Update the assigned value of the poll result to be EPOLLHUP instead of POLLHUP to match the __poll_t type. While at it, simplify the logic of setting the mask result of the poll function. Reported-by: kernel test robot <lkp@intel.com> Reviewed-by: Alexander Graf <graf@amazon.com> Signed-off-by: Andra Paraschiv <andraprs@amazon.com> Link: https://lore.kernel.org/r/20201102173622.32169-1-andraprs@amazon.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
		
			
				
	
	
		
			1732 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1732 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * DOC: Enclave lifetime management driver for Nitro Enclaves (NE).
 | |
|  * Nitro is a hypervisor that has been developed by Amazon.
 | |
|  */
 | |
| 
 | |
| #include <linux/anon_inodes.h>
 | |
| #include <linux/capability.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/device.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/limits.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/miscdevice.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/nitro_enclaves.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/poll.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/types.h>
 | |
| #include <uapi/linux/vm_sockets.h>
 | |
| 
 | |
| #include "ne_misc_dev.h"
 | |
| #include "ne_pci_dev.h"
 | |
| 
 | |
| /**
 | |
|  * NE_CPUS_SIZE - Size for max 128 CPUs, for now, in a cpu-list string, comma
 | |
|  *		  separated. The NE CPU pool includes CPUs from a single NUMA
 | |
|  *		  node.
 | |
|  */
 | |
| #define NE_CPUS_SIZE		(512)
 | |
| 
 | |
| /**
 | |
|  * NE_EIF_LOAD_OFFSET - The offset where to copy the Enclave Image Format (EIF)
 | |
|  *			image in enclave memory.
 | |
|  */
 | |
| #define NE_EIF_LOAD_OFFSET	(8 * 1024UL * 1024UL)
 | |
| 
 | |
| /**
 | |
|  * NE_MIN_ENCLAVE_MEM_SIZE - The minimum memory size an enclave can be launched
 | |
|  *			     with.
 | |
|  */
 | |
| #define NE_MIN_ENCLAVE_MEM_SIZE	(64 * 1024UL * 1024UL)
 | |
| 
 | |
| /**
 | |
|  * NE_MIN_MEM_REGION_SIZE - The minimum size of an enclave memory region.
 | |
|  */
 | |
| #define NE_MIN_MEM_REGION_SIZE	(2 * 1024UL * 1024UL)
 | |
| 
 | |
| /**
 | |
|  * NE_PARENT_VM_CID - The CID for the vsock device of the primary / parent VM.
 | |
|  */
 | |
| #define NE_PARENT_VM_CID	(3)
 | |
| 
 | |
| static long ne_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 | |
| 
 | |
| static const struct file_operations ne_fops = {
 | |
| 	.owner		= THIS_MODULE,
 | |
| 	.llseek		= noop_llseek,
 | |
| 	.unlocked_ioctl	= ne_ioctl,
 | |
| };
 | |
| 
 | |
| static struct miscdevice ne_misc_dev = {
 | |
| 	.minor	= MISC_DYNAMIC_MINOR,
 | |
| 	.name	= "nitro_enclaves",
 | |
| 	.fops	= &ne_fops,
 | |
| 	.mode	= 0660,
 | |
| };
 | |
| 
 | |
| struct ne_devs ne_devs = {
 | |
| 	.ne_misc_dev	= &ne_misc_dev,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * TODO: Update logic to create new sysfs entries instead of using
 | |
|  * a kernel parameter e.g. if multiple sysfs files needed.
 | |
|  */
 | |
| static int ne_set_kernel_param(const char *val, const struct kernel_param *kp);
 | |
| 
 | |
| static const struct kernel_param_ops ne_cpu_pool_ops = {
 | |
| 	.get	= param_get_string,
 | |
| 	.set	= ne_set_kernel_param,
 | |
| };
 | |
| 
 | |
| static char ne_cpus[NE_CPUS_SIZE];
 | |
| static struct kparam_string ne_cpus_arg = {
 | |
| 	.maxlen	= sizeof(ne_cpus),
 | |
| 	.string	= ne_cpus,
 | |
| };
 | |
| 
 | |
| module_param_cb(ne_cpus, &ne_cpu_pool_ops, &ne_cpus_arg, 0644);
 | |
| /* https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html#cpu-lists */
 | |
| MODULE_PARM_DESC(ne_cpus, "<cpu-list> - CPU pool used for Nitro Enclaves");
 | |
| 
 | |
| /**
 | |
|  * struct ne_cpu_pool - CPU pool used for Nitro Enclaves.
 | |
|  * @avail_threads_per_core:	Available full CPU cores to be dedicated to
 | |
|  *				enclave(s). The cpumasks from the array, indexed
 | |
|  *				by core id, contain all the threads from the
 | |
|  *				available cores, that are not set for created
 | |
|  *				enclave(s). The full CPU cores are part of the
 | |
|  *				NE CPU pool.
 | |
|  * @mutex:			Mutex for the access to the NE CPU pool.
 | |
|  * @nr_parent_vm_cores :	The size of the available threads per core array.
 | |
|  *				The total number of CPU cores available on the
 | |
|  *				primary / parent VM.
 | |
|  * @nr_threads_per_core:	The number of threads that a full CPU core has.
 | |
|  * @numa_node:			NUMA node of the CPUs in the pool.
 | |
|  */
 | |
| struct ne_cpu_pool {
 | |
| 	cpumask_var_t	*avail_threads_per_core;
 | |
| 	struct mutex	mutex;
 | |
| 	unsigned int	nr_parent_vm_cores;
 | |
| 	unsigned int	nr_threads_per_core;
 | |
| 	int		numa_node;
 | |
| };
 | |
| 
 | |
| static struct ne_cpu_pool ne_cpu_pool;
 | |
| 
 | |
| /**
 | |
|  * ne_check_enclaves_created() - Verify if at least one enclave has been created.
 | |
|  * @void:	No parameters provided.
 | |
|  *
 | |
|  * Context: Process context.
 | |
|  * Return:
 | |
|  * * True if at least one enclave is created.
 | |
|  * * False otherwise.
 | |
|  */
 | |
| static bool ne_check_enclaves_created(void)
 | |
| {
 | |
| 	struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev;
 | |
| 	bool ret = false;
 | |
| 
 | |
| 	if (!ne_pci_dev)
 | |
| 		return ret;
 | |
| 
 | |
| 	mutex_lock(&ne_pci_dev->enclaves_list_mutex);
 | |
| 
 | |
| 	if (!list_empty(&ne_pci_dev->enclaves_list))
 | |
| 		ret = true;
 | |
| 
 | |
| 	mutex_unlock(&ne_pci_dev->enclaves_list_mutex);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ne_setup_cpu_pool() - Set the NE CPU pool after handling sanity checks such
 | |
|  *			 as not sharing CPU cores with the primary / parent VM
 | |
|  *			 or not using CPU 0, which should remain available for
 | |
|  *			 the primary / parent VM. Offline the CPUs from the
 | |
|  *			 pool after the checks passed.
 | |
|  * @ne_cpu_list:	The CPU list used for setting NE CPU pool.
 | |
|  *
 | |
|  * Context: Process context.
 | |
|  * Return:
 | |
|  * * 0 on success.
 | |
|  * * Negative return value on failure.
 | |
|  */
 | |
| static int ne_setup_cpu_pool(const char *ne_cpu_list)
 | |
| {
 | |
| 	int core_id = -1;
 | |
| 	unsigned int cpu = 0;
 | |
| 	cpumask_var_t cpu_pool;
 | |
| 	unsigned int cpu_sibling = 0;
 | |
| 	unsigned int i = 0;
 | |
| 	int numa_node = -1;
 | |
| 	int rc = -EINVAL;
 | |
| 
 | |
| 	if (!zalloc_cpumask_var(&cpu_pool, GFP_KERNEL))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	mutex_lock(&ne_cpu_pool.mutex);
 | |
| 
 | |
| 	rc = cpulist_parse(ne_cpu_list, cpu_pool);
 | |
| 	if (rc < 0) {
 | |
| 		pr_err("%s: Error in cpulist parse [rc=%d]\n", ne_misc_dev.name, rc);
 | |
| 
 | |
| 		goto free_pool_cpumask;
 | |
| 	}
 | |
| 
 | |
| 	cpu = cpumask_any(cpu_pool);
 | |
| 	if (cpu >= nr_cpu_ids) {
 | |
| 		pr_err("%s: No CPUs available in CPU pool\n", ne_misc_dev.name);
 | |
| 
 | |
| 		rc = -EINVAL;
 | |
| 
 | |
| 		goto free_pool_cpumask;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if the CPUs are online, to further get info about them
 | |
| 	 * e.g. numa node, core id, siblings.
 | |
| 	 */
 | |
| 	for_each_cpu(cpu, cpu_pool)
 | |
| 		if (cpu_is_offline(cpu)) {
 | |
| 			pr_err("%s: CPU %d is offline, has to be online to get its metadata\n",
 | |
| 			       ne_misc_dev.name, cpu);
 | |
| 
 | |
| 			rc = -EINVAL;
 | |
| 
 | |
| 			goto free_pool_cpumask;
 | |
| 		}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if the CPUs from the NE CPU pool are from the same NUMA node.
 | |
| 	 */
 | |
| 	for_each_cpu(cpu, cpu_pool)
 | |
| 		if (numa_node < 0) {
 | |
| 			numa_node = cpu_to_node(cpu);
 | |
| 			if (numa_node < 0) {
 | |
| 				pr_err("%s: Invalid NUMA node %d\n",
 | |
| 				       ne_misc_dev.name, numa_node);
 | |
| 
 | |
| 				rc = -EINVAL;
 | |
| 
 | |
| 				goto free_pool_cpumask;
 | |
| 			}
 | |
| 		} else {
 | |
| 			if (numa_node != cpu_to_node(cpu)) {
 | |
| 				pr_err("%s: CPUs with different NUMA nodes\n",
 | |
| 				       ne_misc_dev.name);
 | |
| 
 | |
| 				rc = -EINVAL;
 | |
| 
 | |
| 				goto free_pool_cpumask;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if CPU 0 and its siblings are included in the provided CPU pool
 | |
| 	 * They should remain available for the primary / parent VM.
 | |
| 	 */
 | |
| 	if (cpumask_test_cpu(0, cpu_pool)) {
 | |
| 		pr_err("%s: CPU 0 has to remain available\n", ne_misc_dev.name);
 | |
| 
 | |
| 		rc = -EINVAL;
 | |
| 
 | |
| 		goto free_pool_cpumask;
 | |
| 	}
 | |
| 
 | |
| 	for_each_cpu(cpu_sibling, topology_sibling_cpumask(0)) {
 | |
| 		if (cpumask_test_cpu(cpu_sibling, cpu_pool)) {
 | |
| 			pr_err("%s: CPU sibling %d for CPU 0 is in CPU pool\n",
 | |
| 			       ne_misc_dev.name, cpu_sibling);
 | |
| 
 | |
| 			rc = -EINVAL;
 | |
| 
 | |
| 			goto free_pool_cpumask;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if CPU siblings are included in the provided CPU pool. The
 | |
| 	 * expectation is that full CPU cores are made available in the CPU pool
 | |
| 	 * for enclaves.
 | |
| 	 */
 | |
| 	for_each_cpu(cpu, cpu_pool) {
 | |
| 		for_each_cpu(cpu_sibling, topology_sibling_cpumask(cpu)) {
 | |
| 			if (!cpumask_test_cpu(cpu_sibling, cpu_pool)) {
 | |
| 				pr_err("%s: CPU %d is not in CPU pool\n",
 | |
| 				       ne_misc_dev.name, cpu_sibling);
 | |
| 
 | |
| 				rc = -EINVAL;
 | |
| 
 | |
| 				goto free_pool_cpumask;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Calculate the number of threads from a full CPU core. */
 | |
| 	cpu = cpumask_any(cpu_pool);
 | |
| 	for_each_cpu(cpu_sibling, topology_sibling_cpumask(cpu))
 | |
| 		ne_cpu_pool.nr_threads_per_core++;
 | |
| 
 | |
| 	ne_cpu_pool.nr_parent_vm_cores = nr_cpu_ids / ne_cpu_pool.nr_threads_per_core;
 | |
| 
 | |
| 	ne_cpu_pool.avail_threads_per_core = kcalloc(ne_cpu_pool.nr_parent_vm_cores,
 | |
| 					     sizeof(*ne_cpu_pool.avail_threads_per_core),
 | |
| 					     GFP_KERNEL);
 | |
| 	if (!ne_cpu_pool.avail_threads_per_core) {
 | |
| 		rc = -ENOMEM;
 | |
| 
 | |
| 		goto free_pool_cpumask;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
 | |
| 		if (!zalloc_cpumask_var(&ne_cpu_pool.avail_threads_per_core[i], GFP_KERNEL)) {
 | |
| 			rc = -ENOMEM;
 | |
| 
 | |
| 			goto free_cores_cpumask;
 | |
| 		}
 | |
| 
 | |
| 	/*
 | |
| 	 * Split the NE CPU pool in threads per core to keep the CPU topology
 | |
| 	 * after offlining the CPUs.
 | |
| 	 */
 | |
| 	for_each_cpu(cpu, cpu_pool) {
 | |
| 		core_id = topology_core_id(cpu);
 | |
| 		if (core_id < 0 || core_id >= ne_cpu_pool.nr_parent_vm_cores) {
 | |
| 			pr_err("%s: Invalid core id  %d for CPU %d\n",
 | |
| 			       ne_misc_dev.name, core_id, cpu);
 | |
| 
 | |
| 			rc = -EINVAL;
 | |
| 
 | |
| 			goto clear_cpumask;
 | |
| 		}
 | |
| 
 | |
| 		cpumask_set_cpu(cpu, ne_cpu_pool.avail_threads_per_core[core_id]);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * CPUs that are given to enclave(s) should not be considered online
 | |
| 	 * by Linux anymore, as the hypervisor will degrade them to floating.
 | |
| 	 * The physical CPUs (full cores) are carved out of the primary / parent
 | |
| 	 * VM and given to the enclave VM. The same number of vCPUs would run
 | |
| 	 * on less pCPUs for the primary / parent VM.
 | |
| 	 *
 | |
| 	 * We offline them here, to not degrade performance and expose correct
 | |
| 	 * topology to Linux and user space.
 | |
| 	 */
 | |
| 	for_each_cpu(cpu, cpu_pool) {
 | |
| 		rc = remove_cpu(cpu);
 | |
| 		if (rc != 0) {
 | |
| 			pr_err("%s: CPU %d is not offlined [rc=%d]\n",
 | |
| 			       ne_misc_dev.name, cpu, rc);
 | |
| 
 | |
| 			goto online_cpus;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	free_cpumask_var(cpu_pool);
 | |
| 
 | |
| 	ne_cpu_pool.numa_node = numa_node;
 | |
| 
 | |
| 	mutex_unlock(&ne_cpu_pool.mutex);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| online_cpus:
 | |
| 	for_each_cpu(cpu, cpu_pool)
 | |
| 		add_cpu(cpu);
 | |
| clear_cpumask:
 | |
| 	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
 | |
| 		cpumask_clear(ne_cpu_pool.avail_threads_per_core[i]);
 | |
| free_cores_cpumask:
 | |
| 	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
 | |
| 		free_cpumask_var(ne_cpu_pool.avail_threads_per_core[i]);
 | |
| 	kfree(ne_cpu_pool.avail_threads_per_core);
 | |
| free_pool_cpumask:
 | |
| 	free_cpumask_var(cpu_pool);
 | |
| 	ne_cpu_pool.nr_parent_vm_cores = 0;
 | |
| 	ne_cpu_pool.nr_threads_per_core = 0;
 | |
| 	ne_cpu_pool.numa_node = -1;
 | |
| 	mutex_unlock(&ne_cpu_pool.mutex);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ne_teardown_cpu_pool() - Online the CPUs from the NE CPU pool and cleanup the
 | |
|  *			    CPU pool.
 | |
|  * @void:	No parameters provided.
 | |
|  *
 | |
|  * Context: Process context.
 | |
|  */
 | |
| static void ne_teardown_cpu_pool(void)
 | |
| {
 | |
| 	unsigned int cpu = 0;
 | |
| 	unsigned int i = 0;
 | |
| 	int rc = -EINVAL;
 | |
| 
 | |
| 	mutex_lock(&ne_cpu_pool.mutex);
 | |
| 
 | |
| 	if (!ne_cpu_pool.nr_parent_vm_cores) {
 | |
| 		mutex_unlock(&ne_cpu_pool.mutex);
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) {
 | |
| 		for_each_cpu(cpu, ne_cpu_pool.avail_threads_per_core[i]) {
 | |
| 			rc = add_cpu(cpu);
 | |
| 			if (rc != 0)
 | |
| 				pr_err("%s: CPU %d is not onlined [rc=%d]\n",
 | |
| 				       ne_misc_dev.name, cpu, rc);
 | |
| 		}
 | |
| 
 | |
| 		cpumask_clear(ne_cpu_pool.avail_threads_per_core[i]);
 | |
| 
 | |
| 		free_cpumask_var(ne_cpu_pool.avail_threads_per_core[i]);
 | |
| 	}
 | |
| 
 | |
| 	kfree(ne_cpu_pool.avail_threads_per_core);
 | |
| 	ne_cpu_pool.nr_parent_vm_cores = 0;
 | |
| 	ne_cpu_pool.nr_threads_per_core = 0;
 | |
| 	ne_cpu_pool.numa_node = -1;
 | |
| 
 | |
| 	mutex_unlock(&ne_cpu_pool.mutex);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ne_set_kernel_param() - Set the NE CPU pool value via the NE kernel parameter.
 | |
|  * @val:	NE CPU pool string value.
 | |
|  * @kp :	NE kernel parameter associated with the NE CPU pool.
 | |
|  *
 | |
|  * Context: Process context.
 | |
|  * Return:
 | |
|  * * 0 on success.
 | |
|  * * Negative return value on failure.
 | |
|  */
 | |
| static int ne_set_kernel_param(const char *val, const struct kernel_param *kp)
 | |
| {
 | |
| 	char error_val[] = "";
 | |
| 	int rc = -EINVAL;
 | |
| 
 | |
| 	if (!capable(CAP_SYS_ADMIN))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	if (ne_check_enclaves_created()) {
 | |
| 		pr_err("%s: The CPU pool is used by enclave(s)\n", ne_misc_dev.name);
 | |
| 
 | |
| 		return -EPERM;
 | |
| 	}
 | |
| 
 | |
| 	ne_teardown_cpu_pool();
 | |
| 
 | |
| 	rc = ne_setup_cpu_pool(val);
 | |
| 	if (rc < 0) {
 | |
| 		pr_err("%s: Error in setup CPU pool [rc=%d]\n", ne_misc_dev.name, rc);
 | |
| 
 | |
| 		param_set_copystring(error_val, kp);
 | |
| 
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	rc = param_set_copystring(val, kp);
 | |
| 	if (rc < 0) {
 | |
| 		pr_err("%s: Error in param set copystring [rc=%d]\n", ne_misc_dev.name, rc);
 | |
| 
 | |
| 		ne_teardown_cpu_pool();
 | |
| 
 | |
| 		param_set_copystring(error_val, kp);
 | |
| 
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ne_donated_cpu() - Check if the provided CPU is already used by the enclave.
 | |
|  * @ne_enclave :	Private data associated with the current enclave.
 | |
|  * @cpu:		CPU to check if already used.
 | |
|  *
 | |
|  * Context: Process context. This function is called with the ne_enclave mutex held.
 | |
|  * Return:
 | |
|  * * True if the provided CPU is already used by the enclave.
 | |
|  * * False otherwise.
 | |
|  */
 | |
| static bool ne_donated_cpu(struct ne_enclave *ne_enclave, unsigned int cpu)
 | |
| {
 | |
| 	if (cpumask_test_cpu(cpu, ne_enclave->vcpu_ids))
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ne_get_unused_core_from_cpu_pool() - Get the id of a full core from the
 | |
|  *					NE CPU pool.
 | |
|  * @void:	No parameters provided.
 | |
|  *
 | |
|  * Context: Process context. This function is called with the ne_enclave and
 | |
|  *	    ne_cpu_pool mutexes held.
 | |
|  * Return:
 | |
|  * * Core id.
 | |
|  * * -1 if no CPU core available in the pool.
 | |
|  */
 | |
| static int ne_get_unused_core_from_cpu_pool(void)
 | |
| {
 | |
| 	int core_id = -1;
 | |
| 	unsigned int i = 0;
 | |
| 
 | |
| 	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
 | |
| 		if (!cpumask_empty(ne_cpu_pool.avail_threads_per_core[i])) {
 | |
| 			core_id = i;
 | |
| 
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 	return core_id;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ne_set_enclave_threads_per_core() - Set the threads of the provided core in
 | |
|  *				       the enclave data structure.
 | |
|  * @ne_enclave :	Private data associated with the current enclave.
 | |
|  * @core_id:		Core id to get its threads from the NE CPU pool.
 | |
|  * @vcpu_id:		vCPU id part of the provided core.
 | |
|  *
 | |
|  * Context: Process context. This function is called with the ne_enclave and
 | |
|  *	    ne_cpu_pool mutexes held.
 | |
|  * Return:
 | |
|  * * 0 on success.
 | |
|  * * Negative return value on failure.
 | |
|  */
 | |
| static int ne_set_enclave_threads_per_core(struct ne_enclave *ne_enclave,
 | |
| 					   int core_id, u32 vcpu_id)
 | |
| {
 | |
| 	unsigned int cpu = 0;
 | |
| 
 | |
| 	if (core_id < 0 && vcpu_id == 0) {
 | |
| 		dev_err_ratelimited(ne_misc_dev.this_device,
 | |
| 				    "No CPUs available in NE CPU pool\n");
 | |
| 
 | |
| 		return -NE_ERR_NO_CPUS_AVAIL_IN_POOL;
 | |
| 	}
 | |
| 
 | |
| 	if (core_id < 0) {
 | |
| 		dev_err_ratelimited(ne_misc_dev.this_device,
 | |
| 				    "CPU %d is not in NE CPU pool\n", vcpu_id);
 | |
| 
 | |
| 		return -NE_ERR_VCPU_NOT_IN_CPU_POOL;
 | |
| 	}
 | |
| 
 | |
| 	if (core_id >= ne_enclave->nr_parent_vm_cores) {
 | |
| 		dev_err_ratelimited(ne_misc_dev.this_device,
 | |
| 				    "Invalid core id %d - ne_enclave\n", core_id);
 | |
| 
 | |
| 		return -NE_ERR_VCPU_INVALID_CPU_CORE;
 | |
| 	}
 | |
| 
 | |
| 	for_each_cpu(cpu, ne_cpu_pool.avail_threads_per_core[core_id])
 | |
| 		cpumask_set_cpu(cpu, ne_enclave->threads_per_core[core_id]);
 | |
| 
 | |
| 	cpumask_clear(ne_cpu_pool.avail_threads_per_core[core_id]);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ne_get_cpu_from_cpu_pool() - Get a CPU from the NE CPU pool, either from the
 | |
|  *				remaining sibling(s) of a CPU core or the first
 | |
|  *				sibling of a new CPU core.
 | |
|  * @ne_enclave :	Private data associated with the current enclave.
 | |
|  * @vcpu_id:		vCPU to get from the NE CPU pool.
 | |
|  *
 | |
|  * Context: Process context. This function is called with the ne_enclave mutex held.
 | |
|  * Return:
 | |
|  * * 0 on success.
 | |
|  * * Negative return value on failure.
 | |
|  */
 | |
| static int ne_get_cpu_from_cpu_pool(struct ne_enclave *ne_enclave, u32 *vcpu_id)
 | |
| {
 | |
| 	int core_id = -1;
 | |
| 	unsigned int cpu = 0;
 | |
| 	unsigned int i = 0;
 | |
| 	int rc = -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * If previously allocated a thread of a core to this enclave, first
 | |
| 	 * check remaining sibling(s) for new CPU allocations, so that full
 | |
| 	 * CPU cores are used for the enclave.
 | |
| 	 */
 | |
| 	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
 | |
| 		for_each_cpu(cpu, ne_enclave->threads_per_core[i])
 | |
| 			if (!ne_donated_cpu(ne_enclave, cpu)) {
 | |
| 				*vcpu_id = cpu;
 | |
| 
 | |
| 				return 0;
 | |
| 			}
 | |
| 
 | |
| 	mutex_lock(&ne_cpu_pool.mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * If no remaining siblings, get a core from the NE CPU pool and keep
 | |
| 	 * track of all the threads in the enclave threads per core data structure.
 | |
| 	 */
 | |
| 	core_id = ne_get_unused_core_from_cpu_pool();
 | |
| 
 | |
| 	rc = ne_set_enclave_threads_per_core(ne_enclave, core_id, *vcpu_id);
 | |
| 	if (rc < 0)
 | |
| 		goto unlock_mutex;
 | |
| 
 | |
| 	*vcpu_id = cpumask_any(ne_enclave->threads_per_core[core_id]);
 | |
| 
 | |
| 	rc = 0;
 | |
| 
 | |
| unlock_mutex:
 | |
| 	mutex_unlock(&ne_cpu_pool.mutex);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ne_get_vcpu_core_from_cpu_pool() - Get from the NE CPU pool the id of the
 | |
|  *				      core associated with the provided vCPU.
 | |
|  * @vcpu_id:	Provided vCPU id to get its associated core id.
 | |
|  *
 | |
|  * Context: Process context. This function is called with the ne_enclave and
 | |
|  *	    ne_cpu_pool mutexes held.
 | |
|  * Return:
 | |
|  * * Core id.
 | |
|  * * -1 if the provided vCPU is not in the pool.
 | |
|  */
 | |
| static int ne_get_vcpu_core_from_cpu_pool(u32 vcpu_id)
 | |
| {
 | |
| 	int core_id = -1;
 | |
| 	unsigned int i = 0;
 | |
| 
 | |
| 	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
 | |
| 		if (cpumask_test_cpu(vcpu_id, ne_cpu_pool.avail_threads_per_core[i])) {
 | |
| 			core_id = i;
 | |
| 
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return core_id;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ne_check_cpu_in_cpu_pool() - Check if the given vCPU is in the available CPUs
 | |
|  *				from the pool.
 | |
|  * @ne_enclave :	Private data associated with the current enclave.
 | |
|  * @vcpu_id:		ID of the vCPU to check if available in the NE CPU pool.
 | |
|  *
 | |
|  * Context: Process context. This function is called with the ne_enclave mutex held.
 | |
|  * Return:
 | |
|  * * 0 on success.
 | |
|  * * Negative return value on failure.
 | |
|  */
 | |
| static int ne_check_cpu_in_cpu_pool(struct ne_enclave *ne_enclave, u32 vcpu_id)
 | |
| {
 | |
| 	int core_id = -1;
 | |
| 	unsigned int i = 0;
 | |
| 	int rc = -EINVAL;
 | |
| 
 | |
| 	if (ne_donated_cpu(ne_enclave, vcpu_id)) {
 | |
| 		dev_err_ratelimited(ne_misc_dev.this_device,
 | |
| 				    "CPU %d already used\n", vcpu_id);
 | |
| 
 | |
| 		return -NE_ERR_VCPU_ALREADY_USED;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If previously allocated a thread of a core to this enclave, but not
 | |
| 	 * the full core, first check remaining sibling(s).
 | |
| 	 */
 | |
| 	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
 | |
| 		if (cpumask_test_cpu(vcpu_id, ne_enclave->threads_per_core[i]))
 | |
| 			return 0;
 | |
| 
 | |
| 	mutex_lock(&ne_cpu_pool.mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * If no remaining siblings, get from the NE CPU pool the core
 | |
| 	 * associated with the vCPU and keep track of all the threads in the
 | |
| 	 * enclave threads per core data structure.
 | |
| 	 */
 | |
| 	core_id = ne_get_vcpu_core_from_cpu_pool(vcpu_id);
 | |
| 
 | |
| 	rc = ne_set_enclave_threads_per_core(ne_enclave, core_id, vcpu_id);
 | |
| 	if (rc < 0)
 | |
| 		goto unlock_mutex;
 | |
| 
 | |
| 	rc = 0;
 | |
| 
 | |
| unlock_mutex:
 | |
| 	mutex_unlock(&ne_cpu_pool.mutex);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ne_add_vcpu_ioctl() - Add a vCPU to the slot associated with the current
 | |
|  *			 enclave.
 | |
|  * @ne_enclave :	Private data associated with the current enclave.
 | |
|  * @vcpu_id:		ID of the CPU to be associated with the given slot,
 | |
|  *			apic id on x86.
 | |
|  *
 | |
|  * Context: Process context. This function is called with the ne_enclave mutex held.
 | |
|  * Return:
 | |
|  * * 0 on success.
 | |
|  * * Negative return value on failure.
 | |
|  */
 | |
| static int ne_add_vcpu_ioctl(struct ne_enclave *ne_enclave, u32 vcpu_id)
 | |
| {
 | |
| 	struct ne_pci_dev_cmd_reply cmd_reply = {};
 | |
| 	struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev;
 | |
| 	int rc = -EINVAL;
 | |
| 	struct slot_add_vcpu_req slot_add_vcpu_req = {};
 | |
| 
 | |
| 	if (ne_enclave->mm != current->mm)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	slot_add_vcpu_req.slot_uid = ne_enclave->slot_uid;
 | |
| 	slot_add_vcpu_req.vcpu_id = vcpu_id;
 | |
| 
 | |
| 	rc = ne_do_request(pdev, SLOT_ADD_VCPU,
 | |
| 			   &slot_add_vcpu_req, sizeof(slot_add_vcpu_req),
 | |
| 			   &cmd_reply, sizeof(cmd_reply));
 | |
| 	if (rc < 0) {
 | |
| 		dev_err_ratelimited(ne_misc_dev.this_device,
 | |
| 				    "Error in slot add vCPU [rc=%d]\n", rc);
 | |
| 
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	cpumask_set_cpu(vcpu_id, ne_enclave->vcpu_ids);
 | |
| 
 | |
| 	ne_enclave->nr_vcpus++;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ne_sanity_check_user_mem_region() - Sanity check the user space memory
 | |
|  *				       region received during the set user
 | |
|  *				       memory region ioctl call.
 | |
|  * @ne_enclave :	Private data associated with the current enclave.
 | |
|  * @mem_region :	User space memory region to be sanity checked.
 | |
|  *
 | |
|  * Context: Process context. This function is called with the ne_enclave mutex held.
 | |
|  * Return:
 | |
|  * * 0 on success.
 | |
|  * * Negative return value on failure.
 | |
|  */
 | |
| static int ne_sanity_check_user_mem_region(struct ne_enclave *ne_enclave,
 | |
| 	struct ne_user_memory_region mem_region)
 | |
| {
 | |
| 	struct ne_mem_region *ne_mem_region = NULL;
 | |
| 
 | |
| 	if (ne_enclave->mm != current->mm)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	if (mem_region.memory_size & (NE_MIN_MEM_REGION_SIZE - 1)) {
 | |
| 		dev_err_ratelimited(ne_misc_dev.this_device,
 | |
| 				    "User space memory size is not multiple of 2 MiB\n");
 | |
| 
 | |
| 		return -NE_ERR_INVALID_MEM_REGION_SIZE;
 | |
| 	}
 | |
| 
 | |
| 	if (!IS_ALIGNED(mem_region.userspace_addr, NE_MIN_MEM_REGION_SIZE)) {
 | |
| 		dev_err_ratelimited(ne_misc_dev.this_device,
 | |
| 				    "User space address is not 2 MiB aligned\n");
 | |
| 
 | |
| 		return -NE_ERR_UNALIGNED_MEM_REGION_ADDR;
 | |
| 	}
 | |
| 
 | |
| 	if ((mem_region.userspace_addr & (NE_MIN_MEM_REGION_SIZE - 1)) ||
 | |
| 	    !access_ok((void __user *)(unsigned long)mem_region.userspace_addr,
 | |
| 		       mem_region.memory_size)) {
 | |
| 		dev_err_ratelimited(ne_misc_dev.this_device,
 | |
| 				    "Invalid user space address range\n");
 | |
| 
 | |
| 		return -NE_ERR_INVALID_MEM_REGION_ADDR;
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry(ne_mem_region, &ne_enclave->mem_regions_list,
 | |
| 			    mem_region_list_entry) {
 | |
| 		u64 memory_size = ne_mem_region->memory_size;
 | |
| 		u64 userspace_addr = ne_mem_region->userspace_addr;
 | |
| 
 | |
| 		if ((userspace_addr <= mem_region.userspace_addr &&
 | |
| 		    mem_region.userspace_addr < (userspace_addr + memory_size)) ||
 | |
| 		    (mem_region.userspace_addr <= userspace_addr &&
 | |
| 		    (mem_region.userspace_addr + mem_region.memory_size) > userspace_addr)) {
 | |
| 			dev_err_ratelimited(ne_misc_dev.this_device,
 | |
| 					    "User space memory region already used\n");
 | |
| 
 | |
| 			return -NE_ERR_MEM_REGION_ALREADY_USED;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ne_sanity_check_user_mem_region_page() - Sanity check a page from the user space
 | |
|  *					    memory region received during the set
 | |
|  *					    user memory region ioctl call.
 | |
|  * @ne_enclave :	Private data associated with the current enclave.
 | |
|  * @mem_region_page:	Page from the user space memory region to be sanity checked.
 | |
|  *
 | |
|  * Context: Process context. This function is called with the ne_enclave mutex held.
 | |
|  * Return:
 | |
|  * * 0 on success.
 | |
|  * * Negative return value on failure.
 | |
|  */
 | |
| static int ne_sanity_check_user_mem_region_page(struct ne_enclave *ne_enclave,
 | |
| 						struct page *mem_region_page)
 | |
| {
 | |
| 	if (!PageHuge(mem_region_page)) {
 | |
| 		dev_err_ratelimited(ne_misc_dev.this_device,
 | |
| 				    "Not a hugetlbfs page\n");
 | |
| 
 | |
| 		return -NE_ERR_MEM_NOT_HUGE_PAGE;
 | |
| 	}
 | |
| 
 | |
| 	if (page_size(mem_region_page) & (NE_MIN_MEM_REGION_SIZE - 1)) {
 | |
| 		dev_err_ratelimited(ne_misc_dev.this_device,
 | |
| 				    "Page size not multiple of 2 MiB\n");
 | |
| 
 | |
| 		return -NE_ERR_INVALID_PAGE_SIZE;
 | |
| 	}
 | |
| 
 | |
| 	if (ne_enclave->numa_node != page_to_nid(mem_region_page)) {
 | |
| 		dev_err_ratelimited(ne_misc_dev.this_device,
 | |
| 				    "Page is not from NUMA node %d\n",
 | |
| 				    ne_enclave->numa_node);
 | |
| 
 | |
| 		return -NE_ERR_MEM_DIFFERENT_NUMA_NODE;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ne_set_user_memory_region_ioctl() - Add user space memory region to the slot
 | |
|  *				       associated with the current enclave.
 | |
|  * @ne_enclave :	Private data associated with the current enclave.
 | |
|  * @mem_region :	User space memory region to be associated with the given slot.
 | |
|  *
 | |
|  * Context: Process context. This function is called with the ne_enclave mutex held.
 | |
|  * Return:
 | |
|  * * 0 on success.
 | |
|  * * Negative return value on failure.
 | |
|  */
 | |
| static int ne_set_user_memory_region_ioctl(struct ne_enclave *ne_enclave,
 | |
| 	struct ne_user_memory_region mem_region)
 | |
| {
 | |
| 	long gup_rc = 0;
 | |
| 	unsigned long i = 0;
 | |
| 	unsigned long max_nr_pages = 0;
 | |
| 	unsigned long memory_size = 0;
 | |
| 	struct ne_mem_region *ne_mem_region = NULL;
 | |
| 	unsigned long nr_phys_contig_mem_regions = 0;
 | |
| 	struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev;
 | |
| 	struct page **phys_contig_mem_regions = NULL;
 | |
| 	int rc = -EINVAL;
 | |
| 
 | |
| 	rc = ne_sanity_check_user_mem_region(ne_enclave, mem_region);
 | |
| 	if (rc < 0)
 | |
| 		return rc;
 | |
| 
 | |
| 	ne_mem_region = kzalloc(sizeof(*ne_mem_region), GFP_KERNEL);
 | |
| 	if (!ne_mem_region)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	max_nr_pages = mem_region.memory_size / NE_MIN_MEM_REGION_SIZE;
 | |
| 
 | |
| 	ne_mem_region->pages = kcalloc(max_nr_pages, sizeof(*ne_mem_region->pages),
 | |
| 				       GFP_KERNEL);
 | |
| 	if (!ne_mem_region->pages) {
 | |
| 		rc = -ENOMEM;
 | |
| 
 | |
| 		goto free_mem_region;
 | |
| 	}
 | |
| 
 | |
| 	phys_contig_mem_regions = kcalloc(max_nr_pages, sizeof(*phys_contig_mem_regions),
 | |
| 					  GFP_KERNEL);
 | |
| 	if (!phys_contig_mem_regions) {
 | |
| 		rc = -ENOMEM;
 | |
| 
 | |
| 		goto free_mem_region;
 | |
| 	}
 | |
| 
 | |
| 	do {
 | |
| 		i = ne_mem_region->nr_pages;
 | |
| 
 | |
| 		if (i == max_nr_pages) {
 | |
| 			dev_err_ratelimited(ne_misc_dev.this_device,
 | |
| 					    "Reached max nr of pages in the pages data struct\n");
 | |
| 
 | |
| 			rc = -ENOMEM;
 | |
| 
 | |
| 			goto put_pages;
 | |
| 		}
 | |
| 
 | |
| 		gup_rc = get_user_pages(mem_region.userspace_addr + memory_size, 1, FOLL_GET,
 | |
| 					ne_mem_region->pages + i, NULL);
 | |
| 		if (gup_rc < 0) {
 | |
| 			rc = gup_rc;
 | |
| 
 | |
| 			dev_err_ratelimited(ne_misc_dev.this_device,
 | |
| 					    "Error in get user pages [rc=%d]\n", rc);
 | |
| 
 | |
| 			goto put_pages;
 | |
| 		}
 | |
| 
 | |
| 		rc = ne_sanity_check_user_mem_region_page(ne_enclave, ne_mem_region->pages[i]);
 | |
| 		if (rc < 0)
 | |
| 			goto put_pages;
 | |
| 
 | |
| 		/*
 | |
| 		 * TODO: Update once handled non-contiguous memory regions
 | |
| 		 * received from user space or contiguous physical memory regions
 | |
| 		 * larger than 2 MiB e.g. 8 MiB.
 | |
| 		 */
 | |
| 		phys_contig_mem_regions[i] = ne_mem_region->pages[i];
 | |
| 
 | |
| 		memory_size += page_size(ne_mem_region->pages[i]);
 | |
| 
 | |
| 		ne_mem_region->nr_pages++;
 | |
| 	} while (memory_size < mem_region.memory_size);
 | |
| 
 | |
| 	/*
 | |
| 	 * TODO: Update once handled non-contiguous memory regions received
 | |
| 	 * from user space or contiguous physical memory regions larger than
 | |
| 	 * 2 MiB e.g. 8 MiB.
 | |
| 	 */
 | |
| 	nr_phys_contig_mem_regions = ne_mem_region->nr_pages;
 | |
| 
 | |
| 	if ((ne_enclave->nr_mem_regions + nr_phys_contig_mem_regions) >
 | |
| 	    ne_enclave->max_mem_regions) {
 | |
| 		dev_err_ratelimited(ne_misc_dev.this_device,
 | |
| 				    "Reached max memory regions %lld\n",
 | |
| 				    ne_enclave->max_mem_regions);
 | |
| 
 | |
| 		rc = -NE_ERR_MEM_MAX_REGIONS;
 | |
| 
 | |
| 		goto put_pages;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < nr_phys_contig_mem_regions; i++) {
 | |
| 		u64 phys_region_addr = page_to_phys(phys_contig_mem_regions[i]);
 | |
| 		u64 phys_region_size = page_size(phys_contig_mem_regions[i]);
 | |
| 
 | |
| 		if (phys_region_size & (NE_MIN_MEM_REGION_SIZE - 1)) {
 | |
| 			dev_err_ratelimited(ne_misc_dev.this_device,
 | |
| 					    "Physical mem region size is not multiple of 2 MiB\n");
 | |
| 
 | |
| 			rc = -EINVAL;
 | |
| 
 | |
| 			goto put_pages;
 | |
| 		}
 | |
| 
 | |
| 		if (!IS_ALIGNED(phys_region_addr, NE_MIN_MEM_REGION_SIZE)) {
 | |
| 			dev_err_ratelimited(ne_misc_dev.this_device,
 | |
| 					    "Physical mem region address is not 2 MiB aligned\n");
 | |
| 
 | |
| 			rc = -EINVAL;
 | |
| 
 | |
| 			goto put_pages;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ne_mem_region->memory_size = mem_region.memory_size;
 | |
| 	ne_mem_region->userspace_addr = mem_region.userspace_addr;
 | |
| 
 | |
| 	list_add(&ne_mem_region->mem_region_list_entry, &ne_enclave->mem_regions_list);
 | |
| 
 | |
| 	for (i = 0; i < nr_phys_contig_mem_regions; i++) {
 | |
| 		struct ne_pci_dev_cmd_reply cmd_reply = {};
 | |
| 		struct slot_add_mem_req slot_add_mem_req = {};
 | |
| 
 | |
| 		slot_add_mem_req.slot_uid = ne_enclave->slot_uid;
 | |
| 		slot_add_mem_req.paddr = page_to_phys(phys_contig_mem_regions[i]);
 | |
| 		slot_add_mem_req.size = page_size(phys_contig_mem_regions[i]);
 | |
| 
 | |
| 		rc = ne_do_request(pdev, SLOT_ADD_MEM,
 | |
| 				   &slot_add_mem_req, sizeof(slot_add_mem_req),
 | |
| 				   &cmd_reply, sizeof(cmd_reply));
 | |
| 		if (rc < 0) {
 | |
| 			dev_err_ratelimited(ne_misc_dev.this_device,
 | |
| 					    "Error in slot add mem [rc=%d]\n", rc);
 | |
| 
 | |
| 			kfree(phys_contig_mem_regions);
 | |
| 
 | |
| 			/*
 | |
| 			 * Exit here without put pages as memory regions may
 | |
| 			 * already been added.
 | |
| 			 */
 | |
| 			return rc;
 | |
| 		}
 | |
| 
 | |
| 		ne_enclave->mem_size += slot_add_mem_req.size;
 | |
| 		ne_enclave->nr_mem_regions++;
 | |
| 	}
 | |
| 
 | |
| 	kfree(phys_contig_mem_regions);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| put_pages:
 | |
| 	for (i = 0; i < ne_mem_region->nr_pages; i++)
 | |
| 		put_page(ne_mem_region->pages[i]);
 | |
| free_mem_region:
 | |
| 	kfree(phys_contig_mem_regions);
 | |
| 	kfree(ne_mem_region->pages);
 | |
| 	kfree(ne_mem_region);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ne_start_enclave_ioctl() - Trigger enclave start after the enclave resources,
 | |
|  *			      such as memory and CPU, have been set.
 | |
|  * @ne_enclave :		Private data associated with the current enclave.
 | |
|  * @enclave_start_info :	Enclave info that includes enclave cid and flags.
 | |
|  *
 | |
|  * Context: Process context. This function is called with the ne_enclave mutex held.
 | |
|  * Return:
 | |
|  * * 0 on success.
 | |
|  * * Negative return value on failure.
 | |
|  */
 | |
| static int ne_start_enclave_ioctl(struct ne_enclave *ne_enclave,
 | |
| 	struct ne_enclave_start_info *enclave_start_info)
 | |
| {
 | |
| 	struct ne_pci_dev_cmd_reply cmd_reply = {};
 | |
| 	unsigned int cpu = 0;
 | |
| 	struct enclave_start_req enclave_start_req = {};
 | |
| 	unsigned int i = 0;
 | |
| 	struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev;
 | |
| 	int rc = -EINVAL;
 | |
| 
 | |
| 	if (!ne_enclave->nr_mem_regions) {
 | |
| 		dev_err_ratelimited(ne_misc_dev.this_device,
 | |
| 				    "Enclave has no mem regions\n");
 | |
| 
 | |
| 		return -NE_ERR_NO_MEM_REGIONS_ADDED;
 | |
| 	}
 | |
| 
 | |
| 	if (ne_enclave->mem_size < NE_MIN_ENCLAVE_MEM_SIZE) {
 | |
| 		dev_err_ratelimited(ne_misc_dev.this_device,
 | |
| 				    "Enclave memory is less than %ld\n",
 | |
| 				    NE_MIN_ENCLAVE_MEM_SIZE);
 | |
| 
 | |
| 		return -NE_ERR_ENCLAVE_MEM_MIN_SIZE;
 | |
| 	}
 | |
| 
 | |
| 	if (!ne_enclave->nr_vcpus) {
 | |
| 		dev_err_ratelimited(ne_misc_dev.this_device,
 | |
| 				    "Enclave has no vCPUs\n");
 | |
| 
 | |
| 		return -NE_ERR_NO_VCPUS_ADDED;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
 | |
| 		for_each_cpu(cpu, ne_enclave->threads_per_core[i])
 | |
| 			if (!cpumask_test_cpu(cpu, ne_enclave->vcpu_ids)) {
 | |
| 				dev_err_ratelimited(ne_misc_dev.this_device,
 | |
| 						    "Full CPU cores not used\n");
 | |
| 
 | |
| 				return -NE_ERR_FULL_CORES_NOT_USED;
 | |
| 			}
 | |
| 
 | |
| 	enclave_start_req.enclave_cid = enclave_start_info->enclave_cid;
 | |
| 	enclave_start_req.flags = enclave_start_info->flags;
 | |
| 	enclave_start_req.slot_uid = ne_enclave->slot_uid;
 | |
| 
 | |
| 	rc = ne_do_request(pdev, ENCLAVE_START,
 | |
| 			   &enclave_start_req, sizeof(enclave_start_req),
 | |
| 			   &cmd_reply, sizeof(cmd_reply));
 | |
| 	if (rc < 0) {
 | |
| 		dev_err_ratelimited(ne_misc_dev.this_device,
 | |
| 				    "Error in enclave start [rc=%d]\n", rc);
 | |
| 
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	ne_enclave->state = NE_STATE_RUNNING;
 | |
| 
 | |
| 	enclave_start_info->enclave_cid = cmd_reply.enclave_cid;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ne_enclave_ioctl() - Ioctl function provided by the enclave file.
 | |
|  * @file:	File associated with this ioctl function.
 | |
|  * @cmd:	The command that is set for the ioctl call.
 | |
|  * @arg:	The argument that is provided for the ioctl call.
 | |
|  *
 | |
|  * Context: Process context.
 | |
|  * Return:
 | |
|  * * 0 on success.
 | |
|  * * Negative return value on failure.
 | |
|  */
 | |
| static long ne_enclave_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 | |
| {
 | |
| 	struct ne_enclave *ne_enclave = file->private_data;
 | |
| 
 | |
| 	switch (cmd) {
 | |
| 	case NE_ADD_VCPU: {
 | |
| 		int rc = -EINVAL;
 | |
| 		u32 vcpu_id = 0;
 | |
| 
 | |
| 		if (copy_from_user(&vcpu_id, (void __user *)arg, sizeof(vcpu_id)))
 | |
| 			return -EFAULT;
 | |
| 
 | |
| 		mutex_lock(&ne_enclave->enclave_info_mutex);
 | |
| 
 | |
| 		if (ne_enclave->state != NE_STATE_INIT) {
 | |
| 			dev_err_ratelimited(ne_misc_dev.this_device,
 | |
| 					    "Enclave is not in init state\n");
 | |
| 
 | |
| 			mutex_unlock(&ne_enclave->enclave_info_mutex);
 | |
| 
 | |
| 			return -NE_ERR_NOT_IN_INIT_STATE;
 | |
| 		}
 | |
| 
 | |
| 		if (vcpu_id >= (ne_enclave->nr_parent_vm_cores *
 | |
| 		    ne_enclave->nr_threads_per_core)) {
 | |
| 			dev_err_ratelimited(ne_misc_dev.this_device,
 | |
| 					    "vCPU id higher than max CPU id\n");
 | |
| 
 | |
| 			mutex_unlock(&ne_enclave->enclave_info_mutex);
 | |
| 
 | |
| 			return -NE_ERR_INVALID_VCPU;
 | |
| 		}
 | |
| 
 | |
| 		if (!vcpu_id) {
 | |
| 			/* Use the CPU pool for choosing a CPU for the enclave. */
 | |
| 			rc = ne_get_cpu_from_cpu_pool(ne_enclave, &vcpu_id);
 | |
| 			if (rc < 0) {
 | |
| 				dev_err_ratelimited(ne_misc_dev.this_device,
 | |
| 						    "Error in get CPU from pool [rc=%d]\n",
 | |
| 						    rc);
 | |
| 
 | |
| 				mutex_unlock(&ne_enclave->enclave_info_mutex);
 | |
| 
 | |
| 				return rc;
 | |
| 			}
 | |
| 		} else {
 | |
| 			/* Check if the provided vCPU is available in the NE CPU pool. */
 | |
| 			rc = ne_check_cpu_in_cpu_pool(ne_enclave, vcpu_id);
 | |
| 			if (rc < 0) {
 | |
| 				dev_err_ratelimited(ne_misc_dev.this_device,
 | |
| 						    "Error in check CPU %d in pool [rc=%d]\n",
 | |
| 						    vcpu_id, rc);
 | |
| 
 | |
| 				mutex_unlock(&ne_enclave->enclave_info_mutex);
 | |
| 
 | |
| 				return rc;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		rc = ne_add_vcpu_ioctl(ne_enclave, vcpu_id);
 | |
| 		if (rc < 0) {
 | |
| 			mutex_unlock(&ne_enclave->enclave_info_mutex);
 | |
| 
 | |
| 			return rc;
 | |
| 		}
 | |
| 
 | |
| 		mutex_unlock(&ne_enclave->enclave_info_mutex);
 | |
| 
 | |
| 		if (copy_to_user((void __user *)arg, &vcpu_id, sizeof(vcpu_id)))
 | |
| 			return -EFAULT;
 | |
| 
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	case NE_GET_IMAGE_LOAD_INFO: {
 | |
| 		struct ne_image_load_info image_load_info = {};
 | |
| 
 | |
| 		if (copy_from_user(&image_load_info, (void __user *)arg, sizeof(image_load_info)))
 | |
| 			return -EFAULT;
 | |
| 
 | |
| 		mutex_lock(&ne_enclave->enclave_info_mutex);
 | |
| 
 | |
| 		if (ne_enclave->state != NE_STATE_INIT) {
 | |
| 			dev_err_ratelimited(ne_misc_dev.this_device,
 | |
| 					    "Enclave is not in init state\n");
 | |
| 
 | |
| 			mutex_unlock(&ne_enclave->enclave_info_mutex);
 | |
| 
 | |
| 			return -NE_ERR_NOT_IN_INIT_STATE;
 | |
| 		}
 | |
| 
 | |
| 		mutex_unlock(&ne_enclave->enclave_info_mutex);
 | |
| 
 | |
| 		if (!image_load_info.flags ||
 | |
| 		    image_load_info.flags >= NE_IMAGE_LOAD_MAX_FLAG_VAL) {
 | |
| 			dev_err_ratelimited(ne_misc_dev.this_device,
 | |
| 					    "Incorrect flag in enclave image load info\n");
 | |
| 
 | |
| 			return -NE_ERR_INVALID_FLAG_VALUE;
 | |
| 		}
 | |
| 
 | |
| 		if (image_load_info.flags == NE_EIF_IMAGE)
 | |
| 			image_load_info.memory_offset = NE_EIF_LOAD_OFFSET;
 | |
| 
 | |
| 		if (copy_to_user((void __user *)arg, &image_load_info, sizeof(image_load_info)))
 | |
| 			return -EFAULT;
 | |
| 
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	case NE_SET_USER_MEMORY_REGION: {
 | |
| 		struct ne_user_memory_region mem_region = {};
 | |
| 		int rc = -EINVAL;
 | |
| 
 | |
| 		if (copy_from_user(&mem_region, (void __user *)arg, sizeof(mem_region)))
 | |
| 			return -EFAULT;
 | |
| 
 | |
| 		if (mem_region.flags >= NE_MEMORY_REGION_MAX_FLAG_VAL) {
 | |
| 			dev_err_ratelimited(ne_misc_dev.this_device,
 | |
| 					    "Incorrect flag for user memory region\n");
 | |
| 
 | |
| 			return -NE_ERR_INVALID_FLAG_VALUE;
 | |
| 		}
 | |
| 
 | |
| 		mutex_lock(&ne_enclave->enclave_info_mutex);
 | |
| 
 | |
| 		if (ne_enclave->state != NE_STATE_INIT) {
 | |
| 			dev_err_ratelimited(ne_misc_dev.this_device,
 | |
| 					    "Enclave is not in init state\n");
 | |
| 
 | |
| 			mutex_unlock(&ne_enclave->enclave_info_mutex);
 | |
| 
 | |
| 			return -NE_ERR_NOT_IN_INIT_STATE;
 | |
| 		}
 | |
| 
 | |
| 		rc = ne_set_user_memory_region_ioctl(ne_enclave, mem_region);
 | |
| 		if (rc < 0) {
 | |
| 			mutex_unlock(&ne_enclave->enclave_info_mutex);
 | |
| 
 | |
| 			return rc;
 | |
| 		}
 | |
| 
 | |
| 		mutex_unlock(&ne_enclave->enclave_info_mutex);
 | |
| 
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	case NE_START_ENCLAVE: {
 | |
| 		struct ne_enclave_start_info enclave_start_info = {};
 | |
| 		int rc = -EINVAL;
 | |
| 
 | |
| 		if (copy_from_user(&enclave_start_info, (void __user *)arg,
 | |
| 				   sizeof(enclave_start_info)))
 | |
| 			return -EFAULT;
 | |
| 
 | |
| 		if (enclave_start_info.flags >= NE_ENCLAVE_START_MAX_FLAG_VAL) {
 | |
| 			dev_err_ratelimited(ne_misc_dev.this_device,
 | |
| 					    "Incorrect flag in enclave start info\n");
 | |
| 
 | |
| 			return -NE_ERR_INVALID_FLAG_VALUE;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Do not use well-known CIDs - 0, 1, 2 - for enclaves.
 | |
| 		 * VMADDR_CID_ANY = -1U
 | |
| 		 * VMADDR_CID_HYPERVISOR = 0
 | |
| 		 * VMADDR_CID_LOCAL = 1
 | |
| 		 * VMADDR_CID_HOST = 2
 | |
| 		 * Note: 0 is used as a placeholder to auto-generate an enclave CID.
 | |
| 		 * http://man7.org/linux/man-pages/man7/vsock.7.html
 | |
| 		 */
 | |
| 		if (enclave_start_info.enclave_cid > 0 &&
 | |
| 		    enclave_start_info.enclave_cid <= VMADDR_CID_HOST) {
 | |
| 			dev_err_ratelimited(ne_misc_dev.this_device,
 | |
| 					    "Well-known CID value, not to be used for enclaves\n");
 | |
| 
 | |
| 			return -NE_ERR_INVALID_ENCLAVE_CID;
 | |
| 		}
 | |
| 
 | |
| 		if (enclave_start_info.enclave_cid == U32_MAX) {
 | |
| 			dev_err_ratelimited(ne_misc_dev.this_device,
 | |
| 					    "Well-known CID value, not to be used for enclaves\n");
 | |
| 
 | |
| 			return -NE_ERR_INVALID_ENCLAVE_CID;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Do not use the CID of the primary / parent VM for enclaves.
 | |
| 		 */
 | |
| 		if (enclave_start_info.enclave_cid == NE_PARENT_VM_CID) {
 | |
| 			dev_err_ratelimited(ne_misc_dev.this_device,
 | |
| 					    "CID of the parent VM, not to be used for enclaves\n");
 | |
| 
 | |
| 			return -NE_ERR_INVALID_ENCLAVE_CID;
 | |
| 		}
 | |
| 
 | |
| 		/* 64-bit CIDs are not yet supported for the vsock device. */
 | |
| 		if (enclave_start_info.enclave_cid > U32_MAX) {
 | |
| 			dev_err_ratelimited(ne_misc_dev.this_device,
 | |
| 					    "64-bit CIDs not yet supported for the vsock device\n");
 | |
| 
 | |
| 			return -NE_ERR_INVALID_ENCLAVE_CID;
 | |
| 		}
 | |
| 
 | |
| 		mutex_lock(&ne_enclave->enclave_info_mutex);
 | |
| 
 | |
| 		if (ne_enclave->state != NE_STATE_INIT) {
 | |
| 			dev_err_ratelimited(ne_misc_dev.this_device,
 | |
| 					    "Enclave is not in init state\n");
 | |
| 
 | |
| 			mutex_unlock(&ne_enclave->enclave_info_mutex);
 | |
| 
 | |
| 			return -NE_ERR_NOT_IN_INIT_STATE;
 | |
| 		}
 | |
| 
 | |
| 		rc = ne_start_enclave_ioctl(ne_enclave, &enclave_start_info);
 | |
| 		if (rc < 0) {
 | |
| 			mutex_unlock(&ne_enclave->enclave_info_mutex);
 | |
| 
 | |
| 			return rc;
 | |
| 		}
 | |
| 
 | |
| 		mutex_unlock(&ne_enclave->enclave_info_mutex);
 | |
| 
 | |
| 		if (copy_to_user((void __user *)arg, &enclave_start_info,
 | |
| 				 sizeof(enclave_start_info)))
 | |
| 			return -EFAULT;
 | |
| 
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	default:
 | |
| 		return -ENOTTY;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ne_enclave_remove_all_mem_region_entries() - Remove all memory region entries
 | |
|  *						from the enclave data structure.
 | |
|  * @ne_enclave :	Private data associated with the current enclave.
 | |
|  *
 | |
|  * Context: Process context. This function is called with the ne_enclave mutex held.
 | |
|  */
 | |
| static void ne_enclave_remove_all_mem_region_entries(struct ne_enclave *ne_enclave)
 | |
| {
 | |
| 	unsigned long i = 0;
 | |
| 	struct ne_mem_region *ne_mem_region = NULL;
 | |
| 	struct ne_mem_region *ne_mem_region_tmp = NULL;
 | |
| 
 | |
| 	list_for_each_entry_safe(ne_mem_region, ne_mem_region_tmp,
 | |
| 				 &ne_enclave->mem_regions_list,
 | |
| 				 mem_region_list_entry) {
 | |
| 		list_del(&ne_mem_region->mem_region_list_entry);
 | |
| 
 | |
| 		for (i = 0; i < ne_mem_region->nr_pages; i++)
 | |
| 			put_page(ne_mem_region->pages[i]);
 | |
| 
 | |
| 		kfree(ne_mem_region->pages);
 | |
| 
 | |
| 		kfree(ne_mem_region);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ne_enclave_remove_all_vcpu_id_entries() - Remove all vCPU id entries from
 | |
|  *					     the enclave data structure.
 | |
|  * @ne_enclave :	Private data associated with the current enclave.
 | |
|  *
 | |
|  * Context: Process context. This function is called with the ne_enclave mutex held.
 | |
|  */
 | |
| static void ne_enclave_remove_all_vcpu_id_entries(struct ne_enclave *ne_enclave)
 | |
| {
 | |
| 	unsigned int cpu = 0;
 | |
| 	unsigned int i = 0;
 | |
| 
 | |
| 	mutex_lock(&ne_cpu_pool.mutex);
 | |
| 
 | |
| 	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++) {
 | |
| 		for_each_cpu(cpu, ne_enclave->threads_per_core[i])
 | |
| 			/* Update the available NE CPU pool. */
 | |
| 			cpumask_set_cpu(cpu, ne_cpu_pool.avail_threads_per_core[i]);
 | |
| 
 | |
| 		free_cpumask_var(ne_enclave->threads_per_core[i]);
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&ne_cpu_pool.mutex);
 | |
| 
 | |
| 	kfree(ne_enclave->threads_per_core);
 | |
| 
 | |
| 	free_cpumask_var(ne_enclave->vcpu_ids);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ne_pci_dev_remove_enclave_entry() - Remove the enclave entry from the data
 | |
|  *				       structure that is part of the NE PCI
 | |
|  *				       device private data.
 | |
|  * @ne_enclave :	Private data associated with the current enclave.
 | |
|  * @ne_pci_dev :	Private data associated with the PCI device.
 | |
|  *
 | |
|  * Context: Process context. This function is called with the ne_pci_dev enclave
 | |
|  *	    mutex held.
 | |
|  */
 | |
| static void ne_pci_dev_remove_enclave_entry(struct ne_enclave *ne_enclave,
 | |
| 					    struct ne_pci_dev *ne_pci_dev)
 | |
| {
 | |
| 	struct ne_enclave *ne_enclave_entry = NULL;
 | |
| 	struct ne_enclave *ne_enclave_entry_tmp = NULL;
 | |
| 
 | |
| 	list_for_each_entry_safe(ne_enclave_entry, ne_enclave_entry_tmp,
 | |
| 				 &ne_pci_dev->enclaves_list, enclave_list_entry) {
 | |
| 		if (ne_enclave_entry->slot_uid == ne_enclave->slot_uid) {
 | |
| 			list_del(&ne_enclave_entry->enclave_list_entry);
 | |
| 
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ne_enclave_release() - Release function provided by the enclave file.
 | |
|  * @inode:	Inode associated with this file release function.
 | |
|  * @file:	File associated with this release function.
 | |
|  *
 | |
|  * Context: Process context.
 | |
|  * Return:
 | |
|  * * 0 on success.
 | |
|  * * Negative return value on failure.
 | |
|  */
 | |
| static int ne_enclave_release(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	struct ne_pci_dev_cmd_reply cmd_reply = {};
 | |
| 	struct enclave_stop_req enclave_stop_request = {};
 | |
| 	struct ne_enclave *ne_enclave = file->private_data;
 | |
| 	struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev;
 | |
| 	struct pci_dev *pdev = ne_pci_dev->pdev;
 | |
| 	int rc = -EINVAL;
 | |
| 	struct slot_free_req slot_free_req = {};
 | |
| 
 | |
| 	if (!ne_enclave)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Early exit in case there is an error in the enclave creation logic
 | |
| 	 * and fput() is called on the cleanup path.
 | |
| 	 */
 | |
| 	if (!ne_enclave->slot_uid)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Acquire the enclave list mutex before the enclave mutex
 | |
| 	 * in order to avoid deadlocks with @ref ne_event_work_handler.
 | |
| 	 */
 | |
| 	mutex_lock(&ne_pci_dev->enclaves_list_mutex);
 | |
| 	mutex_lock(&ne_enclave->enclave_info_mutex);
 | |
| 
 | |
| 	if (ne_enclave->state != NE_STATE_INIT && ne_enclave->state != NE_STATE_STOPPED) {
 | |
| 		enclave_stop_request.slot_uid = ne_enclave->slot_uid;
 | |
| 
 | |
| 		rc = ne_do_request(pdev, ENCLAVE_STOP,
 | |
| 				   &enclave_stop_request, sizeof(enclave_stop_request),
 | |
| 				   &cmd_reply, sizeof(cmd_reply));
 | |
| 		if (rc < 0) {
 | |
| 			dev_err_ratelimited(ne_misc_dev.this_device,
 | |
| 					    "Error in enclave stop [rc=%d]\n", rc);
 | |
| 
 | |
| 			goto unlock_mutex;
 | |
| 		}
 | |
| 
 | |
| 		memset(&cmd_reply, 0, sizeof(cmd_reply));
 | |
| 	}
 | |
| 
 | |
| 	slot_free_req.slot_uid = ne_enclave->slot_uid;
 | |
| 
 | |
| 	rc = ne_do_request(pdev, SLOT_FREE,
 | |
| 			   &slot_free_req, sizeof(slot_free_req),
 | |
| 			   &cmd_reply, sizeof(cmd_reply));
 | |
| 	if (rc < 0) {
 | |
| 		dev_err_ratelimited(ne_misc_dev.this_device,
 | |
| 				    "Error in slot free [rc=%d]\n", rc);
 | |
| 
 | |
| 		goto unlock_mutex;
 | |
| 	}
 | |
| 
 | |
| 	ne_pci_dev_remove_enclave_entry(ne_enclave, ne_pci_dev);
 | |
| 	ne_enclave_remove_all_mem_region_entries(ne_enclave);
 | |
| 	ne_enclave_remove_all_vcpu_id_entries(ne_enclave);
 | |
| 
 | |
| 	mutex_unlock(&ne_enclave->enclave_info_mutex);
 | |
| 	mutex_unlock(&ne_pci_dev->enclaves_list_mutex);
 | |
| 
 | |
| 	kfree(ne_enclave);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| unlock_mutex:
 | |
| 	mutex_unlock(&ne_enclave->enclave_info_mutex);
 | |
| 	mutex_unlock(&ne_pci_dev->enclaves_list_mutex);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ne_enclave_poll() - Poll functionality used for enclave out-of-band events.
 | |
|  * @file:	File associated with this poll function.
 | |
|  * @wait:	Poll table data structure.
 | |
|  *
 | |
|  * Context: Process context.
 | |
|  * Return:
 | |
|  * * Poll mask.
 | |
|  */
 | |
| static __poll_t ne_enclave_poll(struct file *file, poll_table *wait)
 | |
| {
 | |
| 	__poll_t mask = 0;
 | |
| 	struct ne_enclave *ne_enclave = file->private_data;
 | |
| 
 | |
| 	poll_wait(file, &ne_enclave->eventq, wait);
 | |
| 
 | |
| 	if (ne_enclave->has_event)
 | |
| 		mask |= EPOLLHUP;
 | |
| 
 | |
| 	return mask;
 | |
| }
 | |
| 
 | |
| static const struct file_operations ne_enclave_fops = {
 | |
| 	.owner		= THIS_MODULE,
 | |
| 	.llseek		= noop_llseek,
 | |
| 	.poll		= ne_enclave_poll,
 | |
| 	.unlocked_ioctl	= ne_enclave_ioctl,
 | |
| 	.release	= ne_enclave_release,
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * ne_create_vm_ioctl() - Alloc slot to be associated with an enclave. Create
 | |
|  *			  enclave file descriptor to be further used for enclave
 | |
|  *			  resources handling e.g. memory regions and CPUs.
 | |
|  * @ne_pci_dev :	Private data associated with the PCI device.
 | |
|  * @slot_uid:		Generated unique slot id associated with an enclave.
 | |
|  *
 | |
|  * Context: Process context. This function is called with the ne_pci_dev enclave
 | |
|  *	    mutex held.
 | |
|  * Return:
 | |
|  * * Enclave fd on success.
 | |
|  * * Negative return value on failure.
 | |
|  */
 | |
| static int ne_create_vm_ioctl(struct ne_pci_dev *ne_pci_dev, u64 *slot_uid)
 | |
| {
 | |
| 	struct ne_pci_dev_cmd_reply cmd_reply = {};
 | |
| 	int enclave_fd = -1;
 | |
| 	struct file *enclave_file = NULL;
 | |
| 	unsigned int i = 0;
 | |
| 	struct ne_enclave *ne_enclave = NULL;
 | |
| 	struct pci_dev *pdev = ne_pci_dev->pdev;
 | |
| 	int rc = -EINVAL;
 | |
| 	struct slot_alloc_req slot_alloc_req = {};
 | |
| 
 | |
| 	mutex_lock(&ne_cpu_pool.mutex);
 | |
| 
 | |
| 	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
 | |
| 		if (!cpumask_empty(ne_cpu_pool.avail_threads_per_core[i]))
 | |
| 			break;
 | |
| 
 | |
| 	if (i == ne_cpu_pool.nr_parent_vm_cores) {
 | |
| 		dev_err_ratelimited(ne_misc_dev.this_device,
 | |
| 				    "No CPUs available in CPU pool\n");
 | |
| 
 | |
| 		mutex_unlock(&ne_cpu_pool.mutex);
 | |
| 
 | |
| 		return -NE_ERR_NO_CPUS_AVAIL_IN_POOL;
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&ne_cpu_pool.mutex);
 | |
| 
 | |
| 	ne_enclave = kzalloc(sizeof(*ne_enclave), GFP_KERNEL);
 | |
| 	if (!ne_enclave)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	mutex_lock(&ne_cpu_pool.mutex);
 | |
| 
 | |
| 	ne_enclave->nr_parent_vm_cores = ne_cpu_pool.nr_parent_vm_cores;
 | |
| 	ne_enclave->nr_threads_per_core = ne_cpu_pool.nr_threads_per_core;
 | |
| 	ne_enclave->numa_node = ne_cpu_pool.numa_node;
 | |
| 
 | |
| 	mutex_unlock(&ne_cpu_pool.mutex);
 | |
| 
 | |
| 	ne_enclave->threads_per_core = kcalloc(ne_enclave->nr_parent_vm_cores,
 | |
| 		sizeof(*ne_enclave->threads_per_core), GFP_KERNEL);
 | |
| 	if (!ne_enclave->threads_per_core) {
 | |
| 		rc = -ENOMEM;
 | |
| 
 | |
| 		goto free_ne_enclave;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
 | |
| 		if (!zalloc_cpumask_var(&ne_enclave->threads_per_core[i], GFP_KERNEL)) {
 | |
| 			rc = -ENOMEM;
 | |
| 
 | |
| 			goto free_cpumask;
 | |
| 		}
 | |
| 
 | |
| 	if (!zalloc_cpumask_var(&ne_enclave->vcpu_ids, GFP_KERNEL)) {
 | |
| 		rc = -ENOMEM;
 | |
| 
 | |
| 		goto free_cpumask;
 | |
| 	}
 | |
| 
 | |
| 	enclave_fd = get_unused_fd_flags(O_CLOEXEC);
 | |
| 	if (enclave_fd < 0) {
 | |
| 		rc = enclave_fd;
 | |
| 
 | |
| 		dev_err_ratelimited(ne_misc_dev.this_device,
 | |
| 				    "Error in getting unused fd [rc=%d]\n", rc);
 | |
| 
 | |
| 		goto free_cpumask;
 | |
| 	}
 | |
| 
 | |
| 	enclave_file = anon_inode_getfile("ne-vm", &ne_enclave_fops, ne_enclave, O_RDWR);
 | |
| 	if (IS_ERR(enclave_file)) {
 | |
| 		rc = PTR_ERR(enclave_file);
 | |
| 
 | |
| 		dev_err_ratelimited(ne_misc_dev.this_device,
 | |
| 				    "Error in anon inode get file [rc=%d]\n", rc);
 | |
| 
 | |
| 		goto put_fd;
 | |
| 	}
 | |
| 
 | |
| 	rc = ne_do_request(pdev, SLOT_ALLOC,
 | |
| 			   &slot_alloc_req, sizeof(slot_alloc_req),
 | |
| 			   &cmd_reply, sizeof(cmd_reply));
 | |
| 	if (rc < 0) {
 | |
| 		dev_err_ratelimited(ne_misc_dev.this_device,
 | |
| 				    "Error in slot alloc [rc=%d]\n", rc);
 | |
| 
 | |
| 		goto put_file;
 | |
| 	}
 | |
| 
 | |
| 	init_waitqueue_head(&ne_enclave->eventq);
 | |
| 	ne_enclave->has_event = false;
 | |
| 	mutex_init(&ne_enclave->enclave_info_mutex);
 | |
| 	ne_enclave->max_mem_regions = cmd_reply.mem_regions;
 | |
| 	INIT_LIST_HEAD(&ne_enclave->mem_regions_list);
 | |
| 	ne_enclave->mm = current->mm;
 | |
| 	ne_enclave->slot_uid = cmd_reply.slot_uid;
 | |
| 	ne_enclave->state = NE_STATE_INIT;
 | |
| 
 | |
| 	list_add(&ne_enclave->enclave_list_entry, &ne_pci_dev->enclaves_list);
 | |
| 
 | |
| 	*slot_uid = ne_enclave->slot_uid;
 | |
| 
 | |
| 	fd_install(enclave_fd, enclave_file);
 | |
| 
 | |
| 	return enclave_fd;
 | |
| 
 | |
| put_file:
 | |
| 	fput(enclave_file);
 | |
| put_fd:
 | |
| 	put_unused_fd(enclave_fd);
 | |
| free_cpumask:
 | |
| 	free_cpumask_var(ne_enclave->vcpu_ids);
 | |
| 	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
 | |
| 		free_cpumask_var(ne_enclave->threads_per_core[i]);
 | |
| 	kfree(ne_enclave->threads_per_core);
 | |
| free_ne_enclave:
 | |
| 	kfree(ne_enclave);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ne_ioctl() - Ioctl function provided by the NE misc device.
 | |
|  * @file:	File associated with this ioctl function.
 | |
|  * @cmd:	The command that is set for the ioctl call.
 | |
|  * @arg:	The argument that is provided for the ioctl call.
 | |
|  *
 | |
|  * Context: Process context.
 | |
|  * Return:
 | |
|  * * Ioctl result (e.g. enclave file descriptor) on success.
 | |
|  * * Negative return value on failure.
 | |
|  */
 | |
| static long ne_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 | |
| {
 | |
| 	switch (cmd) {
 | |
| 	case NE_CREATE_VM: {
 | |
| 		int enclave_fd = -1;
 | |
| 		struct file *enclave_file = NULL;
 | |
| 		struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev;
 | |
| 		int rc = -EINVAL;
 | |
| 		u64 slot_uid = 0;
 | |
| 
 | |
| 		mutex_lock(&ne_pci_dev->enclaves_list_mutex);
 | |
| 
 | |
| 		enclave_fd = ne_create_vm_ioctl(ne_pci_dev, &slot_uid);
 | |
| 		if (enclave_fd < 0) {
 | |
| 			rc = enclave_fd;
 | |
| 
 | |
| 			mutex_unlock(&ne_pci_dev->enclaves_list_mutex);
 | |
| 
 | |
| 			return rc;
 | |
| 		}
 | |
| 
 | |
| 		mutex_unlock(&ne_pci_dev->enclaves_list_mutex);
 | |
| 
 | |
| 		if (copy_to_user((void __user *)arg, &slot_uid, sizeof(slot_uid))) {
 | |
| 			enclave_file = fget(enclave_fd);
 | |
| 			/* Decrement file refs to have release() called. */
 | |
| 			fput(enclave_file);
 | |
| 			fput(enclave_file);
 | |
| 			put_unused_fd(enclave_fd);
 | |
| 
 | |
| 			return -EFAULT;
 | |
| 		}
 | |
| 
 | |
| 		return enclave_fd;
 | |
| 	}
 | |
| 
 | |
| 	default:
 | |
| 		return -ENOTTY;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __init ne_init(void)
 | |
| {
 | |
| 	mutex_init(&ne_cpu_pool.mutex);
 | |
| 
 | |
| 	return pci_register_driver(&ne_pci_driver);
 | |
| }
 | |
| 
 | |
| static void __exit ne_exit(void)
 | |
| {
 | |
| 	pci_unregister_driver(&ne_pci_driver);
 | |
| 
 | |
| 	ne_teardown_cpu_pool();
 | |
| }
 | |
| 
 | |
| module_init(ne_init);
 | |
| module_exit(ne_exit);
 | |
| 
 | |
| MODULE_AUTHOR("Amazon.com, Inc. or its affiliates");
 | |
| MODULE_DESCRIPTION("Nitro Enclaves Driver");
 | |
| MODULE_LICENSE("GPL v2");
 |