Many hwmon drivers don't use the id information provided by the old
i2c probe function, and the remainder can easily be adapted to the new
form ("probe_new") by calling i2c_match_id explicitly.
This avoids scanning the identifier tables during probes.
Drivers which didn't use the id are converted as-is; drivers which did
are modified as follows:
* if the information in i2c_client is sufficient, that's used instead
  (client->name);
* anything else is handled by calling i2c_match_id() with the same
  level of error-handling (if any) as before.
A few drivers aren't included in this patch because they have a
different set of maintainers. They will be covered by other patches.
Signed-off-by: Stephen Kitt <steve@sk2.org>
Link: https://lore.kernel.org/r/20200813160222.1503401-1-steve@sk2.org
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
		
	
			
		
			
				
	
	
		
			267 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			267 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * Driver for Linear Technology LTC4215 I2C Hot Swap Controller
 | |
|  *
 | |
|  * Copyright (C) 2009 Ira W. Snyder <iws@ovro.caltech.edu>
 | |
|  *
 | |
|  * Datasheet:
 | |
|  * http://www.linear.com/pc/downloadDocument.do?navId=H0,C1,C1003,C1006,C1163,P17572,D12697
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/i2c.h>
 | |
| #include <linux/hwmon.h>
 | |
| #include <linux/hwmon-sysfs.h>
 | |
| #include <linux/jiffies.h>
 | |
| 
 | |
| /* Here are names of the chip's registers (a.k.a. commands) */
 | |
| enum ltc4215_cmd {
 | |
| 	LTC4215_CONTROL			= 0x00, /* rw */
 | |
| 	LTC4215_ALERT			= 0x01, /* rw */
 | |
| 	LTC4215_STATUS			= 0x02, /* ro */
 | |
| 	LTC4215_FAULT			= 0x03, /* rw */
 | |
| 	LTC4215_SENSE			= 0x04, /* rw */
 | |
| 	LTC4215_SOURCE			= 0x05, /* rw */
 | |
| 	LTC4215_ADIN			= 0x06, /* rw */
 | |
| };
 | |
| 
 | |
| struct ltc4215_data {
 | |
| 	struct i2c_client *client;
 | |
| 
 | |
| 	struct mutex update_lock;
 | |
| 	bool valid;
 | |
| 	unsigned long last_updated; /* in jiffies */
 | |
| 
 | |
| 	/* Registers */
 | |
| 	u8 regs[7];
 | |
| };
 | |
| 
 | |
| static struct ltc4215_data *ltc4215_update_device(struct device *dev)
 | |
| {
 | |
| 	struct ltc4215_data *data = dev_get_drvdata(dev);
 | |
| 	struct i2c_client *client = data->client;
 | |
| 	s32 val;
 | |
| 	int i;
 | |
| 
 | |
| 	mutex_lock(&data->update_lock);
 | |
| 
 | |
| 	/* The chip's A/D updates 10 times per second */
 | |
| 	if (time_after(jiffies, data->last_updated + HZ / 10) || !data->valid) {
 | |
| 
 | |
| 		dev_dbg(&client->dev, "Starting ltc4215 update\n");
 | |
| 
 | |
| 		/* Read all registers */
 | |
| 		for (i = 0; i < ARRAY_SIZE(data->regs); i++) {
 | |
| 			val = i2c_smbus_read_byte_data(client, i);
 | |
| 			if (unlikely(val < 0))
 | |
| 				data->regs[i] = 0;
 | |
| 			else
 | |
| 				data->regs[i] = val;
 | |
| 		}
 | |
| 
 | |
| 		data->last_updated = jiffies;
 | |
| 		data->valid = 1;
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&data->update_lock);
 | |
| 
 | |
| 	return data;
 | |
| }
 | |
| 
 | |
| /* Return the voltage from the given register in millivolts */
 | |
| static int ltc4215_get_voltage(struct device *dev, u8 reg)
 | |
| {
 | |
| 	struct ltc4215_data *data = ltc4215_update_device(dev);
 | |
| 	const u8 regval = data->regs[reg];
 | |
| 	u32 voltage = 0;
 | |
| 
 | |
| 	switch (reg) {
 | |
| 	case LTC4215_SENSE:
 | |
| 		/* 151 uV per increment */
 | |
| 		voltage = regval * 151 / 1000;
 | |
| 		break;
 | |
| 	case LTC4215_SOURCE:
 | |
| 		/* 60.5 mV per increment */
 | |
| 		voltage = regval * 605 / 10;
 | |
| 		break;
 | |
| 	case LTC4215_ADIN:
 | |
| 		/*
 | |
| 		 * The ADIN input is divided by 12.5, and has 4.82 mV
 | |
| 		 * per increment, so we have the additional multiply
 | |
| 		 */
 | |
| 		voltage = regval * 482 * 125 / 1000;
 | |
| 		break;
 | |
| 	default:
 | |
| 		/* If we get here, the developer messed up */
 | |
| 		WARN_ON_ONCE(1);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return voltage;
 | |
| }
 | |
| 
 | |
| /* Return the current from the sense resistor in mA */
 | |
| static unsigned int ltc4215_get_current(struct device *dev)
 | |
| {
 | |
| 	struct ltc4215_data *data = ltc4215_update_device(dev);
 | |
| 
 | |
| 	/*
 | |
| 	 * The strange looking conversions that follow are fixed-point
 | |
| 	 * math, since we cannot do floating point in the kernel.
 | |
| 	 *
 | |
| 	 * Step 1: convert sense register to microVolts
 | |
| 	 * Step 2: convert voltage to milliAmperes
 | |
| 	 *
 | |
| 	 * If you play around with the V=IR equation, you come up with
 | |
| 	 * the following: X uV / Y mOhm == Z mA
 | |
| 	 *
 | |
| 	 * With the resistors that are fractions of a milliOhm, we multiply
 | |
| 	 * the voltage and resistance by 10, to shift the decimal point.
 | |
| 	 * Now we can use the normal division operator again.
 | |
| 	 */
 | |
| 
 | |
| 	/* Calculate voltage in microVolts (151 uV per increment) */
 | |
| 	const unsigned int voltage = data->regs[LTC4215_SENSE] * 151;
 | |
| 
 | |
| 	/* Calculate current in milliAmperes (4 milliOhm sense resistor) */
 | |
| 	const unsigned int curr = voltage / 4;
 | |
| 
 | |
| 	return curr;
 | |
| }
 | |
| 
 | |
| static ssize_t ltc4215_voltage_show(struct device *dev,
 | |
| 				    struct device_attribute *da, char *buf)
 | |
| {
 | |
| 	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
 | |
| 	const int voltage = ltc4215_get_voltage(dev, attr->index);
 | |
| 
 | |
| 	return snprintf(buf, PAGE_SIZE, "%d\n", voltage);
 | |
| }
 | |
| 
 | |
| static ssize_t ltc4215_current_show(struct device *dev,
 | |
| 				    struct device_attribute *da, char *buf)
 | |
| {
 | |
| 	const unsigned int curr = ltc4215_get_current(dev);
 | |
| 
 | |
| 	return snprintf(buf, PAGE_SIZE, "%u\n", curr);
 | |
| }
 | |
| 
 | |
| static ssize_t ltc4215_power_show(struct device *dev,
 | |
| 				  struct device_attribute *da, char *buf)
 | |
| {
 | |
| 	const unsigned int curr = ltc4215_get_current(dev);
 | |
| 	const int output_voltage = ltc4215_get_voltage(dev, LTC4215_ADIN);
 | |
| 
 | |
| 	/* current in mA * voltage in mV == power in uW */
 | |
| 	const unsigned int power = abs(output_voltage * curr);
 | |
| 
 | |
| 	return snprintf(buf, PAGE_SIZE, "%u\n", power);
 | |
| }
 | |
| 
 | |
| static ssize_t ltc4215_alarm_show(struct device *dev,
 | |
| 				  struct device_attribute *da, char *buf)
 | |
| {
 | |
| 	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
 | |
| 	struct ltc4215_data *data = ltc4215_update_device(dev);
 | |
| 	const u8 reg = data->regs[LTC4215_STATUS];
 | |
| 	const u32 mask = attr->index;
 | |
| 
 | |
| 	return snprintf(buf, PAGE_SIZE, "%u\n", !!(reg & mask));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * These macros are used below in constructing device attribute objects
 | |
|  * for use with sysfs_create_group() to make a sysfs device file
 | |
|  * for each register.
 | |
|  */
 | |
| 
 | |
| /* Construct a sensor_device_attribute structure for each register */
 | |
| 
 | |
| /* Current */
 | |
| static SENSOR_DEVICE_ATTR_RO(curr1_input, ltc4215_current, 0);
 | |
| static SENSOR_DEVICE_ATTR_RO(curr1_max_alarm, ltc4215_alarm, 1 << 2);
 | |
| 
 | |
| /* Power (virtual) */
 | |
| static SENSOR_DEVICE_ATTR_RO(power1_input, ltc4215_power, 0);
 | |
| 
 | |
| /* Input Voltage */
 | |
| static SENSOR_DEVICE_ATTR_RO(in1_input, ltc4215_voltage, LTC4215_ADIN);
 | |
| static SENSOR_DEVICE_ATTR_RO(in1_max_alarm, ltc4215_alarm, 1 << 0);
 | |
| static SENSOR_DEVICE_ATTR_RO(in1_min_alarm, ltc4215_alarm, 1 << 1);
 | |
| 
 | |
| /* Output Voltage */
 | |
| static SENSOR_DEVICE_ATTR_RO(in2_input, ltc4215_voltage, LTC4215_SOURCE);
 | |
| static SENSOR_DEVICE_ATTR_RO(in2_min_alarm, ltc4215_alarm, 1 << 3);
 | |
| 
 | |
| /*
 | |
|  * Finally, construct an array of pointers to members of the above objects,
 | |
|  * as required for sysfs_create_group()
 | |
|  */
 | |
| static struct attribute *ltc4215_attrs[] = {
 | |
| 	&sensor_dev_attr_curr1_input.dev_attr.attr,
 | |
| 	&sensor_dev_attr_curr1_max_alarm.dev_attr.attr,
 | |
| 
 | |
| 	&sensor_dev_attr_power1_input.dev_attr.attr,
 | |
| 
 | |
| 	&sensor_dev_attr_in1_input.dev_attr.attr,
 | |
| 	&sensor_dev_attr_in1_max_alarm.dev_attr.attr,
 | |
| 	&sensor_dev_attr_in1_min_alarm.dev_attr.attr,
 | |
| 
 | |
| 	&sensor_dev_attr_in2_input.dev_attr.attr,
 | |
| 	&sensor_dev_attr_in2_min_alarm.dev_attr.attr,
 | |
| 
 | |
| 	NULL,
 | |
| };
 | |
| ATTRIBUTE_GROUPS(ltc4215);
 | |
| 
 | |
| static int ltc4215_probe(struct i2c_client *client)
 | |
| {
 | |
| 	struct i2c_adapter *adapter = client->adapter;
 | |
| 	struct device *dev = &client->dev;
 | |
| 	struct ltc4215_data *data;
 | |
| 	struct device *hwmon_dev;
 | |
| 
 | |
| 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
 | |
| 	if (!data)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	data->client = client;
 | |
| 	mutex_init(&data->update_lock);
 | |
| 
 | |
| 	/* Initialize the LTC4215 chip */
 | |
| 	i2c_smbus_write_byte_data(client, LTC4215_FAULT, 0x00);
 | |
| 
 | |
| 	hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
 | |
| 							   data,
 | |
| 							   ltc4215_groups);
 | |
| 	return PTR_ERR_OR_ZERO(hwmon_dev);
 | |
| }
 | |
| 
 | |
| static const struct i2c_device_id ltc4215_id[] = {
 | |
| 	{ "ltc4215", 0 },
 | |
| 	{ }
 | |
| };
 | |
| MODULE_DEVICE_TABLE(i2c, ltc4215_id);
 | |
| 
 | |
| /* This is the driver that will be inserted */
 | |
| static struct i2c_driver ltc4215_driver = {
 | |
| 	.driver = {
 | |
| 		.name	= "ltc4215",
 | |
| 	},
 | |
| 	.probe_new	= ltc4215_probe,
 | |
| 	.id_table	= ltc4215_id,
 | |
| };
 | |
| 
 | |
| module_i2c_driver(ltc4215_driver);
 | |
| 
 | |
| MODULE_AUTHOR("Ira W. Snyder <iws@ovro.caltech.edu>");
 | |
| MODULE_DESCRIPTION("LTC4215 driver");
 | |
| MODULE_LICENSE("GPL");
 |