32 orig_tai, tai;
int ret;
/* Validate the data before disabling interrupts */
ret = timekeeping_validate_timex(txc);
if (ret)
return ret;
if (txc->modes & ADJ_SETOFFSET) {
struct timespec64 delta;
delta.tv_sec = txc->time.tv_sec;
delta.tv_nsec = txc->time.tv_usec;
if (!(txc->modes & ADJ_NANO))
delta.tv_nsec *= 1000;
ret = timekeeping_inject_offset(&delta);
if (ret)
return ret;
audit_tk_injoffset(delta);
}
audit_ntp_init(&ad);
ktime_get_real_ts64(&ts);
raw_spin_lock_irqsave(&timekeeper_lock, flags);
write_seqcount_begin(&tk_core.seq);
orig_tai = tai = tk->tai_offset;
ret = __do_adjtimex(txc, &ts, &tai, &ad);
if (tai != orig_tai) {
__timekeeping_set_tai_offset(tk, tai);
timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
}
tk_update_leap_state(tk);
write_seqcount_end(&tk_core.seq);
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
audit_ntp_log(&ad);
/* Update the multiplier immediately if frequency was set directly */
if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
timekeeping_advance(TK_ADV_FREQ);
if (tai != orig_tai)
clock_was_set();
ntp_notify_cmos_timer();
return ret;
}
#ifdef CONFIG_NTP_PPS
/**
* hardpps() - Accessor function to NTP __hardpps function
*/
void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
{
unsigned long flags;
raw_spin_lock_irqsave(&timekeeper_lock, flags);
write_seqcount_begin(&tk_core.seq);
__hardpps(phase_ts, raw_ts);
write_seqcount_end(&tk_core.seq);
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
}
EXPORT_SYMBOL(hardpps);
#endif /* CONFIG_NTP_PPS */
/**
* xtime_update() - advances the timekeeping infrastructure
* @ticks: number of ticks, that have elapsed since the last call.
*
* Must be called with interrupts disabled.
*/
void xtime_update(unsigned long ticks)
{
raw_spin_lock(&jiffies_lock);
write_seqcount_begin(&jiffies_seq);
do_timer(ticks);
write_seqcount_end(&jiffies_seq);
raw_spin_unlock(&jiffies_lock);
update_wall_time();
}