forked from Minki/linux
5219e4c93c
Reported-by: Joe Perches <joe@perches.com> Signed-off-by: Dmitry Kravkov <dmitry@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
11644 lines
308 KiB
C
11644 lines
308 KiB
C
/* bnx2x_main.c: Broadcom Everest network driver.
|
|
*
|
|
* Copyright (c) 2007-2011 Broadcom Corporation
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation.
|
|
*
|
|
* Maintained by: Eilon Greenstein <eilong@broadcom.com>
|
|
* Written by: Eliezer Tamir
|
|
* Based on code from Michael Chan's bnx2 driver
|
|
* UDP CSUM errata workaround by Arik Gendelman
|
|
* Slowpath and fastpath rework by Vladislav Zolotarov
|
|
* Statistics and Link management by Yitchak Gertner
|
|
*
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/device.h> /* for dev_info() */
|
|
#include <linux/timer.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/init.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/delay.h>
|
|
#include <asm/byteorder.h>
|
|
#include <linux/time.h>
|
|
#include <linux/ethtool.h>
|
|
#include <linux/mii.h>
|
|
#include <linux/if.h>
|
|
#include <linux/if_vlan.h>
|
|
#include <net/ip.h>
|
|
#include <net/ipv6.h>
|
|
#include <net/tcp.h>
|
|
#include <net/checksum.h>
|
|
#include <net/ip6_checksum.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/crc32.h>
|
|
#include <linux/crc32c.h>
|
|
#include <linux/prefetch.h>
|
|
#include <linux/zlib.h>
|
|
#include <linux/io.h>
|
|
#include <linux/stringify.h>
|
|
#include <linux/vmalloc.h>
|
|
|
|
#include "bnx2x.h"
|
|
#include "bnx2x_init.h"
|
|
#include "bnx2x_init_ops.h"
|
|
#include "bnx2x_cmn.h"
|
|
#include "bnx2x_dcb.h"
|
|
#include "bnx2x_sp.h"
|
|
|
|
#include <linux/firmware.h>
|
|
#include "bnx2x_fw_file_hdr.h"
|
|
/* FW files */
|
|
#define FW_FILE_VERSION \
|
|
__stringify(BCM_5710_FW_MAJOR_VERSION) "." \
|
|
__stringify(BCM_5710_FW_MINOR_VERSION) "." \
|
|
__stringify(BCM_5710_FW_REVISION_VERSION) "." \
|
|
__stringify(BCM_5710_FW_ENGINEERING_VERSION)
|
|
#define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
|
|
#define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
|
|
#define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
|
|
|
|
/* Time in jiffies before concluding the transmitter is hung */
|
|
#define TX_TIMEOUT (5*HZ)
|
|
|
|
static char version[] __devinitdata =
|
|
"Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
|
|
DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
|
|
|
|
MODULE_AUTHOR("Eliezer Tamir");
|
|
MODULE_DESCRIPTION("Broadcom NetXtreme II "
|
|
"BCM57710/57711/57711E/"
|
|
"57712/57712_MF/57800/57800_MF/57810/57810_MF/"
|
|
"57840/57840_MF Driver");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_VERSION(DRV_MODULE_VERSION);
|
|
MODULE_FIRMWARE(FW_FILE_NAME_E1);
|
|
MODULE_FIRMWARE(FW_FILE_NAME_E1H);
|
|
MODULE_FIRMWARE(FW_FILE_NAME_E2);
|
|
|
|
static int multi_mode = 1;
|
|
module_param(multi_mode, int, 0);
|
|
MODULE_PARM_DESC(multi_mode, " Multi queue mode "
|
|
"(0 Disable; 1 Enable (default))");
|
|
|
|
int num_queues;
|
|
module_param(num_queues, int, 0);
|
|
MODULE_PARM_DESC(num_queues, " Number of queues for multi_mode=1"
|
|
" (default is as a number of CPUs)");
|
|
|
|
static int disable_tpa;
|
|
module_param(disable_tpa, int, 0);
|
|
MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
|
|
|
|
#define INT_MODE_INTx 1
|
|
#define INT_MODE_MSI 2
|
|
static int int_mode;
|
|
module_param(int_mode, int, 0);
|
|
MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
|
|
"(1 INT#x; 2 MSI)");
|
|
|
|
static int dropless_fc;
|
|
module_param(dropless_fc, int, 0);
|
|
MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
|
|
|
|
static int poll;
|
|
module_param(poll, int, 0);
|
|
MODULE_PARM_DESC(poll, " Use polling (for debug)");
|
|
|
|
static int mrrs = -1;
|
|
module_param(mrrs, int, 0);
|
|
MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
|
|
|
|
static int debug;
|
|
module_param(debug, int, 0);
|
|
MODULE_PARM_DESC(debug, " Default debug msglevel");
|
|
|
|
|
|
|
|
struct workqueue_struct *bnx2x_wq;
|
|
|
|
enum bnx2x_board_type {
|
|
BCM57710 = 0,
|
|
BCM57711,
|
|
BCM57711E,
|
|
BCM57712,
|
|
BCM57712_MF,
|
|
BCM57800,
|
|
BCM57800_MF,
|
|
BCM57810,
|
|
BCM57810_MF,
|
|
BCM57840,
|
|
BCM57840_MF
|
|
};
|
|
|
|
/* indexed by board_type, above */
|
|
static struct {
|
|
char *name;
|
|
} board_info[] __devinitdata = {
|
|
{ "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
|
|
{ "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
|
|
{ "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
|
|
{ "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
|
|
{ "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
|
|
{ "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
|
|
{ "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
|
|
{ "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
|
|
{ "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
|
|
{ "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
|
|
{ "Broadcom NetXtreme II BCM57840 10/20 Gigabit "
|
|
"Ethernet Multi Function"}
|
|
};
|
|
|
|
#ifndef PCI_DEVICE_ID_NX2_57710
|
|
#define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710
|
|
#endif
|
|
#ifndef PCI_DEVICE_ID_NX2_57711
|
|
#define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711
|
|
#endif
|
|
#ifndef PCI_DEVICE_ID_NX2_57711E
|
|
#define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E
|
|
#endif
|
|
#ifndef PCI_DEVICE_ID_NX2_57712
|
|
#define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712
|
|
#endif
|
|
#ifndef PCI_DEVICE_ID_NX2_57712_MF
|
|
#define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF
|
|
#endif
|
|
#ifndef PCI_DEVICE_ID_NX2_57800
|
|
#define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800
|
|
#endif
|
|
#ifndef PCI_DEVICE_ID_NX2_57800_MF
|
|
#define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF
|
|
#endif
|
|
#ifndef PCI_DEVICE_ID_NX2_57810
|
|
#define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810
|
|
#endif
|
|
#ifndef PCI_DEVICE_ID_NX2_57810_MF
|
|
#define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF
|
|
#endif
|
|
#ifndef PCI_DEVICE_ID_NX2_57840
|
|
#define PCI_DEVICE_ID_NX2_57840 CHIP_NUM_57840
|
|
#endif
|
|
#ifndef PCI_DEVICE_ID_NX2_57840_MF
|
|
#define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF
|
|
#endif
|
|
static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
|
|
{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
|
|
{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
|
|
{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
|
|
{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
|
|
{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
|
|
{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
|
|
{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
|
|
{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
|
|
{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
|
|
{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840), BCM57840 },
|
|
{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
|
|
{ 0 }
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
|
|
|
|
/****************************************************************************
|
|
* General service functions
|
|
****************************************************************************/
|
|
|
|
static inline void __storm_memset_dma_mapping(struct bnx2x *bp,
|
|
u32 addr, dma_addr_t mapping)
|
|
{
|
|
REG_WR(bp, addr, U64_LO(mapping));
|
|
REG_WR(bp, addr + 4, U64_HI(mapping));
|
|
}
|
|
|
|
static inline void storm_memset_spq_addr(struct bnx2x *bp,
|
|
dma_addr_t mapping, u16 abs_fid)
|
|
{
|
|
u32 addr = XSEM_REG_FAST_MEMORY +
|
|
XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
|
|
|
|
__storm_memset_dma_mapping(bp, addr, mapping);
|
|
}
|
|
|
|
static inline void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
|
|
u16 pf_id)
|
|
{
|
|
REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
|
|
pf_id);
|
|
REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
|
|
pf_id);
|
|
REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
|
|
pf_id);
|
|
REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
|
|
pf_id);
|
|
}
|
|
|
|
static inline void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
|
|
u8 enable)
|
|
{
|
|
REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
|
|
enable);
|
|
REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
|
|
enable);
|
|
REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
|
|
enable);
|
|
REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
|
|
enable);
|
|
}
|
|
|
|
static inline void storm_memset_eq_data(struct bnx2x *bp,
|
|
struct event_ring_data *eq_data,
|
|
u16 pfid)
|
|
{
|
|
size_t size = sizeof(struct event_ring_data);
|
|
|
|
u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
|
|
|
|
__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
|
|
}
|
|
|
|
static inline void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
|
|
u16 pfid)
|
|
{
|
|
u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
|
|
REG_WR16(bp, addr, eq_prod);
|
|
}
|
|
|
|
/* used only at init
|
|
* locking is done by mcp
|
|
*/
|
|
static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
|
|
{
|
|
pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
|
|
pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
|
|
pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
|
|
PCICFG_VENDOR_ID_OFFSET);
|
|
}
|
|
|
|
static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
|
|
{
|
|
u32 val;
|
|
|
|
pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
|
|
pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
|
|
pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
|
|
PCICFG_VENDOR_ID_OFFSET);
|
|
|
|
return val;
|
|
}
|
|
|
|
#define DMAE_DP_SRC_GRC "grc src_addr [%08x]"
|
|
#define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]"
|
|
#define DMAE_DP_DST_GRC "grc dst_addr [%08x]"
|
|
#define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]"
|
|
#define DMAE_DP_DST_NONE "dst_addr [none]"
|
|
|
|
static void bnx2x_dp_dmae(struct bnx2x *bp, struct dmae_command *dmae,
|
|
int msglvl)
|
|
{
|
|
u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
|
|
|
|
switch (dmae->opcode & DMAE_COMMAND_DST) {
|
|
case DMAE_CMD_DST_PCI:
|
|
if (src_type == DMAE_CMD_SRC_PCI)
|
|
DP(msglvl, "DMAE: opcode 0x%08x\n"
|
|
"src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
|
|
"comp_addr [%x:%08x], comp_val 0x%08x\n",
|
|
dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
|
|
dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
|
|
dmae->comp_addr_hi, dmae->comp_addr_lo,
|
|
dmae->comp_val);
|
|
else
|
|
DP(msglvl, "DMAE: opcode 0x%08x\n"
|
|
"src [%08x], len [%d*4], dst [%x:%08x]\n"
|
|
"comp_addr [%x:%08x], comp_val 0x%08x\n",
|
|
dmae->opcode, dmae->src_addr_lo >> 2,
|
|
dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
|
|
dmae->comp_addr_hi, dmae->comp_addr_lo,
|
|
dmae->comp_val);
|
|
break;
|
|
case DMAE_CMD_DST_GRC:
|
|
if (src_type == DMAE_CMD_SRC_PCI)
|
|
DP(msglvl, "DMAE: opcode 0x%08x\n"
|
|
"src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
|
|
"comp_addr [%x:%08x], comp_val 0x%08x\n",
|
|
dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
|
|
dmae->len, dmae->dst_addr_lo >> 2,
|
|
dmae->comp_addr_hi, dmae->comp_addr_lo,
|
|
dmae->comp_val);
|
|
else
|
|
DP(msglvl, "DMAE: opcode 0x%08x\n"
|
|
"src [%08x], len [%d*4], dst [%08x]\n"
|
|
"comp_addr [%x:%08x], comp_val 0x%08x\n",
|
|
dmae->opcode, dmae->src_addr_lo >> 2,
|
|
dmae->len, dmae->dst_addr_lo >> 2,
|
|
dmae->comp_addr_hi, dmae->comp_addr_lo,
|
|
dmae->comp_val);
|
|
break;
|
|
default:
|
|
if (src_type == DMAE_CMD_SRC_PCI)
|
|
DP(msglvl, "DMAE: opcode 0x%08x\n"
|
|
"src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n"
|
|
"comp_addr [%x:%08x] comp_val 0x%08x\n",
|
|
dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
|
|
dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
|
|
dmae->comp_val);
|
|
else
|
|
DP(msglvl, "DMAE: opcode 0x%08x\n"
|
|
"src_addr [%08x] len [%d * 4] dst_addr [none]\n"
|
|
"comp_addr [%x:%08x] comp_val 0x%08x\n",
|
|
dmae->opcode, dmae->src_addr_lo >> 2,
|
|
dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
|
|
dmae->comp_val);
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
/* copy command into DMAE command memory and set DMAE command go */
|
|
void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
|
|
{
|
|
u32 cmd_offset;
|
|
int i;
|
|
|
|
cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
|
|
for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
|
|
REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
|
|
|
|
DP(BNX2X_MSG_OFF, "DMAE cmd[%d].%d (0x%08x) : 0x%08x\n",
|
|
idx, i, cmd_offset + i*4, *(((u32 *)dmae) + i));
|
|
}
|
|
REG_WR(bp, dmae_reg_go_c[idx], 1);
|
|
}
|
|
|
|
u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
|
|
{
|
|
return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
|
|
DMAE_CMD_C_ENABLE);
|
|
}
|
|
|
|
u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
|
|
{
|
|
return opcode & ~DMAE_CMD_SRC_RESET;
|
|
}
|
|
|
|
u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
|
|
bool with_comp, u8 comp_type)
|
|
{
|
|
u32 opcode = 0;
|
|
|
|
opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
|
|
(dst_type << DMAE_COMMAND_DST_SHIFT));
|
|
|
|
opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
|
|
|
|
opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
|
|
opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
|
|
(BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
|
|
opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
|
|
|
|
#ifdef __BIG_ENDIAN
|
|
opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
|
|
#else
|
|
opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
|
|
#endif
|
|
if (with_comp)
|
|
opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
|
|
return opcode;
|
|
}
|
|
|
|
static void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
|
|
struct dmae_command *dmae,
|
|
u8 src_type, u8 dst_type)
|
|
{
|
|
memset(dmae, 0, sizeof(struct dmae_command));
|
|
|
|
/* set the opcode */
|
|
dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
|
|
true, DMAE_COMP_PCI);
|
|
|
|
/* fill in the completion parameters */
|
|
dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
|
|
dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
|
|
dmae->comp_val = DMAE_COMP_VAL;
|
|
}
|
|
|
|
/* issue a dmae command over the init-channel and wailt for completion */
|
|
static int bnx2x_issue_dmae_with_comp(struct bnx2x *bp,
|
|
struct dmae_command *dmae)
|
|
{
|
|
u32 *wb_comp = bnx2x_sp(bp, wb_comp);
|
|
int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
|
|
int rc = 0;
|
|
|
|
DP(BNX2X_MSG_OFF, "data before [0x%08x 0x%08x 0x%08x 0x%08x]\n",
|
|
bp->slowpath->wb_data[0], bp->slowpath->wb_data[1],
|
|
bp->slowpath->wb_data[2], bp->slowpath->wb_data[3]);
|
|
|
|
/*
|
|
* Lock the dmae channel. Disable BHs to prevent a dead-lock
|
|
* as long as this code is called both from syscall context and
|
|
* from ndo_set_rx_mode() flow that may be called from BH.
|
|
*/
|
|
spin_lock_bh(&bp->dmae_lock);
|
|
|
|
/* reset completion */
|
|
*wb_comp = 0;
|
|
|
|
/* post the command on the channel used for initializations */
|
|
bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
|
|
|
|
/* wait for completion */
|
|
udelay(5);
|
|
while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
|
|
DP(BNX2X_MSG_OFF, "wb_comp 0x%08x\n", *wb_comp);
|
|
|
|
if (!cnt) {
|
|
BNX2X_ERR("DMAE timeout!\n");
|
|
rc = DMAE_TIMEOUT;
|
|
goto unlock;
|
|
}
|
|
cnt--;
|
|
udelay(50);
|
|
}
|
|
if (*wb_comp & DMAE_PCI_ERR_FLAG) {
|
|
BNX2X_ERR("DMAE PCI error!\n");
|
|
rc = DMAE_PCI_ERROR;
|
|
}
|
|
|
|
DP(BNX2X_MSG_OFF, "data after [0x%08x 0x%08x 0x%08x 0x%08x]\n",
|
|
bp->slowpath->wb_data[0], bp->slowpath->wb_data[1],
|
|
bp->slowpath->wb_data[2], bp->slowpath->wb_data[3]);
|
|
|
|
unlock:
|
|
spin_unlock_bh(&bp->dmae_lock);
|
|
return rc;
|
|
}
|
|
|
|
void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
|
|
u32 len32)
|
|
{
|
|
struct dmae_command dmae;
|
|
|
|
if (!bp->dmae_ready) {
|
|
u32 *data = bnx2x_sp(bp, wb_data[0]);
|
|
|
|
DP(BNX2X_MSG_OFF, "DMAE is not ready (dst_addr %08x len32 %d)"
|
|
" using indirect\n", dst_addr, len32);
|
|
bnx2x_init_ind_wr(bp, dst_addr, data, len32);
|
|
return;
|
|
}
|
|
|
|
/* set opcode and fixed command fields */
|
|
bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
|
|
|
|
/* fill in addresses and len */
|
|
dmae.src_addr_lo = U64_LO(dma_addr);
|
|
dmae.src_addr_hi = U64_HI(dma_addr);
|
|
dmae.dst_addr_lo = dst_addr >> 2;
|
|
dmae.dst_addr_hi = 0;
|
|
dmae.len = len32;
|
|
|
|
bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
|
|
|
|
/* issue the command and wait for completion */
|
|
bnx2x_issue_dmae_with_comp(bp, &dmae);
|
|
}
|
|
|
|
void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
|
|
{
|
|
struct dmae_command dmae;
|
|
|
|
if (!bp->dmae_ready) {
|
|
u32 *data = bnx2x_sp(bp, wb_data[0]);
|
|
int i;
|
|
|
|
DP(BNX2X_MSG_OFF, "DMAE is not ready (src_addr %08x len32 %d)"
|
|
" using indirect\n", src_addr, len32);
|
|
for (i = 0; i < len32; i++)
|
|
data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
|
|
return;
|
|
}
|
|
|
|
/* set opcode and fixed command fields */
|
|
bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
|
|
|
|
/* fill in addresses and len */
|
|
dmae.src_addr_lo = src_addr >> 2;
|
|
dmae.src_addr_hi = 0;
|
|
dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
|
|
dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
|
|
dmae.len = len32;
|
|
|
|
bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
|
|
|
|
/* issue the command and wait for completion */
|
|
bnx2x_issue_dmae_with_comp(bp, &dmae);
|
|
}
|
|
|
|
static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
|
|
u32 addr, u32 len)
|
|
{
|
|
int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
|
|
int offset = 0;
|
|
|
|
while (len > dmae_wr_max) {
|
|
bnx2x_write_dmae(bp, phys_addr + offset,
|
|
addr + offset, dmae_wr_max);
|
|
offset += dmae_wr_max * 4;
|
|
len -= dmae_wr_max;
|
|
}
|
|
|
|
bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
|
|
}
|
|
|
|
/* used only for slowpath so not inlined */
|
|
static void bnx2x_wb_wr(struct bnx2x *bp, int reg, u32 val_hi, u32 val_lo)
|
|
{
|
|
u32 wb_write[2];
|
|
|
|
wb_write[0] = val_hi;
|
|
wb_write[1] = val_lo;
|
|
REG_WR_DMAE(bp, reg, wb_write, 2);
|
|
}
|
|
|
|
#ifdef USE_WB_RD
|
|
static u64 bnx2x_wb_rd(struct bnx2x *bp, int reg)
|
|
{
|
|
u32 wb_data[2];
|
|
|
|
REG_RD_DMAE(bp, reg, wb_data, 2);
|
|
|
|
return HILO_U64(wb_data[0], wb_data[1]);
|
|
}
|
|
#endif
|
|
|
|
static int bnx2x_mc_assert(struct bnx2x *bp)
|
|
{
|
|
char last_idx;
|
|
int i, rc = 0;
|
|
u32 row0, row1, row2, row3;
|
|
|
|
/* XSTORM */
|
|
last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
|
|
XSTORM_ASSERT_LIST_INDEX_OFFSET);
|
|
if (last_idx)
|
|
BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
|
|
|
|
/* print the asserts */
|
|
for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
|
|
|
|
row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
|
|
XSTORM_ASSERT_LIST_OFFSET(i));
|
|
row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
|
|
XSTORM_ASSERT_LIST_OFFSET(i) + 4);
|
|
row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
|
|
XSTORM_ASSERT_LIST_OFFSET(i) + 8);
|
|
row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
|
|
XSTORM_ASSERT_LIST_OFFSET(i) + 12);
|
|
|
|
if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
|
|
BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x"
|
|
" 0x%08x 0x%08x 0x%08x\n",
|
|
i, row3, row2, row1, row0);
|
|
rc++;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* TSTORM */
|
|
last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
|
|
TSTORM_ASSERT_LIST_INDEX_OFFSET);
|
|
if (last_idx)
|
|
BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
|
|
|
|
/* print the asserts */
|
|
for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
|
|
|
|
row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
|
|
TSTORM_ASSERT_LIST_OFFSET(i));
|
|
row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
|
|
TSTORM_ASSERT_LIST_OFFSET(i) + 4);
|
|
row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
|
|
TSTORM_ASSERT_LIST_OFFSET(i) + 8);
|
|
row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
|
|
TSTORM_ASSERT_LIST_OFFSET(i) + 12);
|
|
|
|
if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
|
|
BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x"
|
|
" 0x%08x 0x%08x 0x%08x\n",
|
|
i, row3, row2, row1, row0);
|
|
rc++;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* CSTORM */
|
|
last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
|
|
CSTORM_ASSERT_LIST_INDEX_OFFSET);
|
|
if (last_idx)
|
|
BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
|
|
|
|
/* print the asserts */
|
|
for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
|
|
|
|
row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
|
|
CSTORM_ASSERT_LIST_OFFSET(i));
|
|
row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
|
|
CSTORM_ASSERT_LIST_OFFSET(i) + 4);
|
|
row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
|
|
CSTORM_ASSERT_LIST_OFFSET(i) + 8);
|
|
row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
|
|
CSTORM_ASSERT_LIST_OFFSET(i) + 12);
|
|
|
|
if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
|
|
BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x"
|
|
" 0x%08x 0x%08x 0x%08x\n",
|
|
i, row3, row2, row1, row0);
|
|
rc++;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* USTORM */
|
|
last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
|
|
USTORM_ASSERT_LIST_INDEX_OFFSET);
|
|
if (last_idx)
|
|
BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
|
|
|
|
/* print the asserts */
|
|
for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
|
|
|
|
row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
|
|
USTORM_ASSERT_LIST_OFFSET(i));
|
|
row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
|
|
USTORM_ASSERT_LIST_OFFSET(i) + 4);
|
|
row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
|
|
USTORM_ASSERT_LIST_OFFSET(i) + 8);
|
|
row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
|
|
USTORM_ASSERT_LIST_OFFSET(i) + 12);
|
|
|
|
if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
|
|
BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x"
|
|
" 0x%08x 0x%08x 0x%08x\n",
|
|
i, row3, row2, row1, row0);
|
|
rc++;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
|
|
{
|
|
u32 addr, val;
|
|
u32 mark, offset;
|
|
__be32 data[9];
|
|
int word;
|
|
u32 trace_shmem_base;
|
|
if (BP_NOMCP(bp)) {
|
|
BNX2X_ERR("NO MCP - can not dump\n");
|
|
return;
|
|
}
|
|
netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
|
|
(bp->common.bc_ver & 0xff0000) >> 16,
|
|
(bp->common.bc_ver & 0xff00) >> 8,
|
|
(bp->common.bc_ver & 0xff));
|
|
|
|
val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
|
|
if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
|
|
printk("%s" "MCP PC at 0x%x\n", lvl, val);
|
|
|
|
if (BP_PATH(bp) == 0)
|
|
trace_shmem_base = bp->common.shmem_base;
|
|
else
|
|
trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
|
|
addr = trace_shmem_base - 0x0800 + 4;
|
|
mark = REG_RD(bp, addr);
|
|
mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
|
|
+ ((mark + 0x3) & ~0x3) - 0x08000000;
|
|
printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
|
|
|
|
printk("%s", lvl);
|
|
for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
|
|
for (word = 0; word < 8; word++)
|
|
data[word] = htonl(REG_RD(bp, offset + 4*word));
|
|
data[8] = 0x0;
|
|
pr_cont("%s", (char *)data);
|
|
}
|
|
for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
|
|
for (word = 0; word < 8; word++)
|
|
data[word] = htonl(REG_RD(bp, offset + 4*word));
|
|
data[8] = 0x0;
|
|
pr_cont("%s", (char *)data);
|
|
}
|
|
printk("%s" "end of fw dump\n", lvl);
|
|
}
|
|
|
|
static inline void bnx2x_fw_dump(struct bnx2x *bp)
|
|
{
|
|
bnx2x_fw_dump_lvl(bp, KERN_ERR);
|
|
}
|
|
|
|
void bnx2x_panic_dump(struct bnx2x *bp)
|
|
{
|
|
int i;
|
|
u16 j;
|
|
struct hc_sp_status_block_data sp_sb_data;
|
|
int func = BP_FUNC(bp);
|
|
#ifdef BNX2X_STOP_ON_ERROR
|
|
u16 start = 0, end = 0;
|
|
u8 cos;
|
|
#endif
|
|
|
|
bp->stats_state = STATS_STATE_DISABLED;
|
|
DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
|
|
|
|
BNX2X_ERR("begin crash dump -----------------\n");
|
|
|
|
/* Indices */
|
|
/* Common */
|
|
BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x)"
|
|
" spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
|
|
bp->def_idx, bp->def_att_idx, bp->attn_state,
|
|
bp->spq_prod_idx, bp->stats_counter);
|
|
BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n",
|
|
bp->def_status_blk->atten_status_block.attn_bits,
|
|
bp->def_status_blk->atten_status_block.attn_bits_ack,
|
|
bp->def_status_blk->atten_status_block.status_block_id,
|
|
bp->def_status_blk->atten_status_block.attn_bits_index);
|
|
BNX2X_ERR(" def (");
|
|
for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
|
|
pr_cont("0x%x%s",
|
|
bp->def_status_blk->sp_sb.index_values[i],
|
|
(i == HC_SP_SB_MAX_INDICES - 1) ? ") " : " ");
|
|
|
|
for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
|
|
*((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
|
|
CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
|
|
i*sizeof(u32));
|
|
|
|
pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n",
|
|
sp_sb_data.igu_sb_id,
|
|
sp_sb_data.igu_seg_id,
|
|
sp_sb_data.p_func.pf_id,
|
|
sp_sb_data.p_func.vnic_id,
|
|
sp_sb_data.p_func.vf_id,
|
|
sp_sb_data.p_func.vf_valid,
|
|
sp_sb_data.state);
|
|
|
|
|
|
for_each_eth_queue(bp, i) {
|
|
struct bnx2x_fastpath *fp = &bp->fp[i];
|
|
int loop;
|
|
struct hc_status_block_data_e2 sb_data_e2;
|
|
struct hc_status_block_data_e1x sb_data_e1x;
|
|
struct hc_status_block_sm *hc_sm_p =
|
|
CHIP_IS_E1x(bp) ?
|
|
sb_data_e1x.common.state_machine :
|
|
sb_data_e2.common.state_machine;
|
|
struct hc_index_data *hc_index_p =
|
|
CHIP_IS_E1x(bp) ?
|
|
sb_data_e1x.index_data :
|
|
sb_data_e2.index_data;
|
|
u8 data_size, cos;
|
|
u32 *sb_data_p;
|
|
struct bnx2x_fp_txdata txdata;
|
|
|
|
/* Rx */
|
|
BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x)"
|
|
" rx_comp_prod(0x%x)"
|
|
" rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n",
|
|
i, fp->rx_bd_prod, fp->rx_bd_cons,
|
|
fp->rx_comp_prod,
|
|
fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
|
|
BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x)"
|
|
" fp_hc_idx(0x%x)\n",
|
|
fp->rx_sge_prod, fp->last_max_sge,
|
|
le16_to_cpu(fp->fp_hc_idx));
|
|
|
|
/* Tx */
|
|
for_each_cos_in_tx_queue(fp, cos)
|
|
{
|
|
txdata = fp->txdata[cos];
|
|
BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x)"
|
|
" tx_bd_prod(0x%x) tx_bd_cons(0x%x)"
|
|
" *tx_cons_sb(0x%x)\n",
|
|
i, txdata.tx_pkt_prod,
|
|
txdata.tx_pkt_cons, txdata.tx_bd_prod,
|
|
txdata.tx_bd_cons,
|
|
le16_to_cpu(*txdata.tx_cons_sb));
|
|
}
|
|
|
|
loop = CHIP_IS_E1x(bp) ?
|
|
HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
|
|
|
|
/* host sb data */
|
|
|
|
#ifdef BCM_CNIC
|
|
if (IS_FCOE_FP(fp))
|
|
continue;
|
|
#endif
|
|
BNX2X_ERR(" run indexes (");
|
|
for (j = 0; j < HC_SB_MAX_SM; j++)
|
|
pr_cont("0x%x%s",
|
|
fp->sb_running_index[j],
|
|
(j == HC_SB_MAX_SM - 1) ? ")" : " ");
|
|
|
|
BNX2X_ERR(" indexes (");
|
|
for (j = 0; j < loop; j++)
|
|
pr_cont("0x%x%s",
|
|
fp->sb_index_values[j],
|
|
(j == loop - 1) ? ")" : " ");
|
|
/* fw sb data */
|
|
data_size = CHIP_IS_E1x(bp) ?
|
|
sizeof(struct hc_status_block_data_e1x) :
|
|
sizeof(struct hc_status_block_data_e2);
|
|
data_size /= sizeof(u32);
|
|
sb_data_p = CHIP_IS_E1x(bp) ?
|
|
(u32 *)&sb_data_e1x :
|
|
(u32 *)&sb_data_e2;
|
|
/* copy sb data in here */
|
|
for (j = 0; j < data_size; j++)
|
|
*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
|
|
CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
|
|
j * sizeof(u32));
|
|
|
|
if (!CHIP_IS_E1x(bp)) {
|
|
pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) "
|
|
"vnic_id(0x%x) same_igu_sb_1b(0x%x) "
|
|
"state(0x%x)\n",
|
|
sb_data_e2.common.p_func.pf_id,
|
|
sb_data_e2.common.p_func.vf_id,
|
|
sb_data_e2.common.p_func.vf_valid,
|
|
sb_data_e2.common.p_func.vnic_id,
|
|
sb_data_e2.common.same_igu_sb_1b,
|
|
sb_data_e2.common.state);
|
|
} else {
|
|
pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) "
|
|
"vnic_id(0x%x) same_igu_sb_1b(0x%x) "
|
|
"state(0x%x)\n",
|
|
sb_data_e1x.common.p_func.pf_id,
|
|
sb_data_e1x.common.p_func.vf_id,
|
|
sb_data_e1x.common.p_func.vf_valid,
|
|
sb_data_e1x.common.p_func.vnic_id,
|
|
sb_data_e1x.common.same_igu_sb_1b,
|
|
sb_data_e1x.common.state);
|
|
}
|
|
|
|
/* SB_SMs data */
|
|
for (j = 0; j < HC_SB_MAX_SM; j++) {
|
|
pr_cont("SM[%d] __flags (0x%x) "
|
|
"igu_sb_id (0x%x) igu_seg_id(0x%x) "
|
|
"time_to_expire (0x%x) "
|
|
"timer_value(0x%x)\n", j,
|
|
hc_sm_p[j].__flags,
|
|
hc_sm_p[j].igu_sb_id,
|
|
hc_sm_p[j].igu_seg_id,
|
|
hc_sm_p[j].time_to_expire,
|
|
hc_sm_p[j].timer_value);
|
|
}
|
|
|
|
/* Indecies data */
|
|
for (j = 0; j < loop; j++) {
|
|
pr_cont("INDEX[%d] flags (0x%x) "
|
|
"timeout (0x%x)\n", j,
|
|
hc_index_p[j].flags,
|
|
hc_index_p[j].timeout);
|
|
}
|
|
}
|
|
|
|
#ifdef BNX2X_STOP_ON_ERROR
|
|
/* Rings */
|
|
/* Rx */
|
|
for_each_rx_queue(bp, i) {
|
|
struct bnx2x_fastpath *fp = &bp->fp[i];
|
|
|
|
start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
|
|
end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
|
|
for (j = start; j != end; j = RX_BD(j + 1)) {
|
|
u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
|
|
struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
|
|
|
|
BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n",
|
|
i, j, rx_bd[1], rx_bd[0], sw_bd->skb);
|
|
}
|
|
|
|
start = RX_SGE(fp->rx_sge_prod);
|
|
end = RX_SGE(fp->last_max_sge);
|
|
for (j = start; j != end; j = RX_SGE(j + 1)) {
|
|
u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
|
|
struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
|
|
|
|
BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n",
|
|
i, j, rx_sge[1], rx_sge[0], sw_page->page);
|
|
}
|
|
|
|
start = RCQ_BD(fp->rx_comp_cons - 10);
|
|
end = RCQ_BD(fp->rx_comp_cons + 503);
|
|
for (j = start; j != end; j = RCQ_BD(j + 1)) {
|
|
u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
|
|
|
|
BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
|
|
i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
|
|
}
|
|
}
|
|
|
|
/* Tx */
|
|
for_each_tx_queue(bp, i) {
|
|
struct bnx2x_fastpath *fp = &bp->fp[i];
|
|
for_each_cos_in_tx_queue(fp, cos) {
|
|
struct bnx2x_fp_txdata *txdata = &fp->txdata[cos];
|
|
|
|
start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
|
|
end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
|
|
for (j = start; j != end; j = TX_BD(j + 1)) {
|
|
struct sw_tx_bd *sw_bd =
|
|
&txdata->tx_buf_ring[j];
|
|
|
|
BNX2X_ERR("fp%d: txdata %d, "
|
|
"packet[%x]=[%p,%x]\n",
|
|
i, cos, j, sw_bd->skb,
|
|
sw_bd->first_bd);
|
|
}
|
|
|
|
start = TX_BD(txdata->tx_bd_cons - 10);
|
|
end = TX_BD(txdata->tx_bd_cons + 254);
|
|
for (j = start; j != end; j = TX_BD(j + 1)) {
|
|
u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
|
|
|
|
BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]="
|
|
"[%x:%x:%x:%x]\n",
|
|
i, cos, j, tx_bd[0], tx_bd[1],
|
|
tx_bd[2], tx_bd[3]);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
bnx2x_fw_dump(bp);
|
|
bnx2x_mc_assert(bp);
|
|
BNX2X_ERR("end crash dump -----------------\n");
|
|
}
|
|
|
|
/*
|
|
* FLR Support for E2
|
|
*
|
|
* bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
|
|
* initialization.
|
|
*/
|
|
#define FLR_WAIT_USEC 10000 /* 10 miliseconds */
|
|
#define FLR_WAIT_INTERAVAL 50 /* usec */
|
|
#define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERAVAL) /* 200 */
|
|
|
|
struct pbf_pN_buf_regs {
|
|
int pN;
|
|
u32 init_crd;
|
|
u32 crd;
|
|
u32 crd_freed;
|
|
};
|
|
|
|
struct pbf_pN_cmd_regs {
|
|
int pN;
|
|
u32 lines_occup;
|
|
u32 lines_freed;
|
|
};
|
|
|
|
static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
|
|
struct pbf_pN_buf_regs *regs,
|
|
u32 poll_count)
|
|
{
|
|
u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
|
|
u32 cur_cnt = poll_count;
|
|
|
|
crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
|
|
crd = crd_start = REG_RD(bp, regs->crd);
|
|
init_crd = REG_RD(bp, regs->init_crd);
|
|
|
|
DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
|
|
DP(BNX2X_MSG_SP, "CREDIT[%d] : s:%x\n", regs->pN, crd);
|
|
DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
|
|
|
|
while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
|
|
(init_crd - crd_start))) {
|
|
if (cur_cnt--) {
|
|
udelay(FLR_WAIT_INTERAVAL);
|
|
crd = REG_RD(bp, regs->crd);
|
|
crd_freed = REG_RD(bp, regs->crd_freed);
|
|
} else {
|
|
DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
|
|
regs->pN);
|
|
DP(BNX2X_MSG_SP, "CREDIT[%d] : c:%x\n",
|
|
regs->pN, crd);
|
|
DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
|
|
regs->pN, crd_freed);
|
|
break;
|
|
}
|
|
}
|
|
DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
|
|
poll_count-cur_cnt, FLR_WAIT_INTERAVAL, regs->pN);
|
|
}
|
|
|
|
static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
|
|
struct pbf_pN_cmd_regs *regs,
|
|
u32 poll_count)
|
|
{
|
|
u32 occup, to_free, freed, freed_start;
|
|
u32 cur_cnt = poll_count;
|
|
|
|
occup = to_free = REG_RD(bp, regs->lines_occup);
|
|
freed = freed_start = REG_RD(bp, regs->lines_freed);
|
|
|
|
DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup);
|
|
DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
|
|
|
|
while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
|
|
if (cur_cnt--) {
|
|
udelay(FLR_WAIT_INTERAVAL);
|
|
occup = REG_RD(bp, regs->lines_occup);
|
|
freed = REG_RD(bp, regs->lines_freed);
|
|
} else {
|
|
DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
|
|
regs->pN);
|
|
DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n",
|
|
regs->pN, occup);
|
|
DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
|
|
regs->pN, freed);
|
|
break;
|
|
}
|
|
}
|
|
DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
|
|
poll_count-cur_cnt, FLR_WAIT_INTERAVAL, regs->pN);
|
|
}
|
|
|
|
static inline u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
|
|
u32 expected, u32 poll_count)
|
|
{
|
|
u32 cur_cnt = poll_count;
|
|
u32 val;
|
|
|
|
while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
|
|
udelay(FLR_WAIT_INTERAVAL);
|
|
|
|
return val;
|
|
}
|
|
|
|
static inline int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
|
|
char *msg, u32 poll_cnt)
|
|
{
|
|
u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
|
|
if (val != 0) {
|
|
BNX2X_ERR("%s usage count=%d\n", msg, val);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
|
|
{
|
|
/* adjust polling timeout */
|
|
if (CHIP_REV_IS_EMUL(bp))
|
|
return FLR_POLL_CNT * 2000;
|
|
|
|
if (CHIP_REV_IS_FPGA(bp))
|
|
return FLR_POLL_CNT * 120;
|
|
|
|
return FLR_POLL_CNT;
|
|
}
|
|
|
|
static void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
|
|
{
|
|
struct pbf_pN_cmd_regs cmd_regs[] = {
|
|
{0, (CHIP_IS_E3B0(bp)) ?
|
|
PBF_REG_TQ_OCCUPANCY_Q0 :
|
|
PBF_REG_P0_TQ_OCCUPANCY,
|
|
(CHIP_IS_E3B0(bp)) ?
|
|
PBF_REG_TQ_LINES_FREED_CNT_Q0 :
|
|
PBF_REG_P0_TQ_LINES_FREED_CNT},
|
|
{1, (CHIP_IS_E3B0(bp)) ?
|
|
PBF_REG_TQ_OCCUPANCY_Q1 :
|
|
PBF_REG_P1_TQ_OCCUPANCY,
|
|
(CHIP_IS_E3B0(bp)) ?
|
|
PBF_REG_TQ_LINES_FREED_CNT_Q1 :
|
|
PBF_REG_P1_TQ_LINES_FREED_CNT},
|
|
{4, (CHIP_IS_E3B0(bp)) ?
|
|
PBF_REG_TQ_OCCUPANCY_LB_Q :
|
|
PBF_REG_P4_TQ_OCCUPANCY,
|
|
(CHIP_IS_E3B0(bp)) ?
|
|
PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
|
|
PBF_REG_P4_TQ_LINES_FREED_CNT}
|
|
};
|
|
|
|
struct pbf_pN_buf_regs buf_regs[] = {
|
|
{0, (CHIP_IS_E3B0(bp)) ?
|
|
PBF_REG_INIT_CRD_Q0 :
|
|
PBF_REG_P0_INIT_CRD ,
|
|
(CHIP_IS_E3B0(bp)) ?
|
|
PBF_REG_CREDIT_Q0 :
|
|
PBF_REG_P0_CREDIT,
|
|
(CHIP_IS_E3B0(bp)) ?
|
|
PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
|
|
PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
|
|
{1, (CHIP_IS_E3B0(bp)) ?
|
|
PBF_REG_INIT_CRD_Q1 :
|
|
PBF_REG_P1_INIT_CRD,
|
|
(CHIP_IS_E3B0(bp)) ?
|
|
PBF_REG_CREDIT_Q1 :
|
|
PBF_REG_P1_CREDIT,
|
|
(CHIP_IS_E3B0(bp)) ?
|
|
PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
|
|
PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
|
|
{4, (CHIP_IS_E3B0(bp)) ?
|
|
PBF_REG_INIT_CRD_LB_Q :
|
|
PBF_REG_P4_INIT_CRD,
|
|
(CHIP_IS_E3B0(bp)) ?
|
|
PBF_REG_CREDIT_LB_Q :
|
|
PBF_REG_P4_CREDIT,
|
|
(CHIP_IS_E3B0(bp)) ?
|
|
PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
|
|
PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
|
|
};
|
|
|
|
int i;
|
|
|
|
/* Verify the command queues are flushed P0, P1, P4 */
|
|
for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
|
|
bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
|
|
|
|
|
|
/* Verify the transmission buffers are flushed P0, P1, P4 */
|
|
for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
|
|
bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
|
|
}
|
|
|
|
#define OP_GEN_PARAM(param) \
|
|
(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
|
|
|
|
#define OP_GEN_TYPE(type) \
|
|
(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
|
|
|
|
#define OP_GEN_AGG_VECT(index) \
|
|
(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
|
|
|
|
|
|
static inline int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func,
|
|
u32 poll_cnt)
|
|
{
|
|
struct sdm_op_gen op_gen = {0};
|
|
|
|
u32 comp_addr = BAR_CSTRORM_INTMEM +
|
|
CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
|
|
int ret = 0;
|
|
|
|
if (REG_RD(bp, comp_addr)) {
|
|
BNX2X_ERR("Cleanup complete is not 0\n");
|
|
return 1;
|
|
}
|
|
|
|
op_gen.command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
|
|
op_gen.command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
|
|
op_gen.command |= OP_GEN_AGG_VECT(clnup_func);
|
|
op_gen.command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
|
|
|
|
DP(BNX2X_MSG_SP, "FW Final cleanup\n");
|
|
REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen.command);
|
|
|
|
if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
|
|
BNX2X_ERR("FW final cleanup did not succeed\n");
|
|
ret = 1;
|
|
}
|
|
/* Zero completion for nxt FLR */
|
|
REG_WR(bp, comp_addr, 0);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
|
|
{
|
|
int pos;
|
|
u16 status;
|
|
|
|
pos = pci_pcie_cap(dev);
|
|
if (!pos)
|
|
return false;
|
|
|
|
pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
|
|
return status & PCI_EXP_DEVSTA_TRPND;
|
|
}
|
|
|
|
/* PF FLR specific routines
|
|
*/
|
|
static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
|
|
{
|
|
|
|
/* wait for CFC PF usage-counter to zero (includes all the VFs) */
|
|
if (bnx2x_flr_clnup_poll_hw_counter(bp,
|
|
CFC_REG_NUM_LCIDS_INSIDE_PF,
|
|
"CFC PF usage counter timed out",
|
|
poll_cnt))
|
|
return 1;
|
|
|
|
|
|
/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
|
|
if (bnx2x_flr_clnup_poll_hw_counter(bp,
|
|
DORQ_REG_PF_USAGE_CNT,
|
|
"DQ PF usage counter timed out",
|
|
poll_cnt))
|
|
return 1;
|
|
|
|
/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
|
|
if (bnx2x_flr_clnup_poll_hw_counter(bp,
|
|
QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
|
|
"QM PF usage counter timed out",
|
|
poll_cnt))
|
|
return 1;
|
|
|
|
/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
|
|
if (bnx2x_flr_clnup_poll_hw_counter(bp,
|
|
TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
|
|
"Timers VNIC usage counter timed out",
|
|
poll_cnt))
|
|
return 1;
|
|
if (bnx2x_flr_clnup_poll_hw_counter(bp,
|
|
TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
|
|
"Timers NUM_SCANS usage counter timed out",
|
|
poll_cnt))
|
|
return 1;
|
|
|
|
/* Wait DMAE PF usage counter to zero */
|
|
if (bnx2x_flr_clnup_poll_hw_counter(bp,
|
|
dmae_reg_go_c[INIT_DMAE_C(bp)],
|
|
"DMAE dommand register timed out",
|
|
poll_cnt))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bnx2x_hw_enable_status(struct bnx2x *bp)
|
|
{
|
|
u32 val;
|
|
|
|
val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
|
|
DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
|
|
|
|
val = REG_RD(bp, PBF_REG_DISABLE_PF);
|
|
DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
|
|
|
|
val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
|
|
DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
|
|
|
|
val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
|
|
DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
|
|
|
|
val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
|
|
DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
|
|
|
|
val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
|
|
DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
|
|
|
|
val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
|
|
DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
|
|
|
|
val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
|
|
DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
|
|
val);
|
|
}
|
|
|
|
static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
|
|
{
|
|
u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
|
|
|
|
DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
|
|
|
|
/* Re-enable PF target read access */
|
|
REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
|
|
|
|
/* Poll HW usage counters */
|
|
if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
|
|
return -EBUSY;
|
|
|
|
/* Zero the igu 'trailing edge' and 'leading edge' */
|
|
|
|
/* Send the FW cleanup command */
|
|
if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
|
|
return -EBUSY;
|
|
|
|
/* ATC cleanup */
|
|
|
|
/* Verify TX hw is flushed */
|
|
bnx2x_tx_hw_flushed(bp, poll_cnt);
|
|
|
|
/* Wait 100ms (not adjusted according to platform) */
|
|
msleep(100);
|
|
|
|
/* Verify no pending pci transactions */
|
|
if (bnx2x_is_pcie_pending(bp->pdev))
|
|
BNX2X_ERR("PCIE Transactions still pending\n");
|
|
|
|
/* Debug */
|
|
bnx2x_hw_enable_status(bp);
|
|
|
|
/*
|
|
* Master enable - Due to WB DMAE writes performed before this
|
|
* register is re-initialized as part of the regular function init
|
|
*/
|
|
REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bnx2x_hc_int_enable(struct bnx2x *bp)
|
|
{
|
|
int port = BP_PORT(bp);
|
|
u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
|
|
u32 val = REG_RD(bp, addr);
|
|
int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
|
|
int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
|
|
|
|
if (msix) {
|
|
val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
|
|
HC_CONFIG_0_REG_INT_LINE_EN_0);
|
|
val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
|
|
HC_CONFIG_0_REG_ATTN_BIT_EN_0);
|
|
} else if (msi) {
|
|
val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
|
|
val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
|
|
HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
|
|
HC_CONFIG_0_REG_ATTN_BIT_EN_0);
|
|
} else {
|
|
val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
|
|
HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
|
|
HC_CONFIG_0_REG_INT_LINE_EN_0 |
|
|
HC_CONFIG_0_REG_ATTN_BIT_EN_0);
|
|
|
|
if (!CHIP_IS_E1(bp)) {
|
|
DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)\n",
|
|
val, port, addr);
|
|
|
|
REG_WR(bp, addr, val);
|
|
|
|
val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
|
|
}
|
|
}
|
|
|
|
if (CHIP_IS_E1(bp))
|
|
REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
|
|
|
|
DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
|
|
val, port, addr, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
|
|
|
|
REG_WR(bp, addr, val);
|
|
/*
|
|
* Ensure that HC_CONFIG is written before leading/trailing edge config
|
|
*/
|
|
mmiowb();
|
|
barrier();
|
|
|
|
if (!CHIP_IS_E1(bp)) {
|
|
/* init leading/trailing edge */
|
|
if (IS_MF(bp)) {
|
|
val = (0xee0f | (1 << (BP_VN(bp) + 4)));
|
|
if (bp->port.pmf)
|
|
/* enable nig and gpio3 attention */
|
|
val |= 0x1100;
|
|
} else
|
|
val = 0xffff;
|
|
|
|
REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
|
|
REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
|
|
}
|
|
|
|
/* Make sure that interrupts are indeed enabled from here on */
|
|
mmiowb();
|
|
}
|
|
|
|
static void bnx2x_igu_int_enable(struct bnx2x *bp)
|
|
{
|
|
u32 val;
|
|
int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
|
|
int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
|
|
|
|
val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
|
|
|
|
if (msix) {
|
|
val &= ~(IGU_PF_CONF_INT_LINE_EN |
|
|
IGU_PF_CONF_SINGLE_ISR_EN);
|
|
val |= (IGU_PF_CONF_FUNC_EN |
|
|
IGU_PF_CONF_MSI_MSIX_EN |
|
|
IGU_PF_CONF_ATTN_BIT_EN);
|
|
} else if (msi) {
|
|
val &= ~IGU_PF_CONF_INT_LINE_EN;
|
|
val |= (IGU_PF_CONF_FUNC_EN |
|
|
IGU_PF_CONF_MSI_MSIX_EN |
|
|
IGU_PF_CONF_ATTN_BIT_EN |
|
|
IGU_PF_CONF_SINGLE_ISR_EN);
|
|
} else {
|
|
val &= ~IGU_PF_CONF_MSI_MSIX_EN;
|
|
val |= (IGU_PF_CONF_FUNC_EN |
|
|
IGU_PF_CONF_INT_LINE_EN |
|
|
IGU_PF_CONF_ATTN_BIT_EN |
|
|
IGU_PF_CONF_SINGLE_ISR_EN);
|
|
}
|
|
|
|
DP(NETIF_MSG_INTR, "write 0x%x to IGU mode %s\n",
|
|
val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
|
|
|
|
REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
|
|
|
|
barrier();
|
|
|
|
/* init leading/trailing edge */
|
|
if (IS_MF(bp)) {
|
|
val = (0xee0f | (1 << (BP_VN(bp) + 4)));
|
|
if (bp->port.pmf)
|
|
/* enable nig and gpio3 attention */
|
|
val |= 0x1100;
|
|
} else
|
|
val = 0xffff;
|
|
|
|
REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
|
|
REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
|
|
|
|
/* Make sure that interrupts are indeed enabled from here on */
|
|
mmiowb();
|
|
}
|
|
|
|
void bnx2x_int_enable(struct bnx2x *bp)
|
|
{
|
|
if (bp->common.int_block == INT_BLOCK_HC)
|
|
bnx2x_hc_int_enable(bp);
|
|
else
|
|
bnx2x_igu_int_enable(bp);
|
|
}
|
|
|
|
static void bnx2x_hc_int_disable(struct bnx2x *bp)
|
|
{
|
|
int port = BP_PORT(bp);
|
|
u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
|
|
u32 val = REG_RD(bp, addr);
|
|
|
|
/*
|
|
* in E1 we must use only PCI configuration space to disable
|
|
* MSI/MSIX capablility
|
|
* It's forbitten to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
|
|
*/
|
|
if (CHIP_IS_E1(bp)) {
|
|
/* Since IGU_PF_CONF_MSI_MSIX_EN still always on
|
|
* Use mask register to prevent from HC sending interrupts
|
|
* after we exit the function
|
|
*/
|
|
REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
|
|
|
|
val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
|
|
HC_CONFIG_0_REG_INT_LINE_EN_0 |
|
|
HC_CONFIG_0_REG_ATTN_BIT_EN_0);
|
|
} else
|
|
val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
|
|
HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
|
|
HC_CONFIG_0_REG_INT_LINE_EN_0 |
|
|
HC_CONFIG_0_REG_ATTN_BIT_EN_0);
|
|
|
|
DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)\n",
|
|
val, port, addr);
|
|
|
|
/* flush all outstanding writes */
|
|
mmiowb();
|
|
|
|
REG_WR(bp, addr, val);
|
|
if (REG_RD(bp, addr) != val)
|
|
BNX2X_ERR("BUG! proper val not read from IGU!\n");
|
|
}
|
|
|
|
static void bnx2x_igu_int_disable(struct bnx2x *bp)
|
|
{
|
|
u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
|
|
|
|
val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
|
|
IGU_PF_CONF_INT_LINE_EN |
|
|
IGU_PF_CONF_ATTN_BIT_EN);
|
|
|
|
DP(NETIF_MSG_INTR, "write %x to IGU\n", val);
|
|
|
|
/* flush all outstanding writes */
|
|
mmiowb();
|
|
|
|
REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
|
|
if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
|
|
BNX2X_ERR("BUG! proper val not read from IGU!\n");
|
|
}
|
|
|
|
void bnx2x_int_disable(struct bnx2x *bp)
|
|
{
|
|
if (bp->common.int_block == INT_BLOCK_HC)
|
|
bnx2x_hc_int_disable(bp);
|
|
else
|
|
bnx2x_igu_int_disable(bp);
|
|
}
|
|
|
|
void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
|
|
{
|
|
int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
|
|
int i, offset;
|
|
|
|
if (disable_hw)
|
|
/* prevent the HW from sending interrupts */
|
|
bnx2x_int_disable(bp);
|
|
|
|
/* make sure all ISRs are done */
|
|
if (msix) {
|
|
synchronize_irq(bp->msix_table[0].vector);
|
|
offset = 1;
|
|
#ifdef BCM_CNIC
|
|
offset++;
|
|
#endif
|
|
for_each_eth_queue(bp, i)
|
|
synchronize_irq(bp->msix_table[offset++].vector);
|
|
} else
|
|
synchronize_irq(bp->pdev->irq);
|
|
|
|
/* make sure sp_task is not running */
|
|
cancel_delayed_work(&bp->sp_task);
|
|
cancel_delayed_work(&bp->period_task);
|
|
flush_workqueue(bnx2x_wq);
|
|
}
|
|
|
|
/* fast path */
|
|
|
|
/*
|
|
* General service functions
|
|
*/
|
|
|
|
/* Return true if succeeded to acquire the lock */
|
|
static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
|
|
{
|
|
u32 lock_status;
|
|
u32 resource_bit = (1 << resource);
|
|
int func = BP_FUNC(bp);
|
|
u32 hw_lock_control_reg;
|
|
|
|
DP(NETIF_MSG_HW, "Trying to take a lock on resource %d\n", resource);
|
|
|
|
/* Validating that the resource is within range */
|
|
if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
|
|
DP(NETIF_MSG_HW,
|
|
"resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
|
|
resource, HW_LOCK_MAX_RESOURCE_VALUE);
|
|
return false;
|
|
}
|
|
|
|
if (func <= 5)
|
|
hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
|
|
else
|
|
hw_lock_control_reg =
|
|
(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
|
|
|
|
/* Try to acquire the lock */
|
|
REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
|
|
lock_status = REG_RD(bp, hw_lock_control_reg);
|
|
if (lock_status & resource_bit)
|
|
return true;
|
|
|
|
DP(NETIF_MSG_HW, "Failed to get a lock on resource %d\n", resource);
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* bnx2x_get_leader_lock_resource - get the recovery leader resource id
|
|
*
|
|
* @bp: driver handle
|
|
*
|
|
* Returns the recovery leader resource id according to the engine this function
|
|
* belongs to. Currently only only 2 engines is supported.
|
|
*/
|
|
static inline int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
|
|
{
|
|
if (BP_PATH(bp))
|
|
return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
|
|
else
|
|
return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
|
|
}
|
|
|
|
/**
|
|
* bnx2x_trylock_leader_lock- try to aquire a leader lock.
|
|
*
|
|
* @bp: driver handle
|
|
*
|
|
* Tries to aquire a leader lock for cuurent engine.
|
|
*/
|
|
static inline bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
|
|
{
|
|
return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
|
|
}
|
|
|
|
#ifdef BCM_CNIC
|
|
static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
|
|
#endif
|
|
|
|
void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
|
|
{
|
|
struct bnx2x *bp = fp->bp;
|
|
int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
|
|
int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
|
|
enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
|
|
struct bnx2x_queue_sp_obj *q_obj = &fp->q_obj;
|
|
|
|
DP(BNX2X_MSG_SP,
|
|
"fp %d cid %d got ramrod #%d state is %x type is %d\n",
|
|
fp->index, cid, command, bp->state,
|
|
rr_cqe->ramrod_cqe.ramrod_type);
|
|
|
|
switch (command) {
|
|
case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
|
|
DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
|
|
drv_cmd = BNX2X_Q_CMD_UPDATE;
|
|
break;
|
|
|
|
case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
|
|
DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
|
|
drv_cmd = BNX2X_Q_CMD_SETUP;
|
|
break;
|
|
|
|
case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
|
|
DP(NETIF_MSG_IFUP, "got MULTI[%d] tx-only setup ramrod\n", cid);
|
|
drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
|
|
break;
|
|
|
|
case (RAMROD_CMD_ID_ETH_HALT):
|
|
DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
|
|
drv_cmd = BNX2X_Q_CMD_HALT;
|
|
break;
|
|
|
|
case (RAMROD_CMD_ID_ETH_TERMINATE):
|
|
DP(BNX2X_MSG_SP, "got MULTI[%d] teminate ramrod\n", cid);
|
|
drv_cmd = BNX2X_Q_CMD_TERMINATE;
|
|
break;
|
|
|
|
case (RAMROD_CMD_ID_ETH_EMPTY):
|
|
DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
|
|
drv_cmd = BNX2X_Q_CMD_EMPTY;
|
|
break;
|
|
|
|
default:
|
|
BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
|
|
command, fp->index);
|
|
return;
|
|
}
|
|
|
|
if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
|
|
q_obj->complete_cmd(bp, q_obj, drv_cmd))
|
|
/* q_obj->complete_cmd() failure means that this was
|
|
* an unexpected completion.
|
|
*
|
|
* In this case we don't want to increase the bp->spq_left
|
|
* because apparently we haven't sent this command the first
|
|
* place.
|
|
*/
|
|
#ifdef BNX2X_STOP_ON_ERROR
|
|
bnx2x_panic();
|
|
#else
|
|
return;
|
|
#endif
|
|
|
|
smp_mb__before_atomic_inc();
|
|
atomic_inc(&bp->cq_spq_left);
|
|
/* push the change in bp->spq_left and towards the memory */
|
|
smp_mb__after_atomic_inc();
|
|
|
|
DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
|
|
|
|
return;
|
|
}
|
|
|
|
void bnx2x_update_rx_prod(struct bnx2x *bp, struct bnx2x_fastpath *fp,
|
|
u16 bd_prod, u16 rx_comp_prod, u16 rx_sge_prod)
|
|
{
|
|
u32 start = BAR_USTRORM_INTMEM + fp->ustorm_rx_prods_offset;
|
|
|
|
bnx2x_update_rx_prod_gen(bp, fp, bd_prod, rx_comp_prod, rx_sge_prod,
|
|
start);
|
|
}
|
|
|
|
irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
|
|
{
|
|
struct bnx2x *bp = netdev_priv(dev_instance);
|
|
u16 status = bnx2x_ack_int(bp);
|
|
u16 mask;
|
|
int i;
|
|
u8 cos;
|
|
|
|
/* Return here if interrupt is shared and it's not for us */
|
|
if (unlikely(status == 0)) {
|
|
DP(NETIF_MSG_INTR, "not our interrupt!\n");
|
|
return IRQ_NONE;
|
|
}
|
|
DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status);
|
|
|
|
#ifdef BNX2X_STOP_ON_ERROR
|
|
if (unlikely(bp->panic))
|
|
return IRQ_HANDLED;
|
|
#endif
|
|
|
|
for_each_eth_queue(bp, i) {
|
|
struct bnx2x_fastpath *fp = &bp->fp[i];
|
|
|
|
mask = 0x2 << (fp->index + CNIC_PRESENT);
|
|
if (status & mask) {
|
|
/* Handle Rx or Tx according to SB id */
|
|
prefetch(fp->rx_cons_sb);
|
|
for_each_cos_in_tx_queue(fp, cos)
|
|
prefetch(fp->txdata[cos].tx_cons_sb);
|
|
prefetch(&fp->sb_running_index[SM_RX_ID]);
|
|
napi_schedule(&bnx2x_fp(bp, fp->index, napi));
|
|
status &= ~mask;
|
|
}
|
|
}
|
|
|
|
#ifdef BCM_CNIC
|
|
mask = 0x2;
|
|
if (status & (mask | 0x1)) {
|
|
struct cnic_ops *c_ops = NULL;
|
|
|
|
if (likely(bp->state == BNX2X_STATE_OPEN)) {
|
|
rcu_read_lock();
|
|
c_ops = rcu_dereference(bp->cnic_ops);
|
|
if (c_ops)
|
|
c_ops->cnic_handler(bp->cnic_data, NULL);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
status &= ~mask;
|
|
}
|
|
#endif
|
|
|
|
if (unlikely(status & 0x1)) {
|
|
queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
|
|
|
|
status &= ~0x1;
|
|
if (!status)
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
if (unlikely(status))
|
|
DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
|
|
status);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* Link */
|
|
|
|
/*
|
|
* General service functions
|
|
*/
|
|
|
|
int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
|
|
{
|
|
u32 lock_status;
|
|
u32 resource_bit = (1 << resource);
|
|
int func = BP_FUNC(bp);
|
|
u32 hw_lock_control_reg;
|
|
int cnt;
|
|
|
|
/* Validating that the resource is within range */
|
|
if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
|
|
DP(NETIF_MSG_HW,
|
|
"resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
|
|
resource, HW_LOCK_MAX_RESOURCE_VALUE);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (func <= 5) {
|
|
hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
|
|
} else {
|
|
hw_lock_control_reg =
|
|
(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
|
|
}
|
|
|
|
/* Validating that the resource is not already taken */
|
|
lock_status = REG_RD(bp, hw_lock_control_reg);
|
|
if (lock_status & resource_bit) {
|
|
DP(NETIF_MSG_HW, "lock_status 0x%x resource_bit 0x%x\n",
|
|
lock_status, resource_bit);
|
|
return -EEXIST;
|
|
}
|
|
|
|
/* Try for 5 second every 5ms */
|
|
for (cnt = 0; cnt < 1000; cnt++) {
|
|
/* Try to acquire the lock */
|
|
REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
|
|
lock_status = REG_RD(bp, hw_lock_control_reg);
|
|
if (lock_status & resource_bit)
|
|
return 0;
|
|
|
|
msleep(5);
|
|
}
|
|
DP(NETIF_MSG_HW, "Timeout\n");
|
|
return -EAGAIN;
|
|
}
|
|
|
|
int bnx2x_release_leader_lock(struct bnx2x *bp)
|
|
{
|
|
return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
|
|
}
|
|
|
|
int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
|
|
{
|
|
u32 lock_status;
|
|
u32 resource_bit = (1 << resource);
|
|
int func = BP_FUNC(bp);
|
|
u32 hw_lock_control_reg;
|
|
|
|
DP(NETIF_MSG_HW, "Releasing a lock on resource %d\n", resource);
|
|
|
|
/* Validating that the resource is within range */
|
|
if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
|
|
DP(NETIF_MSG_HW,
|
|
"resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
|
|
resource, HW_LOCK_MAX_RESOURCE_VALUE);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (func <= 5) {
|
|
hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
|
|
} else {
|
|
hw_lock_control_reg =
|
|
(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
|
|
}
|
|
|
|
/* Validating that the resource is currently taken */
|
|
lock_status = REG_RD(bp, hw_lock_control_reg);
|
|
if (!(lock_status & resource_bit)) {
|
|
DP(NETIF_MSG_HW, "lock_status 0x%x resource_bit 0x%x\n",
|
|
lock_status, resource_bit);
|
|
return -EFAULT;
|
|
}
|
|
|
|
REG_WR(bp, hw_lock_control_reg, resource_bit);
|
|
return 0;
|
|
}
|
|
|
|
|
|
int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
|
|
{
|
|
/* The GPIO should be swapped if swap register is set and active */
|
|
int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
|
|
REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
|
|
int gpio_shift = gpio_num +
|
|
(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
|
|
u32 gpio_mask = (1 << gpio_shift);
|
|
u32 gpio_reg;
|
|
int value;
|
|
|
|
if (gpio_num > MISC_REGISTERS_GPIO_3) {
|
|
BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* read GPIO value */
|
|
gpio_reg = REG_RD(bp, MISC_REG_GPIO);
|
|
|
|
/* get the requested pin value */
|
|
if ((gpio_reg & gpio_mask) == gpio_mask)
|
|
value = 1;
|
|
else
|
|
value = 0;
|
|
|
|
DP(NETIF_MSG_LINK, "pin %d value 0x%x\n", gpio_num, value);
|
|
|
|
return value;
|
|
}
|
|
|
|
int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
|
|
{
|
|
/* The GPIO should be swapped if swap register is set and active */
|
|
int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
|
|
REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
|
|
int gpio_shift = gpio_num +
|
|
(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
|
|
u32 gpio_mask = (1 << gpio_shift);
|
|
u32 gpio_reg;
|
|
|
|
if (gpio_num > MISC_REGISTERS_GPIO_3) {
|
|
BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
|
|
return -EINVAL;
|
|
}
|
|
|
|
bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
|
|
/* read GPIO and mask except the float bits */
|
|
gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
|
|
|
|
switch (mode) {
|
|
case MISC_REGISTERS_GPIO_OUTPUT_LOW:
|
|
DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output low\n",
|
|
gpio_num, gpio_shift);
|
|
/* clear FLOAT and set CLR */
|
|
gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
|
|
gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
|
|
break;
|
|
|
|
case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
|
|
DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output high\n",
|
|
gpio_num, gpio_shift);
|
|
/* clear FLOAT and set SET */
|
|
gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
|
|
gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
|
|
break;
|
|
|
|
case MISC_REGISTERS_GPIO_INPUT_HI_Z:
|
|
DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> input\n",
|
|
gpio_num, gpio_shift);
|
|
/* set FLOAT */
|
|
gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
REG_WR(bp, MISC_REG_GPIO, gpio_reg);
|
|
bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
|
|
{
|
|
u32 gpio_reg = 0;
|
|
int rc = 0;
|
|
|
|
/* Any port swapping should be handled by caller. */
|
|
|
|
bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
|
|
/* read GPIO and mask except the float bits */
|
|
gpio_reg = REG_RD(bp, MISC_REG_GPIO);
|
|
gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
|
|
gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
|
|
gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
|
|
|
|
switch (mode) {
|
|
case MISC_REGISTERS_GPIO_OUTPUT_LOW:
|
|
DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
|
|
/* set CLR */
|
|
gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
|
|
break;
|
|
|
|
case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
|
|
DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
|
|
/* set SET */
|
|
gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
|
|
break;
|
|
|
|
case MISC_REGISTERS_GPIO_INPUT_HI_Z:
|
|
DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
|
|
/* set FLOAT */
|
|
gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
|
|
break;
|
|
|
|
default:
|
|
BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
|
|
rc = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
if (rc == 0)
|
|
REG_WR(bp, MISC_REG_GPIO, gpio_reg);
|
|
|
|
bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
|
|
|
|
return rc;
|
|
}
|
|
|
|
int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
|
|
{
|
|
/* The GPIO should be swapped if swap register is set and active */
|
|
int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
|
|
REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
|
|
int gpio_shift = gpio_num +
|
|
(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
|
|
u32 gpio_mask = (1 << gpio_shift);
|
|
u32 gpio_reg;
|
|
|
|
if (gpio_num > MISC_REGISTERS_GPIO_3) {
|
|
BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
|
|
return -EINVAL;
|
|
}
|
|
|
|
bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
|
|
/* read GPIO int */
|
|
gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
|
|
|
|
switch (mode) {
|
|
case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
|
|
DP(NETIF_MSG_LINK, "Clear GPIO INT %d (shift %d) -> "
|
|
"output low\n", gpio_num, gpio_shift);
|
|
/* clear SET and set CLR */
|
|
gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
|
|
gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
|
|
break;
|
|
|
|
case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
|
|
DP(NETIF_MSG_LINK, "Set GPIO INT %d (shift %d) -> "
|
|
"output high\n", gpio_num, gpio_shift);
|
|
/* clear CLR and set SET */
|
|
gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
|
|
gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
|
|
bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bnx2x_set_spio(struct bnx2x *bp, int spio_num, u32 mode)
|
|
{
|
|
u32 spio_mask = (1 << spio_num);
|
|
u32 spio_reg;
|
|
|
|
if ((spio_num < MISC_REGISTERS_SPIO_4) ||
|
|
(spio_num > MISC_REGISTERS_SPIO_7)) {
|
|
BNX2X_ERR("Invalid SPIO %d\n", spio_num);
|
|
return -EINVAL;
|
|
}
|
|
|
|
bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
|
|
/* read SPIO and mask except the float bits */
|
|
spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_REGISTERS_SPIO_FLOAT);
|
|
|
|
switch (mode) {
|
|
case MISC_REGISTERS_SPIO_OUTPUT_LOW:
|
|
DP(NETIF_MSG_LINK, "Set SPIO %d -> output low\n", spio_num);
|
|
/* clear FLOAT and set CLR */
|
|
spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
|
|
spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_CLR_POS);
|
|
break;
|
|
|
|
case MISC_REGISTERS_SPIO_OUTPUT_HIGH:
|
|
DP(NETIF_MSG_LINK, "Set SPIO %d -> output high\n", spio_num);
|
|
/* clear FLOAT and set SET */
|
|
spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
|
|
spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_SET_POS);
|
|
break;
|
|
|
|
case MISC_REGISTERS_SPIO_INPUT_HI_Z:
|
|
DP(NETIF_MSG_LINK, "Set SPIO %d -> input\n", spio_num);
|
|
/* set FLOAT */
|
|
spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
REG_WR(bp, MISC_REG_SPIO, spio_reg);
|
|
bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void bnx2x_calc_fc_adv(struct bnx2x *bp)
|
|
{
|
|
u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
|
|
switch (bp->link_vars.ieee_fc &
|
|
MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
|
|
case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
|
|
bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
|
|
ADVERTISED_Pause);
|
|
break;
|
|
|
|
case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
|
|
bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
|
|
ADVERTISED_Pause);
|
|
break;
|
|
|
|
case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
|
|
bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
|
|
break;
|
|
|
|
default:
|
|
bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
|
|
ADVERTISED_Pause);
|
|
break;
|
|
}
|
|
}
|
|
|
|
u8 bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
|
|
{
|
|
if (!BP_NOMCP(bp)) {
|
|
u8 rc;
|
|
int cfx_idx = bnx2x_get_link_cfg_idx(bp);
|
|
u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
|
|
/*
|
|
* Initialize link parameters structure variables
|
|
* It is recommended to turn off RX FC for jumbo frames
|
|
* for better performance
|
|
*/
|
|
if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
|
|
bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
|
|
else
|
|
bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
|
|
|
|
bnx2x_acquire_phy_lock(bp);
|
|
|
|
if (load_mode == LOAD_DIAG) {
|
|
struct link_params *lp = &bp->link_params;
|
|
lp->loopback_mode = LOOPBACK_XGXS;
|
|
/* do PHY loopback at 10G speed, if possible */
|
|
if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
|
|
if (lp->speed_cap_mask[cfx_idx] &
|
|
PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
|
|
lp->req_line_speed[cfx_idx] =
|
|
SPEED_10000;
|
|
else
|
|
lp->req_line_speed[cfx_idx] =
|
|
SPEED_1000;
|
|
}
|
|
}
|
|
|
|
rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
|
|
|
|
bnx2x_release_phy_lock(bp);
|
|
|
|
bnx2x_calc_fc_adv(bp);
|
|
|
|
if (CHIP_REV_IS_SLOW(bp) && bp->link_vars.link_up) {
|
|
bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
|
|
bnx2x_link_report(bp);
|
|
} else
|
|
queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
|
|
bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
|
|
return rc;
|
|
}
|
|
BNX2X_ERR("Bootcode is missing - can not initialize link\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
void bnx2x_link_set(struct bnx2x *bp)
|
|
{
|
|
if (!BP_NOMCP(bp)) {
|
|
bnx2x_acquire_phy_lock(bp);
|
|
bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
|
|
bnx2x_phy_init(&bp->link_params, &bp->link_vars);
|
|
bnx2x_release_phy_lock(bp);
|
|
|
|
bnx2x_calc_fc_adv(bp);
|
|
} else
|
|
BNX2X_ERR("Bootcode is missing - can not set link\n");
|
|
}
|
|
|
|
static void bnx2x__link_reset(struct bnx2x *bp)
|
|
{
|
|
if (!BP_NOMCP(bp)) {
|
|
bnx2x_acquire_phy_lock(bp);
|
|
bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
|
|
bnx2x_release_phy_lock(bp);
|
|
} else
|
|
BNX2X_ERR("Bootcode is missing - can not reset link\n");
|
|
}
|
|
|
|
u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
|
|
{
|
|
u8 rc = 0;
|
|
|
|
if (!BP_NOMCP(bp)) {
|
|
bnx2x_acquire_phy_lock(bp);
|
|
rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
|
|
is_serdes);
|
|
bnx2x_release_phy_lock(bp);
|
|
} else
|
|
BNX2X_ERR("Bootcode is missing - can not test link\n");
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void bnx2x_init_port_minmax(struct bnx2x *bp)
|
|
{
|
|
u32 r_param = bp->link_vars.line_speed / 8;
|
|
u32 fair_periodic_timeout_usec;
|
|
u32 t_fair;
|
|
|
|
memset(&(bp->cmng.rs_vars), 0,
|
|
sizeof(struct rate_shaping_vars_per_port));
|
|
memset(&(bp->cmng.fair_vars), 0, sizeof(struct fairness_vars_per_port));
|
|
|
|
/* 100 usec in SDM ticks = 25 since each tick is 4 usec */
|
|
bp->cmng.rs_vars.rs_periodic_timeout = RS_PERIODIC_TIMEOUT_USEC / 4;
|
|
|
|
/* this is the threshold below which no timer arming will occur
|
|
1.25 coefficient is for the threshold to be a little bigger
|
|
than the real time, to compensate for timer in-accuracy */
|
|
bp->cmng.rs_vars.rs_threshold =
|
|
(RS_PERIODIC_TIMEOUT_USEC * r_param * 5) / 4;
|
|
|
|
/* resolution of fairness timer */
|
|
fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
|
|
/* for 10G it is 1000usec. for 1G it is 10000usec. */
|
|
t_fair = T_FAIR_COEF / bp->link_vars.line_speed;
|
|
|
|
/* this is the threshold below which we won't arm the timer anymore */
|
|
bp->cmng.fair_vars.fair_threshold = QM_ARB_BYTES;
|
|
|
|
/* we multiply by 1e3/8 to get bytes/msec.
|
|
We don't want the credits to pass a credit
|
|
of the t_fair*FAIR_MEM (algorithm resolution) */
|
|
bp->cmng.fair_vars.upper_bound = r_param * t_fair * FAIR_MEM;
|
|
/* since each tick is 4 usec */
|
|
bp->cmng.fair_vars.fairness_timeout = fair_periodic_timeout_usec / 4;
|
|
}
|
|
|
|
/* Calculates the sum of vn_min_rates.
|
|
It's needed for further normalizing of the min_rates.
|
|
Returns:
|
|
sum of vn_min_rates.
|
|
or
|
|
0 - if all the min_rates are 0.
|
|
In the later case fainess algorithm should be deactivated.
|
|
If not all min_rates are zero then those that are zeroes will be set to 1.
|
|
*/
|
|
static void bnx2x_calc_vn_weight_sum(struct bnx2x *bp)
|
|
{
|
|
int all_zero = 1;
|
|
int vn;
|
|
|
|
bp->vn_weight_sum = 0;
|
|
for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
|
|
u32 vn_cfg = bp->mf_config[vn];
|
|
u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
|
|
FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
|
|
|
|
/* Skip hidden vns */
|
|
if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
|
|
continue;
|
|
|
|
/* If min rate is zero - set it to 1 */
|
|
if (!vn_min_rate)
|
|
vn_min_rate = DEF_MIN_RATE;
|
|
else
|
|
all_zero = 0;
|
|
|
|
bp->vn_weight_sum += vn_min_rate;
|
|
}
|
|
|
|
/* if ETS or all min rates are zeros - disable fairness */
|
|
if (BNX2X_IS_ETS_ENABLED(bp)) {
|
|
bp->cmng.flags.cmng_enables &=
|
|
~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
|
|
DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
|
|
} else if (all_zero) {
|
|
bp->cmng.flags.cmng_enables &=
|
|
~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
|
|
DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
|
|
" fairness will be disabled\n");
|
|
} else
|
|
bp->cmng.flags.cmng_enables |=
|
|
CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
|
|
}
|
|
|
|
static void bnx2x_init_vn_minmax(struct bnx2x *bp, int vn)
|
|
{
|
|
struct rate_shaping_vars_per_vn m_rs_vn;
|
|
struct fairness_vars_per_vn m_fair_vn;
|
|
u32 vn_cfg = bp->mf_config[vn];
|
|
int func = func_by_vn(bp, vn);
|
|
u16 vn_min_rate, vn_max_rate;
|
|
int i;
|
|
|
|
/* If function is hidden - set min and max to zeroes */
|
|
if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
|
|
vn_min_rate = 0;
|
|
vn_max_rate = 0;
|
|
|
|
} else {
|
|
u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
|
|
|
|
vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
|
|
FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
|
|
/* If fairness is enabled (not all min rates are zeroes) and
|
|
if current min rate is zero - set it to 1.
|
|
This is a requirement of the algorithm. */
|
|
if (bp->vn_weight_sum && (vn_min_rate == 0))
|
|
vn_min_rate = DEF_MIN_RATE;
|
|
|
|
if (IS_MF_SI(bp))
|
|
/* maxCfg in percents of linkspeed */
|
|
vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
|
|
else
|
|
/* maxCfg is absolute in 100Mb units */
|
|
vn_max_rate = maxCfg * 100;
|
|
}
|
|
|
|
DP(NETIF_MSG_IFUP,
|
|
"func %d: vn_min_rate %d vn_max_rate %d vn_weight_sum %d\n",
|
|
func, vn_min_rate, vn_max_rate, bp->vn_weight_sum);
|
|
|
|
memset(&m_rs_vn, 0, sizeof(struct rate_shaping_vars_per_vn));
|
|
memset(&m_fair_vn, 0, sizeof(struct fairness_vars_per_vn));
|
|
|
|
/* global vn counter - maximal Mbps for this vn */
|
|
m_rs_vn.vn_counter.rate = vn_max_rate;
|
|
|
|
/* quota - number of bytes transmitted in this period */
|
|
m_rs_vn.vn_counter.quota =
|
|
(vn_max_rate * RS_PERIODIC_TIMEOUT_USEC) / 8;
|
|
|
|
if (bp->vn_weight_sum) {
|
|
/* credit for each period of the fairness algorithm:
|
|
number of bytes in T_FAIR (the vn share the port rate).
|
|
vn_weight_sum should not be larger than 10000, thus
|
|
T_FAIR_COEF / (8 * vn_weight_sum) will always be greater
|
|
than zero */
|
|
m_fair_vn.vn_credit_delta =
|
|
max_t(u32, (vn_min_rate * (T_FAIR_COEF /
|
|
(8 * bp->vn_weight_sum))),
|
|
(bp->cmng.fair_vars.fair_threshold +
|
|
MIN_ABOVE_THRESH));
|
|
DP(NETIF_MSG_IFUP, "m_fair_vn.vn_credit_delta %d\n",
|
|
m_fair_vn.vn_credit_delta);
|
|
}
|
|
|
|
/* Store it to internal memory */
|
|
for (i = 0; i < sizeof(struct rate_shaping_vars_per_vn)/4; i++)
|
|
REG_WR(bp, BAR_XSTRORM_INTMEM +
|
|
XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func) + i * 4,
|
|
((u32 *)(&m_rs_vn))[i]);
|
|
|
|
for (i = 0; i < sizeof(struct fairness_vars_per_vn)/4; i++)
|
|
REG_WR(bp, BAR_XSTRORM_INTMEM +
|
|
XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func) + i * 4,
|
|
((u32 *)(&m_fair_vn))[i]);
|
|
}
|
|
|
|
static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
|
|
{
|
|
if (CHIP_REV_IS_SLOW(bp))
|
|
return CMNG_FNS_NONE;
|
|
if (IS_MF(bp))
|
|
return CMNG_FNS_MINMAX;
|
|
|
|
return CMNG_FNS_NONE;
|
|
}
|
|
|
|
void bnx2x_read_mf_cfg(struct bnx2x *bp)
|
|
{
|
|
int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
|
|
|
|
if (BP_NOMCP(bp))
|
|
return; /* what should be the default bvalue in this case */
|
|
|
|
/* For 2 port configuration the absolute function number formula
|
|
* is:
|
|
* abs_func = 2 * vn + BP_PORT + BP_PATH
|
|
*
|
|
* and there are 4 functions per port
|
|
*
|
|
* For 4 port configuration it is
|
|
* abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
|
|
*
|
|
* and there are 2 functions per port
|
|
*/
|
|
for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
|
|
int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
|
|
|
|
if (func >= E1H_FUNC_MAX)
|
|
break;
|
|
|
|
bp->mf_config[vn] =
|
|
MF_CFG_RD(bp, func_mf_config[func].config);
|
|
}
|
|
}
|
|
|
|
static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
|
|
{
|
|
|
|
if (cmng_type == CMNG_FNS_MINMAX) {
|
|
int vn;
|
|
|
|
/* clear cmng_enables */
|
|
bp->cmng.flags.cmng_enables = 0;
|
|
|
|
/* read mf conf from shmem */
|
|
if (read_cfg)
|
|
bnx2x_read_mf_cfg(bp);
|
|
|
|
/* Init rate shaping and fairness contexts */
|
|
bnx2x_init_port_minmax(bp);
|
|
|
|
/* vn_weight_sum and enable fairness if not 0 */
|
|
bnx2x_calc_vn_weight_sum(bp);
|
|
|
|
/* calculate and set min-max rate for each vn */
|
|
if (bp->port.pmf)
|
|
for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
|
|
bnx2x_init_vn_minmax(bp, vn);
|
|
|
|
/* always enable rate shaping and fairness */
|
|
bp->cmng.flags.cmng_enables |=
|
|
CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
|
|
if (!bp->vn_weight_sum)
|
|
DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
|
|
" fairness will be disabled\n");
|
|
return;
|
|
}
|
|
|
|
/* rate shaping and fairness are disabled */
|
|
DP(NETIF_MSG_IFUP,
|
|
"rate shaping and fairness are disabled\n");
|
|
}
|
|
|
|
/* This function is called upon link interrupt */
|
|
static void bnx2x_link_attn(struct bnx2x *bp)
|
|
{
|
|
/* Make sure that we are synced with the current statistics */
|
|
bnx2x_stats_handle(bp, STATS_EVENT_STOP);
|
|
|
|
bnx2x_link_update(&bp->link_params, &bp->link_vars);
|
|
|
|
if (bp->link_vars.link_up) {
|
|
|
|
/* dropless flow control */
|
|
if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
|
|
int port = BP_PORT(bp);
|
|
u32 pause_enabled = 0;
|
|
|
|
if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
|
|
pause_enabled = 1;
|
|
|
|
REG_WR(bp, BAR_USTRORM_INTMEM +
|
|
USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
|
|
pause_enabled);
|
|
}
|
|
|
|
if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
|
|
struct host_port_stats *pstats;
|
|
|
|
pstats = bnx2x_sp(bp, port_stats);
|
|
/* reset old mac stats */
|
|
memset(&(pstats->mac_stx[0]), 0,
|
|
sizeof(struct mac_stx));
|
|
}
|
|
if (bp->state == BNX2X_STATE_OPEN)
|
|
bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
|
|
}
|
|
|
|
if (bp->link_vars.link_up && bp->link_vars.line_speed) {
|
|
int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
|
|
|
|
if (cmng_fns != CMNG_FNS_NONE) {
|
|
bnx2x_cmng_fns_init(bp, false, cmng_fns);
|
|
storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
|
|
} else
|
|
/* rate shaping and fairness are disabled */
|
|
DP(NETIF_MSG_IFUP,
|
|
"single function mode without fairness\n");
|
|
}
|
|
|
|
__bnx2x_link_report(bp);
|
|
|
|
if (IS_MF(bp))
|
|
bnx2x_link_sync_notify(bp);
|
|
}
|
|
|
|
void bnx2x__link_status_update(struct bnx2x *bp)
|
|
{
|
|
if (bp->state != BNX2X_STATE_OPEN)
|
|
return;
|
|
|
|
/* read updated dcb configuration */
|
|
bnx2x_dcbx_pmf_update(bp);
|
|
|
|
bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
|
|
|
|
if (bp->link_vars.link_up)
|
|
bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
|
|
else
|
|
bnx2x_stats_handle(bp, STATS_EVENT_STOP);
|
|
|
|
/* indicate link status */
|
|
bnx2x_link_report(bp);
|
|
}
|
|
|
|
static void bnx2x_pmf_update(struct bnx2x *bp)
|
|
{
|
|
int port = BP_PORT(bp);
|
|
u32 val;
|
|
|
|
bp->port.pmf = 1;
|
|
DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
|
|
|
|
/*
|
|
* We need the mb() to ensure the ordering between the writing to
|
|
* bp->port.pmf here and reading it from the bnx2x_periodic_task().
|
|
*/
|
|
smp_mb();
|
|
|
|
/* queue a periodic task */
|
|
queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
|
|
|
|
bnx2x_dcbx_pmf_update(bp);
|
|
|
|
/* enable nig attention */
|
|
val = (0xff0f | (1 << (BP_VN(bp) + 4)));
|
|
if (bp->common.int_block == INT_BLOCK_HC) {
|
|
REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
|
|
REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
|
|
} else if (!CHIP_IS_E1x(bp)) {
|
|
REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
|
|
REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
|
|
}
|
|
|
|
bnx2x_stats_handle(bp, STATS_EVENT_PMF);
|
|
}
|
|
|
|
/* end of Link */
|
|
|
|
/* slow path */
|
|
|
|
/*
|
|
* General service functions
|
|
*/
|
|
|
|
/* send the MCP a request, block until there is a reply */
|
|
u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
|
|
{
|
|
int mb_idx = BP_FW_MB_IDX(bp);
|
|
u32 seq;
|
|
u32 rc = 0;
|
|
u32 cnt = 1;
|
|
u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
|
|
|
|
mutex_lock(&bp->fw_mb_mutex);
|
|
seq = ++bp->fw_seq;
|
|
SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
|
|
SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
|
|
|
|
DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
|
|
(command | seq), param);
|
|
|
|
do {
|
|
/* let the FW do it's magic ... */
|
|
msleep(delay);
|
|
|
|
rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
|
|
|
|
/* Give the FW up to 5 second (500*10ms) */
|
|
} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
|
|
|
|
DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
|
|
cnt*delay, rc, seq);
|
|
|
|
/* is this a reply to our command? */
|
|
if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
|
|
rc &= FW_MSG_CODE_MASK;
|
|
else {
|
|
/* FW BUG! */
|
|
BNX2X_ERR("FW failed to respond!\n");
|
|
bnx2x_fw_dump(bp);
|
|
rc = 0;
|
|
}
|
|
mutex_unlock(&bp->fw_mb_mutex);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static u8 stat_counter_valid(struct bnx2x *bp, struct bnx2x_fastpath *fp)
|
|
{
|
|
#ifdef BCM_CNIC
|
|
/* Statistics are not supported for CNIC Clients at the moment */
|
|
if (IS_FCOE_FP(fp))
|
|
return false;
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
|
|
{
|
|
if (CHIP_IS_E1x(bp)) {
|
|
struct tstorm_eth_function_common_config tcfg = {0};
|
|
|
|
storm_memset_func_cfg(bp, &tcfg, p->func_id);
|
|
}
|
|
|
|
/* Enable the function in the FW */
|
|
storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
|
|
storm_memset_func_en(bp, p->func_id, 1);
|
|
|
|
/* spq */
|
|
if (p->func_flgs & FUNC_FLG_SPQ) {
|
|
storm_memset_spq_addr(bp, p->spq_map, p->func_id);
|
|
REG_WR(bp, XSEM_REG_FAST_MEMORY +
|
|
XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* bnx2x_get_tx_only_flags - Return common flags
|
|
*
|
|
* @bp device handle
|
|
* @fp queue handle
|
|
* @zero_stats TRUE if statistics zeroing is needed
|
|
*
|
|
* Return the flags that are common for the Tx-only and not normal connections.
|
|
*/
|
|
static inline unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
|
|
struct bnx2x_fastpath *fp,
|
|
bool zero_stats)
|
|
{
|
|
unsigned long flags = 0;
|
|
|
|
/* PF driver will always initialize the Queue to an ACTIVE state */
|
|
__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
|
|
|
|
/* tx only connections collect statistics (on the same index as the
|
|
* parent connection). The statistics are zeroed when the parent
|
|
* connection is initialized.
|
|
*/
|
|
if (stat_counter_valid(bp, fp)) {
|
|
__set_bit(BNX2X_Q_FLG_STATS, &flags);
|
|
if (zero_stats)
|
|
__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
|
|
}
|
|
|
|
return flags;
|
|
}
|
|
|
|
static inline unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
|
|
struct bnx2x_fastpath *fp,
|
|
bool leading)
|
|
{
|
|
unsigned long flags = 0;
|
|
|
|
/* calculate other queue flags */
|
|
if (IS_MF_SD(bp))
|
|
__set_bit(BNX2X_Q_FLG_OV, &flags);
|
|
|
|
if (IS_FCOE_FP(fp))
|
|
__set_bit(BNX2X_Q_FLG_FCOE, &flags);
|
|
|
|
if (!fp->disable_tpa) {
|
|
__set_bit(BNX2X_Q_FLG_TPA, &flags);
|
|
__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
|
|
}
|
|
|
|
if (leading) {
|
|
__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
|
|
__set_bit(BNX2X_Q_FLG_MCAST, &flags);
|
|
}
|
|
|
|
/* Always set HW VLAN stripping */
|
|
__set_bit(BNX2X_Q_FLG_VLAN, &flags);
|
|
|
|
|
|
return flags | bnx2x_get_common_flags(bp, fp, true);
|
|
}
|
|
|
|
static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
|
|
struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
|
|
u8 cos)
|
|
{
|
|
gen_init->stat_id = bnx2x_stats_id(fp);
|
|
gen_init->spcl_id = fp->cl_id;
|
|
|
|
/* Always use mini-jumbo MTU for FCoE L2 ring */
|
|
if (IS_FCOE_FP(fp))
|
|
gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
|
|
else
|
|
gen_init->mtu = bp->dev->mtu;
|
|
|
|
gen_init->cos = cos;
|
|
}
|
|
|
|
static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
|
|
struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
|
|
struct bnx2x_rxq_setup_params *rxq_init)
|
|
{
|
|
u8 max_sge = 0;
|
|
u16 sge_sz = 0;
|
|
u16 tpa_agg_size = 0;
|
|
|
|
if (!fp->disable_tpa) {
|
|
pause->sge_th_lo = SGE_TH_LO(bp);
|
|
pause->sge_th_hi = SGE_TH_HI(bp);
|
|
|
|
/* validate SGE ring has enough to cross high threshold */
|
|
WARN_ON(bp->dropless_fc &&
|
|
pause->sge_th_hi + FW_PREFETCH_CNT >
|
|
MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
|
|
|
|
tpa_agg_size = min_t(u32,
|
|
(min_t(u32, 8, MAX_SKB_FRAGS) *
|
|
SGE_PAGE_SIZE * PAGES_PER_SGE), 0xffff);
|
|
max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
|
|
SGE_PAGE_SHIFT;
|
|
max_sge = ((max_sge + PAGES_PER_SGE - 1) &
|
|
(~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
|
|
sge_sz = (u16)min_t(u32, SGE_PAGE_SIZE * PAGES_PER_SGE,
|
|
0xffff);
|
|
}
|
|
|
|
/* pause - not for e1 */
|
|
if (!CHIP_IS_E1(bp)) {
|
|
pause->bd_th_lo = BD_TH_LO(bp);
|
|
pause->bd_th_hi = BD_TH_HI(bp);
|
|
|
|
pause->rcq_th_lo = RCQ_TH_LO(bp);
|
|
pause->rcq_th_hi = RCQ_TH_HI(bp);
|
|
/*
|
|
* validate that rings have enough entries to cross
|
|
* high thresholds
|
|
*/
|
|
WARN_ON(bp->dropless_fc &&
|
|
pause->bd_th_hi + FW_PREFETCH_CNT >
|
|
bp->rx_ring_size);
|
|
WARN_ON(bp->dropless_fc &&
|
|
pause->rcq_th_hi + FW_PREFETCH_CNT >
|
|
NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
|
|
|
|
pause->pri_map = 1;
|
|
}
|
|
|
|
/* rxq setup */
|
|
rxq_init->dscr_map = fp->rx_desc_mapping;
|
|
rxq_init->sge_map = fp->rx_sge_mapping;
|
|
rxq_init->rcq_map = fp->rx_comp_mapping;
|
|
rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
|
|
|
|
/* This should be a maximum number of data bytes that may be
|
|
* placed on the BD (not including paddings).
|
|
*/
|
|
rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
|
|
BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
|
|
|
|
rxq_init->cl_qzone_id = fp->cl_qzone_id;
|
|
rxq_init->tpa_agg_sz = tpa_agg_size;
|
|
rxq_init->sge_buf_sz = sge_sz;
|
|
rxq_init->max_sges_pkt = max_sge;
|
|
rxq_init->rss_engine_id = BP_FUNC(bp);
|
|
|
|
/* Maximum number or simultaneous TPA aggregation for this Queue.
|
|
*
|
|
* For PF Clients it should be the maximum avaliable number.
|
|
* VF driver(s) may want to define it to a smaller value.
|
|
*/
|
|
rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
|
|
|
|
rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
|
|
rxq_init->fw_sb_id = fp->fw_sb_id;
|
|
|
|
if (IS_FCOE_FP(fp))
|
|
rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
|
|
else
|
|
rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
|
|
}
|
|
|
|
static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
|
|
struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
|
|
u8 cos)
|
|
{
|
|
txq_init->dscr_map = fp->txdata[cos].tx_desc_mapping;
|
|
txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
|
|
txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
|
|
txq_init->fw_sb_id = fp->fw_sb_id;
|
|
|
|
/*
|
|
* set the tss leading client id for TX classfication ==
|
|
* leading RSS client id
|
|
*/
|
|
txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
|
|
|
|
if (IS_FCOE_FP(fp)) {
|
|
txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
|
|
txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
|
|
}
|
|
}
|
|
|
|
static void bnx2x_pf_init(struct bnx2x *bp)
|
|
{
|
|
struct bnx2x_func_init_params func_init = {0};
|
|
struct event_ring_data eq_data = { {0} };
|
|
u16 flags;
|
|
|
|
if (!CHIP_IS_E1x(bp)) {
|
|
/* reset IGU PF statistics: MSIX + ATTN */
|
|
/* PF */
|
|
REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
|
|
BNX2X_IGU_STAS_MSG_VF_CNT*4 +
|
|
(CHIP_MODE_IS_4_PORT(bp) ?
|
|
BP_FUNC(bp) : BP_VN(bp))*4, 0);
|
|
/* ATTN */
|
|
REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
|
|
BNX2X_IGU_STAS_MSG_VF_CNT*4 +
|
|
BNX2X_IGU_STAS_MSG_PF_CNT*4 +
|
|
(CHIP_MODE_IS_4_PORT(bp) ?
|
|
BP_FUNC(bp) : BP_VN(bp))*4, 0);
|
|
}
|
|
|
|
/* function setup flags */
|
|
flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
|
|
|
|
/* This flag is relevant for E1x only.
|
|
* E2 doesn't have a TPA configuration in a function level.
|
|
*/
|
|
flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
|
|
|
|
func_init.func_flgs = flags;
|
|
func_init.pf_id = BP_FUNC(bp);
|
|
func_init.func_id = BP_FUNC(bp);
|
|
func_init.spq_map = bp->spq_mapping;
|
|
func_init.spq_prod = bp->spq_prod_idx;
|
|
|
|
bnx2x_func_init(bp, &func_init);
|
|
|
|
memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
|
|
|
|
/*
|
|
* Congestion management values depend on the link rate
|
|
* There is no active link so initial link rate is set to 10 Gbps.
|
|
* When the link comes up The congestion management values are
|
|
* re-calculated according to the actual link rate.
|
|
*/
|
|
bp->link_vars.line_speed = SPEED_10000;
|
|
bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
|
|
|
|
/* Only the PMF sets the HW */
|
|
if (bp->port.pmf)
|
|
storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
|
|
|
|
/* init Event Queue */
|
|
eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
|
|
eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
|
|
eq_data.producer = bp->eq_prod;
|
|
eq_data.index_id = HC_SP_INDEX_EQ_CONS;
|
|
eq_data.sb_id = DEF_SB_ID;
|
|
storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
|
|
}
|
|
|
|
|
|
static void bnx2x_e1h_disable(struct bnx2x *bp)
|
|
{
|
|
int port = BP_PORT(bp);
|
|
|
|
bnx2x_tx_disable(bp);
|
|
|
|
REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
|
|
}
|
|
|
|
static void bnx2x_e1h_enable(struct bnx2x *bp)
|
|
{
|
|
int port = BP_PORT(bp);
|
|
|
|
REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
|
|
|
|
/* Tx queue should be only reenabled */
|
|
netif_tx_wake_all_queues(bp->dev);
|
|
|
|
/*
|
|
* Should not call netif_carrier_on since it will be called if the link
|
|
* is up when checking for link state
|
|
*/
|
|
}
|
|
|
|
/* called due to MCP event (on pmf):
|
|
* reread new bandwidth configuration
|
|
* configure FW
|
|
* notify others function about the change
|
|
*/
|
|
static inline void bnx2x_config_mf_bw(struct bnx2x *bp)
|
|
{
|
|
if (bp->link_vars.link_up) {
|
|
bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
|
|
bnx2x_link_sync_notify(bp);
|
|
}
|
|
storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
|
|
}
|
|
|
|
static inline void bnx2x_set_mf_bw(struct bnx2x *bp)
|
|
{
|
|
bnx2x_config_mf_bw(bp);
|
|
bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
|
|
}
|
|
|
|
static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
|
|
{
|
|
DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
|
|
|
|
if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
|
|
|
|
/*
|
|
* This is the only place besides the function initialization
|
|
* where the bp->flags can change so it is done without any
|
|
* locks
|
|
*/
|
|
if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
|
|
DP(NETIF_MSG_IFDOWN, "mf_cfg function disabled\n");
|
|
bp->flags |= MF_FUNC_DIS;
|
|
|
|
bnx2x_e1h_disable(bp);
|
|
} else {
|
|
DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
|
|
bp->flags &= ~MF_FUNC_DIS;
|
|
|
|
bnx2x_e1h_enable(bp);
|
|
}
|
|
dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
|
|
}
|
|
if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
|
|
bnx2x_config_mf_bw(bp);
|
|
dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
|
|
}
|
|
|
|
/* Report results to MCP */
|
|
if (dcc_event)
|
|
bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
|
|
else
|
|
bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
|
|
}
|
|
|
|
/* must be called under the spq lock */
|
|
static inline struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
|
|
{
|
|
struct eth_spe *next_spe = bp->spq_prod_bd;
|
|
|
|
if (bp->spq_prod_bd == bp->spq_last_bd) {
|
|
bp->spq_prod_bd = bp->spq;
|
|
bp->spq_prod_idx = 0;
|
|
DP(NETIF_MSG_TIMER, "end of spq\n");
|
|
} else {
|
|
bp->spq_prod_bd++;
|
|
bp->spq_prod_idx++;
|
|
}
|
|
return next_spe;
|
|
}
|
|
|
|
/* must be called under the spq lock */
|
|
static inline void bnx2x_sp_prod_update(struct bnx2x *bp)
|
|
{
|
|
int func = BP_FUNC(bp);
|
|
|
|
/*
|
|
* Make sure that BD data is updated before writing the producer:
|
|
* BD data is written to the memory, the producer is read from the
|
|
* memory, thus we need a full memory barrier to ensure the ordering.
|
|
*/
|
|
mb();
|
|
|
|
REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
|
|
bp->spq_prod_idx);
|
|
mmiowb();
|
|
}
|
|
|
|
/**
|
|
* bnx2x_is_contextless_ramrod - check if the current command ends on EQ
|
|
*
|
|
* @cmd: command to check
|
|
* @cmd_type: command type
|
|
*/
|
|
static inline bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
|
|
{
|
|
if ((cmd_type == NONE_CONNECTION_TYPE) ||
|
|
(cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
|
|
(cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
|
|
(cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
|
|
(cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
|
|
(cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
|
|
(cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
|
|
return true;
|
|
else
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
/**
|
|
* bnx2x_sp_post - place a single command on an SP ring
|
|
*
|
|
* @bp: driver handle
|
|
* @command: command to place (e.g. SETUP, FILTER_RULES, etc.)
|
|
* @cid: SW CID the command is related to
|
|
* @data_hi: command private data address (high 32 bits)
|
|
* @data_lo: command private data address (low 32 bits)
|
|
* @cmd_type: command type (e.g. NONE, ETH)
|
|
*
|
|
* SP data is handled as if it's always an address pair, thus data fields are
|
|
* not swapped to little endian in upper functions. Instead this function swaps
|
|
* data as if it's two u32 fields.
|
|
*/
|
|
int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
|
|
u32 data_hi, u32 data_lo, int cmd_type)
|
|
{
|
|
struct eth_spe *spe;
|
|
u16 type;
|
|
bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
|
|
|
|
#ifdef BNX2X_STOP_ON_ERROR
|
|
if (unlikely(bp->panic))
|
|
return -EIO;
|
|
#endif
|
|
|
|
spin_lock_bh(&bp->spq_lock);
|
|
|
|
if (common) {
|
|
if (!atomic_read(&bp->eq_spq_left)) {
|
|
BNX2X_ERR("BUG! EQ ring full!\n");
|
|
spin_unlock_bh(&bp->spq_lock);
|
|
bnx2x_panic();
|
|
return -EBUSY;
|
|
}
|
|
} else if (!atomic_read(&bp->cq_spq_left)) {
|
|
BNX2X_ERR("BUG! SPQ ring full!\n");
|
|
spin_unlock_bh(&bp->spq_lock);
|
|
bnx2x_panic();
|
|
return -EBUSY;
|
|
}
|
|
|
|
spe = bnx2x_sp_get_next(bp);
|
|
|
|
/* CID needs port number to be encoded int it */
|
|
spe->hdr.conn_and_cmd_data =
|
|
cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
|
|
HW_CID(bp, cid));
|
|
|
|
type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
|
|
|
|
type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
|
|
SPE_HDR_FUNCTION_ID);
|
|
|
|
spe->hdr.type = cpu_to_le16(type);
|
|
|
|
spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
|
|
spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
|
|
|
|
/*
|
|
* It's ok if the actual decrement is issued towards the memory
|
|
* somewhere between the spin_lock and spin_unlock. Thus no
|
|
* more explict memory barrier is needed.
|
|
*/
|
|
if (common)
|
|
atomic_dec(&bp->eq_spq_left);
|
|
else
|
|
atomic_dec(&bp->cq_spq_left);
|
|
|
|
|
|
DP(BNX2X_MSG_SP/*NETIF_MSG_TIMER*/,
|
|
"SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) "
|
|
"type(0x%x) left (CQ, EQ) (%x,%x)\n",
|
|
bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
|
|
(u32)(U64_LO(bp->spq_mapping) +
|
|
(void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
|
|
HW_CID(bp, cid), data_hi, data_lo, type,
|
|
atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
|
|
|
|
bnx2x_sp_prod_update(bp);
|
|
spin_unlock_bh(&bp->spq_lock);
|
|
return 0;
|
|
}
|
|
|
|
/* acquire split MCP access lock register */
|
|
static int bnx2x_acquire_alr(struct bnx2x *bp)
|
|
{
|
|
u32 j, val;
|
|
int rc = 0;
|
|
|
|
might_sleep();
|
|
for (j = 0; j < 1000; j++) {
|
|
val = (1UL << 31);
|
|
REG_WR(bp, GRCBASE_MCP + 0x9c, val);
|
|
val = REG_RD(bp, GRCBASE_MCP + 0x9c);
|
|
if (val & (1L << 31))
|
|
break;
|
|
|
|
msleep(5);
|
|
}
|
|
if (!(val & (1L << 31))) {
|
|
BNX2X_ERR("Cannot acquire MCP access lock register\n");
|
|
rc = -EBUSY;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* release split MCP access lock register */
|
|
static void bnx2x_release_alr(struct bnx2x *bp)
|
|
{
|
|
REG_WR(bp, GRCBASE_MCP + 0x9c, 0);
|
|
}
|
|
|
|
#define BNX2X_DEF_SB_ATT_IDX 0x0001
|
|
#define BNX2X_DEF_SB_IDX 0x0002
|
|
|
|
static inline u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
|
|
{
|
|
struct host_sp_status_block *def_sb = bp->def_status_blk;
|
|
u16 rc = 0;
|
|
|
|
barrier(); /* status block is written to by the chip */
|
|
if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
|
|
bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
|
|
rc |= BNX2X_DEF_SB_ATT_IDX;
|
|
}
|
|
|
|
if (bp->def_idx != def_sb->sp_sb.running_index) {
|
|
bp->def_idx = def_sb->sp_sb.running_index;
|
|
rc |= BNX2X_DEF_SB_IDX;
|
|
}
|
|
|
|
/* Do not reorder: indecies reading should complete before handling */
|
|
barrier();
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* slow path service functions
|
|
*/
|
|
|
|
static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
|
|
{
|
|
int port = BP_PORT(bp);
|
|
u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
|
|
MISC_REG_AEU_MASK_ATTN_FUNC_0;
|
|
u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
|
|
NIG_REG_MASK_INTERRUPT_PORT0;
|
|
u32 aeu_mask;
|
|
u32 nig_mask = 0;
|
|
u32 reg_addr;
|
|
|
|
if (bp->attn_state & asserted)
|
|
BNX2X_ERR("IGU ERROR\n");
|
|
|
|
bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
|
|
aeu_mask = REG_RD(bp, aeu_addr);
|
|
|
|
DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n",
|
|
aeu_mask, asserted);
|
|
aeu_mask &= ~(asserted & 0x3ff);
|
|
DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
|
|
|
|
REG_WR(bp, aeu_addr, aeu_mask);
|
|
bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
|
|
|
|
DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
|
|
bp->attn_state |= asserted;
|
|
DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
|
|
|
|
if (asserted & ATTN_HARD_WIRED_MASK) {
|
|
if (asserted & ATTN_NIG_FOR_FUNC) {
|
|
|
|
bnx2x_acquire_phy_lock(bp);
|
|
|
|
/* save nig interrupt mask */
|
|
nig_mask = REG_RD(bp, nig_int_mask_addr);
|
|
|
|
/* If nig_mask is not set, no need to call the update
|
|
* function.
|
|
*/
|
|
if (nig_mask) {
|
|
REG_WR(bp, nig_int_mask_addr, 0);
|
|
|
|
bnx2x_link_attn(bp);
|
|
}
|
|
|
|
/* handle unicore attn? */
|
|
}
|
|
if (asserted & ATTN_SW_TIMER_4_FUNC)
|
|
DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
|
|
|
|
if (asserted & GPIO_2_FUNC)
|
|
DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
|
|
|
|
if (asserted & GPIO_3_FUNC)
|
|
DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
|
|
|
|
if (asserted & GPIO_4_FUNC)
|
|
DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
|
|
|
|
if (port == 0) {
|
|
if (asserted & ATTN_GENERAL_ATTN_1) {
|
|
DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
|
|
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
|
|
}
|
|
if (asserted & ATTN_GENERAL_ATTN_2) {
|
|
DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
|
|
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
|
|
}
|
|
if (asserted & ATTN_GENERAL_ATTN_3) {
|
|
DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
|
|
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
|
|
}
|
|
} else {
|
|
if (asserted & ATTN_GENERAL_ATTN_4) {
|
|
DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
|
|
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
|
|
}
|
|
if (asserted & ATTN_GENERAL_ATTN_5) {
|
|
DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
|
|
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
|
|
}
|
|
if (asserted & ATTN_GENERAL_ATTN_6) {
|
|
DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
|
|
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
|
|
}
|
|
}
|
|
|
|
} /* if hardwired */
|
|
|
|
if (bp->common.int_block == INT_BLOCK_HC)
|
|
reg_addr = (HC_REG_COMMAND_REG + port*32 +
|
|
COMMAND_REG_ATTN_BITS_SET);
|
|
else
|
|
reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
|
|
|
|
DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
|
|
(bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
|
|
REG_WR(bp, reg_addr, asserted);
|
|
|
|
/* now set back the mask */
|
|
if (asserted & ATTN_NIG_FOR_FUNC) {
|
|
REG_WR(bp, nig_int_mask_addr, nig_mask);
|
|
bnx2x_release_phy_lock(bp);
|
|
}
|
|
}
|
|
|
|
static inline void bnx2x_fan_failure(struct bnx2x *bp)
|
|
{
|
|
int port = BP_PORT(bp);
|
|
u32 ext_phy_config;
|
|
/* mark the failure */
|
|
ext_phy_config =
|
|
SHMEM_RD(bp,
|
|
dev_info.port_hw_config[port].external_phy_config);
|
|
|
|
ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
|
|
ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
|
|
SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
|
|
ext_phy_config);
|
|
|
|
/* log the failure */
|
|
netdev_err(bp->dev, "Fan Failure on Network Controller has caused"
|
|
" the driver to shutdown the card to prevent permanent"
|
|
" damage. Please contact OEM Support for assistance\n");
|
|
|
|
/*
|
|
* Scheudle device reset (unload)
|
|
* This is due to some boards consuming sufficient power when driver is
|
|
* up to overheat if fan fails.
|
|
*/
|
|
smp_mb__before_clear_bit();
|
|
set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
|
|
smp_mb__after_clear_bit();
|
|
schedule_delayed_work(&bp->sp_rtnl_task, 0);
|
|
|
|
}
|
|
|
|
static inline void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
|
|
{
|
|
int port = BP_PORT(bp);
|
|
int reg_offset;
|
|
u32 val;
|
|
|
|
reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
|
|
MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
|
|
|
|
if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
|
|
|
|
val = REG_RD(bp, reg_offset);
|
|
val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
|
|
REG_WR(bp, reg_offset, val);
|
|
|
|
BNX2X_ERR("SPIO5 hw attention\n");
|
|
|
|
/* Fan failure attention */
|
|
bnx2x_hw_reset_phy(&bp->link_params);
|
|
bnx2x_fan_failure(bp);
|
|
}
|
|
|
|
if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
|
|
bnx2x_acquire_phy_lock(bp);
|
|
bnx2x_handle_module_detect_int(&bp->link_params);
|
|
bnx2x_release_phy_lock(bp);
|
|
}
|
|
|
|
if (attn & HW_INTERRUT_ASSERT_SET_0) {
|
|
|
|
val = REG_RD(bp, reg_offset);
|
|
val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
|
|
REG_WR(bp, reg_offset, val);
|
|
|
|
BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
|
|
(u32)(attn & HW_INTERRUT_ASSERT_SET_0));
|
|
bnx2x_panic();
|
|
}
|
|
}
|
|
|
|
static inline void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
|
|
{
|
|
u32 val;
|
|
|
|
if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
|
|
|
|
val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
|
|
BNX2X_ERR("DB hw attention 0x%x\n", val);
|
|
/* DORQ discard attention */
|
|
if (val & 0x2)
|
|
BNX2X_ERR("FATAL error from DORQ\n");
|
|
}
|
|
|
|
if (attn & HW_INTERRUT_ASSERT_SET_1) {
|
|
|
|
int port = BP_PORT(bp);
|
|
int reg_offset;
|
|
|
|
reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
|
|
MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
|
|
|
|
val = REG_RD(bp, reg_offset);
|
|
val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
|
|
REG_WR(bp, reg_offset, val);
|
|
|
|
BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
|
|
(u32)(attn & HW_INTERRUT_ASSERT_SET_1));
|
|
bnx2x_panic();
|
|
}
|
|
}
|
|
|
|
static inline void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
|
|
{
|
|
u32 val;
|
|
|
|
if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
|
|
|
|
val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
|
|
BNX2X_ERR("CFC hw attention 0x%x\n", val);
|
|
/* CFC error attention */
|
|
if (val & 0x2)
|
|
BNX2X_ERR("FATAL error from CFC\n");
|
|
}
|
|
|
|
if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
|
|
val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
|
|
BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
|
|
/* RQ_USDMDP_FIFO_OVERFLOW */
|
|
if (val & 0x18000)
|
|
BNX2X_ERR("FATAL error from PXP\n");
|
|
|
|
if (!CHIP_IS_E1x(bp)) {
|
|
val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
|
|
BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
|
|
}
|
|
}
|
|
|
|
if (attn & HW_INTERRUT_ASSERT_SET_2) {
|
|
|
|
int port = BP_PORT(bp);
|
|
int reg_offset;
|
|
|
|
reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
|
|
MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
|
|
|
|
val = REG_RD(bp, reg_offset);
|
|
val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
|
|
REG_WR(bp, reg_offset, val);
|
|
|
|
BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
|
|
(u32)(attn & HW_INTERRUT_ASSERT_SET_2));
|
|
bnx2x_panic();
|
|
}
|
|
}
|
|
|
|
static inline void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
|
|
{
|
|
u32 val;
|
|
|
|
if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
|
|
|
|
if (attn & BNX2X_PMF_LINK_ASSERT) {
|
|
int func = BP_FUNC(bp);
|
|
|
|
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
|
|
bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
|
|
func_mf_config[BP_ABS_FUNC(bp)].config);
|
|
val = SHMEM_RD(bp,
|
|
func_mb[BP_FW_MB_IDX(bp)].drv_status);
|
|
if (val & DRV_STATUS_DCC_EVENT_MASK)
|
|
bnx2x_dcc_event(bp,
|
|
(val & DRV_STATUS_DCC_EVENT_MASK));
|
|
|
|
if (val & DRV_STATUS_SET_MF_BW)
|
|
bnx2x_set_mf_bw(bp);
|
|
|
|
if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
|
|
bnx2x_pmf_update(bp);
|
|
|
|
if (bp->port.pmf &&
|
|
(val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
|
|
bp->dcbx_enabled > 0)
|
|
/* start dcbx state machine */
|
|
bnx2x_dcbx_set_params(bp,
|
|
BNX2X_DCBX_STATE_NEG_RECEIVED);
|
|
if (bp->link_vars.periodic_flags &
|
|
PERIODIC_FLAGS_LINK_EVENT) {
|
|
/* sync with link */
|
|
bnx2x_acquire_phy_lock(bp);
|
|
bp->link_vars.periodic_flags &=
|
|
~PERIODIC_FLAGS_LINK_EVENT;
|
|
bnx2x_release_phy_lock(bp);
|
|
if (IS_MF(bp))
|
|
bnx2x_link_sync_notify(bp);
|
|
bnx2x_link_report(bp);
|
|
}
|
|
/* Always call it here: bnx2x_link_report() will
|
|
* prevent the link indication duplication.
|
|
*/
|
|
bnx2x__link_status_update(bp);
|
|
} else if (attn & BNX2X_MC_ASSERT_BITS) {
|
|
|
|
BNX2X_ERR("MC assert!\n");
|
|
bnx2x_mc_assert(bp);
|
|
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
|
|
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
|
|
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
|
|
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
|
|
bnx2x_panic();
|
|
|
|
} else if (attn & BNX2X_MCP_ASSERT) {
|
|
|
|
BNX2X_ERR("MCP assert!\n");
|
|
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
|
|
bnx2x_fw_dump(bp);
|
|
|
|
} else
|
|
BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
|
|
}
|
|
|
|
if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
|
|
BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
|
|
if (attn & BNX2X_GRC_TIMEOUT) {
|
|
val = CHIP_IS_E1(bp) ? 0 :
|
|
REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
|
|
BNX2X_ERR("GRC time-out 0x%08x\n", val);
|
|
}
|
|
if (attn & BNX2X_GRC_RSV) {
|
|
val = CHIP_IS_E1(bp) ? 0 :
|
|
REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
|
|
BNX2X_ERR("GRC reserved 0x%08x\n", val);
|
|
}
|
|
REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Bits map:
|
|
* 0-7 - Engine0 load counter.
|
|
* 8-15 - Engine1 load counter.
|
|
* 16 - Engine0 RESET_IN_PROGRESS bit.
|
|
* 17 - Engine1 RESET_IN_PROGRESS bit.
|
|
* 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function
|
|
* on the engine
|
|
* 19 - Engine1 ONE_IS_LOADED.
|
|
* 20 - Chip reset flow bit. When set none-leader must wait for both engines
|
|
* leader to complete (check for both RESET_IN_PROGRESS bits and not for
|
|
* just the one belonging to its engine).
|
|
*
|
|
*/
|
|
#define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1
|
|
|
|
#define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff
|
|
#define BNX2X_PATH0_LOAD_CNT_SHIFT 0
|
|
#define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00
|
|
#define BNX2X_PATH1_LOAD_CNT_SHIFT 8
|
|
#define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
|
|
#define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
|
|
#define BNX2X_GLOBAL_RESET_BIT 0x00040000
|
|
|
|
/*
|
|
* Set the GLOBAL_RESET bit.
|
|
*
|
|
* Should be run under rtnl lock
|
|
*/
|
|
void bnx2x_set_reset_global(struct bnx2x *bp)
|
|
{
|
|
u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
|
|
|
|
REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
|
|
barrier();
|
|
mmiowb();
|
|
}
|
|
|
|
/*
|
|
* Clear the GLOBAL_RESET bit.
|
|
*
|
|
* Should be run under rtnl lock
|
|
*/
|
|
static inline void bnx2x_clear_reset_global(struct bnx2x *bp)
|
|
{
|
|
u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
|
|
|
|
REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
|
|
barrier();
|
|
mmiowb();
|
|
}
|
|
|
|
/*
|
|
* Checks the GLOBAL_RESET bit.
|
|
*
|
|
* should be run under rtnl lock
|
|
*/
|
|
static inline bool bnx2x_reset_is_global(struct bnx2x *bp)
|
|
{
|
|
u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
|
|
|
|
DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
|
|
return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
|
|
}
|
|
|
|
/*
|
|
* Clear RESET_IN_PROGRESS bit for the current engine.
|
|
*
|
|
* Should be run under rtnl lock
|
|
*/
|
|
static inline void bnx2x_set_reset_done(struct bnx2x *bp)
|
|
{
|
|
u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
|
|
u32 bit = BP_PATH(bp) ?
|
|
BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
|
|
|
|
/* Clear the bit */
|
|
val &= ~bit;
|
|
REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
|
|
barrier();
|
|
mmiowb();
|
|
}
|
|
|
|
/*
|
|
* Set RESET_IN_PROGRESS for the current engine.
|
|
*
|
|
* should be run under rtnl lock
|
|
*/
|
|
void bnx2x_set_reset_in_progress(struct bnx2x *bp)
|
|
{
|
|
u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
|
|
u32 bit = BP_PATH(bp) ?
|
|
BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
|
|
|
|
/* Set the bit */
|
|
val |= bit;
|
|
REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
|
|
barrier();
|
|
mmiowb();
|
|
}
|
|
|
|
/*
|
|
* Checks the RESET_IN_PROGRESS bit for the given engine.
|
|
* should be run under rtnl lock
|
|
*/
|
|
bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
|
|
{
|
|
u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
|
|
u32 bit = engine ?
|
|
BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
|
|
|
|
/* return false if bit is set */
|
|
return (val & bit) ? false : true;
|
|
}
|
|
|
|
/*
|
|
* Increment the load counter for the current engine.
|
|
*
|
|
* should be run under rtnl lock
|
|
*/
|
|
void bnx2x_inc_load_cnt(struct bnx2x *bp)
|
|
{
|
|
u32 val1, val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
|
|
u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
|
|
BNX2X_PATH0_LOAD_CNT_MASK;
|
|
u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
|
|
BNX2X_PATH0_LOAD_CNT_SHIFT;
|
|
|
|
DP(NETIF_MSG_HW, "Old GEN_REG_VAL=0x%08x\n", val);
|
|
|
|
/* get the current counter value */
|
|
val1 = (val & mask) >> shift;
|
|
|
|
/* increment... */
|
|
val1++;
|
|
|
|
/* clear the old value */
|
|
val &= ~mask;
|
|
|
|
/* set the new one */
|
|
val |= ((val1 << shift) & mask);
|
|
|
|
REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
|
|
barrier();
|
|
mmiowb();
|
|
}
|
|
|
|
/**
|
|
* bnx2x_dec_load_cnt - decrement the load counter
|
|
*
|
|
* @bp: driver handle
|
|
*
|
|
* Should be run under rtnl lock.
|
|
* Decrements the load counter for the current engine. Returns
|
|
* the new counter value.
|
|
*/
|
|
u32 bnx2x_dec_load_cnt(struct bnx2x *bp)
|
|
{
|
|
u32 val1, val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
|
|
u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
|
|
BNX2X_PATH0_LOAD_CNT_MASK;
|
|
u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
|
|
BNX2X_PATH0_LOAD_CNT_SHIFT;
|
|
|
|
DP(NETIF_MSG_HW, "Old GEN_REG_VAL=0x%08x\n", val);
|
|
|
|
/* get the current counter value */
|
|
val1 = (val & mask) >> shift;
|
|
|
|
/* decrement... */
|
|
val1--;
|
|
|
|
/* clear the old value */
|
|
val &= ~mask;
|
|
|
|
/* set the new one */
|
|
val |= ((val1 << shift) & mask);
|
|
|
|
REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
|
|
barrier();
|
|
mmiowb();
|
|
|
|
return val1;
|
|
}
|
|
|
|
/*
|
|
* Read the load counter for the current engine.
|
|
*
|
|
* should be run under rtnl lock
|
|
*/
|
|
static inline u32 bnx2x_get_load_cnt(struct bnx2x *bp, int engine)
|
|
{
|
|
u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
|
|
BNX2X_PATH0_LOAD_CNT_MASK);
|
|
u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
|
|
BNX2X_PATH0_LOAD_CNT_SHIFT);
|
|
u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
|
|
|
|
DP(NETIF_MSG_HW, "GLOB_REG=0x%08x\n", val);
|
|
|
|
val = (val & mask) >> shift;
|
|
|
|
DP(NETIF_MSG_HW, "load_cnt for engine %d = %d\n", engine, val);
|
|
|
|
return val;
|
|
}
|
|
|
|
/*
|
|
* Reset the load counter for the current engine.
|
|
*
|
|
* should be run under rtnl lock
|
|
*/
|
|
static inline void bnx2x_clear_load_cnt(struct bnx2x *bp)
|
|
{
|
|
u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
|
|
u32 mask = (BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
|
|
BNX2X_PATH0_LOAD_CNT_MASK);
|
|
|
|
REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~mask));
|
|
}
|
|
|
|
static inline void _print_next_block(int idx, const char *blk)
|
|
{
|
|
pr_cont("%s%s", idx ? ", " : "", blk);
|
|
}
|
|
|
|
static inline int bnx2x_check_blocks_with_parity0(u32 sig, int par_num,
|
|
bool print)
|
|
{
|
|
int i = 0;
|
|
u32 cur_bit = 0;
|
|
for (i = 0; sig; i++) {
|
|
cur_bit = ((u32)0x1 << i);
|
|
if (sig & cur_bit) {
|
|
switch (cur_bit) {
|
|
case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
|
|
if (print)
|
|
_print_next_block(par_num++, "BRB");
|
|
break;
|
|
case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
|
|
if (print)
|
|
_print_next_block(par_num++, "PARSER");
|
|
break;
|
|
case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
|
|
if (print)
|
|
_print_next_block(par_num++, "TSDM");
|
|
break;
|
|
case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
|
|
if (print)
|
|
_print_next_block(par_num++,
|
|
"SEARCHER");
|
|
break;
|
|
case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
|
|
if (print)
|
|
_print_next_block(par_num++, "TCM");
|
|
break;
|
|
case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
|
|
if (print)
|
|
_print_next_block(par_num++, "TSEMI");
|
|
break;
|
|
case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
|
|
if (print)
|
|
_print_next_block(par_num++, "XPB");
|
|
break;
|
|
}
|
|
|
|
/* Clear the bit */
|
|
sig &= ~cur_bit;
|
|
}
|
|
}
|
|
|
|
return par_num;
|
|
}
|
|
|
|
static inline int bnx2x_check_blocks_with_parity1(u32 sig, int par_num,
|
|
bool *global, bool print)
|
|
{
|
|
int i = 0;
|
|
u32 cur_bit = 0;
|
|
for (i = 0; sig; i++) {
|
|
cur_bit = ((u32)0x1 << i);
|
|
if (sig & cur_bit) {
|
|
switch (cur_bit) {
|
|
case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
|
|
if (print)
|
|
_print_next_block(par_num++, "PBF");
|
|
break;
|
|
case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
|
|
if (print)
|
|
_print_next_block(par_num++, "QM");
|
|
break;
|
|
case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
|
|
if (print)
|
|
_print_next_block(par_num++, "TM");
|
|
break;
|
|
case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
|
|
if (print)
|
|
_print_next_block(par_num++, "XSDM");
|
|
break;
|
|
case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
|
|
if (print)
|
|
_print_next_block(par_num++, "XCM");
|
|
break;
|
|
case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
|
|
if (print)
|
|
_print_next_block(par_num++, "XSEMI");
|
|
break;
|
|
case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
|
|
if (print)
|
|
_print_next_block(par_num++,
|
|
"DOORBELLQ");
|
|
break;
|
|
case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
|
|
if (print)
|
|
_print_next_block(par_num++, "NIG");
|
|
break;
|
|
case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
|
|
if (print)
|
|
_print_next_block(par_num++,
|
|
"VAUX PCI CORE");
|
|
*global = true;
|
|
break;
|
|
case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
|
|
if (print)
|
|
_print_next_block(par_num++, "DEBUG");
|
|
break;
|
|
case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
|
|
if (print)
|
|
_print_next_block(par_num++, "USDM");
|
|
break;
|
|
case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
|
|
if (print)
|
|
_print_next_block(par_num++, "UCM");
|
|
break;
|
|
case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
|
|
if (print)
|
|
_print_next_block(par_num++, "USEMI");
|
|
break;
|
|
case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
|
|
if (print)
|
|
_print_next_block(par_num++, "UPB");
|
|
break;
|
|
case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
|
|
if (print)
|
|
_print_next_block(par_num++, "CSDM");
|
|
break;
|
|
case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
|
|
if (print)
|
|
_print_next_block(par_num++, "CCM");
|
|
break;
|
|
}
|
|
|
|
/* Clear the bit */
|
|
sig &= ~cur_bit;
|
|
}
|
|
}
|
|
|
|
return par_num;
|
|
}
|
|
|
|
static inline int bnx2x_check_blocks_with_parity2(u32 sig, int par_num,
|
|
bool print)
|
|
{
|
|
int i = 0;
|
|
u32 cur_bit = 0;
|
|
for (i = 0; sig; i++) {
|
|
cur_bit = ((u32)0x1 << i);
|
|
if (sig & cur_bit) {
|
|
switch (cur_bit) {
|
|
case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
|
|
if (print)
|
|
_print_next_block(par_num++, "CSEMI");
|
|
break;
|
|
case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
|
|
if (print)
|
|
_print_next_block(par_num++, "PXP");
|
|
break;
|
|
case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
|
|
if (print)
|
|
_print_next_block(par_num++,
|
|
"PXPPCICLOCKCLIENT");
|
|
break;
|
|
case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
|
|
if (print)
|
|
_print_next_block(par_num++, "CFC");
|
|
break;
|
|
case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
|
|
if (print)
|
|
_print_next_block(par_num++, "CDU");
|
|
break;
|
|
case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
|
|
if (print)
|
|
_print_next_block(par_num++, "DMAE");
|
|
break;
|
|
case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
|
|
if (print)
|
|
_print_next_block(par_num++, "IGU");
|
|
break;
|
|
case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
|
|
if (print)
|
|
_print_next_block(par_num++, "MISC");
|
|
break;
|
|
}
|
|
|
|
/* Clear the bit */
|
|
sig &= ~cur_bit;
|
|
}
|
|
}
|
|
|
|
return par_num;
|
|
}
|
|
|
|
static inline int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
|
|
bool *global, bool print)
|
|
{
|
|
int i = 0;
|
|
u32 cur_bit = 0;
|
|
for (i = 0; sig; i++) {
|
|
cur_bit = ((u32)0x1 << i);
|
|
if (sig & cur_bit) {
|
|
switch (cur_bit) {
|
|
case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
|
|
if (print)
|
|
_print_next_block(par_num++, "MCP ROM");
|
|
*global = true;
|
|
break;
|
|
case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
|
|
if (print)
|
|
_print_next_block(par_num++,
|
|
"MCP UMP RX");
|
|
*global = true;
|
|
break;
|
|
case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
|
|
if (print)
|
|
_print_next_block(par_num++,
|
|
"MCP UMP TX");
|
|
*global = true;
|
|
break;
|
|
case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
|
|
if (print)
|
|
_print_next_block(par_num++,
|
|
"MCP SCPAD");
|
|
*global = true;
|
|
break;
|
|
}
|
|
|
|
/* Clear the bit */
|
|
sig &= ~cur_bit;
|
|
}
|
|
}
|
|
|
|
return par_num;
|
|
}
|
|
|
|
static inline int bnx2x_check_blocks_with_parity4(u32 sig, int par_num,
|
|
bool print)
|
|
{
|
|
int i = 0;
|
|
u32 cur_bit = 0;
|
|
for (i = 0; sig; i++) {
|
|
cur_bit = ((u32)0x1 << i);
|
|
if (sig & cur_bit) {
|
|
switch (cur_bit) {
|
|
case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
|
|
if (print)
|
|
_print_next_block(par_num++, "PGLUE_B");
|
|
break;
|
|
case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
|
|
if (print)
|
|
_print_next_block(par_num++, "ATC");
|
|
break;
|
|
}
|
|
|
|
/* Clear the bit */
|
|
sig &= ~cur_bit;
|
|
}
|
|
}
|
|
|
|
return par_num;
|
|
}
|
|
|
|
static inline bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
|
|
u32 *sig)
|
|
{
|
|
if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
|
|
(sig[1] & HW_PRTY_ASSERT_SET_1) ||
|
|
(sig[2] & HW_PRTY_ASSERT_SET_2) ||
|
|
(sig[3] & HW_PRTY_ASSERT_SET_3) ||
|
|
(sig[4] & HW_PRTY_ASSERT_SET_4)) {
|
|
int par_num = 0;
|
|
DP(NETIF_MSG_HW, "Was parity error: HW block parity attention: "
|
|
"[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x "
|
|
"[4]:0x%08x\n",
|
|
sig[0] & HW_PRTY_ASSERT_SET_0,
|
|
sig[1] & HW_PRTY_ASSERT_SET_1,
|
|
sig[2] & HW_PRTY_ASSERT_SET_2,
|
|
sig[3] & HW_PRTY_ASSERT_SET_3,
|
|
sig[4] & HW_PRTY_ASSERT_SET_4);
|
|
if (print)
|
|
netdev_err(bp->dev,
|
|
"Parity errors detected in blocks: ");
|
|
par_num = bnx2x_check_blocks_with_parity0(
|
|
sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
|
|
par_num = bnx2x_check_blocks_with_parity1(
|
|
sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
|
|
par_num = bnx2x_check_blocks_with_parity2(
|
|
sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
|
|
par_num = bnx2x_check_blocks_with_parity3(
|
|
sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
|
|
par_num = bnx2x_check_blocks_with_parity4(
|
|
sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
|
|
|
|
if (print)
|
|
pr_cont("\n");
|
|
|
|
return true;
|
|
} else
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* bnx2x_chk_parity_attn - checks for parity attentions.
|
|
*
|
|
* @bp: driver handle
|
|
* @global: true if there was a global attention
|
|
* @print: show parity attention in syslog
|
|
*/
|
|
bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
|
|
{
|
|
struct attn_route attn = { {0} };
|
|
int port = BP_PORT(bp);
|
|
|
|
attn.sig[0] = REG_RD(bp,
|
|
MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
|
|
port*4);
|
|
attn.sig[1] = REG_RD(bp,
|
|
MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
|
|
port*4);
|
|
attn.sig[2] = REG_RD(bp,
|
|
MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
|
|
port*4);
|
|
attn.sig[3] = REG_RD(bp,
|
|
MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
|
|
port*4);
|
|
|
|
if (!CHIP_IS_E1x(bp))
|
|
attn.sig[4] = REG_RD(bp,
|
|
MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
|
|
port*4);
|
|
|
|
return bnx2x_parity_attn(bp, global, print, attn.sig);
|
|
}
|
|
|
|
|
|
static inline void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
|
|
{
|
|
u32 val;
|
|
if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
|
|
|
|
val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
|
|
BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
|
|
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
|
|
BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
|
|
"ADDRESS_ERROR\n");
|
|
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
|
|
BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
|
|
"INCORRECT_RCV_BEHAVIOR\n");
|
|
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
|
|
BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
|
|
"WAS_ERROR_ATTN\n");
|
|
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
|
|
BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
|
|
"VF_LENGTH_VIOLATION_ATTN\n");
|
|
if (val &
|
|
PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
|
|
BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
|
|
"VF_GRC_SPACE_VIOLATION_ATTN\n");
|
|
if (val &
|
|
PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
|
|
BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
|
|
"VF_MSIX_BAR_VIOLATION_ATTN\n");
|
|
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
|
|
BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
|
|
"TCPL_ERROR_ATTN\n");
|
|
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
|
|
BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
|
|
"TCPL_IN_TWO_RCBS_ATTN\n");
|
|
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
|
|
BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
|
|
"CSSNOOP_FIFO_OVERFLOW\n");
|
|
}
|
|
if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
|
|
val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
|
|
BNX2X_ERR("ATC hw attention 0x%x\n", val);
|
|
if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
|
|
BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
|
|
if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
|
|
BNX2X_ERR("ATC_ATC_INT_STS_REG"
|
|
"_ATC_TCPL_TO_NOT_PEND\n");
|
|
if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
|
|
BNX2X_ERR("ATC_ATC_INT_STS_REG_"
|
|
"ATC_GPA_MULTIPLE_HITS\n");
|
|
if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
|
|
BNX2X_ERR("ATC_ATC_INT_STS_REG_"
|
|
"ATC_RCPL_TO_EMPTY_CNT\n");
|
|
if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
|
|
BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
|
|
if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
|
|
BNX2X_ERR("ATC_ATC_INT_STS_REG_"
|
|
"ATC_IREQ_LESS_THAN_STU\n");
|
|
}
|
|
|
|
if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
|
|
AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
|
|
BNX2X_ERR("FATAL parity attention set4 0x%x\n",
|
|
(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
|
|
AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
|
|
}
|
|
|
|
}
|
|
|
|
static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
|
|
{
|
|
struct attn_route attn, *group_mask;
|
|
int port = BP_PORT(bp);
|
|
int index;
|
|
u32 reg_addr;
|
|
u32 val;
|
|
u32 aeu_mask;
|
|
bool global = false;
|
|
|
|
/* need to take HW lock because MCP or other port might also
|
|
try to handle this event */
|
|
bnx2x_acquire_alr(bp);
|
|
|
|
if (bnx2x_chk_parity_attn(bp, &global, true)) {
|
|
#ifndef BNX2X_STOP_ON_ERROR
|
|
bp->recovery_state = BNX2X_RECOVERY_INIT;
|
|
schedule_delayed_work(&bp->sp_rtnl_task, 0);
|
|
/* Disable HW interrupts */
|
|
bnx2x_int_disable(bp);
|
|
/* In case of parity errors don't handle attentions so that
|
|
* other function would "see" parity errors.
|
|
*/
|
|
#else
|
|
bnx2x_panic();
|
|
#endif
|
|
bnx2x_release_alr(bp);
|
|
return;
|
|
}
|
|
|
|
attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
|
|
attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
|
|
attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
|
|
attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
|
|
if (!CHIP_IS_E1x(bp))
|
|
attn.sig[4] =
|
|
REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
|
|
else
|
|
attn.sig[4] = 0;
|
|
|
|
DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
|
|
attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
|
|
|
|
for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
|
|
if (deasserted & (1 << index)) {
|
|
group_mask = &bp->attn_group[index];
|
|
|
|
DP(NETIF_MSG_HW, "group[%d]: %08x %08x "
|
|
"%08x %08x %08x\n",
|
|
index,
|
|
group_mask->sig[0], group_mask->sig[1],
|
|
group_mask->sig[2], group_mask->sig[3],
|
|
group_mask->sig[4]);
|
|
|
|
bnx2x_attn_int_deasserted4(bp,
|
|
attn.sig[4] & group_mask->sig[4]);
|
|
bnx2x_attn_int_deasserted3(bp,
|
|
attn.sig[3] & group_mask->sig[3]);
|
|
bnx2x_attn_int_deasserted1(bp,
|
|
attn.sig[1] & group_mask->sig[1]);
|
|
bnx2x_attn_int_deasserted2(bp,
|
|
attn.sig[2] & group_mask->sig[2]);
|
|
bnx2x_attn_int_deasserted0(bp,
|
|
attn.sig[0] & group_mask->sig[0]);
|
|
}
|
|
}
|
|
|
|
bnx2x_release_alr(bp);
|
|
|
|
if (bp->common.int_block == INT_BLOCK_HC)
|
|
reg_addr = (HC_REG_COMMAND_REG + port*32 +
|
|
COMMAND_REG_ATTN_BITS_CLR);
|
|
else
|
|
reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
|
|
|
|
val = ~deasserted;
|
|
DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
|
|
(bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
|
|
REG_WR(bp, reg_addr, val);
|
|
|
|
if (~bp->attn_state & deasserted)
|
|
BNX2X_ERR("IGU ERROR\n");
|
|
|
|
reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
|
|
MISC_REG_AEU_MASK_ATTN_FUNC_0;
|
|
|
|
bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
|
|
aeu_mask = REG_RD(bp, reg_addr);
|
|
|
|
DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n",
|
|
aeu_mask, deasserted);
|
|
aeu_mask |= (deasserted & 0x3ff);
|
|
DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
|
|
|
|
REG_WR(bp, reg_addr, aeu_mask);
|
|
bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
|
|
|
|
DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
|
|
bp->attn_state &= ~deasserted;
|
|
DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
|
|
}
|
|
|
|
static void bnx2x_attn_int(struct bnx2x *bp)
|
|
{
|
|
/* read local copy of bits */
|
|
u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
|
|
attn_bits);
|
|
u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
|
|
attn_bits_ack);
|
|
u32 attn_state = bp->attn_state;
|
|
|
|
/* look for changed bits */
|
|
u32 asserted = attn_bits & ~attn_ack & ~attn_state;
|
|
u32 deasserted = ~attn_bits & attn_ack & attn_state;
|
|
|
|
DP(NETIF_MSG_HW,
|
|
"attn_bits %x attn_ack %x asserted %x deasserted %x\n",
|
|
attn_bits, attn_ack, asserted, deasserted);
|
|
|
|
if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
|
|
BNX2X_ERR("BAD attention state\n");
|
|
|
|
/* handle bits that were raised */
|
|
if (asserted)
|
|
bnx2x_attn_int_asserted(bp, asserted);
|
|
|
|
if (deasserted)
|
|
bnx2x_attn_int_deasserted(bp, deasserted);
|
|
}
|
|
|
|
void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
|
|
u16 index, u8 op, u8 update)
|
|
{
|
|
u32 igu_addr = BAR_IGU_INTMEM + (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
|
|
|
|
bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
|
|
igu_addr);
|
|
}
|
|
|
|
static inline void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
|
|
{
|
|
/* No memory barriers */
|
|
storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
|
|
mmiowb(); /* keep prod updates ordered */
|
|
}
|
|
|
|
#ifdef BCM_CNIC
|
|
static int bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
|
|
union event_ring_elem *elem)
|
|
{
|
|
u8 err = elem->message.error;
|
|
|
|
if (!bp->cnic_eth_dev.starting_cid ||
|
|
(cid < bp->cnic_eth_dev.starting_cid &&
|
|
cid != bp->cnic_eth_dev.iscsi_l2_cid))
|
|
return 1;
|
|
|
|
DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
|
|
|
|
if (unlikely(err)) {
|
|
|
|
BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
|
|
cid);
|
|
bnx2x_panic_dump(bp);
|
|
}
|
|
bnx2x_cnic_cfc_comp(bp, cid, err);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static inline void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
|
|
{
|
|
struct bnx2x_mcast_ramrod_params rparam;
|
|
int rc;
|
|
|
|
memset(&rparam, 0, sizeof(rparam));
|
|
|
|
rparam.mcast_obj = &bp->mcast_obj;
|
|
|
|
netif_addr_lock_bh(bp->dev);
|
|
|
|
/* Clear pending state for the last command */
|
|
bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
|
|
|
|
/* If there are pending mcast commands - send them */
|
|
if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
|
|
rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
|
|
if (rc < 0)
|
|
BNX2X_ERR("Failed to send pending mcast commands: %d\n",
|
|
rc);
|
|
}
|
|
|
|
netif_addr_unlock_bh(bp->dev);
|
|
}
|
|
|
|
static inline void bnx2x_handle_classification_eqe(struct bnx2x *bp,
|
|
union event_ring_elem *elem)
|
|
{
|
|
unsigned long ramrod_flags = 0;
|
|
int rc = 0;
|
|
u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
|
|
struct bnx2x_vlan_mac_obj *vlan_mac_obj;
|
|
|
|
/* Always push next commands out, don't wait here */
|
|
__set_bit(RAMROD_CONT, &ramrod_flags);
|
|
|
|
switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
|
|
case BNX2X_FILTER_MAC_PENDING:
|
|
#ifdef BCM_CNIC
|
|
if (cid == BNX2X_ISCSI_ETH_CID)
|
|
vlan_mac_obj = &bp->iscsi_l2_mac_obj;
|
|
else
|
|
#endif
|
|
vlan_mac_obj = &bp->fp[cid].mac_obj;
|
|
|
|
break;
|
|
case BNX2X_FILTER_MCAST_PENDING:
|
|
/* This is only relevant for 57710 where multicast MACs are
|
|
* configured as unicast MACs using the same ramrod.
|
|
*/
|
|
bnx2x_handle_mcast_eqe(bp);
|
|
return;
|
|
default:
|
|
BNX2X_ERR("Unsupported classification command: %d\n",
|
|
elem->message.data.eth_event.echo);
|
|
return;
|
|
}
|
|
|
|
rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
|
|
|
|
if (rc < 0)
|
|
BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
|
|
else if (rc > 0)
|
|
DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
|
|
|
|
}
|
|
|
|
#ifdef BCM_CNIC
|
|
static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
|
|
#endif
|
|
|
|
static inline void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
|
|
{
|
|
netif_addr_lock_bh(bp->dev);
|
|
|
|
clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
|
|
|
|
/* Send rx_mode command again if was requested */
|
|
if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
|
|
bnx2x_set_storm_rx_mode(bp);
|
|
#ifdef BCM_CNIC
|
|
else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
|
|
&bp->sp_state))
|
|
bnx2x_set_iscsi_eth_rx_mode(bp, true);
|
|
else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
|
|
&bp->sp_state))
|
|
bnx2x_set_iscsi_eth_rx_mode(bp, false);
|
|
#endif
|
|
|
|
netif_addr_unlock_bh(bp->dev);
|
|
}
|
|
|
|
static inline struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
|
|
struct bnx2x *bp, u32 cid)
|
|
{
|
|
DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
|
|
#ifdef BCM_CNIC
|
|
if (cid == BNX2X_FCOE_ETH_CID)
|
|
return &bnx2x_fcoe(bp, q_obj);
|
|
else
|
|
#endif
|
|
return &bnx2x_fp(bp, CID_TO_FP(cid), q_obj);
|
|
}
|
|
|
|
static void bnx2x_eq_int(struct bnx2x *bp)
|
|
{
|
|
u16 hw_cons, sw_cons, sw_prod;
|
|
union event_ring_elem *elem;
|
|
u32 cid;
|
|
u8 opcode;
|
|
int spqe_cnt = 0;
|
|
struct bnx2x_queue_sp_obj *q_obj;
|
|
struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
|
|
struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
|
|
|
|
hw_cons = le16_to_cpu(*bp->eq_cons_sb);
|
|
|
|
/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
|
|
* when we get the the next-page we nned to adjust so the loop
|
|
* condition below will be met. The next element is the size of a
|
|
* regular element and hence incrementing by 1
|
|
*/
|
|
if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
|
|
hw_cons++;
|
|
|
|
/* This function may never run in parallel with itself for a
|
|
* specific bp, thus there is no need in "paired" read memory
|
|
* barrier here.
|
|
*/
|
|
sw_cons = bp->eq_cons;
|
|
sw_prod = bp->eq_prod;
|
|
|
|
DP(BNX2X_MSG_SP, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n",
|
|
hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
|
|
|
|
for (; sw_cons != hw_cons;
|
|
sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
|
|
|
|
|
|
elem = &bp->eq_ring[EQ_DESC(sw_cons)];
|
|
|
|
cid = SW_CID(elem->message.data.cfc_del_event.cid);
|
|
opcode = elem->message.opcode;
|
|
|
|
|
|
/* handle eq element */
|
|
switch (opcode) {
|
|
case EVENT_RING_OPCODE_STAT_QUERY:
|
|
DP(NETIF_MSG_TIMER, "got statistics comp event %d\n",
|
|
bp->stats_comp++);
|
|
/* nothing to do with stats comp */
|
|
goto next_spqe;
|
|
|
|
case EVENT_RING_OPCODE_CFC_DEL:
|
|
/* handle according to cid range */
|
|
/*
|
|
* we may want to verify here that the bp state is
|
|
* HALTING
|
|
*/
|
|
DP(BNX2X_MSG_SP,
|
|
"got delete ramrod for MULTI[%d]\n", cid);
|
|
#ifdef BCM_CNIC
|
|
if (!bnx2x_cnic_handle_cfc_del(bp, cid, elem))
|
|
goto next_spqe;
|
|
#endif
|
|
q_obj = bnx2x_cid_to_q_obj(bp, cid);
|
|
|
|
if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
|
|
break;
|
|
|
|
|
|
|
|
goto next_spqe;
|
|
|
|
case EVENT_RING_OPCODE_STOP_TRAFFIC:
|
|
DP(BNX2X_MSG_SP, "got STOP TRAFFIC\n");
|
|
if (f_obj->complete_cmd(bp, f_obj,
|
|
BNX2X_F_CMD_TX_STOP))
|
|
break;
|
|
bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
|
|
goto next_spqe;
|
|
|
|
case EVENT_RING_OPCODE_START_TRAFFIC:
|
|
DP(BNX2X_MSG_SP, "got START TRAFFIC\n");
|
|
if (f_obj->complete_cmd(bp, f_obj,
|
|
BNX2X_F_CMD_TX_START))
|
|
break;
|
|
bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
|
|
goto next_spqe;
|
|
case EVENT_RING_OPCODE_FUNCTION_START:
|
|
DP(BNX2X_MSG_SP, "got FUNC_START ramrod\n");
|
|
if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
|
|
break;
|
|
|
|
goto next_spqe;
|
|
|
|
case EVENT_RING_OPCODE_FUNCTION_STOP:
|
|
DP(BNX2X_MSG_SP, "got FUNC_STOP ramrod\n");
|
|
if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
|
|
break;
|
|
|
|
goto next_spqe;
|
|
}
|
|
|
|
switch (opcode | bp->state) {
|
|
case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
|
|
BNX2X_STATE_OPEN):
|
|
case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
|
|
BNX2X_STATE_OPENING_WAIT4_PORT):
|
|
cid = elem->message.data.eth_event.echo &
|
|
BNX2X_SWCID_MASK;
|
|
DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
|
|
cid);
|
|
rss_raw->clear_pending(rss_raw);
|
|
break;
|
|
|
|
case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
|
|
case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
|
|
case (EVENT_RING_OPCODE_SET_MAC |
|
|
BNX2X_STATE_CLOSING_WAIT4_HALT):
|
|
case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
|
|
BNX2X_STATE_OPEN):
|
|
case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
|
|
BNX2X_STATE_DIAG):
|
|
case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
|
|
BNX2X_STATE_CLOSING_WAIT4_HALT):
|
|
DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
|
|
bnx2x_handle_classification_eqe(bp, elem);
|
|
break;
|
|
|
|
case (EVENT_RING_OPCODE_MULTICAST_RULES |
|
|
BNX2X_STATE_OPEN):
|
|
case (EVENT_RING_OPCODE_MULTICAST_RULES |
|
|
BNX2X_STATE_DIAG):
|
|
case (EVENT_RING_OPCODE_MULTICAST_RULES |
|
|
BNX2X_STATE_CLOSING_WAIT4_HALT):
|
|
DP(BNX2X_MSG_SP, "got mcast ramrod\n");
|
|
bnx2x_handle_mcast_eqe(bp);
|
|
break;
|
|
|
|
case (EVENT_RING_OPCODE_FILTERS_RULES |
|
|
BNX2X_STATE_OPEN):
|
|
case (EVENT_RING_OPCODE_FILTERS_RULES |
|
|
BNX2X_STATE_DIAG):
|
|
case (EVENT_RING_OPCODE_FILTERS_RULES |
|
|
BNX2X_STATE_CLOSING_WAIT4_HALT):
|
|
DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
|
|
bnx2x_handle_rx_mode_eqe(bp);
|
|
break;
|
|
default:
|
|
/* unknown event log error and continue */
|
|
BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
|
|
elem->message.opcode, bp->state);
|
|
}
|
|
next_spqe:
|
|
spqe_cnt++;
|
|
} /* for */
|
|
|
|
smp_mb__before_atomic_inc();
|
|
atomic_add(spqe_cnt, &bp->eq_spq_left);
|
|
|
|
bp->eq_cons = sw_cons;
|
|
bp->eq_prod = sw_prod;
|
|
/* Make sure that above mem writes were issued towards the memory */
|
|
smp_wmb();
|
|
|
|
/* update producer */
|
|
bnx2x_update_eq_prod(bp, bp->eq_prod);
|
|
}
|
|
|
|
static void bnx2x_sp_task(struct work_struct *work)
|
|
{
|
|
struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
|
|
u16 status;
|
|
|
|
status = bnx2x_update_dsb_idx(bp);
|
|
/* if (status == 0) */
|
|
/* BNX2X_ERR("spurious slowpath interrupt!\n"); */
|
|
|
|
DP(NETIF_MSG_INTR, "got a slowpath interrupt (status 0x%x)\n", status);
|
|
|
|
/* HW attentions */
|
|
if (status & BNX2X_DEF_SB_ATT_IDX) {
|
|
bnx2x_attn_int(bp);
|
|
status &= ~BNX2X_DEF_SB_ATT_IDX;
|
|
}
|
|
|
|
/* SP events: STAT_QUERY and others */
|
|
if (status & BNX2X_DEF_SB_IDX) {
|
|
#ifdef BCM_CNIC
|
|
struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
|
|
|
|
if ((!NO_FCOE(bp)) &&
|
|
(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
|
|
/*
|
|
* Prevent local bottom-halves from running as
|
|
* we are going to change the local NAPI list.
|
|
*/
|
|
local_bh_disable();
|
|
napi_schedule(&bnx2x_fcoe(bp, napi));
|
|
local_bh_enable();
|
|
}
|
|
#endif
|
|
/* Handle EQ completions */
|
|
bnx2x_eq_int(bp);
|
|
|
|
bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
|
|
le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
|
|
|
|
status &= ~BNX2X_DEF_SB_IDX;
|
|
}
|
|
|
|
if (unlikely(status))
|
|
DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
|
|
status);
|
|
|
|
bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
|
|
le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
|
|
}
|
|
|
|
irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
|
|
{
|
|
struct net_device *dev = dev_instance;
|
|
struct bnx2x *bp = netdev_priv(dev);
|
|
|
|
bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
|
|
IGU_INT_DISABLE, 0);
|
|
|
|
#ifdef BNX2X_STOP_ON_ERROR
|
|
if (unlikely(bp->panic))
|
|
return IRQ_HANDLED;
|
|
#endif
|
|
|
|
#ifdef BCM_CNIC
|
|
{
|
|
struct cnic_ops *c_ops;
|
|
|
|
rcu_read_lock();
|
|
c_ops = rcu_dereference(bp->cnic_ops);
|
|
if (c_ops)
|
|
c_ops->cnic_handler(bp->cnic_data, NULL);
|
|
rcu_read_unlock();
|
|
}
|
|
#endif
|
|
queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* end of slow path */
|
|
|
|
|
|
void bnx2x_drv_pulse(struct bnx2x *bp)
|
|
{
|
|
SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
|
|
bp->fw_drv_pulse_wr_seq);
|
|
}
|
|
|
|
|
|
static void bnx2x_timer(unsigned long data)
|
|
{
|
|
u8 cos;
|
|
struct bnx2x *bp = (struct bnx2x *) data;
|
|
|
|
if (!netif_running(bp->dev))
|
|
return;
|
|
|
|
if (poll) {
|
|
struct bnx2x_fastpath *fp = &bp->fp[0];
|
|
|
|
for_each_cos_in_tx_queue(fp, cos)
|
|
bnx2x_tx_int(bp, &fp->txdata[cos]);
|
|
bnx2x_rx_int(fp, 1000);
|
|
}
|
|
|
|
if (!BP_NOMCP(bp)) {
|
|
int mb_idx = BP_FW_MB_IDX(bp);
|
|
u32 drv_pulse;
|
|
u32 mcp_pulse;
|
|
|
|
++bp->fw_drv_pulse_wr_seq;
|
|
bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
|
|
/* TBD - add SYSTEM_TIME */
|
|
drv_pulse = bp->fw_drv_pulse_wr_seq;
|
|
bnx2x_drv_pulse(bp);
|
|
|
|
mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
|
|
MCP_PULSE_SEQ_MASK);
|
|
/* The delta between driver pulse and mcp response
|
|
* should be 1 (before mcp response) or 0 (after mcp response)
|
|
*/
|
|
if ((drv_pulse != mcp_pulse) &&
|
|
(drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
|
|
/* someone lost a heartbeat... */
|
|
BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
|
|
drv_pulse, mcp_pulse);
|
|
}
|
|
}
|
|
|
|
if (bp->state == BNX2X_STATE_OPEN)
|
|
bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
|
|
|
|
mod_timer(&bp->timer, jiffies + bp->current_interval);
|
|
}
|
|
|
|
/* end of Statistics */
|
|
|
|
/* nic init */
|
|
|
|
/*
|
|
* nic init service functions
|
|
*/
|
|
|
|
static inline void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
|
|
{
|
|
u32 i;
|
|
if (!(len%4) && !(addr%4))
|
|
for (i = 0; i < len; i += 4)
|
|
REG_WR(bp, addr + i, fill);
|
|
else
|
|
for (i = 0; i < len; i++)
|
|
REG_WR8(bp, addr + i, fill);
|
|
|
|
}
|
|
|
|
/* helper: writes FP SP data to FW - data_size in dwords */
|
|
static inline void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
|
|
int fw_sb_id,
|
|
u32 *sb_data_p,
|
|
u32 data_size)
|
|
{
|
|
int index;
|
|
for (index = 0; index < data_size; index++)
|
|
REG_WR(bp, BAR_CSTRORM_INTMEM +
|
|
CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
|
|
sizeof(u32)*index,
|
|
*(sb_data_p + index));
|
|
}
|
|
|
|
static inline void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
|
|
{
|
|
u32 *sb_data_p;
|
|
u32 data_size = 0;
|
|
struct hc_status_block_data_e2 sb_data_e2;
|
|
struct hc_status_block_data_e1x sb_data_e1x;
|
|
|
|
/* disable the function first */
|
|
if (!CHIP_IS_E1x(bp)) {
|
|
memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
|
|
sb_data_e2.common.state = SB_DISABLED;
|
|
sb_data_e2.common.p_func.vf_valid = false;
|
|
sb_data_p = (u32 *)&sb_data_e2;
|
|
data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
|
|
} else {
|
|
memset(&sb_data_e1x, 0,
|
|
sizeof(struct hc_status_block_data_e1x));
|
|
sb_data_e1x.common.state = SB_DISABLED;
|
|
sb_data_e1x.common.p_func.vf_valid = false;
|
|
sb_data_p = (u32 *)&sb_data_e1x;
|
|
data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
|
|
}
|
|
bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
|
|
|
|
bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
|
|
CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
|
|
CSTORM_STATUS_BLOCK_SIZE);
|
|
bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
|
|
CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
|
|
CSTORM_SYNC_BLOCK_SIZE);
|
|
}
|
|
|
|
/* helper: writes SP SB data to FW */
|
|
static inline void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
|
|
struct hc_sp_status_block_data *sp_sb_data)
|
|
{
|
|
int func = BP_FUNC(bp);
|
|
int i;
|
|
for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
|
|
REG_WR(bp, BAR_CSTRORM_INTMEM +
|
|
CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
|
|
i*sizeof(u32),
|
|
*((u32 *)sp_sb_data + i));
|
|
}
|
|
|
|
static inline void bnx2x_zero_sp_sb(struct bnx2x *bp)
|
|
{
|
|
int func = BP_FUNC(bp);
|
|
struct hc_sp_status_block_data sp_sb_data;
|
|
memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
|
|
|
|
sp_sb_data.state = SB_DISABLED;
|
|
sp_sb_data.p_func.vf_valid = false;
|
|
|
|
bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
|
|
|
|
bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
|
|
CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
|
|
CSTORM_SP_STATUS_BLOCK_SIZE);
|
|
bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
|
|
CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
|
|
CSTORM_SP_SYNC_BLOCK_SIZE);
|
|
|
|
}
|
|
|
|
|
|
static inline
|
|
void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
|
|
int igu_sb_id, int igu_seg_id)
|
|
{
|
|
hc_sm->igu_sb_id = igu_sb_id;
|
|
hc_sm->igu_seg_id = igu_seg_id;
|
|
hc_sm->timer_value = 0xFF;
|
|
hc_sm->time_to_expire = 0xFFFFFFFF;
|
|
}
|
|
|
|
|
|
/* allocates state machine ids. */
|
|
static inline
|
|
void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
|
|
{
|
|
/* zero out state machine indices */
|
|
/* rx indices */
|
|
index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
|
|
|
|
/* tx indices */
|
|
index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
|
|
index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
|
|
index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
|
|
index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
|
|
|
|
/* map indices */
|
|
/* rx indices */
|
|
index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
|
|
SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
|
|
|
|
/* tx indices */
|
|
index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
|
|
SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
|
|
index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
|
|
SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
|
|
index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
|
|
SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
|
|
index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
|
|
SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
|
|
}
|
|
|
|
static void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
|
|
u8 vf_valid, int fw_sb_id, int igu_sb_id)
|
|
{
|
|
int igu_seg_id;
|
|
|
|
struct hc_status_block_data_e2 sb_data_e2;
|
|
struct hc_status_block_data_e1x sb_data_e1x;
|
|
struct hc_status_block_sm *hc_sm_p;
|
|
int data_size;
|
|
u32 *sb_data_p;
|
|
|
|
if (CHIP_INT_MODE_IS_BC(bp))
|
|
igu_seg_id = HC_SEG_ACCESS_NORM;
|
|
else
|
|
igu_seg_id = IGU_SEG_ACCESS_NORM;
|
|
|
|
bnx2x_zero_fp_sb(bp, fw_sb_id);
|
|
|
|
if (!CHIP_IS_E1x(bp)) {
|
|
memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
|
|
sb_data_e2.common.state = SB_ENABLED;
|
|
sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
|
|
sb_data_e2.common.p_func.vf_id = vfid;
|
|
sb_data_e2.common.p_func.vf_valid = vf_valid;
|
|
sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
|
|
sb_data_e2.common.same_igu_sb_1b = true;
|
|
sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
|
|
sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
|
|
hc_sm_p = sb_data_e2.common.state_machine;
|
|
sb_data_p = (u32 *)&sb_data_e2;
|
|
data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
|
|
bnx2x_map_sb_state_machines(sb_data_e2.index_data);
|
|
} else {
|
|
memset(&sb_data_e1x, 0,
|
|
sizeof(struct hc_status_block_data_e1x));
|
|
sb_data_e1x.common.state = SB_ENABLED;
|
|
sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
|
|
sb_data_e1x.common.p_func.vf_id = 0xff;
|
|
sb_data_e1x.common.p_func.vf_valid = false;
|
|
sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
|
|
sb_data_e1x.common.same_igu_sb_1b = true;
|
|
sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
|
|
sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
|
|
hc_sm_p = sb_data_e1x.common.state_machine;
|
|
sb_data_p = (u32 *)&sb_data_e1x;
|
|
data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
|
|
bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
|
|
}
|
|
|
|
bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
|
|
igu_sb_id, igu_seg_id);
|
|
bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
|
|
igu_sb_id, igu_seg_id);
|
|
|
|
DP(NETIF_MSG_HW, "Init FW SB %d\n", fw_sb_id);
|
|
|
|
/* write indecies to HW */
|
|
bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
|
|
}
|
|
|
|
static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
|
|
u16 tx_usec, u16 rx_usec)
|
|
{
|
|
bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
|
|
false, rx_usec);
|
|
bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
|
|
HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
|
|
tx_usec);
|
|
bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
|
|
HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
|
|
tx_usec);
|
|
bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
|
|
HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
|
|
tx_usec);
|
|
}
|
|
|
|
static void bnx2x_init_def_sb(struct bnx2x *bp)
|
|
{
|
|
struct host_sp_status_block *def_sb = bp->def_status_blk;
|
|
dma_addr_t mapping = bp->def_status_blk_mapping;
|
|
int igu_sp_sb_index;
|
|
int igu_seg_id;
|
|
int port = BP_PORT(bp);
|
|
int func = BP_FUNC(bp);
|
|
int reg_offset, reg_offset_en5;
|
|
u64 section;
|
|
int index;
|
|
struct hc_sp_status_block_data sp_sb_data;
|
|
memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
|
|
|
|
if (CHIP_INT_MODE_IS_BC(bp)) {
|
|
igu_sp_sb_index = DEF_SB_IGU_ID;
|
|
igu_seg_id = HC_SEG_ACCESS_DEF;
|
|
} else {
|
|
igu_sp_sb_index = bp->igu_dsb_id;
|
|
igu_seg_id = IGU_SEG_ACCESS_DEF;
|
|
}
|
|
|
|
/* ATTN */
|
|
section = ((u64)mapping) + offsetof(struct host_sp_status_block,
|
|
atten_status_block);
|
|
def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
|
|
|
|
bp->attn_state = 0;
|
|
|
|
reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
|
|
MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
|
|
reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
|
|
MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
|
|
for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
|
|
int sindex;
|
|
/* take care of sig[0]..sig[4] */
|
|
for (sindex = 0; sindex < 4; sindex++)
|
|
bp->attn_group[index].sig[sindex] =
|
|
REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
|
|
|
|
if (!CHIP_IS_E1x(bp))
|
|
/*
|
|
* enable5 is separate from the rest of the registers,
|
|
* and therefore the address skip is 4
|
|
* and not 16 between the different groups
|
|
*/
|
|
bp->attn_group[index].sig[4] = REG_RD(bp,
|
|
reg_offset_en5 + 0x4*index);
|
|
else
|
|
bp->attn_group[index].sig[4] = 0;
|
|
}
|
|
|
|
if (bp->common.int_block == INT_BLOCK_HC) {
|
|
reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
|
|
HC_REG_ATTN_MSG0_ADDR_L);
|
|
|
|
REG_WR(bp, reg_offset, U64_LO(section));
|
|
REG_WR(bp, reg_offset + 4, U64_HI(section));
|
|
} else if (!CHIP_IS_E1x(bp)) {
|
|
REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
|
|
REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
|
|
}
|
|
|
|
section = ((u64)mapping) + offsetof(struct host_sp_status_block,
|
|
sp_sb);
|
|
|
|
bnx2x_zero_sp_sb(bp);
|
|
|
|
sp_sb_data.state = SB_ENABLED;
|
|
sp_sb_data.host_sb_addr.lo = U64_LO(section);
|
|
sp_sb_data.host_sb_addr.hi = U64_HI(section);
|
|
sp_sb_data.igu_sb_id = igu_sp_sb_index;
|
|
sp_sb_data.igu_seg_id = igu_seg_id;
|
|
sp_sb_data.p_func.pf_id = func;
|
|
sp_sb_data.p_func.vnic_id = BP_VN(bp);
|
|
sp_sb_data.p_func.vf_id = 0xff;
|
|
|
|
bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
|
|
|
|
bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
|
|
}
|
|
|
|
void bnx2x_update_coalesce(struct bnx2x *bp)
|
|
{
|
|
int i;
|
|
|
|
for_each_eth_queue(bp, i)
|
|
bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
|
|
bp->tx_ticks, bp->rx_ticks);
|
|
}
|
|
|
|
static void bnx2x_init_sp_ring(struct bnx2x *bp)
|
|
{
|
|
spin_lock_init(&bp->spq_lock);
|
|
atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
|
|
|
|
bp->spq_prod_idx = 0;
|
|
bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
|
|
bp->spq_prod_bd = bp->spq;
|
|
bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
|
|
}
|
|
|
|
static void bnx2x_init_eq_ring(struct bnx2x *bp)
|
|
{
|
|
int i;
|
|
for (i = 1; i <= NUM_EQ_PAGES; i++) {
|
|
union event_ring_elem *elem =
|
|
&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
|
|
|
|
elem->next_page.addr.hi =
|
|
cpu_to_le32(U64_HI(bp->eq_mapping +
|
|
BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
|
|
elem->next_page.addr.lo =
|
|
cpu_to_le32(U64_LO(bp->eq_mapping +
|
|
BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
|
|
}
|
|
bp->eq_cons = 0;
|
|
bp->eq_prod = NUM_EQ_DESC;
|
|
bp->eq_cons_sb = BNX2X_EQ_INDEX;
|
|
/* we want a warning message before it gets rought... */
|
|
atomic_set(&bp->eq_spq_left,
|
|
min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
|
|
}
|
|
|
|
|
|
/* called with netif_addr_lock_bh() */
|
|
void bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
|
|
unsigned long rx_mode_flags,
|
|
unsigned long rx_accept_flags,
|
|
unsigned long tx_accept_flags,
|
|
unsigned long ramrod_flags)
|
|
{
|
|
struct bnx2x_rx_mode_ramrod_params ramrod_param;
|
|
int rc;
|
|
|
|
memset(&ramrod_param, 0, sizeof(ramrod_param));
|
|
|
|
/* Prepare ramrod parameters */
|
|
ramrod_param.cid = 0;
|
|
ramrod_param.cl_id = cl_id;
|
|
ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
|
|
ramrod_param.func_id = BP_FUNC(bp);
|
|
|
|
ramrod_param.pstate = &bp->sp_state;
|
|
ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
|
|
|
|
ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
|
|
ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
|
|
|
|
set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
|
|
|
|
ramrod_param.ramrod_flags = ramrod_flags;
|
|
ramrod_param.rx_mode_flags = rx_mode_flags;
|
|
|
|
ramrod_param.rx_accept_flags = rx_accept_flags;
|
|
ramrod_param.tx_accept_flags = tx_accept_flags;
|
|
|
|
rc = bnx2x_config_rx_mode(bp, &ramrod_param);
|
|
if (rc < 0) {
|
|
BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* called with netif_addr_lock_bh() */
|
|
void bnx2x_set_storm_rx_mode(struct bnx2x *bp)
|
|
{
|
|
unsigned long rx_mode_flags = 0, ramrod_flags = 0;
|
|
unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
|
|
|
|
#ifdef BCM_CNIC
|
|
if (!NO_FCOE(bp))
|
|
|
|
/* Configure rx_mode of FCoE Queue */
|
|
__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
|
|
#endif
|
|
|
|
switch (bp->rx_mode) {
|
|
case BNX2X_RX_MODE_NONE:
|
|
/*
|
|
* 'drop all' supersedes any accept flags that may have been
|
|
* passed to the function.
|
|
*/
|
|
break;
|
|
case BNX2X_RX_MODE_NORMAL:
|
|
__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
|
|
__set_bit(BNX2X_ACCEPT_MULTICAST, &rx_accept_flags);
|
|
__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
|
|
|
|
/* internal switching mode */
|
|
__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
|
|
__set_bit(BNX2X_ACCEPT_MULTICAST, &tx_accept_flags);
|
|
__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
|
|
|
|
break;
|
|
case BNX2X_RX_MODE_ALLMULTI:
|
|
__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
|
|
__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
|
|
__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
|
|
|
|
/* internal switching mode */
|
|
__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
|
|
__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
|
|
__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
|
|
|
|
break;
|
|
case BNX2X_RX_MODE_PROMISC:
|
|
/* According to deffinition of SI mode, iface in promisc mode
|
|
* should receive matched and unmatched (in resolution of port)
|
|
* unicast packets.
|
|
*/
|
|
__set_bit(BNX2X_ACCEPT_UNMATCHED, &rx_accept_flags);
|
|
__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
|
|
__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
|
|
__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
|
|
|
|
/* internal switching mode */
|
|
__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
|
|
__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
|
|
|
|
if (IS_MF_SI(bp))
|
|
__set_bit(BNX2X_ACCEPT_ALL_UNICAST, &tx_accept_flags);
|
|
else
|
|
__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
|
|
|
|
break;
|
|
default:
|
|
BNX2X_ERR("Unknown rx_mode: %d\n", bp->rx_mode);
|
|
return;
|
|
}
|
|
|
|
if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
|
|
__set_bit(BNX2X_ACCEPT_ANY_VLAN, &rx_accept_flags);
|
|
__set_bit(BNX2X_ACCEPT_ANY_VLAN, &tx_accept_flags);
|
|
}
|
|
|
|
__set_bit(RAMROD_RX, &ramrod_flags);
|
|
__set_bit(RAMROD_TX, &ramrod_flags);
|
|
|
|
bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, rx_accept_flags,
|
|
tx_accept_flags, ramrod_flags);
|
|
}
|
|
|
|
static void bnx2x_init_internal_common(struct bnx2x *bp)
|
|
{
|
|
int i;
|
|
|
|
if (IS_MF_SI(bp))
|
|
/*
|
|
* In switch independent mode, the TSTORM needs to accept
|
|
* packets that failed classification, since approximate match
|
|
* mac addresses aren't written to NIG LLH
|
|
*/
|
|
REG_WR8(bp, BAR_TSTRORM_INTMEM +
|
|
TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
|
|
else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
|
|
REG_WR8(bp, BAR_TSTRORM_INTMEM +
|
|
TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
|
|
|
|
/* Zero this manually as its initialization is
|
|
currently missing in the initTool */
|
|
for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
|
|
REG_WR(bp, BAR_USTRORM_INTMEM +
|
|
USTORM_AGG_DATA_OFFSET + i * 4, 0);
|
|
if (!CHIP_IS_E1x(bp)) {
|
|
REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
|
|
CHIP_INT_MODE_IS_BC(bp) ?
|
|
HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
|
|
}
|
|
}
|
|
|
|
static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
|
|
{
|
|
switch (load_code) {
|
|
case FW_MSG_CODE_DRV_LOAD_COMMON:
|
|
case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
|
|
bnx2x_init_internal_common(bp);
|
|
/* no break */
|
|
|
|
case FW_MSG_CODE_DRV_LOAD_PORT:
|
|
/* nothing to do */
|
|
/* no break */
|
|
|
|
case FW_MSG_CODE_DRV_LOAD_FUNCTION:
|
|
/* internal memory per function is
|
|
initialized inside bnx2x_pf_init */
|
|
break;
|
|
|
|
default:
|
|
BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
|
|
{
|
|
return fp->bp->igu_base_sb + fp->index + CNIC_PRESENT;
|
|
}
|
|
|
|
static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
|
|
{
|
|
return fp->bp->base_fw_ndsb + fp->index + CNIC_PRESENT;
|
|
}
|
|
|
|
static inline u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
|
|
{
|
|
if (CHIP_IS_E1x(fp->bp))
|
|
return BP_L_ID(fp->bp) + fp->index;
|
|
else /* We want Client ID to be the same as IGU SB ID for 57712 */
|
|
return bnx2x_fp_igu_sb_id(fp);
|
|
}
|
|
|
|
static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
|
|
{
|
|
struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
|
|
u8 cos;
|
|
unsigned long q_type = 0;
|
|
u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
|
|
fp->rx_queue = fp_idx;
|
|
fp->cid = fp_idx;
|
|
fp->cl_id = bnx2x_fp_cl_id(fp);
|
|
fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
|
|
fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
|
|
/* qZone id equals to FW (per path) client id */
|
|
fp->cl_qzone_id = bnx2x_fp_qzone_id(fp);
|
|
|
|
/* init shortcut */
|
|
fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
|
|
/* Setup SB indicies */
|
|
fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
|
|
|
|
/* Configure Queue State object */
|
|
__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
|
|
__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
|
|
|
|
BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
|
|
|
|
/* init tx data */
|
|
for_each_cos_in_tx_queue(fp, cos) {
|
|
bnx2x_init_txdata(bp, &fp->txdata[cos],
|
|
CID_COS_TO_TX_ONLY_CID(fp->cid, cos),
|
|
FP_COS_TO_TXQ(fp, cos),
|
|
BNX2X_TX_SB_INDEX_BASE + cos);
|
|
cids[cos] = fp->txdata[cos].cid;
|
|
}
|
|
|
|
bnx2x_init_queue_obj(bp, &fp->q_obj, fp->cl_id, cids, fp->max_cos,
|
|
BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
|
|
bnx2x_sp_mapping(bp, q_rdata), q_type);
|
|
|
|
/**
|
|
* Configure classification DBs: Always enable Tx switching
|
|
*/
|
|
bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
|
|
|
|
DP(NETIF_MSG_IFUP, "queue[%d]: bnx2x_init_sb(%p,%p) "
|
|
"cl_id %d fw_sb %d igu_sb %d\n",
|
|
fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
|
|
fp->igu_sb_id);
|
|
bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
|
|
fp->fw_sb_id, fp->igu_sb_id);
|
|
|
|
bnx2x_update_fpsb_idx(fp);
|
|
}
|
|
|
|
void bnx2x_nic_init(struct bnx2x *bp, u32 load_code)
|
|
{
|
|
int i;
|
|
|
|
for_each_eth_queue(bp, i)
|
|
bnx2x_init_eth_fp(bp, i);
|
|
#ifdef BCM_CNIC
|
|
if (!NO_FCOE(bp))
|
|
bnx2x_init_fcoe_fp(bp);
|
|
|
|
bnx2x_init_sb(bp, bp->cnic_sb_mapping,
|
|
BNX2X_VF_ID_INVALID, false,
|
|
bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
|
|
|
|
#endif
|
|
|
|
/* Initialize MOD_ABS interrupts */
|
|
bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
|
|
bp->common.shmem_base, bp->common.shmem2_base,
|
|
BP_PORT(bp));
|
|
/* ensure status block indices were read */
|
|
rmb();
|
|
|
|
bnx2x_init_def_sb(bp);
|
|
bnx2x_update_dsb_idx(bp);
|
|
bnx2x_init_rx_rings(bp);
|
|
bnx2x_init_tx_rings(bp);
|
|
bnx2x_init_sp_ring(bp);
|
|
bnx2x_init_eq_ring(bp);
|
|
bnx2x_init_internal(bp, load_code);
|
|
bnx2x_pf_init(bp);
|
|
bnx2x_stats_init(bp);
|
|
|
|
/* flush all before enabling interrupts */
|
|
mb();
|
|
mmiowb();
|
|
|
|
bnx2x_int_enable(bp);
|
|
|
|
/* Check for SPIO5 */
|
|
bnx2x_attn_int_deasserted0(bp,
|
|
REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
|
|
AEU_INPUTS_ATTN_BITS_SPIO5);
|
|
}
|
|
|
|
/* end of nic init */
|
|
|
|
/*
|
|
* gzip service functions
|
|
*/
|
|
|
|
static int bnx2x_gunzip_init(struct bnx2x *bp)
|
|
{
|
|
bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
|
|
&bp->gunzip_mapping, GFP_KERNEL);
|
|
if (bp->gunzip_buf == NULL)
|
|
goto gunzip_nomem1;
|
|
|
|
bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
|
|
if (bp->strm == NULL)
|
|
goto gunzip_nomem2;
|
|
|
|
bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
|
|
if (bp->strm->workspace == NULL)
|
|
goto gunzip_nomem3;
|
|
|
|
return 0;
|
|
|
|
gunzip_nomem3:
|
|
kfree(bp->strm);
|
|
bp->strm = NULL;
|
|
|
|
gunzip_nomem2:
|
|
dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
|
|
bp->gunzip_mapping);
|
|
bp->gunzip_buf = NULL;
|
|
|
|
gunzip_nomem1:
|
|
netdev_err(bp->dev, "Cannot allocate firmware buffer for"
|
|
" un-compression\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void bnx2x_gunzip_end(struct bnx2x *bp)
|
|
{
|
|
if (bp->strm) {
|
|
vfree(bp->strm->workspace);
|
|
kfree(bp->strm);
|
|
bp->strm = NULL;
|
|
}
|
|
|
|
if (bp->gunzip_buf) {
|
|
dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
|
|
bp->gunzip_mapping);
|
|
bp->gunzip_buf = NULL;
|
|
}
|
|
}
|
|
|
|
static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
|
|
{
|
|
int n, rc;
|
|
|
|
/* check gzip header */
|
|
if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
|
|
BNX2X_ERR("Bad gzip header\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
n = 10;
|
|
|
|
#define FNAME 0x8
|
|
|
|
if (zbuf[3] & FNAME)
|
|
while ((zbuf[n++] != 0) && (n < len));
|
|
|
|
bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
|
|
bp->strm->avail_in = len - n;
|
|
bp->strm->next_out = bp->gunzip_buf;
|
|
bp->strm->avail_out = FW_BUF_SIZE;
|
|
|
|
rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
|
|
if (rc != Z_OK)
|
|
return rc;
|
|
|
|
rc = zlib_inflate(bp->strm, Z_FINISH);
|
|
if ((rc != Z_OK) && (rc != Z_STREAM_END))
|
|
netdev_err(bp->dev, "Firmware decompression error: %s\n",
|
|
bp->strm->msg);
|
|
|
|
bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
|
|
if (bp->gunzip_outlen & 0x3)
|
|
netdev_err(bp->dev, "Firmware decompression error:"
|
|
" gunzip_outlen (%d) not aligned\n",
|
|
bp->gunzip_outlen);
|
|
bp->gunzip_outlen >>= 2;
|
|
|
|
zlib_inflateEnd(bp->strm);
|
|
|
|
if (rc == Z_STREAM_END)
|
|
return 0;
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* nic load/unload */
|
|
|
|
/*
|
|
* General service functions
|
|
*/
|
|
|
|
/* send a NIG loopback debug packet */
|
|
static void bnx2x_lb_pckt(struct bnx2x *bp)
|
|
{
|
|
u32 wb_write[3];
|
|
|
|
/* Ethernet source and destination addresses */
|
|
wb_write[0] = 0x55555555;
|
|
wb_write[1] = 0x55555555;
|
|
wb_write[2] = 0x20; /* SOP */
|
|
REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
|
|
|
|
/* NON-IP protocol */
|
|
wb_write[0] = 0x09000000;
|
|
wb_write[1] = 0x55555555;
|
|
wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */
|
|
REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
|
|
}
|
|
|
|
/* some of the internal memories
|
|
* are not directly readable from the driver
|
|
* to test them we send debug packets
|
|
*/
|
|
static int bnx2x_int_mem_test(struct bnx2x *bp)
|
|
{
|
|
int factor;
|
|
int count, i;
|
|
u32 val = 0;
|
|
|
|
if (CHIP_REV_IS_FPGA(bp))
|
|
factor = 120;
|
|
else if (CHIP_REV_IS_EMUL(bp))
|
|
factor = 200;
|
|
else
|
|
factor = 1;
|
|
|
|
/* Disable inputs of parser neighbor blocks */
|
|
REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
|
|
REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
|
|
REG_WR(bp, CFC_REG_DEBUG0, 0x1);
|
|
REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
|
|
|
|
/* Write 0 to parser credits for CFC search request */
|
|
REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
|
|
|
|
/* send Ethernet packet */
|
|
bnx2x_lb_pckt(bp);
|
|
|
|
/* TODO do i reset NIG statistic? */
|
|
/* Wait until NIG register shows 1 packet of size 0x10 */
|
|
count = 1000 * factor;
|
|
while (count) {
|
|
|
|
bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
|
|
val = *bnx2x_sp(bp, wb_data[0]);
|
|
if (val == 0x10)
|
|
break;
|
|
|
|
msleep(10);
|
|
count--;
|
|
}
|
|
if (val != 0x10) {
|
|
BNX2X_ERR("NIG timeout val = 0x%x\n", val);
|
|
return -1;
|
|
}
|
|
|
|
/* Wait until PRS register shows 1 packet */
|
|
count = 1000 * factor;
|
|
while (count) {
|
|
val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
|
|
if (val == 1)
|
|
break;
|
|
|
|
msleep(10);
|
|
count--;
|
|
}
|
|
if (val != 0x1) {
|
|
BNX2X_ERR("PRS timeout val = 0x%x\n", val);
|
|
return -2;
|
|
}
|
|
|
|
/* Reset and init BRB, PRS */
|
|
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
|
|
msleep(50);
|
|
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
|
|
msleep(50);
|
|
bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
|
|
bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
|
|
|
|
DP(NETIF_MSG_HW, "part2\n");
|
|
|
|
/* Disable inputs of parser neighbor blocks */
|
|
REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
|
|
REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
|
|
REG_WR(bp, CFC_REG_DEBUG0, 0x1);
|
|
REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
|
|
|
|
/* Write 0 to parser credits for CFC search request */
|
|
REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
|
|
|
|
/* send 10 Ethernet packets */
|
|
for (i = 0; i < 10; i++)
|
|
bnx2x_lb_pckt(bp);
|
|
|
|
/* Wait until NIG register shows 10 + 1
|
|
packets of size 11*0x10 = 0xb0 */
|
|
count = 1000 * factor;
|
|
while (count) {
|
|
|
|
bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
|
|
val = *bnx2x_sp(bp, wb_data[0]);
|
|
if (val == 0xb0)
|
|
break;
|
|
|
|
msleep(10);
|
|
count--;
|
|
}
|
|
if (val != 0xb0) {
|
|
BNX2X_ERR("NIG timeout val = 0x%x\n", val);
|
|
return -3;
|
|
}
|
|
|
|
/* Wait until PRS register shows 2 packets */
|
|
val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
|
|
if (val != 2)
|
|
BNX2X_ERR("PRS timeout val = 0x%x\n", val);
|
|
|
|
/* Write 1 to parser credits for CFC search request */
|
|
REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
|
|
|
|
/* Wait until PRS register shows 3 packets */
|
|
msleep(10 * factor);
|
|
/* Wait until NIG register shows 1 packet of size 0x10 */
|
|
val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
|
|
if (val != 3)
|
|
BNX2X_ERR("PRS timeout val = 0x%x\n", val);
|
|
|
|
/* clear NIG EOP FIFO */
|
|
for (i = 0; i < 11; i++)
|
|
REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
|
|
val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
|
|
if (val != 1) {
|
|
BNX2X_ERR("clear of NIG failed\n");
|
|
return -4;
|
|
}
|
|
|
|
/* Reset and init BRB, PRS, NIG */
|
|
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
|
|
msleep(50);
|
|
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
|
|
msleep(50);
|
|
bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
|
|
bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
|
|
#ifndef BCM_CNIC
|
|
/* set NIC mode */
|
|
REG_WR(bp, PRS_REG_NIC_MODE, 1);
|
|
#endif
|
|
|
|
/* Enable inputs of parser neighbor blocks */
|
|
REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
|
|
REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
|
|
REG_WR(bp, CFC_REG_DEBUG0, 0x0);
|
|
REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
|
|
|
|
DP(NETIF_MSG_HW, "done\n");
|
|
|
|
return 0; /* OK */
|
|
}
|
|
|
|
static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
|
|
{
|
|
REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
|
|
if (!CHIP_IS_E1x(bp))
|
|
REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
|
|
else
|
|
REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
|
|
REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
|
|
REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
|
|
/*
|
|
* mask read length error interrupts in brb for parser
|
|
* (parsing unit and 'checksum and crc' unit)
|
|
* these errors are legal (PU reads fixed length and CAC can cause
|
|
* read length error on truncated packets)
|
|
*/
|
|
REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
|
|
REG_WR(bp, QM_REG_QM_INT_MASK, 0);
|
|
REG_WR(bp, TM_REG_TM_INT_MASK, 0);
|
|
REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
|
|
REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
|
|
REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
|
|
/* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
|
|
/* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
|
|
REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
|
|
REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
|
|
REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
|
|
/* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
|
|
/* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
|
|
REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
|
|
REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
|
|
REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
|
|
REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
|
|
/* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
|
|
/* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
|
|
|
|
if (CHIP_REV_IS_FPGA(bp))
|
|
REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x580000);
|
|
else if (!CHIP_IS_E1x(bp))
|
|
REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0,
|
|
(PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF
|
|
| PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT
|
|
| PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN
|
|
| PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED
|
|
| PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED));
|
|
else
|
|
REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x480000);
|
|
REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
|
|
REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
|
|
REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
|
|
/* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
|
|
|
|
if (!CHIP_IS_E1x(bp))
|
|
/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
|
|
REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
|
|
|
|
REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
|
|
REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
|
|
/* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
|
|
REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
|
|
}
|
|
|
|
static void bnx2x_reset_common(struct bnx2x *bp)
|
|
{
|
|
u32 val = 0x1400;
|
|
|
|
/* reset_common */
|
|
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
|
|
0xd3ffff7f);
|
|
|
|
if (CHIP_IS_E3(bp)) {
|
|
val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
|
|
val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
|
|
}
|
|
|
|
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
|
|
}
|
|
|
|
static void bnx2x_setup_dmae(struct bnx2x *bp)
|
|
{
|
|
bp->dmae_ready = 0;
|
|
spin_lock_init(&bp->dmae_lock);
|
|
}
|
|
|
|
static void bnx2x_init_pxp(struct bnx2x *bp)
|
|
{
|
|
u16 devctl;
|
|
int r_order, w_order;
|
|
|
|
pci_read_config_word(bp->pdev,
|
|
pci_pcie_cap(bp->pdev) + PCI_EXP_DEVCTL, &devctl);
|
|
DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
|
|
w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
|
|
if (bp->mrrs == -1)
|
|
r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
|
|
else {
|
|
DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
|
|
r_order = bp->mrrs;
|
|
}
|
|
|
|
bnx2x_init_pxp_arb(bp, r_order, w_order);
|
|
}
|
|
|
|
static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
|
|
{
|
|
int is_required;
|
|
u32 val;
|
|
int port;
|
|
|
|
if (BP_NOMCP(bp))
|
|
return;
|
|
|
|
is_required = 0;
|
|
val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
|
|
SHARED_HW_CFG_FAN_FAILURE_MASK;
|
|
|
|
if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
|
|
is_required = 1;
|
|
|
|
/*
|
|
* The fan failure mechanism is usually related to the PHY type since
|
|
* the power consumption of the board is affected by the PHY. Currently,
|
|
* fan is required for most designs with SFX7101, BCM8727 and BCM8481.
|
|
*/
|
|
else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
|
|
for (port = PORT_0; port < PORT_MAX; port++) {
|
|
is_required |=
|
|
bnx2x_fan_failure_det_req(
|
|
bp,
|
|
bp->common.shmem_base,
|
|
bp->common.shmem2_base,
|
|
port);
|
|
}
|
|
|
|
DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
|
|
|
|
if (is_required == 0)
|
|
return;
|
|
|
|
/* Fan failure is indicated by SPIO 5 */
|
|
bnx2x_set_spio(bp, MISC_REGISTERS_SPIO_5,
|
|
MISC_REGISTERS_SPIO_INPUT_HI_Z);
|
|
|
|
/* set to active low mode */
|
|
val = REG_RD(bp, MISC_REG_SPIO_INT);
|
|
val |= ((1 << MISC_REGISTERS_SPIO_5) <<
|
|
MISC_REGISTERS_SPIO_INT_OLD_SET_POS);
|
|
REG_WR(bp, MISC_REG_SPIO_INT, val);
|
|
|
|
/* enable interrupt to signal the IGU */
|
|
val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
|
|
val |= (1 << MISC_REGISTERS_SPIO_5);
|
|
REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
|
|
}
|
|
|
|
static void bnx2x_pretend_func(struct bnx2x *bp, u8 pretend_func_num)
|
|
{
|
|
u32 offset = 0;
|
|
|
|
if (CHIP_IS_E1(bp))
|
|
return;
|
|
if (CHIP_IS_E1H(bp) && (pretend_func_num >= E1H_FUNC_MAX))
|
|
return;
|
|
|
|
switch (BP_ABS_FUNC(bp)) {
|
|
case 0:
|
|
offset = PXP2_REG_PGL_PRETEND_FUNC_F0;
|
|
break;
|
|
case 1:
|
|
offset = PXP2_REG_PGL_PRETEND_FUNC_F1;
|
|
break;
|
|
case 2:
|
|
offset = PXP2_REG_PGL_PRETEND_FUNC_F2;
|
|
break;
|
|
case 3:
|
|
offset = PXP2_REG_PGL_PRETEND_FUNC_F3;
|
|
break;
|
|
case 4:
|
|
offset = PXP2_REG_PGL_PRETEND_FUNC_F4;
|
|
break;
|
|
case 5:
|
|
offset = PXP2_REG_PGL_PRETEND_FUNC_F5;
|
|
break;
|
|
case 6:
|
|
offset = PXP2_REG_PGL_PRETEND_FUNC_F6;
|
|
break;
|
|
case 7:
|
|
offset = PXP2_REG_PGL_PRETEND_FUNC_F7;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
REG_WR(bp, offset, pretend_func_num);
|
|
REG_RD(bp, offset);
|
|
DP(NETIF_MSG_HW, "Pretending to func %d\n", pretend_func_num);
|
|
}
|
|
|
|
void bnx2x_pf_disable(struct bnx2x *bp)
|
|
{
|
|
u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
|
|
val &= ~IGU_PF_CONF_FUNC_EN;
|
|
|
|
REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
|
|
REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
|
|
REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
|
|
}
|
|
|
|
static inline void bnx2x__common_init_phy(struct bnx2x *bp)
|
|
{
|
|
u32 shmem_base[2], shmem2_base[2];
|
|
shmem_base[0] = bp->common.shmem_base;
|
|
shmem2_base[0] = bp->common.shmem2_base;
|
|
if (!CHIP_IS_E1x(bp)) {
|
|
shmem_base[1] =
|
|
SHMEM2_RD(bp, other_shmem_base_addr);
|
|
shmem2_base[1] =
|
|
SHMEM2_RD(bp, other_shmem2_base_addr);
|
|
}
|
|
bnx2x_acquire_phy_lock(bp);
|
|
bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
|
|
bp->common.chip_id);
|
|
bnx2x_release_phy_lock(bp);
|
|
}
|
|
|
|
/**
|
|
* bnx2x_init_hw_common - initialize the HW at the COMMON phase.
|
|
*
|
|
* @bp: driver handle
|
|
*/
|
|
static int bnx2x_init_hw_common(struct bnx2x *bp)
|
|
{
|
|
u32 val;
|
|
|
|
DP(BNX2X_MSG_MCP, "starting common init func %d\n", BP_ABS_FUNC(bp));
|
|
|
|
/*
|
|
* take the UNDI lock to protect undi_unload flow from accessing
|
|
* registers while we're resetting the chip
|
|
*/
|
|
bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
|
|
|
|
bnx2x_reset_common(bp);
|
|
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
|
|
|
|
val = 0xfffc;
|
|
if (CHIP_IS_E3(bp)) {
|
|
val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
|
|
val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
|
|
}
|
|
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
|
|
|
|
bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
|
|
|
|
bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
|
|
|
|
if (!CHIP_IS_E1x(bp)) {
|
|
u8 abs_func_id;
|
|
|
|
/**
|
|
* 4-port mode or 2-port mode we need to turn of master-enable
|
|
* for everyone, after that, turn it back on for self.
|
|
* so, we disregard multi-function or not, and always disable
|
|
* for all functions on the given path, this means 0,2,4,6 for
|
|
* path 0 and 1,3,5,7 for path 1
|
|
*/
|
|
for (abs_func_id = BP_PATH(bp);
|
|
abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
|
|
if (abs_func_id == BP_ABS_FUNC(bp)) {
|
|
REG_WR(bp,
|
|
PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
|
|
1);
|
|
continue;
|
|
}
|
|
|
|
bnx2x_pretend_func(bp, abs_func_id);
|
|
/* clear pf enable */
|
|
bnx2x_pf_disable(bp);
|
|
bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
|
|
}
|
|
}
|
|
|
|
bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
|
|
if (CHIP_IS_E1(bp)) {
|
|
/* enable HW interrupt from PXP on USDM overflow
|
|
bit 16 on INT_MASK_0 */
|
|
REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
|
|
}
|
|
|
|
bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
|
|
bnx2x_init_pxp(bp);
|
|
|
|
#ifdef __BIG_ENDIAN
|
|
REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
|
|
REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
|
|
REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
|
|
REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
|
|
REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
|
|
/* make sure this value is 0 */
|
|
REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
|
|
|
|
/* REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
|
|
REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
|
|
REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
|
|
REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
|
|
REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
|
|
#endif
|
|
|
|
bnx2x_ilt_init_page_size(bp, INITOP_SET);
|
|
|
|
if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
|
|
REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
|
|
|
|
/* let the HW do it's magic ... */
|
|
msleep(100);
|
|
/* finish PXP init */
|
|
val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
|
|
if (val != 1) {
|
|
BNX2X_ERR("PXP2 CFG failed\n");
|
|
return -EBUSY;
|
|
}
|
|
val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
|
|
if (val != 1) {
|
|
BNX2X_ERR("PXP2 RD_INIT failed\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* Timers bug workaround E2 only. We need to set the entire ILT to
|
|
* have entries with value "0" and valid bit on.
|
|
* This needs to be done by the first PF that is loaded in a path
|
|
* (i.e. common phase)
|
|
*/
|
|
if (!CHIP_IS_E1x(bp)) {
|
|
/* In E2 there is a bug in the timers block that can cause function 6 / 7
|
|
* (i.e. vnic3) to start even if it is marked as "scan-off".
|
|
* This occurs when a different function (func2,3) is being marked
|
|
* as "scan-off". Real-life scenario for example: if a driver is being
|
|
* load-unloaded while func6,7 are down. This will cause the timer to access
|
|
* the ilt, translate to a logical address and send a request to read/write.
|
|
* Since the ilt for the function that is down is not valid, this will cause
|
|
* a translation error which is unrecoverable.
|
|
* The Workaround is intended to make sure that when this happens nothing fatal
|
|
* will occur. The workaround:
|
|
* 1. First PF driver which loads on a path will:
|
|
* a. After taking the chip out of reset, by using pretend,
|
|
* it will write "0" to the following registers of
|
|
* the other vnics.
|
|
* REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
|
|
* REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
|
|
* REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
|
|
* And for itself it will write '1' to
|
|
* PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
|
|
* dmae-operations (writing to pram for example.)
|
|
* note: can be done for only function 6,7 but cleaner this
|
|
* way.
|
|
* b. Write zero+valid to the entire ILT.
|
|
* c. Init the first_timers_ilt_entry, last_timers_ilt_entry of
|
|
* VNIC3 (of that port). The range allocated will be the
|
|
* entire ILT. This is needed to prevent ILT range error.
|
|
* 2. Any PF driver load flow:
|
|
* a. ILT update with the physical addresses of the allocated
|
|
* logical pages.
|
|
* b. Wait 20msec. - note that this timeout is needed to make
|
|
* sure there are no requests in one of the PXP internal
|
|
* queues with "old" ILT addresses.
|
|
* c. PF enable in the PGLC.
|
|
* d. Clear the was_error of the PF in the PGLC. (could have
|
|
* occured while driver was down)
|
|
* e. PF enable in the CFC (WEAK + STRONG)
|
|
* f. Timers scan enable
|
|
* 3. PF driver unload flow:
|
|
* a. Clear the Timers scan_en.
|
|
* b. Polling for scan_on=0 for that PF.
|
|
* c. Clear the PF enable bit in the PXP.
|
|
* d. Clear the PF enable in the CFC (WEAK + STRONG)
|
|
* e. Write zero+valid to all ILT entries (The valid bit must
|
|
* stay set)
|
|
* f. If this is VNIC 3 of a port then also init
|
|
* first_timers_ilt_entry to zero and last_timers_ilt_entry
|
|
* to the last enrty in the ILT.
|
|
*
|
|
* Notes:
|
|
* Currently the PF error in the PGLC is non recoverable.
|
|
* In the future the there will be a recovery routine for this error.
|
|
* Currently attention is masked.
|
|
* Having an MCP lock on the load/unload process does not guarantee that
|
|
* there is no Timer disable during Func6/7 enable. This is because the
|
|
* Timers scan is currently being cleared by the MCP on FLR.
|
|
* Step 2.d can be done only for PF6/7 and the driver can also check if
|
|
* there is error before clearing it. But the flow above is simpler and
|
|
* more general.
|
|
* All ILT entries are written by zero+valid and not just PF6/7
|
|
* ILT entries since in the future the ILT entries allocation for
|
|
* PF-s might be dynamic.
|
|
*/
|
|
struct ilt_client_info ilt_cli;
|
|
struct bnx2x_ilt ilt;
|
|
memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
|
|
memset(&ilt, 0, sizeof(struct bnx2x_ilt));
|
|
|
|
/* initialize dummy TM client */
|
|
ilt_cli.start = 0;
|
|
ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
|
|
ilt_cli.client_num = ILT_CLIENT_TM;
|
|
|
|
/* Step 1: set zeroes to all ilt page entries with valid bit on
|
|
* Step 2: set the timers first/last ilt entry to point
|
|
* to the entire range to prevent ILT range error for 3rd/4th
|
|
* vnic (this code assumes existance of the vnic)
|
|
*
|
|
* both steps performed by call to bnx2x_ilt_client_init_op()
|
|
* with dummy TM client
|
|
*
|
|
* we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
|
|
* and his brother are split registers
|
|
*/
|
|
bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
|
|
bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
|
|
bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
|
|
|
|
REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
|
|
REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
|
|
REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
|
|
}
|
|
|
|
|
|
REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
|
|
REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
|
|
|
|
if (!CHIP_IS_E1x(bp)) {
|
|
int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
|
|
(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
|
|
bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
|
|
|
|
bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
|
|
|
|
/* let the HW do it's magic ... */
|
|
do {
|
|
msleep(200);
|
|
val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
|
|
} while (factor-- && (val != 1));
|
|
|
|
if (val != 1) {
|
|
BNX2X_ERR("ATC_INIT failed\n");
|
|
return -EBUSY;
|
|
}
|
|
}
|
|
|
|
bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
|
|
|
|
/* clean the DMAE memory */
|
|
bp->dmae_ready = 1;
|
|
bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
|
|
|
|
bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
|
|
|
|
bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
|
|
|
|
bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
|
|
|
|
bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
|
|
|
|
bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
|
|
bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
|
|
bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
|
|
bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
|
|
|
|
bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
|
|
|
|
|
|
/* QM queues pointers table */
|
|
bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
|
|
|
|
/* soft reset pulse */
|
|
REG_WR(bp, QM_REG_SOFT_RESET, 1);
|
|
REG_WR(bp, QM_REG_SOFT_RESET, 0);
|
|
|
|
#ifdef BCM_CNIC
|
|
bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
|
|
#endif
|
|
|
|
bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
|
|
REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
|
|
if (!CHIP_REV_IS_SLOW(bp))
|
|
/* enable hw interrupt from doorbell Q */
|
|
REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
|
|
|
|
bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
|
|
|
|
bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
|
|
REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
|
|
|
|
if (!CHIP_IS_E1(bp))
|
|
REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
|
|
|
|
if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp))
|
|
/* Bit-map indicating which L2 hdrs may appear
|
|
* after the basic Ethernet header
|
|
*/
|
|
REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
|
|
bp->path_has_ovlan ? 7 : 6);
|
|
|
|
bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
|
|
bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
|
|
bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
|
|
bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
|
|
|
|
if (!CHIP_IS_E1x(bp)) {
|
|
/* reset VFC memories */
|
|
REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
|
|
VFC_MEMORIES_RST_REG_CAM_RST |
|
|
VFC_MEMORIES_RST_REG_RAM_RST);
|
|
REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
|
|
VFC_MEMORIES_RST_REG_CAM_RST |
|
|
VFC_MEMORIES_RST_REG_RAM_RST);
|
|
|
|
msleep(20);
|
|
}
|
|
|
|
bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
|
|
bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
|
|
bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
|
|
bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
|
|
|
|
/* sync semi rtc */
|
|
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
|
|
0x80000000);
|
|
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
|
|
0x80000000);
|
|
|
|
bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
|
|
bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
|
|
bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
|
|
|
|
if (!CHIP_IS_E1x(bp))
|
|
REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
|
|
bp->path_has_ovlan ? 7 : 6);
|
|
|
|
REG_WR(bp, SRC_REG_SOFT_RST, 1);
|
|
|
|
bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
|
|
|
|
#ifdef BCM_CNIC
|
|
REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
|
|
REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
|
|
REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
|
|
REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
|
|
REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
|
|
REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
|
|
REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
|
|
REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
|
|
REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
|
|
REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
|
|
#endif
|
|
REG_WR(bp, SRC_REG_SOFT_RST, 0);
|
|
|
|
if (sizeof(union cdu_context) != 1024)
|
|
/* we currently assume that a context is 1024 bytes */
|
|
dev_alert(&bp->pdev->dev, "please adjust the size "
|
|
"of cdu_context(%ld)\n",
|
|
(long)sizeof(union cdu_context));
|
|
|
|
bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
|
|
val = (4 << 24) + (0 << 12) + 1024;
|
|
REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
|
|
|
|
bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
|
|
REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
|
|
/* enable context validation interrupt from CFC */
|
|
REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
|
|
|
|
/* set the thresholds to prevent CFC/CDU race */
|
|
REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
|
|
|
|
bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
|
|
|
|
if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
|
|
REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
|
|
|
|
bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
|
|
bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
|
|
|
|
/* Reset PCIE errors for debug */
|
|
REG_WR(bp, 0x2814, 0xffffffff);
|
|
REG_WR(bp, 0x3820, 0xffffffff);
|
|
|
|
if (!CHIP_IS_E1x(bp)) {
|
|
REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
|
|
(PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
|
|
PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
|
|
REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
|
|
(PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
|
|
PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
|
|
PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
|
|
REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
|
|
(PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
|
|
PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
|
|
PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
|
|
}
|
|
|
|
bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
|
|
if (!CHIP_IS_E1(bp)) {
|
|
/* in E3 this done in per-port section */
|
|
if (!CHIP_IS_E3(bp))
|
|
REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
|
|
}
|
|
if (CHIP_IS_E1H(bp))
|
|
/* not applicable for E2 (and above ...) */
|
|
REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
|
|
|
|
if (CHIP_REV_IS_SLOW(bp))
|
|
msleep(200);
|
|
|
|
/* finish CFC init */
|
|
val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
|
|
if (val != 1) {
|
|
BNX2X_ERR("CFC LL_INIT failed\n");
|
|
return -EBUSY;
|
|
}
|
|
val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
|
|
if (val != 1) {
|
|
BNX2X_ERR("CFC AC_INIT failed\n");
|
|
return -EBUSY;
|
|
}
|
|
val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
|
|
if (val != 1) {
|
|
BNX2X_ERR("CFC CAM_INIT failed\n");
|
|
return -EBUSY;
|
|
}
|
|
REG_WR(bp, CFC_REG_DEBUG0, 0);
|
|
|
|
if (CHIP_IS_E1(bp)) {
|
|
/* read NIG statistic
|
|
to see if this is our first up since powerup */
|
|
bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
|
|
val = *bnx2x_sp(bp, wb_data[0]);
|
|
|
|
/* do internal memory self test */
|
|
if ((val == 0) && bnx2x_int_mem_test(bp)) {
|
|
BNX2X_ERR("internal mem self test failed\n");
|
|
return -EBUSY;
|
|
}
|
|
}
|
|
|
|
bnx2x_setup_fan_failure_detection(bp);
|
|
|
|
/* clear PXP2 attentions */
|
|
REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
|
|
|
|
bnx2x_enable_blocks_attention(bp);
|
|
bnx2x_enable_blocks_parity(bp);
|
|
|
|
if (!BP_NOMCP(bp)) {
|
|
if (CHIP_IS_E1x(bp))
|
|
bnx2x__common_init_phy(bp);
|
|
} else
|
|
BNX2X_ERR("Bootcode is missing - can not initialize link\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
|
|
*
|
|
* @bp: driver handle
|
|
*/
|
|
static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
|
|
{
|
|
int rc = bnx2x_init_hw_common(bp);
|
|
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* In E2 2-PORT mode, same ext phy is used for the two paths */
|
|
if (!BP_NOMCP(bp))
|
|
bnx2x__common_init_phy(bp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bnx2x_init_hw_port(struct bnx2x *bp)
|
|
{
|
|
int port = BP_PORT(bp);
|
|
int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
|
|
u32 low, high;
|
|
u32 val;
|
|
|
|
bnx2x__link_reset(bp);
|
|
|
|
DP(BNX2X_MSG_MCP, "starting port init port %d\n", port);
|
|
|
|
REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
|
|
|
|
bnx2x_init_block(bp, BLOCK_MISC, init_phase);
|
|
bnx2x_init_block(bp, BLOCK_PXP, init_phase);
|
|
bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
|
|
|
|
/* Timers bug workaround: disables the pf_master bit in pglue at
|
|
* common phase, we need to enable it here before any dmae access are
|
|
* attempted. Therefore we manually added the enable-master to the
|
|
* port phase (it also happens in the function phase)
|
|
*/
|
|
if (!CHIP_IS_E1x(bp))
|
|
REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
|
|
|
|
bnx2x_init_block(bp, BLOCK_ATC, init_phase);
|
|
bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
|
|
bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
|
|
bnx2x_init_block(bp, BLOCK_QM, init_phase);
|
|
|
|
bnx2x_init_block(bp, BLOCK_TCM, init_phase);
|
|
bnx2x_init_block(bp, BLOCK_UCM, init_phase);
|
|
bnx2x_init_block(bp, BLOCK_CCM, init_phase);
|
|
bnx2x_init_block(bp, BLOCK_XCM, init_phase);
|
|
|
|
/* QM cid (connection) count */
|
|
bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
|
|
|
|
#ifdef BCM_CNIC
|
|
bnx2x_init_block(bp, BLOCK_TM, init_phase);
|
|
REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
|
|
REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
|
|
#endif
|
|
|
|
bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
|
|
|
|
if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
|
|
bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
|
|
|
|
if (IS_MF(bp))
|
|
low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
|
|
else if (bp->dev->mtu > 4096) {
|
|
if (bp->flags & ONE_PORT_FLAG)
|
|
low = 160;
|
|
else {
|
|
val = bp->dev->mtu;
|
|
/* (24*1024 + val*4)/256 */
|
|
low = 96 + (val/64) +
|
|
((val % 64) ? 1 : 0);
|
|
}
|
|
} else
|
|
low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
|
|
high = low + 56; /* 14*1024/256 */
|
|
REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
|
|
REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
|
|
}
|
|
|
|
if (CHIP_MODE_IS_4_PORT(bp))
|
|
REG_WR(bp, (BP_PORT(bp) ?
|
|
BRB1_REG_MAC_GUARANTIED_1 :
|
|
BRB1_REG_MAC_GUARANTIED_0), 40);
|
|
|
|
|
|
bnx2x_init_block(bp, BLOCK_PRS, init_phase);
|
|
if (CHIP_IS_E3B0(bp))
|
|
/* Ovlan exists only if we are in multi-function +
|
|
* switch-dependent mode, in switch-independent there
|
|
* is no ovlan headers
|
|
*/
|
|
REG_WR(bp, BP_PORT(bp) ?
|
|
PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
|
|
PRS_REG_HDRS_AFTER_BASIC_PORT_0,
|
|
(bp->path_has_ovlan ? 7 : 6));
|
|
|
|
bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
|
|
bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
|
|
bnx2x_init_block(bp, BLOCK_USDM, init_phase);
|
|
bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
|
|
|
|
bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
|
|
bnx2x_init_block(bp, BLOCK_USEM, init_phase);
|
|
bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
|
|
bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
|
|
|
|
bnx2x_init_block(bp, BLOCK_UPB, init_phase);
|
|
bnx2x_init_block(bp, BLOCK_XPB, init_phase);
|
|
|
|
bnx2x_init_block(bp, BLOCK_PBF, init_phase);
|
|
|
|
if (CHIP_IS_E1x(bp)) {
|
|
/* configure PBF to work without PAUSE mtu 9000 */
|
|
REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
|
|
|
|
/* update threshold */
|
|
REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
|
|
/* update init credit */
|
|
REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
|
|
|
|
/* probe changes */
|
|
REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
|
|
udelay(50);
|
|
REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
|
|
}
|
|
|
|
#ifdef BCM_CNIC
|
|
bnx2x_init_block(bp, BLOCK_SRC, init_phase);
|
|
#endif
|
|
bnx2x_init_block(bp, BLOCK_CDU, init_phase);
|
|
bnx2x_init_block(bp, BLOCK_CFC, init_phase);
|
|
|
|
if (CHIP_IS_E1(bp)) {
|
|
REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
|
|
REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
|
|
}
|
|
bnx2x_init_block(bp, BLOCK_HC, init_phase);
|
|
|
|
bnx2x_init_block(bp, BLOCK_IGU, init_phase);
|
|
|
|
bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
|
|
/* init aeu_mask_attn_func_0/1:
|
|
* - SF mode: bits 3-7 are masked. only bits 0-2 are in use
|
|
* - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
|
|
* bits 4-7 are used for "per vn group attention" */
|
|
val = IS_MF(bp) ? 0xF7 : 0x7;
|
|
/* Enable DCBX attention for all but E1 */
|
|
val |= CHIP_IS_E1(bp) ? 0 : 0x10;
|
|
REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
|
|
|
|
bnx2x_init_block(bp, BLOCK_NIG, init_phase);
|
|
|
|
if (!CHIP_IS_E1x(bp)) {
|
|
/* Bit-map indicating which L2 hdrs may appear after the
|
|
* basic Ethernet header
|
|
*/
|
|
REG_WR(bp, BP_PORT(bp) ?
|
|
NIG_REG_P1_HDRS_AFTER_BASIC :
|
|
NIG_REG_P0_HDRS_AFTER_BASIC,
|
|
IS_MF_SD(bp) ? 7 : 6);
|
|
|
|
if (CHIP_IS_E3(bp))
|
|
REG_WR(bp, BP_PORT(bp) ?
|
|
NIG_REG_LLH1_MF_MODE :
|
|
NIG_REG_LLH_MF_MODE, IS_MF(bp));
|
|
}
|
|
if (!CHIP_IS_E3(bp))
|
|
REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
|
|
|
|
if (!CHIP_IS_E1(bp)) {
|
|
/* 0x2 disable mf_ov, 0x1 enable */
|
|
REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
|
|
(IS_MF_SD(bp) ? 0x1 : 0x2));
|
|
|
|
if (!CHIP_IS_E1x(bp)) {
|
|
val = 0;
|
|
switch (bp->mf_mode) {
|
|
case MULTI_FUNCTION_SD:
|
|
val = 1;
|
|
break;
|
|
case MULTI_FUNCTION_SI:
|
|
val = 2;
|
|
break;
|
|
}
|
|
|
|
REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
|
|
NIG_REG_LLH0_CLS_TYPE), val);
|
|
}
|
|
{
|
|
REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
|
|
REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
|
|
REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
|
|
}
|
|
}
|
|
|
|
|
|
/* If SPIO5 is set to generate interrupts, enable it for this port */
|
|
val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
|
|
if (val & (1 << MISC_REGISTERS_SPIO_5)) {
|
|
u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
|
|
MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
|
|
val = REG_RD(bp, reg_addr);
|
|
val |= AEU_INPUTS_ATTN_BITS_SPIO5;
|
|
REG_WR(bp, reg_addr, val);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
|
|
{
|
|
int reg;
|
|
|
|
if (CHIP_IS_E1(bp))
|
|
reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
|
|
else
|
|
reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
|
|
|
|
bnx2x_wb_wr(bp, reg, ONCHIP_ADDR1(addr), ONCHIP_ADDR2(addr));
|
|
}
|
|
|
|
static inline void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
|
|
{
|
|
bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
|
|
}
|
|
|
|
static inline void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
|
|
{
|
|
u32 i, base = FUNC_ILT_BASE(func);
|
|
for (i = base; i < base + ILT_PER_FUNC; i++)
|
|
bnx2x_ilt_wr(bp, i, 0);
|
|
}
|
|
|
|
static int bnx2x_init_hw_func(struct bnx2x *bp)
|
|
{
|
|
int port = BP_PORT(bp);
|
|
int func = BP_FUNC(bp);
|
|
int init_phase = PHASE_PF0 + func;
|
|
struct bnx2x_ilt *ilt = BP_ILT(bp);
|
|
u16 cdu_ilt_start;
|
|
u32 addr, val;
|
|
u32 main_mem_base, main_mem_size, main_mem_prty_clr;
|
|
int i, main_mem_width;
|
|
|
|
DP(BNX2X_MSG_MCP, "starting func init func %d\n", func);
|
|
|
|
/* FLR cleanup - hmmm */
|
|
if (!CHIP_IS_E1x(bp))
|
|
bnx2x_pf_flr_clnup(bp);
|
|
|
|
/* set MSI reconfigure capability */
|
|
if (bp->common.int_block == INT_BLOCK_HC) {
|
|
addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
|
|
val = REG_RD(bp, addr);
|
|
val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
|
|
REG_WR(bp, addr, val);
|
|
}
|
|
|
|
bnx2x_init_block(bp, BLOCK_PXP, init_phase);
|
|
bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
|
|
|
|
ilt = BP_ILT(bp);
|
|
cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
|
|
|
|
for (i = 0; i < L2_ILT_LINES(bp); i++) {
|
|
ilt->lines[cdu_ilt_start + i].page =
|
|
bp->context.vcxt + (ILT_PAGE_CIDS * i);
|
|
ilt->lines[cdu_ilt_start + i].page_mapping =
|
|
bp->context.cxt_mapping + (CDU_ILT_PAGE_SZ * i);
|
|
/* cdu ilt pages are allocated manually so there's no need to
|
|
set the size */
|
|
}
|
|
bnx2x_ilt_init_op(bp, INITOP_SET);
|
|
|
|
#ifdef BCM_CNIC
|
|
bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
|
|
|
|
/* T1 hash bits value determines the T1 number of entries */
|
|
REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
|
|
#endif
|
|
|
|
#ifndef BCM_CNIC
|
|
/* set NIC mode */
|
|
REG_WR(bp, PRS_REG_NIC_MODE, 1);
|
|
#endif /* BCM_CNIC */
|
|
|
|
if (!CHIP_IS_E1x(bp)) {
|
|
u32 pf_conf = IGU_PF_CONF_FUNC_EN;
|
|
|
|
/* Turn on a single ISR mode in IGU if driver is going to use
|
|
* INT#x or MSI
|
|
*/
|
|
if (!(bp->flags & USING_MSIX_FLAG))
|
|
pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
|
|
/*
|
|
* Timers workaround bug: function init part.
|
|
* Need to wait 20msec after initializing ILT,
|
|
* needed to make sure there are no requests in
|
|
* one of the PXP internal queues with "old" ILT addresses
|
|
*/
|
|
msleep(20);
|
|
/*
|
|
* Master enable - Due to WB DMAE writes performed before this
|
|
* register is re-initialized as part of the regular function
|
|
* init
|
|
*/
|
|
REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
|
|
/* Enable the function in IGU */
|
|
REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
|
|
}
|
|
|
|
bp->dmae_ready = 1;
|
|
|
|
bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
|
|
|
|
if (!CHIP_IS_E1x(bp))
|
|
REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
|
|
|
|
bnx2x_init_block(bp, BLOCK_ATC, init_phase);
|
|
bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
|
|
bnx2x_init_block(bp, BLOCK_NIG, init_phase);
|
|
bnx2x_init_block(bp, BLOCK_SRC, init_phase);
|
|
bnx2x_init_block(bp, BLOCK_MISC, init_phase);
|
|
bnx2x_init_block(bp, BLOCK_TCM, init_phase);
|
|
bnx2x_init_block(bp, BLOCK_UCM, init_phase);
|
|
bnx2x_init_block(bp, BLOCK_CCM, init_phase);
|
|
bnx2x_init_block(bp, BLOCK_XCM, init_phase);
|
|
bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
|
|
bnx2x_init_block(bp, BLOCK_USEM, init_phase);
|
|
bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
|
|
bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
|
|
|
|
if (!CHIP_IS_E1x(bp))
|
|
REG_WR(bp, QM_REG_PF_EN, 1);
|
|
|
|
if (!CHIP_IS_E1x(bp)) {
|
|
REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
|
|
REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
|
|
REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
|
|
REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
|
|
}
|
|
bnx2x_init_block(bp, BLOCK_QM, init_phase);
|
|
|
|
bnx2x_init_block(bp, BLOCK_TM, init_phase);
|
|
bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
|
|
bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
|
|
bnx2x_init_block(bp, BLOCK_PRS, init_phase);
|
|
bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
|
|
bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
|
|
bnx2x_init_block(bp, BLOCK_USDM, init_phase);
|
|
bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
|
|
bnx2x_init_block(bp, BLOCK_UPB, init_phase);
|
|
bnx2x_init_block(bp, BLOCK_XPB, init_phase);
|
|
bnx2x_init_block(bp, BLOCK_PBF, init_phase);
|
|
if (!CHIP_IS_E1x(bp))
|
|
REG_WR(bp, PBF_REG_DISABLE_PF, 0);
|
|
|
|
bnx2x_init_block(bp, BLOCK_CDU, init_phase);
|
|
|
|
bnx2x_init_block(bp, BLOCK_CFC, init_phase);
|
|
|
|
if (!CHIP_IS_E1x(bp))
|
|
REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
|
|
|
|
if (IS_MF(bp)) {
|
|
REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
|
|
REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
|
|
}
|
|
|
|
bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
|
|
|
|
/* HC init per function */
|
|
if (bp->common.int_block == INT_BLOCK_HC) {
|
|
if (CHIP_IS_E1H(bp)) {
|
|
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
|
|
|
|
REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
|
|
REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
|
|
}
|
|
bnx2x_init_block(bp, BLOCK_HC, init_phase);
|
|
|
|
} else {
|
|
int num_segs, sb_idx, prod_offset;
|
|
|
|
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
|
|
|
|
if (!CHIP_IS_E1x(bp)) {
|
|
REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
|
|
REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
|
|
}
|
|
|
|
bnx2x_init_block(bp, BLOCK_IGU, init_phase);
|
|
|
|
if (!CHIP_IS_E1x(bp)) {
|
|
int dsb_idx = 0;
|
|
/**
|
|
* Producer memory:
|
|
* E2 mode: address 0-135 match to the mapping memory;
|
|
* 136 - PF0 default prod; 137 - PF1 default prod;
|
|
* 138 - PF2 default prod; 139 - PF3 default prod;
|
|
* 140 - PF0 attn prod; 141 - PF1 attn prod;
|
|
* 142 - PF2 attn prod; 143 - PF3 attn prod;
|
|
* 144-147 reserved.
|
|
*
|
|
* E1.5 mode - In backward compatible mode;
|
|
* for non default SB; each even line in the memory
|
|
* holds the U producer and each odd line hold
|
|
* the C producer. The first 128 producers are for
|
|
* NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
|
|
* producers are for the DSB for each PF.
|
|
* Each PF has five segments: (the order inside each
|
|
* segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
|
|
* 132-135 C prods; 136-139 X prods; 140-143 T prods;
|
|
* 144-147 attn prods;
|
|
*/
|
|
/* non-default-status-blocks */
|
|
num_segs = CHIP_INT_MODE_IS_BC(bp) ?
|
|
IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
|
|
for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
|
|
prod_offset = (bp->igu_base_sb + sb_idx) *
|
|
num_segs;
|
|
|
|
for (i = 0; i < num_segs; i++) {
|
|
addr = IGU_REG_PROD_CONS_MEMORY +
|
|
(prod_offset + i) * 4;
|
|
REG_WR(bp, addr, 0);
|
|
}
|
|
/* send consumer update with value 0 */
|
|
bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
|
|
USTORM_ID, 0, IGU_INT_NOP, 1);
|
|
bnx2x_igu_clear_sb(bp,
|
|
bp->igu_base_sb + sb_idx);
|
|
}
|
|
|
|
/* default-status-blocks */
|
|
num_segs = CHIP_INT_MODE_IS_BC(bp) ?
|
|
IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
|
|
|
|
if (CHIP_MODE_IS_4_PORT(bp))
|
|
dsb_idx = BP_FUNC(bp);
|
|
else
|
|
dsb_idx = BP_VN(bp);
|
|
|
|
prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
|
|
IGU_BC_BASE_DSB_PROD + dsb_idx :
|
|
IGU_NORM_BASE_DSB_PROD + dsb_idx);
|
|
|
|
/*
|
|
* igu prods come in chunks of E1HVN_MAX (4) -
|
|
* does not matters what is the current chip mode
|
|
*/
|
|
for (i = 0; i < (num_segs * E1HVN_MAX);
|
|
i += E1HVN_MAX) {
|
|
addr = IGU_REG_PROD_CONS_MEMORY +
|
|
(prod_offset + i)*4;
|
|
REG_WR(bp, addr, 0);
|
|
}
|
|
/* send consumer update with 0 */
|
|
if (CHIP_INT_MODE_IS_BC(bp)) {
|
|
bnx2x_ack_sb(bp, bp->igu_dsb_id,
|
|
USTORM_ID, 0, IGU_INT_NOP, 1);
|
|
bnx2x_ack_sb(bp, bp->igu_dsb_id,
|
|
CSTORM_ID, 0, IGU_INT_NOP, 1);
|
|
bnx2x_ack_sb(bp, bp->igu_dsb_id,
|
|
XSTORM_ID, 0, IGU_INT_NOP, 1);
|
|
bnx2x_ack_sb(bp, bp->igu_dsb_id,
|
|
TSTORM_ID, 0, IGU_INT_NOP, 1);
|
|
bnx2x_ack_sb(bp, bp->igu_dsb_id,
|
|
ATTENTION_ID, 0, IGU_INT_NOP, 1);
|
|
} else {
|
|
bnx2x_ack_sb(bp, bp->igu_dsb_id,
|
|
USTORM_ID, 0, IGU_INT_NOP, 1);
|
|
bnx2x_ack_sb(bp, bp->igu_dsb_id,
|
|
ATTENTION_ID, 0, IGU_INT_NOP, 1);
|
|
}
|
|
bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
|
|
|
|
/* !!! these should become driver const once
|
|
rf-tool supports split-68 const */
|
|
REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
|
|
REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
|
|
REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
|
|
REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
|
|
REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
|
|
REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
|
|
}
|
|
}
|
|
|
|
/* Reset PCIE errors for debug */
|
|
REG_WR(bp, 0x2114, 0xffffffff);
|
|
REG_WR(bp, 0x2120, 0xffffffff);
|
|
|
|
if (CHIP_IS_E1x(bp)) {
|
|
main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
|
|
main_mem_base = HC_REG_MAIN_MEMORY +
|
|
BP_PORT(bp) * (main_mem_size * 4);
|
|
main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
|
|
main_mem_width = 8;
|
|
|
|
val = REG_RD(bp, main_mem_prty_clr);
|
|
if (val)
|
|
DP(BNX2X_MSG_MCP, "Hmmm... Parity errors in HC "
|
|
"block during "
|
|
"function init (0x%x)!\n", val);
|
|
|
|
/* Clear "false" parity errors in MSI-X table */
|
|
for (i = main_mem_base;
|
|
i < main_mem_base + main_mem_size * 4;
|
|
i += main_mem_width) {
|
|
bnx2x_read_dmae(bp, i, main_mem_width / 4);
|
|
bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
|
|
i, main_mem_width / 4);
|
|
}
|
|
/* Clear HC parity attention */
|
|
REG_RD(bp, main_mem_prty_clr);
|
|
}
|
|
|
|
#ifdef BNX2X_STOP_ON_ERROR
|
|
/* Enable STORMs SP logging */
|
|
REG_WR8(bp, BAR_USTRORM_INTMEM +
|
|
USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
|
|
REG_WR8(bp, BAR_TSTRORM_INTMEM +
|
|
TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
|
|
REG_WR8(bp, BAR_CSTRORM_INTMEM +
|
|
CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
|
|
REG_WR8(bp, BAR_XSTRORM_INTMEM +
|
|
XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
|
|
#endif
|
|
|
|
bnx2x_phy_probe(&bp->link_params);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
void bnx2x_free_mem(struct bnx2x *bp)
|
|
{
|
|
/* fastpath */
|
|
bnx2x_free_fp_mem(bp);
|
|
/* end of fastpath */
|
|
|
|
BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
|
|
sizeof(struct host_sp_status_block));
|
|
|
|
BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
|
|
bp->fw_stats_data_sz + bp->fw_stats_req_sz);
|
|
|
|
BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
|
|
sizeof(struct bnx2x_slowpath));
|
|
|
|
BNX2X_PCI_FREE(bp->context.vcxt, bp->context.cxt_mapping,
|
|
bp->context.size);
|
|
|
|
bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
|
|
|
|
BNX2X_FREE(bp->ilt->lines);
|
|
|
|
#ifdef BCM_CNIC
|
|
if (!CHIP_IS_E1x(bp))
|
|
BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
|
|
sizeof(struct host_hc_status_block_e2));
|
|
else
|
|
BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
|
|
sizeof(struct host_hc_status_block_e1x));
|
|
|
|
BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
|
|
#endif
|
|
|
|
BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
|
|
|
|
BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
|
|
BCM_PAGE_SIZE * NUM_EQ_PAGES);
|
|
}
|
|
|
|
static inline int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
|
|
{
|
|
int num_groups;
|
|
|
|
/* number of eth_queues */
|
|
u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp);
|
|
|
|
/* Total number of FW statistics requests =
|
|
* 1 for port stats + 1 for PF stats + num_eth_queues */
|
|
bp->fw_stats_num = 2 + num_queue_stats;
|
|
|
|
|
|
/* Request is built from stats_query_header and an array of
|
|
* stats_query_cmd_group each of which contains
|
|
* STATS_QUERY_CMD_COUNT rules. The real number or requests is
|
|
* configured in the stats_query_header.
|
|
*/
|
|
num_groups = (2 + num_queue_stats) / STATS_QUERY_CMD_COUNT +
|
|
(((2 + num_queue_stats) % STATS_QUERY_CMD_COUNT) ? 1 : 0);
|
|
|
|
bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
|
|
num_groups * sizeof(struct stats_query_cmd_group);
|
|
|
|
/* Data for statistics requests + stats_conter
|
|
*
|
|
* stats_counter holds per-STORM counters that are incremented
|
|
* when STORM has finished with the current request.
|
|
*/
|
|
bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
|
|
sizeof(struct per_pf_stats) +
|
|
sizeof(struct per_queue_stats) * num_queue_stats +
|
|
sizeof(struct stats_counter);
|
|
|
|
BNX2X_PCI_ALLOC(bp->fw_stats, &bp->fw_stats_mapping,
|
|
bp->fw_stats_data_sz + bp->fw_stats_req_sz);
|
|
|
|
/* Set shortcuts */
|
|
bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
|
|
bp->fw_stats_req_mapping = bp->fw_stats_mapping;
|
|
|
|
bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
|
|
((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
|
|
|
|
bp->fw_stats_data_mapping = bp->fw_stats_mapping +
|
|
bp->fw_stats_req_sz;
|
|
return 0;
|
|
|
|
alloc_mem_err:
|
|
BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
|
|
bp->fw_stats_data_sz + bp->fw_stats_req_sz);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
|
|
int bnx2x_alloc_mem(struct bnx2x *bp)
|
|
{
|
|
#ifdef BCM_CNIC
|
|
if (!CHIP_IS_E1x(bp))
|
|
/* size = the status block + ramrod buffers */
|
|
BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
|
|
sizeof(struct host_hc_status_block_e2));
|
|
else
|
|
BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb, &bp->cnic_sb_mapping,
|
|
sizeof(struct host_hc_status_block_e1x));
|
|
|
|
/* allocate searcher T2 table */
|
|
BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
|
|
#endif
|
|
|
|
|
|
BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
|
|
sizeof(struct host_sp_status_block));
|
|
|
|
BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
|
|
sizeof(struct bnx2x_slowpath));
|
|
|
|
/* Allocated memory for FW statistics */
|
|
if (bnx2x_alloc_fw_stats_mem(bp))
|
|
goto alloc_mem_err;
|
|
|
|
bp->context.size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
|
|
|
|
BNX2X_PCI_ALLOC(bp->context.vcxt, &bp->context.cxt_mapping,
|
|
bp->context.size);
|
|
|
|
BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
|
|
|
|
if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
|
|
goto alloc_mem_err;
|
|
|
|
/* Slow path ring */
|
|
BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
|
|
|
|
/* EQ */
|
|
BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
|
|
BCM_PAGE_SIZE * NUM_EQ_PAGES);
|
|
|
|
|
|
/* fastpath */
|
|
/* need to be done at the end, since it's self adjusting to amount
|
|
* of memory available for RSS queues
|
|
*/
|
|
if (bnx2x_alloc_fp_mem(bp))
|
|
goto alloc_mem_err;
|
|
return 0;
|
|
|
|
alloc_mem_err:
|
|
bnx2x_free_mem(bp);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* Init service functions
|
|
*/
|
|
|
|
int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
|
|
struct bnx2x_vlan_mac_obj *obj, bool set,
|
|
int mac_type, unsigned long *ramrod_flags)
|
|
{
|
|
int rc;
|
|
struct bnx2x_vlan_mac_ramrod_params ramrod_param;
|
|
|
|
memset(&ramrod_param, 0, sizeof(ramrod_param));
|
|
|
|
/* Fill general parameters */
|
|
ramrod_param.vlan_mac_obj = obj;
|
|
ramrod_param.ramrod_flags = *ramrod_flags;
|
|
|
|
/* Fill a user request section if needed */
|
|
if (!test_bit(RAMROD_CONT, ramrod_flags)) {
|
|
memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
|
|
|
|
__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
|
|
|
|
/* Set the command: ADD or DEL */
|
|
if (set)
|
|
ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
|
|
else
|
|
ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
|
|
}
|
|
|
|
rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
|
|
if (rc < 0)
|
|
BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
|
|
return rc;
|
|
}
|
|
|
|
int bnx2x_del_all_macs(struct bnx2x *bp,
|
|
struct bnx2x_vlan_mac_obj *mac_obj,
|
|
int mac_type, bool wait_for_comp)
|
|
{
|
|
int rc;
|
|
unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
|
|
|
|
/* Wait for completion of requested */
|
|
if (wait_for_comp)
|
|
__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
|
|
|
|
/* Set the mac type of addresses we want to clear */
|
|
__set_bit(mac_type, &vlan_mac_flags);
|
|
|
|
rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
|
|
if (rc < 0)
|
|
BNX2X_ERR("Failed to delete MACs: %d\n", rc);
|
|
|
|
return rc;
|
|
}
|
|
|
|
int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
|
|
{
|
|
unsigned long ramrod_flags = 0;
|
|
|
|
DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
|
|
|
|
__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
|
|
/* Eth MAC is set on RSS leading client (fp[0]) */
|
|
return bnx2x_set_mac_one(bp, bp->dev->dev_addr, &bp->fp->mac_obj, set,
|
|
BNX2X_ETH_MAC, &ramrod_flags);
|
|
}
|
|
|
|
int bnx2x_setup_leading(struct bnx2x *bp)
|
|
{
|
|
return bnx2x_setup_queue(bp, &bp->fp[0], 1);
|
|
}
|
|
|
|
/**
|
|
* bnx2x_set_int_mode - configure interrupt mode
|
|
*
|
|
* @bp: driver handle
|
|
*
|
|
* In case of MSI-X it will also try to enable MSI-X.
|
|
*/
|
|
static void __devinit bnx2x_set_int_mode(struct bnx2x *bp)
|
|
{
|
|
switch (int_mode) {
|
|
case INT_MODE_MSI:
|
|
bnx2x_enable_msi(bp);
|
|
/* falling through... */
|
|
case INT_MODE_INTx:
|
|
bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
|
|
DP(NETIF_MSG_IFUP, "set number of queues to 1\n");
|
|
break;
|
|
default:
|
|
/* Set number of queues according to bp->multi_mode value */
|
|
bnx2x_set_num_queues(bp);
|
|
|
|
DP(NETIF_MSG_IFUP, "set number of queues to %d\n",
|
|
bp->num_queues);
|
|
|
|
/* if we can't use MSI-X we only need one fp,
|
|
* so try to enable MSI-X with the requested number of fp's
|
|
* and fallback to MSI or legacy INTx with one fp
|
|
*/
|
|
if (bnx2x_enable_msix(bp)) {
|
|
/* failed to enable MSI-X */
|
|
if (bp->multi_mode)
|
|
DP(NETIF_MSG_IFUP,
|
|
"Multi requested but failed to "
|
|
"enable MSI-X (%d), "
|
|
"set number of queues to %d\n",
|
|
bp->num_queues,
|
|
1 + NON_ETH_CONTEXT_USE);
|
|
bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
|
|
|
|
/* Try to enable MSI */
|
|
if (!(bp->flags & DISABLE_MSI_FLAG))
|
|
bnx2x_enable_msi(bp);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* must be called prioir to any HW initializations */
|
|
static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
|
|
{
|
|
return L2_ILT_LINES(bp);
|
|
}
|
|
|
|
void bnx2x_ilt_set_info(struct bnx2x *bp)
|
|
{
|
|
struct ilt_client_info *ilt_client;
|
|
struct bnx2x_ilt *ilt = BP_ILT(bp);
|
|
u16 line = 0;
|
|
|
|
ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
|
|
DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
|
|
|
|
/* CDU */
|
|
ilt_client = &ilt->clients[ILT_CLIENT_CDU];
|
|
ilt_client->client_num = ILT_CLIENT_CDU;
|
|
ilt_client->page_size = CDU_ILT_PAGE_SZ;
|
|
ilt_client->flags = ILT_CLIENT_SKIP_MEM;
|
|
ilt_client->start = line;
|
|
line += bnx2x_cid_ilt_lines(bp);
|
|
#ifdef BCM_CNIC
|
|
line += CNIC_ILT_LINES;
|
|
#endif
|
|
ilt_client->end = line - 1;
|
|
|
|
DP(BNX2X_MSG_SP, "ilt client[CDU]: start %d, end %d, psz 0x%x, "
|
|
"flags 0x%x, hw psz %d\n",
|
|
ilt_client->start,
|
|
ilt_client->end,
|
|
ilt_client->page_size,
|
|
ilt_client->flags,
|
|
ilog2(ilt_client->page_size >> 12));
|
|
|
|
/* QM */
|
|
if (QM_INIT(bp->qm_cid_count)) {
|
|
ilt_client = &ilt->clients[ILT_CLIENT_QM];
|
|
ilt_client->client_num = ILT_CLIENT_QM;
|
|
ilt_client->page_size = QM_ILT_PAGE_SZ;
|
|
ilt_client->flags = 0;
|
|
ilt_client->start = line;
|
|
|
|
/* 4 bytes for each cid */
|
|
line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
|
|
QM_ILT_PAGE_SZ);
|
|
|
|
ilt_client->end = line - 1;
|
|
|
|
DP(BNX2X_MSG_SP, "ilt client[QM]: start %d, end %d, psz 0x%x, "
|
|
"flags 0x%x, hw psz %d\n",
|
|
ilt_client->start,
|
|
ilt_client->end,
|
|
ilt_client->page_size,
|
|
ilt_client->flags,
|
|
ilog2(ilt_client->page_size >> 12));
|
|
|
|
}
|
|
/* SRC */
|
|
ilt_client = &ilt->clients[ILT_CLIENT_SRC];
|
|
#ifdef BCM_CNIC
|
|
ilt_client->client_num = ILT_CLIENT_SRC;
|
|
ilt_client->page_size = SRC_ILT_PAGE_SZ;
|
|
ilt_client->flags = 0;
|
|
ilt_client->start = line;
|
|
line += SRC_ILT_LINES;
|
|
ilt_client->end = line - 1;
|
|
|
|
DP(BNX2X_MSG_SP, "ilt client[SRC]: start %d, end %d, psz 0x%x, "
|
|
"flags 0x%x, hw psz %d\n",
|
|
ilt_client->start,
|
|
ilt_client->end,
|
|
ilt_client->page_size,
|
|
ilt_client->flags,
|
|
ilog2(ilt_client->page_size >> 12));
|
|
|
|
#else
|
|
ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
|
|
#endif
|
|
|
|
/* TM */
|
|
ilt_client = &ilt->clients[ILT_CLIENT_TM];
|
|
#ifdef BCM_CNIC
|
|
ilt_client->client_num = ILT_CLIENT_TM;
|
|
ilt_client->page_size = TM_ILT_PAGE_SZ;
|
|
ilt_client->flags = 0;
|
|
ilt_client->start = line;
|
|
line += TM_ILT_LINES;
|
|
ilt_client->end = line - 1;
|
|
|
|
DP(BNX2X_MSG_SP, "ilt client[TM]: start %d, end %d, psz 0x%x, "
|
|
"flags 0x%x, hw psz %d\n",
|
|
ilt_client->start,
|
|
ilt_client->end,
|
|
ilt_client->page_size,
|
|
ilt_client->flags,
|
|
ilog2(ilt_client->page_size >> 12));
|
|
|
|
#else
|
|
ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
|
|
#endif
|
|
BUG_ON(line > ILT_MAX_LINES);
|
|
}
|
|
|
|
/**
|
|
* bnx2x_pf_q_prep_init - prepare INIT transition parameters
|
|
*
|
|
* @bp: driver handle
|
|
* @fp: pointer to fastpath
|
|
* @init_params: pointer to parameters structure
|
|
*
|
|
* parameters configured:
|
|
* - HC configuration
|
|
* - Queue's CDU context
|
|
*/
|
|
static inline void bnx2x_pf_q_prep_init(struct bnx2x *bp,
|
|
struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
|
|
{
|
|
|
|
u8 cos;
|
|
/* FCoE Queue uses Default SB, thus has no HC capabilities */
|
|
if (!IS_FCOE_FP(fp)) {
|
|
__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
|
|
__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
|
|
|
|
/* If HC is supporterd, enable host coalescing in the transition
|
|
* to INIT state.
|
|
*/
|
|
__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
|
|
__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
|
|
|
|
/* HC rate */
|
|
init_params->rx.hc_rate = bp->rx_ticks ?
|
|
(1000000 / bp->rx_ticks) : 0;
|
|
init_params->tx.hc_rate = bp->tx_ticks ?
|
|
(1000000 / bp->tx_ticks) : 0;
|
|
|
|
/* FW SB ID */
|
|
init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
|
|
fp->fw_sb_id;
|
|
|
|
/*
|
|
* CQ index among the SB indices: FCoE clients uses the default
|
|
* SB, therefore it's different.
|
|
*/
|
|
init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
|
|
init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
|
|
}
|
|
|
|
/* set maximum number of COSs supported by this queue */
|
|
init_params->max_cos = fp->max_cos;
|
|
|
|
DP(BNX2X_MSG_SP, "fp: %d setting queue params max cos to: %d\n",
|
|
fp->index, init_params->max_cos);
|
|
|
|
/* set the context pointers queue object */
|
|
for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++)
|
|
init_params->cxts[cos] =
|
|
&bp->context.vcxt[fp->txdata[cos].cid].eth;
|
|
}
|
|
|
|
int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
|
|
struct bnx2x_queue_state_params *q_params,
|
|
struct bnx2x_queue_setup_tx_only_params *tx_only_params,
|
|
int tx_index, bool leading)
|
|
{
|
|
memset(tx_only_params, 0, sizeof(*tx_only_params));
|
|
|
|
/* Set the command */
|
|
q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
|
|
|
|
/* Set tx-only QUEUE flags: don't zero statistics */
|
|
tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
|
|
|
|
/* choose the index of the cid to send the slow path on */
|
|
tx_only_params->cid_index = tx_index;
|
|
|
|
/* Set general TX_ONLY_SETUP parameters */
|
|
bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
|
|
|
|
/* Set Tx TX_ONLY_SETUP parameters */
|
|
bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
|
|
|
|
DP(BNX2X_MSG_SP, "preparing to send tx-only ramrod for connection:"
|
|
"cos %d, primary cid %d, cid %d, "
|
|
"client id %d, sp-client id %d, flags %lx\n",
|
|
tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
|
|
q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
|
|
tx_only_params->gen_params.spcl_id, tx_only_params->flags);
|
|
|
|
/* send the ramrod */
|
|
return bnx2x_queue_state_change(bp, q_params);
|
|
}
|
|
|
|
|
|
/**
|
|
* bnx2x_setup_queue - setup queue
|
|
*
|
|
* @bp: driver handle
|
|
* @fp: pointer to fastpath
|
|
* @leading: is leading
|
|
*
|
|
* This function performs 2 steps in a Queue state machine
|
|
* actually: 1) RESET->INIT 2) INIT->SETUP
|
|
*/
|
|
|
|
int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
|
|
bool leading)
|
|
{
|
|
struct bnx2x_queue_state_params q_params = {0};
|
|
struct bnx2x_queue_setup_params *setup_params =
|
|
&q_params.params.setup;
|
|
struct bnx2x_queue_setup_tx_only_params *tx_only_params =
|
|
&q_params.params.tx_only;
|
|
int rc;
|
|
u8 tx_index;
|
|
|
|
DP(BNX2X_MSG_SP, "setting up queue %d\n", fp->index);
|
|
|
|
/* reset IGU state skip FCoE L2 queue */
|
|
if (!IS_FCOE_FP(fp))
|
|
bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
|
|
IGU_INT_ENABLE, 0);
|
|
|
|
q_params.q_obj = &fp->q_obj;
|
|
/* We want to wait for completion in this context */
|
|
__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
|
|
|
|
/* Prepare the INIT parameters */
|
|
bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
|
|
|
|
/* Set the command */
|
|
q_params.cmd = BNX2X_Q_CMD_INIT;
|
|
|
|
/* Change the state to INIT */
|
|
rc = bnx2x_queue_state_change(bp, &q_params);
|
|
if (rc) {
|
|
BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
|
|
return rc;
|
|
}
|
|
|
|
DP(BNX2X_MSG_SP, "init complete\n");
|
|
|
|
|
|
/* Now move the Queue to the SETUP state... */
|
|
memset(setup_params, 0, sizeof(*setup_params));
|
|
|
|
/* Set QUEUE flags */
|
|
setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
|
|
|
|
/* Set general SETUP parameters */
|
|
bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
|
|
FIRST_TX_COS_INDEX);
|
|
|
|
bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
|
|
&setup_params->rxq_params);
|
|
|
|
bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
|
|
FIRST_TX_COS_INDEX);
|
|
|
|
/* Set the command */
|
|
q_params.cmd = BNX2X_Q_CMD_SETUP;
|
|
|
|
/* Change the state to SETUP */
|
|
rc = bnx2x_queue_state_change(bp, &q_params);
|
|
if (rc) {
|
|
BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
|
|
return rc;
|
|
}
|
|
|
|
/* loop through the relevant tx-only indices */
|
|
for (tx_index = FIRST_TX_ONLY_COS_INDEX;
|
|
tx_index < fp->max_cos;
|
|
tx_index++) {
|
|
|
|
/* prepare and send tx-only ramrod*/
|
|
rc = bnx2x_setup_tx_only(bp, fp, &q_params,
|
|
tx_only_params, tx_index, leading);
|
|
if (rc) {
|
|
BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
|
|
fp->index, tx_index);
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int bnx2x_stop_queue(struct bnx2x *bp, int index)
|
|
{
|
|
struct bnx2x_fastpath *fp = &bp->fp[index];
|
|
struct bnx2x_fp_txdata *txdata;
|
|
struct bnx2x_queue_state_params q_params = {0};
|
|
int rc, tx_index;
|
|
|
|
DP(BNX2X_MSG_SP, "stopping queue %d cid %d\n", index, fp->cid);
|
|
|
|
q_params.q_obj = &fp->q_obj;
|
|
/* We want to wait for completion in this context */
|
|
__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
|
|
|
|
|
|
/* close tx-only connections */
|
|
for (tx_index = FIRST_TX_ONLY_COS_INDEX;
|
|
tx_index < fp->max_cos;
|
|
tx_index++){
|
|
|
|
/* ascertain this is a normal queue*/
|
|
txdata = &fp->txdata[tx_index];
|
|
|
|
DP(BNX2X_MSG_SP, "stopping tx-only queue %d\n",
|
|
txdata->txq_index);
|
|
|
|
/* send halt terminate on tx-only connection */
|
|
q_params.cmd = BNX2X_Q_CMD_TERMINATE;
|
|
memset(&q_params.params.terminate, 0,
|
|
sizeof(q_params.params.terminate));
|
|
q_params.params.terminate.cid_index = tx_index;
|
|
|
|
rc = bnx2x_queue_state_change(bp, &q_params);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* send halt terminate on tx-only connection */
|
|
q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
|
|
memset(&q_params.params.cfc_del, 0,
|
|
sizeof(q_params.params.cfc_del));
|
|
q_params.params.cfc_del.cid_index = tx_index;
|
|
rc = bnx2x_queue_state_change(bp, &q_params);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
/* Stop the primary connection: */
|
|
/* ...halt the connection */
|
|
q_params.cmd = BNX2X_Q_CMD_HALT;
|
|
rc = bnx2x_queue_state_change(bp, &q_params);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* ...terminate the connection */
|
|
q_params.cmd = BNX2X_Q_CMD_TERMINATE;
|
|
memset(&q_params.params.terminate, 0,
|
|
sizeof(q_params.params.terminate));
|
|
q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
|
|
rc = bnx2x_queue_state_change(bp, &q_params);
|
|
if (rc)
|
|
return rc;
|
|
/* ...delete cfc entry */
|
|
q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
|
|
memset(&q_params.params.cfc_del, 0,
|
|
sizeof(q_params.params.cfc_del));
|
|
q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
|
|
return bnx2x_queue_state_change(bp, &q_params);
|
|
}
|
|
|
|
|
|
static void bnx2x_reset_func(struct bnx2x *bp)
|
|
{
|
|
int port = BP_PORT(bp);
|
|
int func = BP_FUNC(bp);
|
|
int i;
|
|
|
|
/* Disable the function in the FW */
|
|
REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
|
|
REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
|
|
REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
|
|
REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
|
|
|
|
/* FP SBs */
|
|
for_each_eth_queue(bp, i) {
|
|
struct bnx2x_fastpath *fp = &bp->fp[i];
|
|
REG_WR8(bp, BAR_CSTRORM_INTMEM +
|
|
CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
|
|
SB_DISABLED);
|
|
}
|
|
|
|
#ifdef BCM_CNIC
|
|
/* CNIC SB */
|
|
REG_WR8(bp, BAR_CSTRORM_INTMEM +
|
|
CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(bnx2x_cnic_fw_sb_id(bp)),
|
|
SB_DISABLED);
|
|
#endif
|
|
/* SP SB */
|
|
REG_WR8(bp, BAR_CSTRORM_INTMEM +
|
|
CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
|
|
SB_DISABLED);
|
|
|
|
for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
|
|
REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
|
|
0);
|
|
|
|
/* Configure IGU */
|
|
if (bp->common.int_block == INT_BLOCK_HC) {
|
|
REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
|
|
REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
|
|
} else {
|
|
REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
|
|
REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
|
|
}
|
|
|
|
#ifdef BCM_CNIC
|
|
/* Disable Timer scan */
|
|
REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
|
|
/*
|
|
* Wait for at least 10ms and up to 2 second for the timers scan to
|
|
* complete
|
|
*/
|
|
for (i = 0; i < 200; i++) {
|
|
msleep(10);
|
|
if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
|
|
break;
|
|
}
|
|
#endif
|
|
/* Clear ILT */
|
|
bnx2x_clear_func_ilt(bp, func);
|
|
|
|
/* Timers workaround bug for E2: if this is vnic-3,
|
|
* we need to set the entire ilt range for this timers.
|
|
*/
|
|
if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
|
|
struct ilt_client_info ilt_cli;
|
|
/* use dummy TM client */
|
|
memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
|
|
ilt_cli.start = 0;
|
|
ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
|
|
ilt_cli.client_num = ILT_CLIENT_TM;
|
|
|
|
bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
|
|
}
|
|
|
|
/* this assumes that reset_port() called before reset_func()*/
|
|
if (!CHIP_IS_E1x(bp))
|
|
bnx2x_pf_disable(bp);
|
|
|
|
bp->dmae_ready = 0;
|
|
}
|
|
|
|
static void bnx2x_reset_port(struct bnx2x *bp)
|
|
{
|
|
int port = BP_PORT(bp);
|
|
u32 val;
|
|
|
|
/* Reset physical Link */
|
|
bnx2x__link_reset(bp);
|
|
|
|
REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
|
|
|
|
/* Do not rcv packets to BRB */
|
|
REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
|
|
/* Do not direct rcv packets that are not for MCP to the BRB */
|
|
REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
|
|
NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
|
|
|
|
/* Configure AEU */
|
|
REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
|
|
|
|
msleep(100);
|
|
/* Check for BRB port occupancy */
|
|
val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
|
|
if (val)
|
|
DP(NETIF_MSG_IFDOWN,
|
|
"BRB1 is not empty %d blocks are occupied\n", val);
|
|
|
|
/* TODO: Close Doorbell port? */
|
|
}
|
|
|
|
static inline int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
|
|
{
|
|
struct bnx2x_func_state_params func_params = {0};
|
|
|
|
/* Prepare parameters for function state transitions */
|
|
__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
|
|
|
|
func_params.f_obj = &bp->func_obj;
|
|
func_params.cmd = BNX2X_F_CMD_HW_RESET;
|
|
|
|
func_params.params.hw_init.load_phase = load_code;
|
|
|
|
return bnx2x_func_state_change(bp, &func_params);
|
|
}
|
|
|
|
static inline int bnx2x_func_stop(struct bnx2x *bp)
|
|
{
|
|
struct bnx2x_func_state_params func_params = {0};
|
|
int rc;
|
|
|
|
/* Prepare parameters for function state transitions */
|
|
__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
|
|
func_params.f_obj = &bp->func_obj;
|
|
func_params.cmd = BNX2X_F_CMD_STOP;
|
|
|
|
/*
|
|
* Try to stop the function the 'good way'. If fails (in case
|
|
* of a parity error during bnx2x_chip_cleanup()) and we are
|
|
* not in a debug mode, perform a state transaction in order to
|
|
* enable further HW_RESET transaction.
|
|
*/
|
|
rc = bnx2x_func_state_change(bp, &func_params);
|
|
if (rc) {
|
|
#ifdef BNX2X_STOP_ON_ERROR
|
|
return rc;
|
|
#else
|
|
BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry "
|
|
"transaction\n");
|
|
__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
|
|
return bnx2x_func_state_change(bp, &func_params);
|
|
#endif
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* bnx2x_send_unload_req - request unload mode from the MCP.
|
|
*
|
|
* @bp: driver handle
|
|
* @unload_mode: requested function's unload mode
|
|
*
|
|
* Return unload mode returned by the MCP: COMMON, PORT or FUNC.
|
|
*/
|
|
u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
|
|
{
|
|
u32 reset_code = 0;
|
|
int port = BP_PORT(bp);
|
|
|
|
/* Select the UNLOAD request mode */
|
|
if (unload_mode == UNLOAD_NORMAL)
|
|
reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
|
|
|
|
else if (bp->flags & NO_WOL_FLAG)
|
|
reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
|
|
|
|
else if (bp->wol) {
|
|
u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
|
|
u8 *mac_addr = bp->dev->dev_addr;
|
|
u32 val;
|
|
u16 pmc;
|
|
|
|
/* The mac address is written to entries 1-4 to
|
|
* preserve entry 0 which is used by the PMF
|
|
*/
|
|
u8 entry = (BP_VN(bp) + 1)*8;
|
|
|
|
val = (mac_addr[0] << 8) | mac_addr[1];
|
|
EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
|
|
|
|
val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
|
|
(mac_addr[4] << 8) | mac_addr[5];
|
|
EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
|
|
|
|
/* Enable the PME and clear the status */
|
|
pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
|
|
pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
|
|
pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
|
|
|
|
reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
|
|
|
|
} else
|
|
reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
|
|
|
|
/* Send the request to the MCP */
|
|
if (!BP_NOMCP(bp))
|
|
reset_code = bnx2x_fw_command(bp, reset_code, 0);
|
|
else {
|
|
int path = BP_PATH(bp);
|
|
|
|
DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d] "
|
|
"%d, %d, %d\n",
|
|
path, load_count[path][0], load_count[path][1],
|
|
load_count[path][2]);
|
|
load_count[path][0]--;
|
|
load_count[path][1 + port]--;
|
|
DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d] "
|
|
"%d, %d, %d\n",
|
|
path, load_count[path][0], load_count[path][1],
|
|
load_count[path][2]);
|
|
if (load_count[path][0] == 0)
|
|
reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
|
|
else if (load_count[path][1 + port] == 0)
|
|
reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
|
|
else
|
|
reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
|
|
}
|
|
|
|
return reset_code;
|
|
}
|
|
|
|
/**
|
|
* bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
|
|
*
|
|
* @bp: driver handle
|
|
*/
|
|
void bnx2x_send_unload_done(struct bnx2x *bp)
|
|
{
|
|
/* Report UNLOAD_DONE to MCP */
|
|
if (!BP_NOMCP(bp))
|
|
bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
|
|
}
|
|
|
|
static inline int bnx2x_func_wait_started(struct bnx2x *bp)
|
|
{
|
|
int tout = 50;
|
|
int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
|
|
|
|
if (!bp->port.pmf)
|
|
return 0;
|
|
|
|
/*
|
|
* (assumption: No Attention from MCP at this stage)
|
|
* PMF probably in the middle of TXdisable/enable transaction
|
|
* 1. Sync IRS for default SB
|
|
* 2. Sync SP queue - this guarantes us that attention handling started
|
|
* 3. Wait, that TXdisable/enable transaction completes
|
|
*
|
|
* 1+2 guranty that if DCBx attention was scheduled it already changed
|
|
* pending bit of transaction from STARTED-->TX_STOPPED, if we alredy
|
|
* received complettion for the transaction the state is TX_STOPPED.
|
|
* State will return to STARTED after completion of TX_STOPPED-->STARTED
|
|
* transaction.
|
|
*/
|
|
|
|
/* make sure default SB ISR is done */
|
|
if (msix)
|
|
synchronize_irq(bp->msix_table[0].vector);
|
|
else
|
|
synchronize_irq(bp->pdev->irq);
|
|
|
|
flush_workqueue(bnx2x_wq);
|
|
|
|
while (bnx2x_func_get_state(bp, &bp->func_obj) !=
|
|
BNX2X_F_STATE_STARTED && tout--)
|
|
msleep(20);
|
|
|
|
if (bnx2x_func_get_state(bp, &bp->func_obj) !=
|
|
BNX2X_F_STATE_STARTED) {
|
|
#ifdef BNX2X_STOP_ON_ERROR
|
|
return -EBUSY;
|
|
#else
|
|
/*
|
|
* Failed to complete the transaction in a "good way"
|
|
* Force both transactions with CLR bit
|
|
*/
|
|
struct bnx2x_func_state_params func_params = {0};
|
|
|
|
DP(BNX2X_MSG_SP, "Hmmm... unexpected function state! "
|
|
"Forcing STARTED-->TX_ST0PPED-->STARTED\n");
|
|
|
|
func_params.f_obj = &bp->func_obj;
|
|
__set_bit(RAMROD_DRV_CLR_ONLY,
|
|
&func_params.ramrod_flags);
|
|
|
|
/* STARTED-->TX_ST0PPED */
|
|
func_params.cmd = BNX2X_F_CMD_TX_STOP;
|
|
bnx2x_func_state_change(bp, &func_params);
|
|
|
|
/* TX_ST0PPED-->STARTED */
|
|
func_params.cmd = BNX2X_F_CMD_TX_START;
|
|
return bnx2x_func_state_change(bp, &func_params);
|
|
#endif
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode)
|
|
{
|
|
int port = BP_PORT(bp);
|
|
int i, rc = 0;
|
|
u8 cos;
|
|
struct bnx2x_mcast_ramrod_params rparam = {0};
|
|
u32 reset_code;
|
|
|
|
/* Wait until tx fastpath tasks complete */
|
|
for_each_tx_queue(bp, i) {
|
|
struct bnx2x_fastpath *fp = &bp->fp[i];
|
|
|
|
for_each_cos_in_tx_queue(fp, cos)
|
|
rc = bnx2x_clean_tx_queue(bp, &fp->txdata[cos]);
|
|
#ifdef BNX2X_STOP_ON_ERROR
|
|
if (rc)
|
|
return;
|
|
#endif
|
|
}
|
|
|
|
/* Give HW time to discard old tx messages */
|
|
usleep_range(1000, 1000);
|
|
|
|
/* Clean all ETH MACs */
|
|
rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_ETH_MAC, false);
|
|
if (rc < 0)
|
|
BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
|
|
|
|
/* Clean up UC list */
|
|
rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_UC_LIST_MAC,
|
|
true);
|
|
if (rc < 0)
|
|
BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: "
|
|
"%d\n", rc);
|
|
|
|
/* Disable LLH */
|
|
if (!CHIP_IS_E1(bp))
|
|
REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
|
|
|
|
/* Set "drop all" (stop Rx).
|
|
* We need to take a netif_addr_lock() here in order to prevent
|
|
* a race between the completion code and this code.
|
|
*/
|
|
netif_addr_lock_bh(bp->dev);
|
|
/* Schedule the rx_mode command */
|
|
if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
|
|
set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
|
|
else
|
|
bnx2x_set_storm_rx_mode(bp);
|
|
|
|
/* Cleanup multicast configuration */
|
|
rparam.mcast_obj = &bp->mcast_obj;
|
|
rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
|
|
if (rc < 0)
|
|
BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
|
|
|
|
netif_addr_unlock_bh(bp->dev);
|
|
|
|
|
|
|
|
/*
|
|
* Send the UNLOAD_REQUEST to the MCP. This will return if
|
|
* this function should perform FUNC, PORT or COMMON HW
|
|
* reset.
|
|
*/
|
|
reset_code = bnx2x_send_unload_req(bp, unload_mode);
|
|
|
|
/*
|
|
* (assumption: No Attention from MCP at this stage)
|
|
* PMF probably in the middle of TXdisable/enable transaction
|
|
*/
|
|
rc = bnx2x_func_wait_started(bp);
|
|
if (rc) {
|
|
BNX2X_ERR("bnx2x_func_wait_started failed\n");
|
|
#ifdef BNX2X_STOP_ON_ERROR
|
|
return;
|
|
#endif
|
|
}
|
|
|
|
/* Close multi and leading connections
|
|
* Completions for ramrods are collected in a synchronous way
|
|
*/
|
|
for_each_queue(bp, i)
|
|
if (bnx2x_stop_queue(bp, i))
|
|
#ifdef BNX2X_STOP_ON_ERROR
|
|
return;
|
|
#else
|
|
goto unload_error;
|
|
#endif
|
|
/* If SP settings didn't get completed so far - something
|
|
* very wrong has happen.
|
|
*/
|
|
if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
|
|
BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
|
|
|
|
#ifndef BNX2X_STOP_ON_ERROR
|
|
unload_error:
|
|
#endif
|
|
rc = bnx2x_func_stop(bp);
|
|
if (rc) {
|
|
BNX2X_ERR("Function stop failed!\n");
|
|
#ifdef BNX2X_STOP_ON_ERROR
|
|
return;
|
|
#endif
|
|
}
|
|
|
|
/* Disable HW interrupts, NAPI */
|
|
bnx2x_netif_stop(bp, 1);
|
|
|
|
/* Release IRQs */
|
|
bnx2x_free_irq(bp);
|
|
|
|
/* Reset the chip */
|
|
rc = bnx2x_reset_hw(bp, reset_code);
|
|
if (rc)
|
|
BNX2X_ERR("HW_RESET failed\n");
|
|
|
|
|
|
/* Report UNLOAD_DONE to MCP */
|
|
bnx2x_send_unload_done(bp);
|
|
}
|
|
|
|
void bnx2x_disable_close_the_gate(struct bnx2x *bp)
|
|
{
|
|
u32 val;
|
|
|
|
DP(NETIF_MSG_HW, "Disabling \"close the gates\"\n");
|
|
|
|
if (CHIP_IS_E1(bp)) {
|
|
int port = BP_PORT(bp);
|
|
u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
|
|
MISC_REG_AEU_MASK_ATTN_FUNC_0;
|
|
|
|
val = REG_RD(bp, addr);
|
|
val &= ~(0x300);
|
|
REG_WR(bp, addr, val);
|
|
} else {
|
|
val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
|
|
val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
|
|
MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
|
|
REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
|
|
}
|
|
}
|
|
|
|
/* Close gates #2, #3 and #4: */
|
|
static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
|
|
{
|
|
u32 val;
|
|
|
|
/* Gates #2 and #4a are closed/opened for "not E1" only */
|
|
if (!CHIP_IS_E1(bp)) {
|
|
/* #4 */
|
|
REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
|
|
/* #2 */
|
|
REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
|
|
}
|
|
|
|
/* #3 */
|
|
if (CHIP_IS_E1x(bp)) {
|
|
/* Prevent interrupts from HC on both ports */
|
|
val = REG_RD(bp, HC_REG_CONFIG_1);
|
|
REG_WR(bp, HC_REG_CONFIG_1,
|
|
(!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
|
|
(val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
|
|
|
|
val = REG_RD(bp, HC_REG_CONFIG_0);
|
|
REG_WR(bp, HC_REG_CONFIG_0,
|
|
(!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
|
|
(val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
|
|
} else {
|
|
/* Prevent incomming interrupts in IGU */
|
|
val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
|
|
|
|
REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
|
|
(!close) ?
|
|
(val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
|
|
(val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
|
|
}
|
|
|
|
DP(NETIF_MSG_HW, "%s gates #2, #3 and #4\n",
|
|
close ? "closing" : "opening");
|
|
mmiowb();
|
|
}
|
|
|
|
#define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */
|
|
|
|
static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
|
|
{
|
|
/* Do some magic... */
|
|
u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
|
|
*magic_val = val & SHARED_MF_CLP_MAGIC;
|
|
MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
|
|
}
|
|
|
|
/**
|
|
* bnx2x_clp_reset_done - restore the value of the `magic' bit.
|
|
*
|
|
* @bp: driver handle
|
|
* @magic_val: old value of the `magic' bit.
|
|
*/
|
|
static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
|
|
{
|
|
/* Restore the `magic' bit value... */
|
|
u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
|
|
MF_CFG_WR(bp, shared_mf_config.clp_mb,
|
|
(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
|
|
}
|
|
|
|
/**
|
|
* bnx2x_reset_mcp_prep - prepare for MCP reset.
|
|
*
|
|
* @bp: driver handle
|
|
* @magic_val: old value of 'magic' bit.
|
|
*
|
|
* Takes care of CLP configurations.
|
|
*/
|
|
static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
|
|
{
|
|
u32 shmem;
|
|
u32 validity_offset;
|
|
|
|
DP(NETIF_MSG_HW, "Starting\n");
|
|
|
|
/* Set `magic' bit in order to save MF config */
|
|
if (!CHIP_IS_E1(bp))
|
|
bnx2x_clp_reset_prep(bp, magic_val);
|
|
|
|
/* Get shmem offset */
|
|
shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
|
|
validity_offset = offsetof(struct shmem_region, validity_map[0]);
|
|
|
|
/* Clear validity map flags */
|
|
if (shmem > 0)
|
|
REG_WR(bp, shmem + validity_offset, 0);
|
|
}
|
|
|
|
#define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
|
|
#define MCP_ONE_TIMEOUT 100 /* 100 ms */
|
|
|
|
/**
|
|
* bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
|
|
*
|
|
* @bp: driver handle
|
|
*/
|
|
static inline void bnx2x_mcp_wait_one(struct bnx2x *bp)
|
|
{
|
|
/* special handling for emulation and FPGA,
|
|
wait 10 times longer */
|
|
if (CHIP_REV_IS_SLOW(bp))
|
|
msleep(MCP_ONE_TIMEOUT*10);
|
|
else
|
|
msleep(MCP_ONE_TIMEOUT);
|
|
}
|
|
|
|
/*
|
|
* initializes bp->common.shmem_base and waits for validity signature to appear
|
|
*/
|
|
static int bnx2x_init_shmem(struct bnx2x *bp)
|
|
{
|
|
int cnt = 0;
|
|
u32 val = 0;
|
|
|
|
do {
|
|
bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
|
|
if (bp->common.shmem_base) {
|
|
val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
|
|
if (val & SHR_MEM_VALIDITY_MB)
|
|
return 0;
|
|
}
|
|
|
|
bnx2x_mcp_wait_one(bp);
|
|
|
|
} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
|
|
|
|
BNX2X_ERR("BAD MCP validity signature\n");
|
|
|
|
return -ENODEV;
|
|
}
|
|
|
|
static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
|
|
{
|
|
int rc = bnx2x_init_shmem(bp);
|
|
|
|
/* Restore the `magic' bit value */
|
|
if (!CHIP_IS_E1(bp))
|
|
bnx2x_clp_reset_done(bp, magic_val);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void bnx2x_pxp_prep(struct bnx2x *bp)
|
|
{
|
|
if (!CHIP_IS_E1(bp)) {
|
|
REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
|
|
REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
|
|
mmiowb();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Reset the whole chip except for:
|
|
* - PCIE core
|
|
* - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
|
|
* one reset bit)
|
|
* - IGU
|
|
* - MISC (including AEU)
|
|
* - GRC
|
|
* - RBCN, RBCP
|
|
*/
|
|
static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
|
|
{
|
|
u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
|
|
u32 global_bits2, stay_reset2;
|
|
|
|
/*
|
|
* Bits that have to be set in reset_mask2 if we want to reset 'global'
|
|
* (per chip) blocks.
|
|
*/
|
|
global_bits2 =
|
|
MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
|
|
MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
|
|
|
|
/* Don't reset the following blocks */
|
|
not_reset_mask1 =
|
|
MISC_REGISTERS_RESET_REG_1_RST_HC |
|
|
MISC_REGISTERS_RESET_REG_1_RST_PXPV |
|
|
MISC_REGISTERS_RESET_REG_1_RST_PXP;
|
|
|
|
not_reset_mask2 =
|
|
MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
|
|
MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
|
|
MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
|
|
MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
|
|
MISC_REGISTERS_RESET_REG_2_RST_RBCN |
|
|
MISC_REGISTERS_RESET_REG_2_RST_GRC |
|
|
MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
|
|
MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
|
|
MISC_REGISTERS_RESET_REG_2_RST_ATC |
|
|
MISC_REGISTERS_RESET_REG_2_PGLC;
|
|
|
|
/*
|
|
* Keep the following blocks in reset:
|
|
* - all xxMACs are handled by the bnx2x_link code.
|
|
*/
|
|
stay_reset2 =
|
|
MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
|
|
MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
|
|
MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
|
|
MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
|
|
MISC_REGISTERS_RESET_REG_2_UMAC0 |
|
|
MISC_REGISTERS_RESET_REG_2_UMAC1 |
|
|
MISC_REGISTERS_RESET_REG_2_XMAC |
|
|
MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
|
|
|
|
/* Full reset masks according to the chip */
|
|
reset_mask1 = 0xffffffff;
|
|
|
|
if (CHIP_IS_E1(bp))
|
|
reset_mask2 = 0xffff;
|
|
else if (CHIP_IS_E1H(bp))
|
|
reset_mask2 = 0x1ffff;
|
|
else if (CHIP_IS_E2(bp))
|
|
reset_mask2 = 0xfffff;
|
|
else /* CHIP_IS_E3 */
|
|
reset_mask2 = 0x3ffffff;
|
|
|
|
/* Don't reset global blocks unless we need to */
|
|
if (!global)
|
|
reset_mask2 &= ~global_bits2;
|
|
|
|
/*
|
|
* In case of attention in the QM, we need to reset PXP
|
|
* (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
|
|
* because otherwise QM reset would release 'close the gates' shortly
|
|
* before resetting the PXP, then the PSWRQ would send a write
|
|
* request to PGLUE. Then when PXP is reset, PGLUE would try to
|
|
* read the payload data from PSWWR, but PSWWR would not
|
|
* respond. The write queue in PGLUE would stuck, dmae commands
|
|
* would not return. Therefore it's important to reset the second
|
|
* reset register (containing the
|
|
* MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
|
|
* first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
|
|
* bit).
|
|
*/
|
|
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
|
|
reset_mask2 & (~not_reset_mask2));
|
|
|
|
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
|
|
reset_mask1 & (~not_reset_mask1));
|
|
|
|
barrier();
|
|
mmiowb();
|
|
|
|
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
|
|
reset_mask2 & (~stay_reset2));
|
|
|
|
barrier();
|
|
mmiowb();
|
|
|
|
REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
|
|
mmiowb();
|
|
}
|
|
|
|
/**
|
|
* bnx2x_er_poll_igu_vq - poll for pending writes bit.
|
|
* It should get cleared in no more than 1s.
|
|
*
|
|
* @bp: driver handle
|
|
*
|
|
* It should get cleared in no more than 1s. Returns 0 if
|
|
* pending writes bit gets cleared.
|
|
*/
|
|
static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
|
|
{
|
|
u32 cnt = 1000;
|
|
u32 pend_bits = 0;
|
|
|
|
do {
|
|
pend_bits = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
|
|
|
|
if (pend_bits == 0)
|
|
break;
|
|
|
|
usleep_range(1000, 1000);
|
|
} while (cnt-- > 0);
|
|
|
|
if (cnt <= 0) {
|
|
BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
|
|
pend_bits);
|
|
return -EBUSY;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bnx2x_process_kill(struct bnx2x *bp, bool global)
|
|
{
|
|
int cnt = 1000;
|
|
u32 val = 0;
|
|
u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
|
|
|
|
|
|
/* Empty the Tetris buffer, wait for 1s */
|
|
do {
|
|
sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT);
|
|
blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
|
|
port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
|
|
port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
|
|
pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
|
|
if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
|
|
((port_is_idle_0 & 0x1) == 0x1) &&
|
|
((port_is_idle_1 & 0x1) == 0x1) &&
|
|
(pgl_exp_rom2 == 0xffffffff))
|
|
break;
|
|
usleep_range(1000, 1000);
|
|
} while (cnt-- > 0);
|
|
|
|
if (cnt <= 0) {
|
|
DP(NETIF_MSG_HW, "Tetris buffer didn't get empty or there"
|
|
" are still"
|
|
" outstanding read requests after 1s!\n");
|
|
DP(NETIF_MSG_HW, "sr_cnt=0x%08x, blk_cnt=0x%08x,"
|
|
" port_is_idle_0=0x%08x,"
|
|
" port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
|
|
sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
|
|
pgl_exp_rom2);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
barrier();
|
|
|
|
/* Close gates #2, #3 and #4 */
|
|
bnx2x_set_234_gates(bp, true);
|
|
|
|
/* Poll for IGU VQs for 57712 and newer chips */
|
|
if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
|
|
return -EAGAIN;
|
|
|
|
|
|
/* TBD: Indicate that "process kill" is in progress to MCP */
|
|
|
|
/* Clear "unprepared" bit */
|
|
REG_WR(bp, MISC_REG_UNPREPARED, 0);
|
|
barrier();
|
|
|
|
/* Make sure all is written to the chip before the reset */
|
|
mmiowb();
|
|
|
|
/* Wait for 1ms to empty GLUE and PCI-E core queues,
|
|
* PSWHST, GRC and PSWRD Tetris buffer.
|
|
*/
|
|
usleep_range(1000, 1000);
|
|
|
|
/* Prepare to chip reset: */
|
|
/* MCP */
|
|
if (global)
|
|
bnx2x_reset_mcp_prep(bp, &val);
|
|
|
|
/* PXP */
|
|
bnx2x_pxp_prep(bp);
|
|
barrier();
|
|
|
|
/* reset the chip */
|
|
bnx2x_process_kill_chip_reset(bp, global);
|
|
barrier();
|
|
|
|
/* Recover after reset: */
|
|
/* MCP */
|
|
if (global && bnx2x_reset_mcp_comp(bp, val))
|
|
return -EAGAIN;
|
|
|
|
/* TBD: Add resetting the NO_MCP mode DB here */
|
|
|
|
/* PXP */
|
|
bnx2x_pxp_prep(bp);
|
|
|
|
/* Open the gates #2, #3 and #4 */
|
|
bnx2x_set_234_gates(bp, false);
|
|
|
|
/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
|
|
* reset state, re-enable attentions. */
|
|
|
|
return 0;
|
|
}
|
|
|
|
int bnx2x_leader_reset(struct bnx2x *bp)
|
|
{
|
|
int rc = 0;
|
|
bool global = bnx2x_reset_is_global(bp);
|
|
|
|
/* Try to recover after the failure */
|
|
if (bnx2x_process_kill(bp, global)) {
|
|
netdev_err(bp->dev, "Something bad had happen on engine %d! "
|
|
"Aii!\n", BP_PATH(bp));
|
|
rc = -EAGAIN;
|
|
goto exit_leader_reset;
|
|
}
|
|
|
|
/*
|
|
* Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
|
|
* state.
|
|
*/
|
|
bnx2x_set_reset_done(bp);
|
|
if (global)
|
|
bnx2x_clear_reset_global(bp);
|
|
|
|
exit_leader_reset:
|
|
bp->is_leader = 0;
|
|
bnx2x_release_leader_lock(bp);
|
|
smp_mb();
|
|
return rc;
|
|
}
|
|
|
|
static inline void bnx2x_recovery_failed(struct bnx2x *bp)
|
|
{
|
|
netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
|
|
|
|
/* Disconnect this device */
|
|
netif_device_detach(bp->dev);
|
|
|
|
/*
|
|
* Block ifup for all function on this engine until "process kill"
|
|
* or power cycle.
|
|
*/
|
|
bnx2x_set_reset_in_progress(bp);
|
|
|
|
/* Shut down the power */
|
|
bnx2x_set_power_state(bp, PCI_D3hot);
|
|
|
|
bp->recovery_state = BNX2X_RECOVERY_FAILED;
|
|
|
|
smp_mb();
|
|
}
|
|
|
|
/*
|
|
* Assumption: runs under rtnl lock. This together with the fact
|
|
* that it's called only from bnx2x_sp_rtnl() ensure that it
|
|
* will never be called when netif_running(bp->dev) is false.
|
|
*/
|
|
static void bnx2x_parity_recover(struct bnx2x *bp)
|
|
{
|
|
bool global = false;
|
|
|
|
DP(NETIF_MSG_HW, "Handling parity\n");
|
|
while (1) {
|
|
switch (bp->recovery_state) {
|
|
case BNX2X_RECOVERY_INIT:
|
|
DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
|
|
bnx2x_chk_parity_attn(bp, &global, false);
|
|
|
|
/* Try to get a LEADER_LOCK HW lock */
|
|
if (bnx2x_trylock_leader_lock(bp)) {
|
|
bnx2x_set_reset_in_progress(bp);
|
|
/*
|
|
* Check if there is a global attention and if
|
|
* there was a global attention, set the global
|
|
* reset bit.
|
|
*/
|
|
|
|
if (global)
|
|
bnx2x_set_reset_global(bp);
|
|
|
|
bp->is_leader = 1;
|
|
}
|
|
|
|
/* Stop the driver */
|
|
/* If interface has been removed - break */
|
|
if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY))
|
|
return;
|
|
|
|
bp->recovery_state = BNX2X_RECOVERY_WAIT;
|
|
|
|
/*
|
|
* Reset MCP command sequence number and MCP mail box
|
|
* sequence as we are going to reset the MCP.
|
|
*/
|
|
if (global) {
|
|
bp->fw_seq = 0;
|
|
bp->fw_drv_pulse_wr_seq = 0;
|
|
}
|
|
|
|
/* Ensure "is_leader", MCP command sequence and
|
|
* "recovery_state" update values are seen on other
|
|
* CPUs.
|
|
*/
|
|
smp_mb();
|
|
break;
|
|
|
|
case BNX2X_RECOVERY_WAIT:
|
|
DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
|
|
if (bp->is_leader) {
|
|
int other_engine = BP_PATH(bp) ? 0 : 1;
|
|
u32 other_load_counter =
|
|
bnx2x_get_load_cnt(bp, other_engine);
|
|
u32 load_counter =
|
|
bnx2x_get_load_cnt(bp, BP_PATH(bp));
|
|
global = bnx2x_reset_is_global(bp);
|
|
|
|
/*
|
|
* In case of a parity in a global block, let
|
|
* the first leader that performs a
|
|
* leader_reset() reset the global blocks in
|
|
* order to clear global attentions. Otherwise
|
|
* the the gates will remain closed for that
|
|
* engine.
|
|
*/
|
|
if (load_counter ||
|
|
(global && other_load_counter)) {
|
|
/* Wait until all other functions get
|
|
* down.
|
|
*/
|
|
schedule_delayed_work(&bp->sp_rtnl_task,
|
|
HZ/10);
|
|
return;
|
|
} else {
|
|
/* If all other functions got down -
|
|
* try to bring the chip back to
|
|
* normal. In any case it's an exit
|
|
* point for a leader.
|
|
*/
|
|
if (bnx2x_leader_reset(bp)) {
|
|
bnx2x_recovery_failed(bp);
|
|
return;
|
|
}
|
|
|
|
/* If we are here, means that the
|
|
* leader has succeeded and doesn't
|
|
* want to be a leader any more. Try
|
|
* to continue as a none-leader.
|
|
*/
|
|
break;
|
|
}
|
|
} else { /* non-leader */
|
|
if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
|
|
/* Try to get a LEADER_LOCK HW lock as
|
|
* long as a former leader may have
|
|
* been unloaded by the user or
|
|
* released a leadership by another
|
|
* reason.
|
|
*/
|
|
if (bnx2x_trylock_leader_lock(bp)) {
|
|
/* I'm a leader now! Restart a
|
|
* switch case.
|
|
*/
|
|
bp->is_leader = 1;
|
|
break;
|
|
}
|
|
|
|
schedule_delayed_work(&bp->sp_rtnl_task,
|
|
HZ/10);
|
|
return;
|
|
|
|
} else {
|
|
/*
|
|
* If there was a global attention, wait
|
|
* for it to be cleared.
|
|
*/
|
|
if (bnx2x_reset_is_global(bp)) {
|
|
schedule_delayed_work(
|
|
&bp->sp_rtnl_task,
|
|
HZ/10);
|
|
return;
|
|
}
|
|
|
|
if (bnx2x_nic_load(bp, LOAD_NORMAL))
|
|
bnx2x_recovery_failed(bp);
|
|
else {
|
|
bp->recovery_state =
|
|
BNX2X_RECOVERY_DONE;
|
|
smp_mb();
|
|
}
|
|
|
|
return;
|
|
}
|
|
}
|
|
default:
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
|
|
* scheduled on a general queue in order to prevent a dead lock.
|
|
*/
|
|
static void bnx2x_sp_rtnl_task(struct work_struct *work)
|
|
{
|
|
struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
|
|
|
|
rtnl_lock();
|
|
|
|
if (!netif_running(bp->dev))
|
|
goto sp_rtnl_exit;
|
|
|
|
/* if stop on error is defined no recovery flows should be executed */
|
|
#ifdef BNX2X_STOP_ON_ERROR
|
|
BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined "
|
|
"so reset not done to allow debug dump,\n"
|
|
"you will need to reboot when done\n");
|
|
goto sp_rtnl_not_reset;
|
|
#endif
|
|
|
|
if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
|
|
/*
|
|
* Clear all pending SP commands as we are going to reset the
|
|
* function anyway.
|
|
*/
|
|
bp->sp_rtnl_state = 0;
|
|
smp_mb();
|
|
|
|
bnx2x_parity_recover(bp);
|
|
|
|
goto sp_rtnl_exit;
|
|
}
|
|
|
|
if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
|
|
/*
|
|
* Clear all pending SP commands as we are going to reset the
|
|
* function anyway.
|
|
*/
|
|
bp->sp_rtnl_state = 0;
|
|
smp_mb();
|
|
|
|
bnx2x_nic_unload(bp, UNLOAD_NORMAL);
|
|
bnx2x_nic_load(bp, LOAD_NORMAL);
|
|
|
|
goto sp_rtnl_exit;
|
|
}
|
|
#ifdef BNX2X_STOP_ON_ERROR
|
|
sp_rtnl_not_reset:
|
|
#endif
|
|
if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
|
|
bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
|
|
|
|
/*
|
|
* in case of fan failure we need to reset id if the "stop on error"
|
|
* debug flag is set, since we trying to prevent permanent overheating
|
|
* damage
|
|
*/
|
|
if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
|
|
DP(BNX2X_MSG_SP, "fan failure detected. Unloading driver\n");
|
|
netif_device_detach(bp->dev);
|
|
bnx2x_close(bp->dev);
|
|
}
|
|
|
|
sp_rtnl_exit:
|
|
rtnl_unlock();
|
|
}
|
|
|
|
/* end of nic load/unload */
|
|
|
|
static void bnx2x_period_task(struct work_struct *work)
|
|
{
|
|
struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
|
|
|
|
if (!netif_running(bp->dev))
|
|
goto period_task_exit;
|
|
|
|
if (CHIP_REV_IS_SLOW(bp)) {
|
|
BNX2X_ERR("period task called on emulation, ignoring\n");
|
|
goto period_task_exit;
|
|
}
|
|
|
|
bnx2x_acquire_phy_lock(bp);
|
|
/*
|
|
* The barrier is needed to ensure the ordering between the writing to
|
|
* the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
|
|
* the reading here.
|
|
*/
|
|
smp_mb();
|
|
if (bp->port.pmf) {
|
|
bnx2x_period_func(&bp->link_params, &bp->link_vars);
|
|
|
|
/* Re-queue task in 1 sec */
|
|
queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
|
|
}
|
|
|
|
bnx2x_release_phy_lock(bp);
|
|
period_task_exit:
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Init service functions
|
|
*/
|
|
|
|
static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
|
|
{
|
|
u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
|
|
u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
|
|
return base + (BP_ABS_FUNC(bp)) * stride;
|
|
}
|
|
|
|
static void bnx2x_undi_int_disable_e1h(struct bnx2x *bp)
|
|
{
|
|
u32 reg = bnx2x_get_pretend_reg(bp);
|
|
|
|
/* Flush all outstanding writes */
|
|
mmiowb();
|
|
|
|
/* Pretend to be function 0 */
|
|
REG_WR(bp, reg, 0);
|
|
REG_RD(bp, reg); /* Flush the GRC transaction (in the chip) */
|
|
|
|
/* From now we are in the "like-E1" mode */
|
|
bnx2x_int_disable(bp);
|
|
|
|
/* Flush all outstanding writes */
|
|
mmiowb();
|
|
|
|
/* Restore the original function */
|
|
REG_WR(bp, reg, BP_ABS_FUNC(bp));
|
|
REG_RD(bp, reg);
|
|
}
|
|
|
|
static inline void bnx2x_undi_int_disable(struct bnx2x *bp)
|
|
{
|
|
if (CHIP_IS_E1(bp))
|
|
bnx2x_int_disable(bp);
|
|
else
|
|
bnx2x_undi_int_disable_e1h(bp);
|
|
}
|
|
|
|
static void __devinit bnx2x_undi_unload(struct bnx2x *bp)
|
|
{
|
|
u32 val;
|
|
|
|
/* Check if there is any driver already loaded */
|
|
val = REG_RD(bp, MISC_REG_UNPREPARED);
|
|
if (val == 0x1) {
|
|
|
|
bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
|
|
/*
|
|
* Check if it is the UNDI driver
|
|
* UNDI driver initializes CID offset for normal bell to 0x7
|
|
*/
|
|
val = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
|
|
if (val == 0x7) {
|
|
u32 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
|
|
/* save our pf_num */
|
|
int orig_pf_num = bp->pf_num;
|
|
int port;
|
|
u32 swap_en, swap_val, value;
|
|
|
|
/* clear the UNDI indication */
|
|
REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
|
|
|
|
BNX2X_DEV_INFO("UNDI is active! reset device\n");
|
|
|
|
/* try unload UNDI on port 0 */
|
|
bp->pf_num = 0;
|
|
bp->fw_seq =
|
|
(SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
|
|
DRV_MSG_SEQ_NUMBER_MASK);
|
|
reset_code = bnx2x_fw_command(bp, reset_code, 0);
|
|
|
|
/* if UNDI is loaded on the other port */
|
|
if (reset_code != FW_MSG_CODE_DRV_UNLOAD_COMMON) {
|
|
|
|
/* send "DONE" for previous unload */
|
|
bnx2x_fw_command(bp,
|
|
DRV_MSG_CODE_UNLOAD_DONE, 0);
|
|
|
|
/* unload UNDI on port 1 */
|
|
bp->pf_num = 1;
|
|
bp->fw_seq =
|
|
(SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
|
|
DRV_MSG_SEQ_NUMBER_MASK);
|
|
reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
|
|
|
|
bnx2x_fw_command(bp, reset_code, 0);
|
|
}
|
|
|
|
bnx2x_undi_int_disable(bp);
|
|
port = BP_PORT(bp);
|
|
|
|
/* close input traffic and wait for it */
|
|
/* Do not rcv packets to BRB */
|
|
REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_DRV_MASK :
|
|
NIG_REG_LLH0_BRB1_DRV_MASK), 0x0);
|
|
/* Do not direct rcv packets that are not for MCP to
|
|
* the BRB */
|
|
REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
|
|
NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
|
|
/* clear AEU */
|
|
REG_WR(bp, (port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
|
|
MISC_REG_AEU_MASK_ATTN_FUNC_0), 0);
|
|
msleep(10);
|
|
|
|
/* save NIG port swap info */
|
|
swap_val = REG_RD(bp, NIG_REG_PORT_SWAP);
|
|
swap_en = REG_RD(bp, NIG_REG_STRAP_OVERRIDE);
|
|
/* reset device */
|
|
REG_WR(bp,
|
|
GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
|
|
0xd3ffffff);
|
|
|
|
value = 0x1400;
|
|
if (CHIP_IS_E3(bp)) {
|
|
value |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
|
|
value |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
|
|
}
|
|
|
|
REG_WR(bp,
|
|
GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
|
|
value);
|
|
|
|
/* take the NIG out of reset and restore swap values */
|
|
REG_WR(bp,
|
|
GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
|
|
MISC_REGISTERS_RESET_REG_1_RST_NIG);
|
|
REG_WR(bp, NIG_REG_PORT_SWAP, swap_val);
|
|
REG_WR(bp, NIG_REG_STRAP_OVERRIDE, swap_en);
|
|
|
|
/* send unload done to the MCP */
|
|
bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
|
|
|
|
/* restore our func and fw_seq */
|
|
bp->pf_num = orig_pf_num;
|
|
bp->fw_seq =
|
|
(SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
|
|
DRV_MSG_SEQ_NUMBER_MASK);
|
|
}
|
|
|
|
/* now it's safe to release the lock */
|
|
bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
|
|
}
|
|
}
|
|
|
|
static void __devinit bnx2x_get_common_hwinfo(struct bnx2x *bp)
|
|
{
|
|
u32 val, val2, val3, val4, id;
|
|
u16 pmc;
|
|
|
|
/* Get the chip revision id and number. */
|
|
/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
|
|
val = REG_RD(bp, MISC_REG_CHIP_NUM);
|
|
id = ((val & 0xffff) << 16);
|
|
val = REG_RD(bp, MISC_REG_CHIP_REV);
|
|
id |= ((val & 0xf) << 12);
|
|
val = REG_RD(bp, MISC_REG_CHIP_METAL);
|
|
id |= ((val & 0xff) << 4);
|
|
val = REG_RD(bp, MISC_REG_BOND_ID);
|
|
id |= (val & 0xf);
|
|
bp->common.chip_id = id;
|
|
|
|
/* Set doorbell size */
|
|
bp->db_size = (1 << BNX2X_DB_SHIFT);
|
|
|
|
if (!CHIP_IS_E1x(bp)) {
|
|
val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
|
|
if ((val & 1) == 0)
|
|
val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
|
|
else
|
|
val = (val >> 1) & 1;
|
|
BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
|
|
"2_PORT_MODE");
|
|
bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
|
|
CHIP_2_PORT_MODE;
|
|
|
|
if (CHIP_MODE_IS_4_PORT(bp))
|
|
bp->pfid = (bp->pf_num >> 1); /* 0..3 */
|
|
else
|
|
bp->pfid = (bp->pf_num & 0x6); /* 0, 2, 4, 6 */
|
|
} else {
|
|
bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
|
|
bp->pfid = bp->pf_num; /* 0..7 */
|
|
}
|
|
|
|
bp->link_params.chip_id = bp->common.chip_id;
|
|
BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
|
|
|
|
val = (REG_RD(bp, 0x2874) & 0x55);
|
|
if ((bp->common.chip_id & 0x1) ||
|
|
(CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
|
|
bp->flags |= ONE_PORT_FLAG;
|
|
BNX2X_DEV_INFO("single port device\n");
|
|
}
|
|
|
|
val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
|
|
bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
|
|
(val & MCPR_NVM_CFG4_FLASH_SIZE));
|
|
BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
|
|
bp->common.flash_size, bp->common.flash_size);
|
|
|
|
bnx2x_init_shmem(bp);
|
|
|
|
|
|
|
|
bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
|
|
MISC_REG_GENERIC_CR_1 :
|
|
MISC_REG_GENERIC_CR_0));
|
|
|
|
bp->link_params.shmem_base = bp->common.shmem_base;
|
|
bp->link_params.shmem2_base = bp->common.shmem2_base;
|
|
BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n",
|
|
bp->common.shmem_base, bp->common.shmem2_base);
|
|
|
|
if (!bp->common.shmem_base) {
|
|
BNX2X_DEV_INFO("MCP not active\n");
|
|
bp->flags |= NO_MCP_FLAG;
|
|
return;
|
|
}
|
|
|
|
bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
|
|
BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
|
|
|
|
bp->link_params.hw_led_mode = ((bp->common.hw_config &
|
|
SHARED_HW_CFG_LED_MODE_MASK) >>
|
|
SHARED_HW_CFG_LED_MODE_SHIFT);
|
|
|
|
bp->link_params.feature_config_flags = 0;
|
|
val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
|
|
if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
|
|
bp->link_params.feature_config_flags |=
|
|
FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
|
|
else
|
|
bp->link_params.feature_config_flags &=
|
|
~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
|
|
|
|
val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
|
|
bp->common.bc_ver = val;
|
|
BNX2X_DEV_INFO("bc_ver %X\n", val);
|
|
if (val < BNX2X_BC_VER) {
|
|
/* for now only warn
|
|
* later we might need to enforce this */
|
|
BNX2X_ERR("This driver needs bc_ver %X but found %X, "
|
|
"please upgrade BC\n", BNX2X_BC_VER, val);
|
|
}
|
|
bp->link_params.feature_config_flags |=
|
|
(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
|
|
FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
|
|
|
|
bp->link_params.feature_config_flags |=
|
|
(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
|
|
FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
|
|
|
|
bp->link_params.feature_config_flags |=
|
|
(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
|
|
FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
|
|
|
|
pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
|
|
bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
|
|
|
|
BNX2X_DEV_INFO("%sWoL capable\n",
|
|
(bp->flags & NO_WOL_FLAG) ? "not " : "");
|
|
|
|
val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
|
|
val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
|
|
val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
|
|
val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
|
|
|
|
dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
|
|
val, val2, val3, val4);
|
|
}
|
|
|
|
#define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
|
|
#define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
|
|
|
|
static void __devinit bnx2x_get_igu_cam_info(struct bnx2x *bp)
|
|
{
|
|
int pfid = BP_FUNC(bp);
|
|
int igu_sb_id;
|
|
u32 val;
|
|
u8 fid, igu_sb_cnt = 0;
|
|
|
|
bp->igu_base_sb = 0xff;
|
|
if (CHIP_INT_MODE_IS_BC(bp)) {
|
|
int vn = BP_VN(bp);
|
|
igu_sb_cnt = bp->igu_sb_cnt;
|
|
bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
|
|
FP_SB_MAX_E1x;
|
|
|
|
bp->igu_dsb_id = E1HVN_MAX * FP_SB_MAX_E1x +
|
|
(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
|
|
|
|
return;
|
|
}
|
|
|
|
/* IGU in normal mode - read CAM */
|
|
for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
|
|
igu_sb_id++) {
|
|
val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
|
|
if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
|
|
continue;
|
|
fid = IGU_FID(val);
|
|
if ((fid & IGU_FID_ENCODE_IS_PF)) {
|
|
if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
|
|
continue;
|
|
if (IGU_VEC(val) == 0)
|
|
/* default status block */
|
|
bp->igu_dsb_id = igu_sb_id;
|
|
else {
|
|
if (bp->igu_base_sb == 0xff)
|
|
bp->igu_base_sb = igu_sb_id;
|
|
igu_sb_cnt++;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_PCI_MSI
|
|
/*
|
|
* It's expected that number of CAM entries for this functions is equal
|
|
* to the number evaluated based on the MSI-X table size. We want a
|
|
* harsh warning if these values are different!
|
|
*/
|
|
WARN_ON(bp->igu_sb_cnt != igu_sb_cnt);
|
|
#endif
|
|
|
|
if (igu_sb_cnt == 0)
|
|
BNX2X_ERR("CAM configuration error\n");
|
|
}
|
|
|
|
static void __devinit bnx2x_link_settings_supported(struct bnx2x *bp,
|
|
u32 switch_cfg)
|
|
{
|
|
int cfg_size = 0, idx, port = BP_PORT(bp);
|
|
|
|
/* Aggregation of supported attributes of all external phys */
|
|
bp->port.supported[0] = 0;
|
|
bp->port.supported[1] = 0;
|
|
switch (bp->link_params.num_phys) {
|
|
case 1:
|
|
bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
|
|
cfg_size = 1;
|
|
break;
|
|
case 2:
|
|
bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
|
|
cfg_size = 1;
|
|
break;
|
|
case 3:
|
|
if (bp->link_params.multi_phy_config &
|
|
PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
|
|
bp->port.supported[1] =
|
|
bp->link_params.phy[EXT_PHY1].supported;
|
|
bp->port.supported[0] =
|
|
bp->link_params.phy[EXT_PHY2].supported;
|
|
} else {
|
|
bp->port.supported[0] =
|
|
bp->link_params.phy[EXT_PHY1].supported;
|
|
bp->port.supported[1] =
|
|
bp->link_params.phy[EXT_PHY2].supported;
|
|
}
|
|
cfg_size = 2;
|
|
break;
|
|
}
|
|
|
|
if (!(bp->port.supported[0] || bp->port.supported[1])) {
|
|
BNX2X_ERR("NVRAM config error. BAD phy config."
|
|
"PHY1 config 0x%x, PHY2 config 0x%x\n",
|
|
SHMEM_RD(bp,
|
|
dev_info.port_hw_config[port].external_phy_config),
|
|
SHMEM_RD(bp,
|
|
dev_info.port_hw_config[port].external_phy_config2));
|
|
return;
|
|
}
|
|
|
|
if (CHIP_IS_E3(bp))
|
|
bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
|
|
else {
|
|
switch (switch_cfg) {
|
|
case SWITCH_CFG_1G:
|
|
bp->port.phy_addr = REG_RD(
|
|
bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
|
|
break;
|
|
case SWITCH_CFG_10G:
|
|
bp->port.phy_addr = REG_RD(
|
|
bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
|
|
break;
|
|
default:
|
|
BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
|
|
bp->port.link_config[0]);
|
|
return;
|
|
}
|
|
}
|
|
BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
|
|
/* mask what we support according to speed_cap_mask per configuration */
|
|
for (idx = 0; idx < cfg_size; idx++) {
|
|
if (!(bp->link_params.speed_cap_mask[idx] &
|
|
PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
|
|
bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
|
|
|
|
if (!(bp->link_params.speed_cap_mask[idx] &
|
|
PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
|
|
bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
|
|
|
|
if (!(bp->link_params.speed_cap_mask[idx] &
|
|
PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
|
|
bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
|
|
|
|
if (!(bp->link_params.speed_cap_mask[idx] &
|
|
PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
|
|
bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
|
|
|
|
if (!(bp->link_params.speed_cap_mask[idx] &
|
|
PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
|
|
bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
|
|
SUPPORTED_1000baseT_Full);
|
|
|
|
if (!(bp->link_params.speed_cap_mask[idx] &
|
|
PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
|
|
bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
|
|
|
|
if (!(bp->link_params.speed_cap_mask[idx] &
|
|
PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
|
|
bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
|
|
|
|
}
|
|
|
|
BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
|
|
bp->port.supported[1]);
|
|
}
|
|
|
|
static void __devinit bnx2x_link_settings_requested(struct bnx2x *bp)
|
|
{
|
|
u32 link_config, idx, cfg_size = 0;
|
|
bp->port.advertising[0] = 0;
|
|
bp->port.advertising[1] = 0;
|
|
switch (bp->link_params.num_phys) {
|
|
case 1:
|
|
case 2:
|
|
cfg_size = 1;
|
|
break;
|
|
case 3:
|
|
cfg_size = 2;
|
|
break;
|
|
}
|
|
for (idx = 0; idx < cfg_size; idx++) {
|
|
bp->link_params.req_duplex[idx] = DUPLEX_FULL;
|
|
link_config = bp->port.link_config[idx];
|
|
switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
|
|
case PORT_FEATURE_LINK_SPEED_AUTO:
|
|
if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
|
|
bp->link_params.req_line_speed[idx] =
|
|
SPEED_AUTO_NEG;
|
|
bp->port.advertising[idx] |=
|
|
bp->port.supported[idx];
|
|
} else {
|
|
/* force 10G, no AN */
|
|
bp->link_params.req_line_speed[idx] =
|
|
SPEED_10000;
|
|
bp->port.advertising[idx] |=
|
|
(ADVERTISED_10000baseT_Full |
|
|
ADVERTISED_FIBRE);
|
|
continue;
|
|
}
|
|
break;
|
|
|
|
case PORT_FEATURE_LINK_SPEED_10M_FULL:
|
|
if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
|
|
bp->link_params.req_line_speed[idx] =
|
|
SPEED_10;
|
|
bp->port.advertising[idx] |=
|
|
(ADVERTISED_10baseT_Full |
|
|
ADVERTISED_TP);
|
|
} else {
|
|
BNX2X_ERR("NVRAM config error. "
|
|
"Invalid link_config 0x%x"
|
|
" speed_cap_mask 0x%x\n",
|
|
link_config,
|
|
bp->link_params.speed_cap_mask[idx]);
|
|
return;
|
|
}
|
|
break;
|
|
|
|
case PORT_FEATURE_LINK_SPEED_10M_HALF:
|
|
if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
|
|
bp->link_params.req_line_speed[idx] =
|
|
SPEED_10;
|
|
bp->link_params.req_duplex[idx] =
|
|
DUPLEX_HALF;
|
|
bp->port.advertising[idx] |=
|
|
(ADVERTISED_10baseT_Half |
|
|
ADVERTISED_TP);
|
|
} else {
|
|
BNX2X_ERR("NVRAM config error. "
|
|
"Invalid link_config 0x%x"
|
|
" speed_cap_mask 0x%x\n",
|
|
link_config,
|
|
bp->link_params.speed_cap_mask[idx]);
|
|
return;
|
|
}
|
|
break;
|
|
|
|
case PORT_FEATURE_LINK_SPEED_100M_FULL:
|
|
if (bp->port.supported[idx] &
|
|
SUPPORTED_100baseT_Full) {
|
|
bp->link_params.req_line_speed[idx] =
|
|
SPEED_100;
|
|
bp->port.advertising[idx] |=
|
|
(ADVERTISED_100baseT_Full |
|
|
ADVERTISED_TP);
|
|
} else {
|
|
BNX2X_ERR("NVRAM config error. "
|
|
"Invalid link_config 0x%x"
|
|
" speed_cap_mask 0x%x\n",
|
|
link_config,
|
|
bp->link_params.speed_cap_mask[idx]);
|
|
return;
|
|
}
|
|
break;
|
|
|
|
case PORT_FEATURE_LINK_SPEED_100M_HALF:
|
|
if (bp->port.supported[idx] &
|
|
SUPPORTED_100baseT_Half) {
|
|
bp->link_params.req_line_speed[idx] =
|
|
SPEED_100;
|
|
bp->link_params.req_duplex[idx] =
|
|
DUPLEX_HALF;
|
|
bp->port.advertising[idx] |=
|
|
(ADVERTISED_100baseT_Half |
|
|
ADVERTISED_TP);
|
|
} else {
|
|
BNX2X_ERR("NVRAM config error. "
|
|
"Invalid link_config 0x%x"
|
|
" speed_cap_mask 0x%x\n",
|
|
link_config,
|
|
bp->link_params.speed_cap_mask[idx]);
|
|
return;
|
|
}
|
|
break;
|
|
|
|
case PORT_FEATURE_LINK_SPEED_1G:
|
|
if (bp->port.supported[idx] &
|
|
SUPPORTED_1000baseT_Full) {
|
|
bp->link_params.req_line_speed[idx] =
|
|
SPEED_1000;
|
|
bp->port.advertising[idx] |=
|
|
(ADVERTISED_1000baseT_Full |
|
|
ADVERTISED_TP);
|
|
} else {
|
|
BNX2X_ERR("NVRAM config error. "
|
|
"Invalid link_config 0x%x"
|
|
" speed_cap_mask 0x%x\n",
|
|
link_config,
|
|
bp->link_params.speed_cap_mask[idx]);
|
|
return;
|
|
}
|
|
break;
|
|
|
|
case PORT_FEATURE_LINK_SPEED_2_5G:
|
|
if (bp->port.supported[idx] &
|
|
SUPPORTED_2500baseX_Full) {
|
|
bp->link_params.req_line_speed[idx] =
|
|
SPEED_2500;
|
|
bp->port.advertising[idx] |=
|
|
(ADVERTISED_2500baseX_Full |
|
|
ADVERTISED_TP);
|
|
} else {
|
|
BNX2X_ERR("NVRAM config error. "
|
|
"Invalid link_config 0x%x"
|
|
" speed_cap_mask 0x%x\n",
|
|
link_config,
|
|
bp->link_params.speed_cap_mask[idx]);
|
|
return;
|
|
}
|
|
break;
|
|
|
|
case PORT_FEATURE_LINK_SPEED_10G_CX4:
|
|
if (bp->port.supported[idx] &
|
|
SUPPORTED_10000baseT_Full) {
|
|
bp->link_params.req_line_speed[idx] =
|
|
SPEED_10000;
|
|
bp->port.advertising[idx] |=
|
|
(ADVERTISED_10000baseT_Full |
|
|
ADVERTISED_FIBRE);
|
|
} else {
|
|
BNX2X_ERR("NVRAM config error. "
|
|
"Invalid link_config 0x%x"
|
|
" speed_cap_mask 0x%x\n",
|
|
link_config,
|
|
bp->link_params.speed_cap_mask[idx]);
|
|
return;
|
|
}
|
|
break;
|
|
case PORT_FEATURE_LINK_SPEED_20G:
|
|
bp->link_params.req_line_speed[idx] = SPEED_20000;
|
|
|
|
break;
|
|
default:
|
|
BNX2X_ERR("NVRAM config error. "
|
|
"BAD link speed link_config 0x%x\n",
|
|
link_config);
|
|
bp->link_params.req_line_speed[idx] =
|
|
SPEED_AUTO_NEG;
|
|
bp->port.advertising[idx] =
|
|
bp->port.supported[idx];
|
|
break;
|
|
}
|
|
|
|
bp->link_params.req_flow_ctrl[idx] = (link_config &
|
|
PORT_FEATURE_FLOW_CONTROL_MASK);
|
|
if ((bp->link_params.req_flow_ctrl[idx] ==
|
|
BNX2X_FLOW_CTRL_AUTO) &&
|
|
!(bp->port.supported[idx] & SUPPORTED_Autoneg)) {
|
|
bp->link_params.req_flow_ctrl[idx] =
|
|
BNX2X_FLOW_CTRL_NONE;
|
|
}
|
|
|
|
BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl"
|
|
" 0x%x advertising 0x%x\n",
|
|
bp->link_params.req_line_speed[idx],
|
|
bp->link_params.req_duplex[idx],
|
|
bp->link_params.req_flow_ctrl[idx],
|
|
bp->port.advertising[idx]);
|
|
}
|
|
}
|
|
|
|
static void __devinit bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
|
|
{
|
|
mac_hi = cpu_to_be16(mac_hi);
|
|
mac_lo = cpu_to_be32(mac_lo);
|
|
memcpy(mac_buf, &mac_hi, sizeof(mac_hi));
|
|
memcpy(mac_buf + sizeof(mac_hi), &mac_lo, sizeof(mac_lo));
|
|
}
|
|
|
|
static void __devinit bnx2x_get_port_hwinfo(struct bnx2x *bp)
|
|
{
|
|
int port = BP_PORT(bp);
|
|
u32 config;
|
|
u32 ext_phy_type, ext_phy_config;
|
|
|
|
bp->link_params.bp = bp;
|
|
bp->link_params.port = port;
|
|
|
|
bp->link_params.lane_config =
|
|
SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
|
|
|
|
bp->link_params.speed_cap_mask[0] =
|
|
SHMEM_RD(bp,
|
|
dev_info.port_hw_config[port].speed_capability_mask);
|
|
bp->link_params.speed_cap_mask[1] =
|
|
SHMEM_RD(bp,
|
|
dev_info.port_hw_config[port].speed_capability_mask2);
|
|
bp->port.link_config[0] =
|
|
SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
|
|
|
|
bp->port.link_config[1] =
|
|
SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
|
|
|
|
bp->link_params.multi_phy_config =
|
|
SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
|
|
/* If the device is capable of WoL, set the default state according
|
|
* to the HW
|
|
*/
|
|
config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
|
|
bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
|
|
(config & PORT_FEATURE_WOL_ENABLED));
|
|
|
|
BNX2X_DEV_INFO("lane_config 0x%08x "
|
|
"speed_cap_mask0 0x%08x link_config0 0x%08x\n",
|
|
bp->link_params.lane_config,
|
|
bp->link_params.speed_cap_mask[0],
|
|
bp->port.link_config[0]);
|
|
|
|
bp->link_params.switch_cfg = (bp->port.link_config[0] &
|
|
PORT_FEATURE_CONNECTED_SWITCH_MASK);
|
|
bnx2x_phy_probe(&bp->link_params);
|
|
bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
|
|
|
|
bnx2x_link_settings_requested(bp);
|
|
|
|
/*
|
|
* If connected directly, work with the internal PHY, otherwise, work
|
|
* with the external PHY
|
|
*/
|
|
ext_phy_config =
|
|
SHMEM_RD(bp,
|
|
dev_info.port_hw_config[port].external_phy_config);
|
|
ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
|
|
if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
|
|
bp->mdio.prtad = bp->port.phy_addr;
|
|
|
|
else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
|
|
(ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
|
|
bp->mdio.prtad =
|
|
XGXS_EXT_PHY_ADDR(ext_phy_config);
|
|
|
|
/*
|
|
* Check if hw lock is required to access MDC/MDIO bus to the PHY(s)
|
|
* In MF mode, it is set to cover self test cases
|
|
*/
|
|
if (IS_MF(bp))
|
|
bp->port.need_hw_lock = 1;
|
|
else
|
|
bp->port.need_hw_lock = bnx2x_hw_lock_required(bp,
|
|
bp->common.shmem_base,
|
|
bp->common.shmem2_base);
|
|
}
|
|
|
|
#ifdef BCM_CNIC
|
|
void bnx2x_get_iscsi_info(struct bnx2x *bp)
|
|
{
|
|
int port = BP_PORT(bp);
|
|
|
|
u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
|
|
drv_lic_key[port].max_iscsi_conn);
|
|
|
|
/* Get the number of maximum allowed iSCSI connections */
|
|
bp->cnic_eth_dev.max_iscsi_conn =
|
|
(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
|
|
BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
|
|
|
|
BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
|
|
bp->cnic_eth_dev.max_iscsi_conn);
|
|
|
|
/*
|
|
* If maximum allowed number of connections is zero -
|
|
* disable the feature.
|
|
*/
|
|
if (!bp->cnic_eth_dev.max_iscsi_conn)
|
|
bp->flags |= NO_ISCSI_FLAG;
|
|
}
|
|
|
|
static void __devinit bnx2x_get_fcoe_info(struct bnx2x *bp)
|
|
{
|
|
int port = BP_PORT(bp);
|
|
int func = BP_ABS_FUNC(bp);
|
|
|
|
u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
|
|
drv_lic_key[port].max_fcoe_conn);
|
|
|
|
/* Get the number of maximum allowed FCoE connections */
|
|
bp->cnic_eth_dev.max_fcoe_conn =
|
|
(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
|
|
BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
|
|
|
|
/* Read the WWN: */
|
|
if (!IS_MF(bp)) {
|
|
/* Port info */
|
|
bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
|
|
SHMEM_RD(bp,
|
|
dev_info.port_hw_config[port].
|
|
fcoe_wwn_port_name_upper);
|
|
bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
|
|
SHMEM_RD(bp,
|
|
dev_info.port_hw_config[port].
|
|
fcoe_wwn_port_name_lower);
|
|
|
|
/* Node info */
|
|
bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
|
|
SHMEM_RD(bp,
|
|
dev_info.port_hw_config[port].
|
|
fcoe_wwn_node_name_upper);
|
|
bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
|
|
SHMEM_RD(bp,
|
|
dev_info.port_hw_config[port].
|
|
fcoe_wwn_node_name_lower);
|
|
} else if (!IS_MF_SD(bp)) {
|
|
u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
|
|
|
|
/*
|
|
* Read the WWN info only if the FCoE feature is enabled for
|
|
* this function.
|
|
*/
|
|
if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
|
|
/* Port info */
|
|
bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
|
|
MF_CFG_RD(bp, func_ext_config[func].
|
|
fcoe_wwn_port_name_upper);
|
|
bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
|
|
MF_CFG_RD(bp, func_ext_config[func].
|
|
fcoe_wwn_port_name_lower);
|
|
|
|
/* Node info */
|
|
bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
|
|
MF_CFG_RD(bp, func_ext_config[func].
|
|
fcoe_wwn_node_name_upper);
|
|
bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
|
|
MF_CFG_RD(bp, func_ext_config[func].
|
|
fcoe_wwn_node_name_lower);
|
|
}
|
|
}
|
|
|
|
BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
|
|
|
|
/*
|
|
* If maximum allowed number of connections is zero -
|
|
* disable the feature.
|
|
*/
|
|
if (!bp->cnic_eth_dev.max_fcoe_conn)
|
|
bp->flags |= NO_FCOE_FLAG;
|
|
}
|
|
|
|
static void __devinit bnx2x_get_cnic_info(struct bnx2x *bp)
|
|
{
|
|
/*
|
|
* iSCSI may be dynamically disabled but reading
|
|
* info here we will decrease memory usage by driver
|
|
* if the feature is disabled for good
|
|
*/
|
|
bnx2x_get_iscsi_info(bp);
|
|
bnx2x_get_fcoe_info(bp);
|
|
}
|
|
#endif
|
|
|
|
static void __devinit bnx2x_get_mac_hwinfo(struct bnx2x *bp)
|
|
{
|
|
u32 val, val2;
|
|
int func = BP_ABS_FUNC(bp);
|
|
int port = BP_PORT(bp);
|
|
#ifdef BCM_CNIC
|
|
u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
|
|
u8 *fip_mac = bp->fip_mac;
|
|
#endif
|
|
|
|
/* Zero primary MAC configuration */
|
|
memset(bp->dev->dev_addr, 0, ETH_ALEN);
|
|
|
|
if (BP_NOMCP(bp)) {
|
|
BNX2X_ERROR("warning: random MAC workaround active\n");
|
|
random_ether_addr(bp->dev->dev_addr);
|
|
} else if (IS_MF(bp)) {
|
|
val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
|
|
val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
|
|
if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
|
|
(val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
|
|
bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
|
|
|
|
#ifdef BCM_CNIC
|
|
/* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
|
|
* FCoE MAC then the appropriate feature should be disabled.
|
|
*/
|
|
if (IS_MF_SI(bp)) {
|
|
u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
|
|
if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
|
|
val2 = MF_CFG_RD(bp, func_ext_config[func].
|
|
iscsi_mac_addr_upper);
|
|
val = MF_CFG_RD(bp, func_ext_config[func].
|
|
iscsi_mac_addr_lower);
|
|
bnx2x_set_mac_buf(iscsi_mac, val, val2);
|
|
BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
|
|
iscsi_mac);
|
|
} else
|
|
bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
|
|
|
|
if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
|
|
val2 = MF_CFG_RD(bp, func_ext_config[func].
|
|
fcoe_mac_addr_upper);
|
|
val = MF_CFG_RD(bp, func_ext_config[func].
|
|
fcoe_mac_addr_lower);
|
|
bnx2x_set_mac_buf(fip_mac, val, val2);
|
|
BNX2X_DEV_INFO("Read FCoE L2 MAC to %pM\n",
|
|
fip_mac);
|
|
|
|
} else
|
|
bp->flags |= NO_FCOE_FLAG;
|
|
}
|
|
#endif
|
|
} else {
|
|
/* in SF read MACs from port configuration */
|
|
val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
|
|
val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
|
|
bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
|
|
|
|
#ifdef BCM_CNIC
|
|
val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
|
|
iscsi_mac_upper);
|
|
val = SHMEM_RD(bp, dev_info.port_hw_config[port].
|
|
iscsi_mac_lower);
|
|
bnx2x_set_mac_buf(iscsi_mac, val, val2);
|
|
|
|
val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
|
|
fcoe_fip_mac_upper);
|
|
val = SHMEM_RD(bp, dev_info.port_hw_config[port].
|
|
fcoe_fip_mac_lower);
|
|
bnx2x_set_mac_buf(fip_mac, val, val2);
|
|
#endif
|
|
}
|
|
|
|
memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
|
|
memcpy(bp->dev->perm_addr, bp->dev->dev_addr, ETH_ALEN);
|
|
|
|
#ifdef BCM_CNIC
|
|
/* Set the FCoE MAC in MF_SD mode */
|
|
if (!CHIP_IS_E1x(bp) && IS_MF_SD(bp))
|
|
memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
|
|
|
|
/* Disable iSCSI if MAC configuration is
|
|
* invalid.
|
|
*/
|
|
if (!is_valid_ether_addr(iscsi_mac)) {
|
|
bp->flags |= NO_ISCSI_FLAG;
|
|
memset(iscsi_mac, 0, ETH_ALEN);
|
|
}
|
|
|
|
/* Disable FCoE if MAC configuration is
|
|
* invalid.
|
|
*/
|
|
if (!is_valid_ether_addr(fip_mac)) {
|
|
bp->flags |= NO_FCOE_FLAG;
|
|
memset(bp->fip_mac, 0, ETH_ALEN);
|
|
}
|
|
#endif
|
|
|
|
if (!is_valid_ether_addr(bp->dev->dev_addr))
|
|
dev_err(&bp->pdev->dev,
|
|
"bad Ethernet MAC address configuration: "
|
|
"%pM, change it manually before bringing up "
|
|
"the appropriate network interface\n",
|
|
bp->dev->dev_addr);
|
|
}
|
|
|
|
static int __devinit bnx2x_get_hwinfo(struct bnx2x *bp)
|
|
{
|
|
int /*abs*/func = BP_ABS_FUNC(bp);
|
|
int vn;
|
|
u32 val = 0;
|
|
int rc = 0;
|
|
|
|
bnx2x_get_common_hwinfo(bp);
|
|
|
|
/*
|
|
* initialize IGU parameters
|
|
*/
|
|
if (CHIP_IS_E1x(bp)) {
|
|
bp->common.int_block = INT_BLOCK_HC;
|
|
|
|
bp->igu_dsb_id = DEF_SB_IGU_ID;
|
|
bp->igu_base_sb = 0;
|
|
} else {
|
|
bp->common.int_block = INT_BLOCK_IGU;
|
|
|
|
/* do not allow device reset during IGU info preocessing */
|
|
bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
|
|
|
|
val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
|
|
|
|
if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
|
|
int tout = 5000;
|
|
|
|
BNX2X_DEV_INFO("FORCING Normal Mode\n");
|
|
|
|
val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
|
|
REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
|
|
REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
|
|
|
|
while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
|
|
tout--;
|
|
usleep_range(1000, 1000);
|
|
}
|
|
|
|
if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
|
|
dev_err(&bp->pdev->dev,
|
|
"FORCING Normal Mode failed!!!\n");
|
|
return -EPERM;
|
|
}
|
|
}
|
|
|
|
if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
|
|
BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
|
|
bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
|
|
} else
|
|
BNX2X_DEV_INFO("IGU Normal Mode\n");
|
|
|
|
bnx2x_get_igu_cam_info(bp);
|
|
|
|
bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
|
|
}
|
|
|
|
/*
|
|
* set base FW non-default (fast path) status block id, this value is
|
|
* used to initialize the fw_sb_id saved on the fp/queue structure to
|
|
* determine the id used by the FW.
|
|
*/
|
|
if (CHIP_IS_E1x(bp))
|
|
bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
|
|
else /*
|
|
* 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
|
|
* the same queue are indicated on the same IGU SB). So we prefer
|
|
* FW and IGU SBs to be the same value.
|
|
*/
|
|
bp->base_fw_ndsb = bp->igu_base_sb;
|
|
|
|
BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n"
|
|
"base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
|
|
bp->igu_sb_cnt, bp->base_fw_ndsb);
|
|
|
|
/*
|
|
* Initialize MF configuration
|
|
*/
|
|
|
|
bp->mf_ov = 0;
|
|
bp->mf_mode = 0;
|
|
vn = BP_VN(bp);
|
|
|
|
if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
|
|
BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
|
|
bp->common.shmem2_base, SHMEM2_RD(bp, size),
|
|
(u32)offsetof(struct shmem2_region, mf_cfg_addr));
|
|
|
|
if (SHMEM2_HAS(bp, mf_cfg_addr))
|
|
bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
|
|
else
|
|
bp->common.mf_cfg_base = bp->common.shmem_base +
|
|
offsetof(struct shmem_region, func_mb) +
|
|
E1H_FUNC_MAX * sizeof(struct drv_func_mb);
|
|
/*
|
|
* get mf configuration:
|
|
* 1. existence of MF configuration
|
|
* 2. MAC address must be legal (check only upper bytes)
|
|
* for Switch-Independent mode;
|
|
* OVLAN must be legal for Switch-Dependent mode
|
|
* 3. SF_MODE configures specific MF mode
|
|
*/
|
|
if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
|
|
/* get mf configuration */
|
|
val = SHMEM_RD(bp,
|
|
dev_info.shared_feature_config.config);
|
|
val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
|
|
|
|
switch (val) {
|
|
case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
|
|
val = MF_CFG_RD(bp, func_mf_config[func].
|
|
mac_upper);
|
|
/* check for legal mac (upper bytes)*/
|
|
if (val != 0xffff) {
|
|
bp->mf_mode = MULTI_FUNCTION_SI;
|
|
bp->mf_config[vn] = MF_CFG_RD(bp,
|
|
func_mf_config[func].config);
|
|
} else
|
|
BNX2X_DEV_INFO("illegal MAC address "
|
|
"for SI\n");
|
|
break;
|
|
case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
|
|
/* get OV configuration */
|
|
val = MF_CFG_RD(bp,
|
|
func_mf_config[FUNC_0].e1hov_tag);
|
|
val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
|
|
|
|
if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
|
|
bp->mf_mode = MULTI_FUNCTION_SD;
|
|
bp->mf_config[vn] = MF_CFG_RD(bp,
|
|
func_mf_config[func].config);
|
|
} else
|
|
BNX2X_DEV_INFO("illegal OV for SD\n");
|
|
break;
|
|
default:
|
|
/* Unknown configuration: reset mf_config */
|
|
bp->mf_config[vn] = 0;
|
|
BNX2X_DEV_INFO("unkown MF mode 0x%x\n", val);
|
|
}
|
|
}
|
|
|
|
BNX2X_DEV_INFO("%s function mode\n",
|
|
IS_MF(bp) ? "multi" : "single");
|
|
|
|
switch (bp->mf_mode) {
|
|
case MULTI_FUNCTION_SD:
|
|
val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
|
|
FUNC_MF_CFG_E1HOV_TAG_MASK;
|
|
if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
|
|
bp->mf_ov = val;
|
|
bp->path_has_ovlan = true;
|
|
|
|
BNX2X_DEV_INFO("MF OV for func %d is %d "
|
|
"(0x%04x)\n", func, bp->mf_ov,
|
|
bp->mf_ov);
|
|
} else {
|
|
dev_err(&bp->pdev->dev,
|
|
"No valid MF OV for func %d, "
|
|
"aborting\n", func);
|
|
return -EPERM;
|
|
}
|
|
break;
|
|
case MULTI_FUNCTION_SI:
|
|
BNX2X_DEV_INFO("func %d is in MF "
|
|
"switch-independent mode\n", func);
|
|
break;
|
|
default:
|
|
if (vn) {
|
|
dev_err(&bp->pdev->dev,
|
|
"VN %d is in a single function mode, "
|
|
"aborting\n", vn);
|
|
return -EPERM;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* check if other port on the path needs ovlan:
|
|
* Since MF configuration is shared between ports
|
|
* Possible mixed modes are only
|
|
* {SF, SI} {SF, SD} {SD, SF} {SI, SF}
|
|
*/
|
|
if (CHIP_MODE_IS_4_PORT(bp) &&
|
|
!bp->path_has_ovlan &&
|
|
!IS_MF(bp) &&
|
|
bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
|
|
u8 other_port = !BP_PORT(bp);
|
|
u8 other_func = BP_PATH(bp) + 2*other_port;
|
|
val = MF_CFG_RD(bp,
|
|
func_mf_config[other_func].e1hov_tag);
|
|
if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
|
|
bp->path_has_ovlan = true;
|
|
}
|
|
}
|
|
|
|
/* adjust igu_sb_cnt to MF for E1x */
|
|
if (CHIP_IS_E1x(bp) && IS_MF(bp))
|
|
bp->igu_sb_cnt /= E1HVN_MAX;
|
|
|
|
/* port info */
|
|
bnx2x_get_port_hwinfo(bp);
|
|
|
|
/* Get MAC addresses */
|
|
bnx2x_get_mac_hwinfo(bp);
|
|
|
|
#ifdef BCM_CNIC
|
|
bnx2x_get_cnic_info(bp);
|
|
#endif
|
|
|
|
/* Get current FW pulse sequence */
|
|
if (!BP_NOMCP(bp)) {
|
|
int mb_idx = BP_FW_MB_IDX(bp);
|
|
|
|
bp->fw_drv_pulse_wr_seq =
|
|
(SHMEM_RD(bp, func_mb[mb_idx].drv_pulse_mb) &
|
|
DRV_PULSE_SEQ_MASK);
|
|
BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void __devinit bnx2x_read_fwinfo(struct bnx2x *bp)
|
|
{
|
|
int cnt, i, block_end, rodi;
|
|
char vpd_data[BNX2X_VPD_LEN+1];
|
|
char str_id_reg[VENDOR_ID_LEN+1];
|
|
char str_id_cap[VENDOR_ID_LEN+1];
|
|
u8 len;
|
|
|
|
cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_data);
|
|
memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
|
|
|
|
if (cnt < BNX2X_VPD_LEN)
|
|
goto out_not_found;
|
|
|
|
i = pci_vpd_find_tag(vpd_data, 0, BNX2X_VPD_LEN,
|
|
PCI_VPD_LRDT_RO_DATA);
|
|
if (i < 0)
|
|
goto out_not_found;
|
|
|
|
|
|
block_end = i + PCI_VPD_LRDT_TAG_SIZE +
|
|
pci_vpd_lrdt_size(&vpd_data[i]);
|
|
|
|
i += PCI_VPD_LRDT_TAG_SIZE;
|
|
|
|
if (block_end > BNX2X_VPD_LEN)
|
|
goto out_not_found;
|
|
|
|
rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
|
|
PCI_VPD_RO_KEYWORD_MFR_ID);
|
|
if (rodi < 0)
|
|
goto out_not_found;
|
|
|
|
len = pci_vpd_info_field_size(&vpd_data[rodi]);
|
|
|
|
if (len != VENDOR_ID_LEN)
|
|
goto out_not_found;
|
|
|
|
rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
|
|
|
|
/* vendor specific info */
|
|
snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
|
|
snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
|
|
if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
|
|
!strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
|
|
|
|
rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
|
|
PCI_VPD_RO_KEYWORD_VENDOR0);
|
|
if (rodi >= 0) {
|
|
len = pci_vpd_info_field_size(&vpd_data[rodi]);
|
|
|
|
rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
|
|
|
|
if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
|
|
memcpy(bp->fw_ver, &vpd_data[rodi], len);
|
|
bp->fw_ver[len] = ' ';
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
out_not_found:
|
|
return;
|
|
}
|
|
|
|
static void __devinit bnx2x_set_modes_bitmap(struct bnx2x *bp)
|
|
{
|
|
u32 flags = 0;
|
|
|
|
if (CHIP_REV_IS_FPGA(bp))
|
|
SET_FLAGS(flags, MODE_FPGA);
|
|
else if (CHIP_REV_IS_EMUL(bp))
|
|
SET_FLAGS(flags, MODE_EMUL);
|
|
else
|
|
SET_FLAGS(flags, MODE_ASIC);
|
|
|
|
if (CHIP_MODE_IS_4_PORT(bp))
|
|
SET_FLAGS(flags, MODE_PORT4);
|
|
else
|
|
SET_FLAGS(flags, MODE_PORT2);
|
|
|
|
if (CHIP_IS_E2(bp))
|
|
SET_FLAGS(flags, MODE_E2);
|
|
else if (CHIP_IS_E3(bp)) {
|
|
SET_FLAGS(flags, MODE_E3);
|
|
if (CHIP_REV(bp) == CHIP_REV_Ax)
|
|
SET_FLAGS(flags, MODE_E3_A0);
|
|
else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
|
|
SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
|
|
}
|
|
|
|
if (IS_MF(bp)) {
|
|
SET_FLAGS(flags, MODE_MF);
|
|
switch (bp->mf_mode) {
|
|
case MULTI_FUNCTION_SD:
|
|
SET_FLAGS(flags, MODE_MF_SD);
|
|
break;
|
|
case MULTI_FUNCTION_SI:
|
|
SET_FLAGS(flags, MODE_MF_SI);
|
|
break;
|
|
}
|
|
} else
|
|
SET_FLAGS(flags, MODE_SF);
|
|
|
|
#if defined(__LITTLE_ENDIAN)
|
|
SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
|
|
#else /*(__BIG_ENDIAN)*/
|
|
SET_FLAGS(flags, MODE_BIG_ENDIAN);
|
|
#endif
|
|
INIT_MODE_FLAGS(bp) = flags;
|
|
}
|
|
|
|
static int __devinit bnx2x_init_bp(struct bnx2x *bp)
|
|
{
|
|
int func;
|
|
int timer_interval;
|
|
int rc;
|
|
|
|
mutex_init(&bp->port.phy_mutex);
|
|
mutex_init(&bp->fw_mb_mutex);
|
|
spin_lock_init(&bp->stats_lock);
|
|
#ifdef BCM_CNIC
|
|
mutex_init(&bp->cnic_mutex);
|
|
#endif
|
|
|
|
INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
|
|
INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
|
|
INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
|
|
rc = bnx2x_get_hwinfo(bp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
bnx2x_set_modes_bitmap(bp);
|
|
|
|
rc = bnx2x_alloc_mem_bp(bp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
bnx2x_read_fwinfo(bp);
|
|
|
|
func = BP_FUNC(bp);
|
|
|
|
/* need to reset chip if undi was active */
|
|
if (!BP_NOMCP(bp))
|
|
bnx2x_undi_unload(bp);
|
|
|
|
/* init fw_seq after undi_unload! */
|
|
if (!BP_NOMCP(bp)) {
|
|
bp->fw_seq =
|
|
(SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
|
|
DRV_MSG_SEQ_NUMBER_MASK);
|
|
BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
|
|
}
|
|
|
|
if (CHIP_REV_IS_FPGA(bp))
|
|
dev_err(&bp->pdev->dev, "FPGA detected\n");
|
|
|
|
if (BP_NOMCP(bp) && (func == 0))
|
|
dev_err(&bp->pdev->dev, "MCP disabled, "
|
|
"must load devices in order!\n");
|
|
|
|
bp->multi_mode = multi_mode;
|
|
|
|
/* Set TPA flags */
|
|
if (disable_tpa) {
|
|
bp->flags &= ~TPA_ENABLE_FLAG;
|
|
bp->dev->features &= ~NETIF_F_LRO;
|
|
} else {
|
|
bp->flags |= TPA_ENABLE_FLAG;
|
|
bp->dev->features |= NETIF_F_LRO;
|
|
}
|
|
bp->disable_tpa = disable_tpa;
|
|
|
|
if (CHIP_IS_E1(bp))
|
|
bp->dropless_fc = 0;
|
|
else
|
|
bp->dropless_fc = dropless_fc;
|
|
|
|
bp->mrrs = mrrs;
|
|
|
|
bp->tx_ring_size = MAX_TX_AVAIL;
|
|
|
|
/* make sure that the numbers are in the right granularity */
|
|
bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
|
|
bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
|
|
|
|
timer_interval = (CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ);
|
|
bp->current_interval = (poll ? poll : timer_interval);
|
|
|
|
init_timer(&bp->timer);
|
|
bp->timer.expires = jiffies + bp->current_interval;
|
|
bp->timer.data = (unsigned long) bp;
|
|
bp->timer.function = bnx2x_timer;
|
|
|
|
bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
|
|
bnx2x_dcbx_init_params(bp);
|
|
|
|
#ifdef BCM_CNIC
|
|
if (CHIP_IS_E1x(bp))
|
|
bp->cnic_base_cl_id = FP_SB_MAX_E1x;
|
|
else
|
|
bp->cnic_base_cl_id = FP_SB_MAX_E2;
|
|
#endif
|
|
|
|
/* multiple tx priority */
|
|
if (CHIP_IS_E1x(bp))
|
|
bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
|
|
if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
|
|
bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
|
|
if (CHIP_IS_E3B0(bp))
|
|
bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
/****************************************************************************
|
|
* General service functions
|
|
****************************************************************************/
|
|
|
|
/*
|
|
* net_device service functions
|
|
*/
|
|
|
|
/* called with rtnl_lock */
|
|
static int bnx2x_open(struct net_device *dev)
|
|
{
|
|
struct bnx2x *bp = netdev_priv(dev);
|
|
bool global = false;
|
|
int other_engine = BP_PATH(bp) ? 0 : 1;
|
|
u32 other_load_counter, load_counter;
|
|
|
|
netif_carrier_off(dev);
|
|
|
|
bnx2x_set_power_state(bp, PCI_D0);
|
|
|
|
other_load_counter = bnx2x_get_load_cnt(bp, other_engine);
|
|
load_counter = bnx2x_get_load_cnt(bp, BP_PATH(bp));
|
|
|
|
/*
|
|
* If parity had happen during the unload, then attentions
|
|
* and/or RECOVERY_IN_PROGRES may still be set. In this case we
|
|
* want the first function loaded on the current engine to
|
|
* complete the recovery.
|
|
*/
|
|
if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
|
|
bnx2x_chk_parity_attn(bp, &global, true))
|
|
do {
|
|
/*
|
|
* If there are attentions and they are in a global
|
|
* blocks, set the GLOBAL_RESET bit regardless whether
|
|
* it will be this function that will complete the
|
|
* recovery or not.
|
|
*/
|
|
if (global)
|
|
bnx2x_set_reset_global(bp);
|
|
|
|
/*
|
|
* Only the first function on the current engine should
|
|
* try to recover in open. In case of attentions in
|
|
* global blocks only the first in the chip should try
|
|
* to recover.
|
|
*/
|
|
if ((!load_counter &&
|
|
(!global || !other_load_counter)) &&
|
|
bnx2x_trylock_leader_lock(bp) &&
|
|
!bnx2x_leader_reset(bp)) {
|
|
netdev_info(bp->dev, "Recovered in open\n");
|
|
break;
|
|
}
|
|
|
|
/* recovery has failed... */
|
|
bnx2x_set_power_state(bp, PCI_D3hot);
|
|
bp->recovery_state = BNX2X_RECOVERY_FAILED;
|
|
|
|
netdev_err(bp->dev, "Recovery flow hasn't been properly"
|
|
" completed yet. Try again later. If u still see this"
|
|
" message after a few retries then power cycle is"
|
|
" required.\n");
|
|
|
|
return -EAGAIN;
|
|
} while (0);
|
|
|
|
bp->recovery_state = BNX2X_RECOVERY_DONE;
|
|
return bnx2x_nic_load(bp, LOAD_OPEN);
|
|
}
|
|
|
|
/* called with rtnl_lock */
|
|
int bnx2x_close(struct net_device *dev)
|
|
{
|
|
struct bnx2x *bp = netdev_priv(dev);
|
|
|
|
/* Unload the driver, release IRQs */
|
|
bnx2x_nic_unload(bp, UNLOAD_CLOSE);
|
|
|
|
/* Power off */
|
|
bnx2x_set_power_state(bp, PCI_D3hot);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
|
|
struct bnx2x_mcast_ramrod_params *p)
|
|
{
|
|
int mc_count = netdev_mc_count(bp->dev);
|
|
struct bnx2x_mcast_list_elem *mc_mac =
|
|
kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
|
|
struct netdev_hw_addr *ha;
|
|
|
|
if (!mc_mac)
|
|
return -ENOMEM;
|
|
|
|
INIT_LIST_HEAD(&p->mcast_list);
|
|
|
|
netdev_for_each_mc_addr(ha, bp->dev) {
|
|
mc_mac->mac = bnx2x_mc_addr(ha);
|
|
list_add_tail(&mc_mac->link, &p->mcast_list);
|
|
mc_mac++;
|
|
}
|
|
|
|
p->mcast_list_len = mc_count;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void bnx2x_free_mcast_macs_list(
|
|
struct bnx2x_mcast_ramrod_params *p)
|
|
{
|
|
struct bnx2x_mcast_list_elem *mc_mac =
|
|
list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
|
|
link);
|
|
|
|
WARN_ON(!mc_mac);
|
|
kfree(mc_mac);
|
|
}
|
|
|
|
/**
|
|
* bnx2x_set_uc_list - configure a new unicast MACs list.
|
|
*
|
|
* @bp: driver handle
|
|
*
|
|
* We will use zero (0) as a MAC type for these MACs.
|
|
*/
|
|
static inline int bnx2x_set_uc_list(struct bnx2x *bp)
|
|
{
|
|
int rc;
|
|
struct net_device *dev = bp->dev;
|
|
struct netdev_hw_addr *ha;
|
|
struct bnx2x_vlan_mac_obj *mac_obj = &bp->fp->mac_obj;
|
|
unsigned long ramrod_flags = 0;
|
|
|
|
/* First schedule a cleanup up of old configuration */
|
|
rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
|
|
if (rc < 0) {
|
|
BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
netdev_for_each_uc_addr(ha, dev) {
|
|
rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
|
|
BNX2X_UC_LIST_MAC, &ramrod_flags);
|
|
if (rc < 0) {
|
|
BNX2X_ERR("Failed to schedule ADD operations: %d\n",
|
|
rc);
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
/* Execute the pending commands */
|
|
__set_bit(RAMROD_CONT, &ramrod_flags);
|
|
return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
|
|
BNX2X_UC_LIST_MAC, &ramrod_flags);
|
|
}
|
|
|
|
static inline int bnx2x_set_mc_list(struct bnx2x *bp)
|
|
{
|
|
struct net_device *dev = bp->dev;
|
|
struct bnx2x_mcast_ramrod_params rparam = {0};
|
|
int rc = 0;
|
|
|
|
rparam.mcast_obj = &bp->mcast_obj;
|
|
|
|
/* first, clear all configured multicast MACs */
|
|
rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
|
|
if (rc < 0) {
|
|
BNX2X_ERR("Failed to clear multicast "
|
|
"configuration: %d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
/* then, configure a new MACs list */
|
|
if (netdev_mc_count(dev)) {
|
|
rc = bnx2x_init_mcast_macs_list(bp, &rparam);
|
|
if (rc) {
|
|
BNX2X_ERR("Failed to create multicast MACs "
|
|
"list: %d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
/* Now add the new MACs */
|
|
rc = bnx2x_config_mcast(bp, &rparam,
|
|
BNX2X_MCAST_CMD_ADD);
|
|
if (rc < 0)
|
|
BNX2X_ERR("Failed to set a new multicast "
|
|
"configuration: %d\n", rc);
|
|
|
|
bnx2x_free_mcast_macs_list(&rparam);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
/* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
|
|
void bnx2x_set_rx_mode(struct net_device *dev)
|
|
{
|
|
struct bnx2x *bp = netdev_priv(dev);
|
|
u32 rx_mode = BNX2X_RX_MODE_NORMAL;
|
|
|
|
if (bp->state != BNX2X_STATE_OPEN) {
|
|
DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
|
|
return;
|
|
}
|
|
|
|
DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
|
|
|
|
if (dev->flags & IFF_PROMISC)
|
|
rx_mode = BNX2X_RX_MODE_PROMISC;
|
|
else if ((dev->flags & IFF_ALLMULTI) ||
|
|
((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
|
|
CHIP_IS_E1(bp)))
|
|
rx_mode = BNX2X_RX_MODE_ALLMULTI;
|
|
else {
|
|
/* some multicasts */
|
|
if (bnx2x_set_mc_list(bp) < 0)
|
|
rx_mode = BNX2X_RX_MODE_ALLMULTI;
|
|
|
|
if (bnx2x_set_uc_list(bp) < 0)
|
|
rx_mode = BNX2X_RX_MODE_PROMISC;
|
|
}
|
|
|
|
bp->rx_mode = rx_mode;
|
|
|
|
/* Schedule the rx_mode command */
|
|
if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
|
|
set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
|
|
return;
|
|
}
|
|
|
|
bnx2x_set_storm_rx_mode(bp);
|
|
}
|
|
|
|
/* called with rtnl_lock */
|
|
static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
|
|
int devad, u16 addr)
|
|
{
|
|
struct bnx2x *bp = netdev_priv(netdev);
|
|
u16 value;
|
|
int rc;
|
|
|
|
DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
|
|
prtad, devad, addr);
|
|
|
|
/* The HW expects different devad if CL22 is used */
|
|
devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
|
|
|
|
bnx2x_acquire_phy_lock(bp);
|
|
rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
|
|
bnx2x_release_phy_lock(bp);
|
|
DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
|
|
|
|
if (!rc)
|
|
rc = value;
|
|
return rc;
|
|
}
|
|
|
|
/* called with rtnl_lock */
|
|
static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
|
|
u16 addr, u16 value)
|
|
{
|
|
struct bnx2x *bp = netdev_priv(netdev);
|
|
int rc;
|
|
|
|
DP(NETIF_MSG_LINK, "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x,"
|
|
" value 0x%x\n", prtad, devad, addr, value);
|
|
|
|
/* The HW expects different devad if CL22 is used */
|
|
devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
|
|
|
|
bnx2x_acquire_phy_lock(bp);
|
|
rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
|
|
bnx2x_release_phy_lock(bp);
|
|
return rc;
|
|
}
|
|
|
|
/* called with rtnl_lock */
|
|
static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
|
|
{
|
|
struct bnx2x *bp = netdev_priv(dev);
|
|
struct mii_ioctl_data *mdio = if_mii(ifr);
|
|
|
|
DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
|
|
mdio->phy_id, mdio->reg_num, mdio->val_in);
|
|
|
|
if (!netif_running(dev))
|
|
return -EAGAIN;
|
|
|
|
return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
|
|
}
|
|
|
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
|
static void poll_bnx2x(struct net_device *dev)
|
|
{
|
|
struct bnx2x *bp = netdev_priv(dev);
|
|
|
|
disable_irq(bp->pdev->irq);
|
|
bnx2x_interrupt(bp->pdev->irq, dev);
|
|
enable_irq(bp->pdev->irq);
|
|
}
|
|
#endif
|
|
|
|
static const struct net_device_ops bnx2x_netdev_ops = {
|
|
.ndo_open = bnx2x_open,
|
|
.ndo_stop = bnx2x_close,
|
|
.ndo_start_xmit = bnx2x_start_xmit,
|
|
.ndo_select_queue = bnx2x_select_queue,
|
|
.ndo_set_rx_mode = bnx2x_set_rx_mode,
|
|
.ndo_set_mac_address = bnx2x_change_mac_addr,
|
|
.ndo_validate_addr = eth_validate_addr,
|
|
.ndo_do_ioctl = bnx2x_ioctl,
|
|
.ndo_change_mtu = bnx2x_change_mtu,
|
|
.ndo_fix_features = bnx2x_fix_features,
|
|
.ndo_set_features = bnx2x_set_features,
|
|
.ndo_tx_timeout = bnx2x_tx_timeout,
|
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
|
.ndo_poll_controller = poll_bnx2x,
|
|
#endif
|
|
.ndo_setup_tc = bnx2x_setup_tc,
|
|
|
|
#if defined(NETDEV_FCOE_WWNN) && defined(BCM_CNIC)
|
|
.ndo_fcoe_get_wwn = bnx2x_fcoe_get_wwn,
|
|
#endif
|
|
};
|
|
|
|
static inline int bnx2x_set_coherency_mask(struct bnx2x *bp)
|
|
{
|
|
struct device *dev = &bp->pdev->dev;
|
|
|
|
if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
|
|
bp->flags |= USING_DAC_FLAG;
|
|
if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
|
|
dev_err(dev, "dma_set_coherent_mask failed, "
|
|
"aborting\n");
|
|
return -EIO;
|
|
}
|
|
} else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
|
|
dev_err(dev, "System does not support DMA, aborting\n");
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __devinit bnx2x_init_dev(struct pci_dev *pdev,
|
|
struct net_device *dev,
|
|
unsigned long board_type)
|
|
{
|
|
struct bnx2x *bp;
|
|
int rc;
|
|
|
|
SET_NETDEV_DEV(dev, &pdev->dev);
|
|
bp = netdev_priv(dev);
|
|
|
|
bp->dev = dev;
|
|
bp->pdev = pdev;
|
|
bp->flags = 0;
|
|
bp->pf_num = PCI_FUNC(pdev->devfn);
|
|
|
|
rc = pci_enable_device(pdev);
|
|
if (rc) {
|
|
dev_err(&bp->pdev->dev,
|
|
"Cannot enable PCI device, aborting\n");
|
|
goto err_out;
|
|
}
|
|
|
|
if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
|
|
dev_err(&bp->pdev->dev,
|
|
"Cannot find PCI device base address, aborting\n");
|
|
rc = -ENODEV;
|
|
goto err_out_disable;
|
|
}
|
|
|
|
if (!(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
|
|
dev_err(&bp->pdev->dev, "Cannot find second PCI device"
|
|
" base address, aborting\n");
|
|
rc = -ENODEV;
|
|
goto err_out_disable;
|
|
}
|
|
|
|
if (atomic_read(&pdev->enable_cnt) == 1) {
|
|
rc = pci_request_regions(pdev, DRV_MODULE_NAME);
|
|
if (rc) {
|
|
dev_err(&bp->pdev->dev,
|
|
"Cannot obtain PCI resources, aborting\n");
|
|
goto err_out_disable;
|
|
}
|
|
|
|
pci_set_master(pdev);
|
|
pci_save_state(pdev);
|
|
}
|
|
|
|
bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
|
|
if (bp->pm_cap == 0) {
|
|
dev_err(&bp->pdev->dev,
|
|
"Cannot find power management capability, aborting\n");
|
|
rc = -EIO;
|
|
goto err_out_release;
|
|
}
|
|
|
|
if (!pci_is_pcie(pdev)) {
|
|
dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
|
|
rc = -EIO;
|
|
goto err_out_release;
|
|
}
|
|
|
|
rc = bnx2x_set_coherency_mask(bp);
|
|
if (rc)
|
|
goto err_out_release;
|
|
|
|
dev->mem_start = pci_resource_start(pdev, 0);
|
|
dev->base_addr = dev->mem_start;
|
|
dev->mem_end = pci_resource_end(pdev, 0);
|
|
|
|
dev->irq = pdev->irq;
|
|
|
|
bp->regview = pci_ioremap_bar(pdev, 0);
|
|
if (!bp->regview) {
|
|
dev_err(&bp->pdev->dev,
|
|
"Cannot map register space, aborting\n");
|
|
rc = -ENOMEM;
|
|
goto err_out_release;
|
|
}
|
|
|
|
bnx2x_set_power_state(bp, PCI_D0);
|
|
|
|
/* clean indirect addresses */
|
|
pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
|
|
PCICFG_VENDOR_ID_OFFSET);
|
|
/*
|
|
* Clean the following indirect addresses for all functions since it
|
|
* is not used by the driver.
|
|
*/
|
|
REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
|
|
REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
|
|
REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
|
|
REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
|
|
|
|
if (CHIP_IS_E1x(bp)) {
|
|
REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
|
|
REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
|
|
REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
|
|
REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
|
|
}
|
|
|
|
/*
|
|
* Enable internal target-read (in case we are probed after PF FLR).
|
|
* Must be done prior to any BAR read access. Only for 57712 and up
|
|
*/
|
|
if (board_type != BCM57710 &&
|
|
board_type != BCM57711 &&
|
|
board_type != BCM57711E)
|
|
REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
|
|
|
|
/* Reset the load counter */
|
|
bnx2x_clear_load_cnt(bp);
|
|
|
|
dev->watchdog_timeo = TX_TIMEOUT;
|
|
|
|
dev->netdev_ops = &bnx2x_netdev_ops;
|
|
bnx2x_set_ethtool_ops(dev);
|
|
|
|
dev->priv_flags |= IFF_UNICAST_FLT;
|
|
|
|
dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
|
|
NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_LRO |
|
|
NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_HW_VLAN_TX;
|
|
|
|
dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
|
|
NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
|
|
|
|
dev->features |= dev->hw_features | NETIF_F_HW_VLAN_RX;
|
|
if (bp->flags & USING_DAC_FLAG)
|
|
dev->features |= NETIF_F_HIGHDMA;
|
|
|
|
/* Add Loopback capability to the device */
|
|
dev->hw_features |= NETIF_F_LOOPBACK;
|
|
|
|
#ifdef BCM_DCBNL
|
|
dev->dcbnl_ops = &bnx2x_dcbnl_ops;
|
|
#endif
|
|
|
|
/* get_port_hwinfo() will set prtad and mmds properly */
|
|
bp->mdio.prtad = MDIO_PRTAD_NONE;
|
|
bp->mdio.mmds = 0;
|
|
bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
|
|
bp->mdio.dev = dev;
|
|
bp->mdio.mdio_read = bnx2x_mdio_read;
|
|
bp->mdio.mdio_write = bnx2x_mdio_write;
|
|
|
|
return 0;
|
|
|
|
err_out_release:
|
|
if (atomic_read(&pdev->enable_cnt) == 1)
|
|
pci_release_regions(pdev);
|
|
|
|
err_out_disable:
|
|
pci_disable_device(pdev);
|
|
pci_set_drvdata(pdev, NULL);
|
|
|
|
err_out:
|
|
return rc;
|
|
}
|
|
|
|
static void __devinit bnx2x_get_pcie_width_speed(struct bnx2x *bp,
|
|
int *width, int *speed)
|
|
{
|
|
u32 val = REG_RD(bp, PCICFG_OFFSET + PCICFG_LINK_CONTROL);
|
|
|
|
*width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
|
|
|
|
/* return value of 1=2.5GHz 2=5GHz */
|
|
*speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
|
|
}
|
|
|
|
static int bnx2x_check_firmware(struct bnx2x *bp)
|
|
{
|
|
const struct firmware *firmware = bp->firmware;
|
|
struct bnx2x_fw_file_hdr *fw_hdr;
|
|
struct bnx2x_fw_file_section *sections;
|
|
u32 offset, len, num_ops;
|
|
u16 *ops_offsets;
|
|
int i;
|
|
const u8 *fw_ver;
|
|
|
|
if (firmware->size < sizeof(struct bnx2x_fw_file_hdr))
|
|
return -EINVAL;
|
|
|
|
fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
|
|
sections = (struct bnx2x_fw_file_section *)fw_hdr;
|
|
|
|
/* Make sure none of the offsets and sizes make us read beyond
|
|
* the end of the firmware data */
|
|
for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
|
|
offset = be32_to_cpu(sections[i].offset);
|
|
len = be32_to_cpu(sections[i].len);
|
|
if (offset + len > firmware->size) {
|
|
dev_err(&bp->pdev->dev,
|
|
"Section %d length is out of bounds\n", i);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* Likewise for the init_ops offsets */
|
|
offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
|
|
ops_offsets = (u16 *)(firmware->data + offset);
|
|
num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
|
|
|
|
for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
|
|
if (be16_to_cpu(ops_offsets[i]) > num_ops) {
|
|
dev_err(&bp->pdev->dev,
|
|
"Section offset %d is out of bounds\n", i);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* Check FW version */
|
|
offset = be32_to_cpu(fw_hdr->fw_version.offset);
|
|
fw_ver = firmware->data + offset;
|
|
if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
|
|
(fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
|
|
(fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
|
|
(fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
|
|
dev_err(&bp->pdev->dev,
|
|
"Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
|
|
fw_ver[0], fw_ver[1], fw_ver[2],
|
|
fw_ver[3], BCM_5710_FW_MAJOR_VERSION,
|
|
BCM_5710_FW_MINOR_VERSION,
|
|
BCM_5710_FW_REVISION_VERSION,
|
|
BCM_5710_FW_ENGINEERING_VERSION);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
|
|
{
|
|
const __be32 *source = (const __be32 *)_source;
|
|
u32 *target = (u32 *)_target;
|
|
u32 i;
|
|
|
|
for (i = 0; i < n/4; i++)
|
|
target[i] = be32_to_cpu(source[i]);
|
|
}
|
|
|
|
/*
|
|
Ops array is stored in the following format:
|
|
{op(8bit), offset(24bit, big endian), data(32bit, big endian)}
|
|
*/
|
|
static inline void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
|
|
{
|
|
const __be32 *source = (const __be32 *)_source;
|
|
struct raw_op *target = (struct raw_op *)_target;
|
|
u32 i, j, tmp;
|
|
|
|
for (i = 0, j = 0; i < n/8; i++, j += 2) {
|
|
tmp = be32_to_cpu(source[j]);
|
|
target[i].op = (tmp >> 24) & 0xff;
|
|
target[i].offset = tmp & 0xffffff;
|
|
target[i].raw_data = be32_to_cpu(source[j + 1]);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* IRO array is stored in the following format:
|
|
* {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
|
|
*/
|
|
static inline void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
|
|
{
|
|
const __be32 *source = (const __be32 *)_source;
|
|
struct iro *target = (struct iro *)_target;
|
|
u32 i, j, tmp;
|
|
|
|
for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
|
|
target[i].base = be32_to_cpu(source[j]);
|
|
j++;
|
|
tmp = be32_to_cpu(source[j]);
|
|
target[i].m1 = (tmp >> 16) & 0xffff;
|
|
target[i].m2 = tmp & 0xffff;
|
|
j++;
|
|
tmp = be32_to_cpu(source[j]);
|
|
target[i].m3 = (tmp >> 16) & 0xffff;
|
|
target[i].size = tmp & 0xffff;
|
|
j++;
|
|
}
|
|
}
|
|
|
|
static inline void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
|
|
{
|
|
const __be16 *source = (const __be16 *)_source;
|
|
u16 *target = (u16 *)_target;
|
|
u32 i;
|
|
|
|
for (i = 0; i < n/2; i++)
|
|
target[i] = be16_to_cpu(source[i]);
|
|
}
|
|
|
|
#define BNX2X_ALLOC_AND_SET(arr, lbl, func) \
|
|
do { \
|
|
u32 len = be32_to_cpu(fw_hdr->arr.len); \
|
|
bp->arr = kmalloc(len, GFP_KERNEL); \
|
|
if (!bp->arr) { \
|
|
pr_err("Failed to allocate %d bytes for "#arr"\n", len); \
|
|
goto lbl; \
|
|
} \
|
|
func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \
|
|
(u8 *)bp->arr, len); \
|
|
} while (0)
|
|
|
|
int bnx2x_init_firmware(struct bnx2x *bp)
|
|
{
|
|
const char *fw_file_name;
|
|
struct bnx2x_fw_file_hdr *fw_hdr;
|
|
int rc;
|
|
|
|
if (CHIP_IS_E1(bp))
|
|
fw_file_name = FW_FILE_NAME_E1;
|
|
else if (CHIP_IS_E1H(bp))
|
|
fw_file_name = FW_FILE_NAME_E1H;
|
|
else if (!CHIP_IS_E1x(bp))
|
|
fw_file_name = FW_FILE_NAME_E2;
|
|
else {
|
|
BNX2X_ERR("Unsupported chip revision\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
|
|
|
|
rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
|
|
if (rc) {
|
|
BNX2X_ERR("Can't load firmware file %s\n", fw_file_name);
|
|
goto request_firmware_exit;
|
|
}
|
|
|
|
rc = bnx2x_check_firmware(bp);
|
|
if (rc) {
|
|
BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
|
|
goto request_firmware_exit;
|
|
}
|
|
|
|
fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
|
|
|
|
/* Initialize the pointers to the init arrays */
|
|
/* Blob */
|
|
BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
|
|
|
|
/* Opcodes */
|
|
BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
|
|
|
|
/* Offsets */
|
|
BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
|
|
be16_to_cpu_n);
|
|
|
|
/* STORMs firmware */
|
|
INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
|
|
be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
|
|
INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data +
|
|
be32_to_cpu(fw_hdr->tsem_pram_data.offset);
|
|
INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
|
|
be32_to_cpu(fw_hdr->usem_int_table_data.offset);
|
|
INIT_USEM_PRAM_DATA(bp) = bp->firmware->data +
|
|
be32_to_cpu(fw_hdr->usem_pram_data.offset);
|
|
INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
|
|
be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
|
|
INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data +
|
|
be32_to_cpu(fw_hdr->xsem_pram_data.offset);
|
|
INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
|
|
be32_to_cpu(fw_hdr->csem_int_table_data.offset);
|
|
INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data +
|
|
be32_to_cpu(fw_hdr->csem_pram_data.offset);
|
|
/* IRO */
|
|
BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
|
|
|
|
return 0;
|
|
|
|
iro_alloc_err:
|
|
kfree(bp->init_ops_offsets);
|
|
init_offsets_alloc_err:
|
|
kfree(bp->init_ops);
|
|
init_ops_alloc_err:
|
|
kfree(bp->init_data);
|
|
request_firmware_exit:
|
|
release_firmware(bp->firmware);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void bnx2x_release_firmware(struct bnx2x *bp)
|
|
{
|
|
kfree(bp->init_ops_offsets);
|
|
kfree(bp->init_ops);
|
|
kfree(bp->init_data);
|
|
release_firmware(bp->firmware);
|
|
}
|
|
|
|
|
|
static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
|
|
.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
|
|
.init_hw_cmn = bnx2x_init_hw_common,
|
|
.init_hw_port = bnx2x_init_hw_port,
|
|
.init_hw_func = bnx2x_init_hw_func,
|
|
|
|
.reset_hw_cmn = bnx2x_reset_common,
|
|
.reset_hw_port = bnx2x_reset_port,
|
|
.reset_hw_func = bnx2x_reset_func,
|
|
|
|
.gunzip_init = bnx2x_gunzip_init,
|
|
.gunzip_end = bnx2x_gunzip_end,
|
|
|
|
.init_fw = bnx2x_init_firmware,
|
|
.release_fw = bnx2x_release_firmware,
|
|
};
|
|
|
|
void bnx2x__init_func_obj(struct bnx2x *bp)
|
|
{
|
|
/* Prepare DMAE related driver resources */
|
|
bnx2x_setup_dmae(bp);
|
|
|
|
bnx2x_init_func_obj(bp, &bp->func_obj,
|
|
bnx2x_sp(bp, func_rdata),
|
|
bnx2x_sp_mapping(bp, func_rdata),
|
|
&bnx2x_func_sp_drv);
|
|
}
|
|
|
|
/* must be called after sriov-enable */
|
|
static inline int bnx2x_set_qm_cid_count(struct bnx2x *bp)
|
|
{
|
|
int cid_count = BNX2X_L2_CID_COUNT(bp);
|
|
|
|
#ifdef BCM_CNIC
|
|
cid_count += CNIC_CID_MAX;
|
|
#endif
|
|
return roundup(cid_count, QM_CID_ROUND);
|
|
}
|
|
|
|
/**
|
|
* bnx2x_get_num_none_def_sbs - return the number of none default SBs
|
|
*
|
|
* @dev: pci device
|
|
*
|
|
*/
|
|
static inline int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev)
|
|
{
|
|
int pos;
|
|
u16 control;
|
|
|
|
pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
|
|
|
|
/*
|
|
* If MSI-X is not supported - return number of SBs needed to support
|
|
* one fast path queue: one FP queue + SB for CNIC
|
|
*/
|
|
if (!pos)
|
|
return 1 + CNIC_PRESENT;
|
|
|
|
/*
|
|
* The value in the PCI configuration space is the index of the last
|
|
* entry, namely one less than the actual size of the table, which is
|
|
* exactly what we want to return from this function: number of all SBs
|
|
* without the default SB.
|
|
*/
|
|
pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &control);
|
|
return control & PCI_MSIX_FLAGS_QSIZE;
|
|
}
|
|
|
|
static int __devinit bnx2x_init_one(struct pci_dev *pdev,
|
|
const struct pci_device_id *ent)
|
|
{
|
|
struct net_device *dev = NULL;
|
|
struct bnx2x *bp;
|
|
int pcie_width, pcie_speed;
|
|
int rc, max_non_def_sbs;
|
|
int rx_count, tx_count, rss_count;
|
|
/*
|
|
* An estimated maximum supported CoS number according to the chip
|
|
* version.
|
|
* We will try to roughly estimate the maximum number of CoSes this chip
|
|
* may support in order to minimize the memory allocated for Tx
|
|
* netdev_queue's. This number will be accurately calculated during the
|
|
* initialization of bp->max_cos based on the chip versions AND chip
|
|
* revision in the bnx2x_init_bp().
|
|
*/
|
|
u8 max_cos_est = 0;
|
|
|
|
switch (ent->driver_data) {
|
|
case BCM57710:
|
|
case BCM57711:
|
|
case BCM57711E:
|
|
max_cos_est = BNX2X_MULTI_TX_COS_E1X;
|
|
break;
|
|
|
|
case BCM57712:
|
|
case BCM57712_MF:
|
|
max_cos_est = BNX2X_MULTI_TX_COS_E2_E3A0;
|
|
break;
|
|
|
|
case BCM57800:
|
|
case BCM57800_MF:
|
|
case BCM57810:
|
|
case BCM57810_MF:
|
|
case BCM57840:
|
|
case BCM57840_MF:
|
|
max_cos_est = BNX2X_MULTI_TX_COS_E3B0;
|
|
break;
|
|
|
|
default:
|
|
pr_err("Unknown board_type (%ld), aborting\n",
|
|
ent->driver_data);
|
|
return -ENODEV;
|
|
}
|
|
|
|
max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev);
|
|
|
|
/* !!! FIXME !!!
|
|
* Do not allow the maximum SB count to grow above 16
|
|
* since Special CIDs starts from 16*BNX2X_MULTI_TX_COS=48.
|
|
* We will use the FP_SB_MAX_E1x macro for this matter.
|
|
*/
|
|
max_non_def_sbs = min_t(int, FP_SB_MAX_E1x, max_non_def_sbs);
|
|
|
|
WARN_ON(!max_non_def_sbs);
|
|
|
|
/* Maximum number of RSS queues: one IGU SB goes to CNIC */
|
|
rss_count = max_non_def_sbs - CNIC_PRESENT;
|
|
|
|
/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
|
|
rx_count = rss_count + FCOE_PRESENT;
|
|
|
|
/*
|
|
* Maximum number of netdev Tx queues:
|
|
* Maximum TSS queues * Maximum supported number of CoS + FCoE L2
|
|
*/
|
|
tx_count = MAX_TXQS_PER_COS * max_cos_est + FCOE_PRESENT;
|
|
|
|
/* dev zeroed in init_etherdev */
|
|
dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
|
|
if (!dev) {
|
|
dev_err(&pdev->dev, "Cannot allocate net device\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
bp = netdev_priv(dev);
|
|
|
|
DP(NETIF_MSG_DRV, "Allocated netdev with %d tx and %d rx queues\n",
|
|
tx_count, rx_count);
|
|
|
|
bp->igu_sb_cnt = max_non_def_sbs;
|
|
bp->msg_enable = debug;
|
|
pci_set_drvdata(pdev, dev);
|
|
|
|
rc = bnx2x_init_dev(pdev, dev, ent->driver_data);
|
|
if (rc < 0) {
|
|
free_netdev(dev);
|
|
return rc;
|
|
}
|
|
|
|
DP(NETIF_MSG_DRV, "max_non_def_sbs %d\n", max_non_def_sbs);
|
|
|
|
rc = bnx2x_init_bp(bp);
|
|
if (rc)
|
|
goto init_one_exit;
|
|
|
|
/*
|
|
* Map doorbels here as we need the real value of bp->max_cos which
|
|
* is initialized in bnx2x_init_bp().
|
|
*/
|
|
bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
|
|
min_t(u64, BNX2X_DB_SIZE(bp),
|
|
pci_resource_len(pdev, 2)));
|
|
if (!bp->doorbells) {
|
|
dev_err(&bp->pdev->dev,
|
|
"Cannot map doorbell space, aborting\n");
|
|
rc = -ENOMEM;
|
|
goto init_one_exit;
|
|
}
|
|
|
|
/* calc qm_cid_count */
|
|
bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
|
|
|
|
#ifdef BCM_CNIC
|
|
/* disable FCOE L2 queue for E1x */
|
|
if (CHIP_IS_E1x(bp))
|
|
bp->flags |= NO_FCOE_FLAG;
|
|
|
|
#endif
|
|
|
|
/* Configure interrupt mode: try to enable MSI-X/MSI if
|
|
* needed, set bp->num_queues appropriately.
|
|
*/
|
|
bnx2x_set_int_mode(bp);
|
|
|
|
/* Add all NAPI objects */
|
|
bnx2x_add_all_napi(bp);
|
|
|
|
rc = register_netdev(dev);
|
|
if (rc) {
|
|
dev_err(&pdev->dev, "Cannot register net device\n");
|
|
goto init_one_exit;
|
|
}
|
|
|
|
#ifdef BCM_CNIC
|
|
if (!NO_FCOE(bp)) {
|
|
/* Add storage MAC address */
|
|
rtnl_lock();
|
|
dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
|
|
rtnl_unlock();
|
|
}
|
|
#endif
|
|
|
|
bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
|
|
|
|
netdev_info(dev, "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
|
|
board_info[ent->driver_data].name,
|
|
(CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
|
|
pcie_width,
|
|
((!CHIP_IS_E2(bp) && pcie_speed == 2) ||
|
|
(CHIP_IS_E2(bp) && pcie_speed == 1)) ?
|
|
"5GHz (Gen2)" : "2.5GHz",
|
|
dev->base_addr, bp->pdev->irq, dev->dev_addr);
|
|
|
|
return 0;
|
|
|
|
init_one_exit:
|
|
if (bp->regview)
|
|
iounmap(bp->regview);
|
|
|
|
if (bp->doorbells)
|
|
iounmap(bp->doorbells);
|
|
|
|
free_netdev(dev);
|
|
|
|
if (atomic_read(&pdev->enable_cnt) == 1)
|
|
pci_release_regions(pdev);
|
|
|
|
pci_disable_device(pdev);
|
|
pci_set_drvdata(pdev, NULL);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void __devexit bnx2x_remove_one(struct pci_dev *pdev)
|
|
{
|
|
struct net_device *dev = pci_get_drvdata(pdev);
|
|
struct bnx2x *bp;
|
|
|
|
if (!dev) {
|
|
dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
|
|
return;
|
|
}
|
|
bp = netdev_priv(dev);
|
|
|
|
#ifdef BCM_CNIC
|
|
/* Delete storage MAC address */
|
|
if (!NO_FCOE(bp)) {
|
|
rtnl_lock();
|
|
dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
|
|
rtnl_unlock();
|
|
}
|
|
#endif
|
|
|
|
#ifdef BCM_DCBNL
|
|
/* Delete app tlvs from dcbnl */
|
|
bnx2x_dcbnl_update_applist(bp, true);
|
|
#endif
|
|
|
|
unregister_netdev(dev);
|
|
|
|
/* Delete all NAPI objects */
|
|
bnx2x_del_all_napi(bp);
|
|
|
|
/* Power on: we can't let PCI layer write to us while we are in D3 */
|
|
bnx2x_set_power_state(bp, PCI_D0);
|
|
|
|
/* Disable MSI/MSI-X */
|
|
bnx2x_disable_msi(bp);
|
|
|
|
/* Power off */
|
|
bnx2x_set_power_state(bp, PCI_D3hot);
|
|
|
|
/* Make sure RESET task is not scheduled before continuing */
|
|
cancel_delayed_work_sync(&bp->sp_rtnl_task);
|
|
|
|
if (bp->regview)
|
|
iounmap(bp->regview);
|
|
|
|
if (bp->doorbells)
|
|
iounmap(bp->doorbells);
|
|
|
|
bnx2x_free_mem_bp(bp);
|
|
|
|
free_netdev(dev);
|
|
|
|
if (atomic_read(&pdev->enable_cnt) == 1)
|
|
pci_release_regions(pdev);
|
|
|
|
pci_disable_device(pdev);
|
|
pci_set_drvdata(pdev, NULL);
|
|
}
|
|
|
|
static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
|
|
{
|
|
int i;
|
|
|
|
bp->state = BNX2X_STATE_ERROR;
|
|
|
|
bp->rx_mode = BNX2X_RX_MODE_NONE;
|
|
|
|
#ifdef BCM_CNIC
|
|
bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
|
|
#endif
|
|
/* Stop Tx */
|
|
bnx2x_tx_disable(bp);
|
|
|
|
bnx2x_netif_stop(bp, 0);
|
|
|
|
del_timer_sync(&bp->timer);
|
|
|
|
bnx2x_stats_handle(bp, STATS_EVENT_STOP);
|
|
|
|
/* Release IRQs */
|
|
bnx2x_free_irq(bp);
|
|
|
|
/* Free SKBs, SGEs, TPA pool and driver internals */
|
|
bnx2x_free_skbs(bp);
|
|
|
|
for_each_rx_queue(bp, i)
|
|
bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
|
|
|
|
bnx2x_free_mem(bp);
|
|
|
|
bp->state = BNX2X_STATE_CLOSED;
|
|
|
|
netif_carrier_off(bp->dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bnx2x_eeh_recover(struct bnx2x *bp)
|
|
{
|
|
u32 val;
|
|
|
|
mutex_init(&bp->port.phy_mutex);
|
|
|
|
bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
|
|
bp->link_params.shmem_base = bp->common.shmem_base;
|
|
BNX2X_DEV_INFO("shmem offset is 0x%x\n", bp->common.shmem_base);
|
|
|
|
if (!bp->common.shmem_base ||
|
|
(bp->common.shmem_base < 0xA0000) ||
|
|
(bp->common.shmem_base >= 0xC0000)) {
|
|
BNX2X_DEV_INFO("MCP not active\n");
|
|
bp->flags |= NO_MCP_FLAG;
|
|
return;
|
|
}
|
|
|
|
val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
|
|
if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
|
|
!= (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
|
|
BNX2X_ERR("BAD MCP validity signature\n");
|
|
|
|
if (!BP_NOMCP(bp)) {
|
|
bp->fw_seq =
|
|
(SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
|
|
DRV_MSG_SEQ_NUMBER_MASK);
|
|
BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* bnx2x_io_error_detected - called when PCI error is detected
|
|
* @pdev: Pointer to PCI device
|
|
* @state: The current pci connection state
|
|
*
|
|
* This function is called after a PCI bus error affecting
|
|
* this device has been detected.
|
|
*/
|
|
static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
|
|
pci_channel_state_t state)
|
|
{
|
|
struct net_device *dev = pci_get_drvdata(pdev);
|
|
struct bnx2x *bp = netdev_priv(dev);
|
|
|
|
rtnl_lock();
|
|
|
|
netif_device_detach(dev);
|
|
|
|
if (state == pci_channel_io_perm_failure) {
|
|
rtnl_unlock();
|
|
return PCI_ERS_RESULT_DISCONNECT;
|
|
}
|
|
|
|
if (netif_running(dev))
|
|
bnx2x_eeh_nic_unload(bp);
|
|
|
|
pci_disable_device(pdev);
|
|
|
|
rtnl_unlock();
|
|
|
|
/* Request a slot reset */
|
|
return PCI_ERS_RESULT_NEED_RESET;
|
|
}
|
|
|
|
/**
|
|
* bnx2x_io_slot_reset - called after the PCI bus has been reset
|
|
* @pdev: Pointer to PCI device
|
|
*
|
|
* Restart the card from scratch, as if from a cold-boot.
|
|
*/
|
|
static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
|
|
{
|
|
struct net_device *dev = pci_get_drvdata(pdev);
|
|
struct bnx2x *bp = netdev_priv(dev);
|
|
|
|
rtnl_lock();
|
|
|
|
if (pci_enable_device(pdev)) {
|
|
dev_err(&pdev->dev,
|
|
"Cannot re-enable PCI device after reset\n");
|
|
rtnl_unlock();
|
|
return PCI_ERS_RESULT_DISCONNECT;
|
|
}
|
|
|
|
pci_set_master(pdev);
|
|
pci_restore_state(pdev);
|
|
|
|
if (netif_running(dev))
|
|
bnx2x_set_power_state(bp, PCI_D0);
|
|
|
|
rtnl_unlock();
|
|
|
|
return PCI_ERS_RESULT_RECOVERED;
|
|
}
|
|
|
|
/**
|
|
* bnx2x_io_resume - called when traffic can start flowing again
|
|
* @pdev: Pointer to PCI device
|
|
*
|
|
* This callback is called when the error recovery driver tells us that
|
|
* its OK to resume normal operation.
|
|
*/
|
|
static void bnx2x_io_resume(struct pci_dev *pdev)
|
|
{
|
|
struct net_device *dev = pci_get_drvdata(pdev);
|
|
struct bnx2x *bp = netdev_priv(dev);
|
|
|
|
if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
|
|
netdev_err(bp->dev, "Handling parity error recovery. "
|
|
"Try again later\n");
|
|
return;
|
|
}
|
|
|
|
rtnl_lock();
|
|
|
|
bnx2x_eeh_recover(bp);
|
|
|
|
if (netif_running(dev))
|
|
bnx2x_nic_load(bp, LOAD_NORMAL);
|
|
|
|
netif_device_attach(dev);
|
|
|
|
rtnl_unlock();
|
|
}
|
|
|
|
static struct pci_error_handlers bnx2x_err_handler = {
|
|
.error_detected = bnx2x_io_error_detected,
|
|
.slot_reset = bnx2x_io_slot_reset,
|
|
.resume = bnx2x_io_resume,
|
|
};
|
|
|
|
static struct pci_driver bnx2x_pci_driver = {
|
|
.name = DRV_MODULE_NAME,
|
|
.id_table = bnx2x_pci_tbl,
|
|
.probe = bnx2x_init_one,
|
|
.remove = __devexit_p(bnx2x_remove_one),
|
|
.suspend = bnx2x_suspend,
|
|
.resume = bnx2x_resume,
|
|
.err_handler = &bnx2x_err_handler,
|
|
};
|
|
|
|
static int __init bnx2x_init(void)
|
|
{
|
|
int ret;
|
|
|
|
pr_info("%s", version);
|
|
|
|
bnx2x_wq = create_singlethread_workqueue("bnx2x");
|
|
if (bnx2x_wq == NULL) {
|
|
pr_err("Cannot create workqueue\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ret = pci_register_driver(&bnx2x_pci_driver);
|
|
if (ret) {
|
|
pr_err("Cannot register driver\n");
|
|
destroy_workqueue(bnx2x_wq);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void __exit bnx2x_cleanup(void)
|
|
{
|
|
pci_unregister_driver(&bnx2x_pci_driver);
|
|
|
|
destroy_workqueue(bnx2x_wq);
|
|
}
|
|
|
|
void bnx2x_notify_link_changed(struct bnx2x *bp)
|
|
{
|
|
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
|
|
}
|
|
|
|
module_init(bnx2x_init);
|
|
module_exit(bnx2x_cleanup);
|
|
|
|
#ifdef BCM_CNIC
|
|
/**
|
|
* bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
|
|
*
|
|
* @bp: driver handle
|
|
* @set: set or clear the CAM entry
|
|
*
|
|
* This function will wait until the ramdord completion returns.
|
|
* Return 0 if success, -ENODEV if ramrod doesn't return.
|
|
*/
|
|
static inline int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
|
|
{
|
|
unsigned long ramrod_flags = 0;
|
|
|
|
__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
|
|
return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
|
|
&bp->iscsi_l2_mac_obj, true,
|
|
BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
|
|
}
|
|
|
|
/* count denotes the number of new completions we have seen */
|
|
static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
|
|
{
|
|
struct eth_spe *spe;
|
|
|
|
#ifdef BNX2X_STOP_ON_ERROR
|
|
if (unlikely(bp->panic))
|
|
return;
|
|
#endif
|
|
|
|
spin_lock_bh(&bp->spq_lock);
|
|
BUG_ON(bp->cnic_spq_pending < count);
|
|
bp->cnic_spq_pending -= count;
|
|
|
|
|
|
for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
|
|
u16 type = (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
|
|
& SPE_HDR_CONN_TYPE) >>
|
|
SPE_HDR_CONN_TYPE_SHIFT;
|
|
u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
|
|
>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
|
|
|
|
/* Set validation for iSCSI L2 client before sending SETUP
|
|
* ramrod
|
|
*/
|
|
if (type == ETH_CONNECTION_TYPE) {
|
|
if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP)
|
|
bnx2x_set_ctx_validation(bp, &bp->context.
|
|
vcxt[BNX2X_ISCSI_ETH_CID].eth,
|
|
BNX2X_ISCSI_ETH_CID);
|
|
}
|
|
|
|
/*
|
|
* There may be not more than 8 L2, not more than 8 L5 SPEs
|
|
* and in the air. We also check that number of outstanding
|
|
* COMMON ramrods is not more than the EQ and SPQ can
|
|
* accommodate.
|
|
*/
|
|
if (type == ETH_CONNECTION_TYPE) {
|
|
if (!atomic_read(&bp->cq_spq_left))
|
|
break;
|
|
else
|
|
atomic_dec(&bp->cq_spq_left);
|
|
} else if (type == NONE_CONNECTION_TYPE) {
|
|
if (!atomic_read(&bp->eq_spq_left))
|
|
break;
|
|
else
|
|
atomic_dec(&bp->eq_spq_left);
|
|
} else if ((type == ISCSI_CONNECTION_TYPE) ||
|
|
(type == FCOE_CONNECTION_TYPE)) {
|
|
if (bp->cnic_spq_pending >=
|
|
bp->cnic_eth_dev.max_kwqe_pending)
|
|
break;
|
|
else
|
|
bp->cnic_spq_pending++;
|
|
} else {
|
|
BNX2X_ERR("Unknown SPE type: %d\n", type);
|
|
bnx2x_panic();
|
|
break;
|
|
}
|
|
|
|
spe = bnx2x_sp_get_next(bp);
|
|
*spe = *bp->cnic_kwq_cons;
|
|
|
|
DP(NETIF_MSG_TIMER, "pending on SPQ %d, on KWQ %d count %d\n",
|
|
bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
|
|
|
|
if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
|
|
bp->cnic_kwq_cons = bp->cnic_kwq;
|
|
else
|
|
bp->cnic_kwq_cons++;
|
|
}
|
|
bnx2x_sp_prod_update(bp);
|
|
spin_unlock_bh(&bp->spq_lock);
|
|
}
|
|
|
|
static int bnx2x_cnic_sp_queue(struct net_device *dev,
|
|
struct kwqe_16 *kwqes[], u32 count)
|
|
{
|
|
struct bnx2x *bp = netdev_priv(dev);
|
|
int i;
|
|
|
|
#ifdef BNX2X_STOP_ON_ERROR
|
|
if (unlikely(bp->panic))
|
|
return -EIO;
|
|
#endif
|
|
|
|
spin_lock_bh(&bp->spq_lock);
|
|
|
|
for (i = 0; i < count; i++) {
|
|
struct eth_spe *spe = (struct eth_spe *)kwqes[i];
|
|
|
|
if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
|
|
break;
|
|
|
|
*bp->cnic_kwq_prod = *spe;
|
|
|
|
bp->cnic_kwq_pending++;
|
|
|
|
DP(NETIF_MSG_TIMER, "L5 SPQE %x %x %x:%x pos %d\n",
|
|
spe->hdr.conn_and_cmd_data, spe->hdr.type,
|
|
spe->data.update_data_addr.hi,
|
|
spe->data.update_data_addr.lo,
|
|
bp->cnic_kwq_pending);
|
|
|
|
if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
|
|
bp->cnic_kwq_prod = bp->cnic_kwq;
|
|
else
|
|
bp->cnic_kwq_prod++;
|
|
}
|
|
|
|
spin_unlock_bh(&bp->spq_lock);
|
|
|
|
if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
|
|
bnx2x_cnic_sp_post(bp, 0);
|
|
|
|
return i;
|
|
}
|
|
|
|
static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
|
|
{
|
|
struct cnic_ops *c_ops;
|
|
int rc = 0;
|
|
|
|
mutex_lock(&bp->cnic_mutex);
|
|
c_ops = rcu_dereference_protected(bp->cnic_ops,
|
|
lockdep_is_held(&bp->cnic_mutex));
|
|
if (c_ops)
|
|
rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
|
|
mutex_unlock(&bp->cnic_mutex);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
|
|
{
|
|
struct cnic_ops *c_ops;
|
|
int rc = 0;
|
|
|
|
rcu_read_lock();
|
|
c_ops = rcu_dereference(bp->cnic_ops);
|
|
if (c_ops)
|
|
rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
|
|
rcu_read_unlock();
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* for commands that have no data
|
|
*/
|
|
int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
|
|
{
|
|
struct cnic_ctl_info ctl = {0};
|
|
|
|
ctl.cmd = cmd;
|
|
|
|
return bnx2x_cnic_ctl_send(bp, &ctl);
|
|
}
|
|
|
|
static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
|
|
{
|
|
struct cnic_ctl_info ctl = {0};
|
|
|
|
/* first we tell CNIC and only then we count this as a completion */
|
|
ctl.cmd = CNIC_CTL_COMPLETION_CMD;
|
|
ctl.data.comp.cid = cid;
|
|
ctl.data.comp.error = err;
|
|
|
|
bnx2x_cnic_ctl_send_bh(bp, &ctl);
|
|
bnx2x_cnic_sp_post(bp, 0);
|
|
}
|
|
|
|
|
|
/* Called with netif_addr_lock_bh() taken.
|
|
* Sets an rx_mode config for an iSCSI ETH client.
|
|
* Doesn't block.
|
|
* Completion should be checked outside.
|
|
*/
|
|
static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
|
|
{
|
|
unsigned long accept_flags = 0, ramrod_flags = 0;
|
|
u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
|
|
int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
|
|
|
|
if (start) {
|
|
/* Start accepting on iSCSI L2 ring. Accept all multicasts
|
|
* because it's the only way for UIO Queue to accept
|
|
* multicasts (in non-promiscuous mode only one Queue per
|
|
* function will receive multicast packets (leading in our
|
|
* case).
|
|
*/
|
|
__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
|
|
__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
|
|
__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
|
|
__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
|
|
|
|
/* Clear STOP_PENDING bit if START is requested */
|
|
clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
|
|
|
|
sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
|
|
} else
|
|
/* Clear START_PENDING bit if STOP is requested */
|
|
clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
|
|
|
|
if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
|
|
set_bit(sched_state, &bp->sp_state);
|
|
else {
|
|
__set_bit(RAMROD_RX, &ramrod_flags);
|
|
bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
|
|
ramrod_flags);
|
|
}
|
|
}
|
|
|
|
|
|
static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
|
|
{
|
|
struct bnx2x *bp = netdev_priv(dev);
|
|
int rc = 0;
|
|
|
|
switch (ctl->cmd) {
|
|
case DRV_CTL_CTXTBL_WR_CMD: {
|
|
u32 index = ctl->data.io.offset;
|
|
dma_addr_t addr = ctl->data.io.dma_addr;
|
|
|
|
bnx2x_ilt_wr(bp, index, addr);
|
|
break;
|
|
}
|
|
|
|
case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
|
|
int count = ctl->data.credit.credit_count;
|
|
|
|
bnx2x_cnic_sp_post(bp, count);
|
|
break;
|
|
}
|
|
|
|
/* rtnl_lock is held. */
|
|
case DRV_CTL_START_L2_CMD: {
|
|
struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
|
|
unsigned long sp_bits = 0;
|
|
|
|
/* Configure the iSCSI classification object */
|
|
bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
|
|
cp->iscsi_l2_client_id,
|
|
cp->iscsi_l2_cid, BP_FUNC(bp),
|
|
bnx2x_sp(bp, mac_rdata),
|
|
bnx2x_sp_mapping(bp, mac_rdata),
|
|
BNX2X_FILTER_MAC_PENDING,
|
|
&bp->sp_state, BNX2X_OBJ_TYPE_RX,
|
|
&bp->macs_pool);
|
|
|
|
/* Set iSCSI MAC address */
|
|
rc = bnx2x_set_iscsi_eth_mac_addr(bp);
|
|
if (rc)
|
|
break;
|
|
|
|
mmiowb();
|
|
barrier();
|
|
|
|
/* Start accepting on iSCSI L2 ring */
|
|
|
|
netif_addr_lock_bh(dev);
|
|
bnx2x_set_iscsi_eth_rx_mode(bp, true);
|
|
netif_addr_unlock_bh(dev);
|
|
|
|
/* bits to wait on */
|
|
__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
|
|
__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
|
|
|
|
if (!bnx2x_wait_sp_comp(bp, sp_bits))
|
|
BNX2X_ERR("rx_mode completion timed out!\n");
|
|
|
|
break;
|
|
}
|
|
|
|
/* rtnl_lock is held. */
|
|
case DRV_CTL_STOP_L2_CMD: {
|
|
unsigned long sp_bits = 0;
|
|
|
|
/* Stop accepting on iSCSI L2 ring */
|
|
netif_addr_lock_bh(dev);
|
|
bnx2x_set_iscsi_eth_rx_mode(bp, false);
|
|
netif_addr_unlock_bh(dev);
|
|
|
|
/* bits to wait on */
|
|
__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
|
|
__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
|
|
|
|
if (!bnx2x_wait_sp_comp(bp, sp_bits))
|
|
BNX2X_ERR("rx_mode completion timed out!\n");
|
|
|
|
mmiowb();
|
|
barrier();
|
|
|
|
/* Unset iSCSI L2 MAC */
|
|
rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
|
|
BNX2X_ISCSI_ETH_MAC, true);
|
|
break;
|
|
}
|
|
case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
|
|
int count = ctl->data.credit.credit_count;
|
|
|
|
smp_mb__before_atomic_inc();
|
|
atomic_add(count, &bp->cq_spq_left);
|
|
smp_mb__after_atomic_inc();
|
|
break;
|
|
}
|
|
|
|
default:
|
|
BNX2X_ERR("unknown command %x\n", ctl->cmd);
|
|
rc = -EINVAL;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
|
|
{
|
|
struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
|
|
|
|
if (bp->flags & USING_MSIX_FLAG) {
|
|
cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
|
|
cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
|
|
cp->irq_arr[0].vector = bp->msix_table[1].vector;
|
|
} else {
|
|
cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
|
|
cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
|
|
}
|
|
if (!CHIP_IS_E1x(bp))
|
|
cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
|
|
else
|
|
cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
|
|
|
|
cp->irq_arr[0].status_blk_num = bnx2x_cnic_fw_sb_id(bp);
|
|
cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
|
|
cp->irq_arr[1].status_blk = bp->def_status_blk;
|
|
cp->irq_arr[1].status_blk_num = DEF_SB_ID;
|
|
cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
|
|
|
|
cp->num_irq = 2;
|
|
}
|
|
|
|
static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
|
|
void *data)
|
|
{
|
|
struct bnx2x *bp = netdev_priv(dev);
|
|
struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
|
|
|
|
if (ops == NULL)
|
|
return -EINVAL;
|
|
|
|
bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
|
|
if (!bp->cnic_kwq)
|
|
return -ENOMEM;
|
|
|
|
bp->cnic_kwq_cons = bp->cnic_kwq;
|
|
bp->cnic_kwq_prod = bp->cnic_kwq;
|
|
bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
|
|
|
|
bp->cnic_spq_pending = 0;
|
|
bp->cnic_kwq_pending = 0;
|
|
|
|
bp->cnic_data = data;
|
|
|
|
cp->num_irq = 0;
|
|
cp->drv_state |= CNIC_DRV_STATE_REGD;
|
|
cp->iro_arr = bp->iro_arr;
|
|
|
|
bnx2x_setup_cnic_irq_info(bp);
|
|
|
|
rcu_assign_pointer(bp->cnic_ops, ops);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bnx2x_unregister_cnic(struct net_device *dev)
|
|
{
|
|
struct bnx2x *bp = netdev_priv(dev);
|
|
struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
|
|
|
|
mutex_lock(&bp->cnic_mutex);
|
|
cp->drv_state = 0;
|
|
rcu_assign_pointer(bp->cnic_ops, NULL);
|
|
mutex_unlock(&bp->cnic_mutex);
|
|
synchronize_rcu();
|
|
kfree(bp->cnic_kwq);
|
|
bp->cnic_kwq = NULL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
|
|
{
|
|
struct bnx2x *bp = netdev_priv(dev);
|
|
struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
|
|
|
|
/* If both iSCSI and FCoE are disabled - return NULL in
|
|
* order to indicate CNIC that it should not try to work
|
|
* with this device.
|
|
*/
|
|
if (NO_ISCSI(bp) && NO_FCOE(bp))
|
|
return NULL;
|
|
|
|
cp->drv_owner = THIS_MODULE;
|
|
cp->chip_id = CHIP_ID(bp);
|
|
cp->pdev = bp->pdev;
|
|
cp->io_base = bp->regview;
|
|
cp->io_base2 = bp->doorbells;
|
|
cp->max_kwqe_pending = 8;
|
|
cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
|
|
cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
|
|
bnx2x_cid_ilt_lines(bp);
|
|
cp->ctx_tbl_len = CNIC_ILT_LINES;
|
|
cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
|
|
cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
|
|
cp->drv_ctl = bnx2x_drv_ctl;
|
|
cp->drv_register_cnic = bnx2x_register_cnic;
|
|
cp->drv_unregister_cnic = bnx2x_unregister_cnic;
|
|
cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID;
|
|
cp->iscsi_l2_client_id =
|
|
bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
|
|
cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID;
|
|
|
|
if (NO_ISCSI_OOO(bp))
|
|
cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
|
|
|
|
if (NO_ISCSI(bp))
|
|
cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
|
|
|
|
if (NO_FCOE(bp))
|
|
cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
|
|
|
|
DP(BNX2X_MSG_SP, "page_size %d, tbl_offset %d, tbl_lines %d, "
|
|
"starting cid %d\n",
|
|
cp->ctx_blk_size,
|
|
cp->ctx_tbl_offset,
|
|
cp->ctx_tbl_len,
|
|
cp->starting_cid);
|
|
return cp;
|
|
}
|
|
EXPORT_SYMBOL(bnx2x_cnic_probe);
|
|
|
|
#endif /* BCM_CNIC */
|
|
|