3fed180812
Rather than having the high level ioctl interface guess the underlying implementation details, having the implementation declare what capabilities it exports. We define an intel_driver_caps, similar to the intel_device_info, which instead of trying to describe the HW gives details on what the driver itself supports. This is then populated by the engine backend for the new scheduler capability field for use elsewhere. v2: Use caps.scheduler for validating CONTEXT_PARAM_SET_PRIORITY (Mika) One less assumption of engine[RCS] \o/ Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tomasz Lis <tomasz.lis@intel.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Michal Wajdeczko <michal.wajdeczko@intel.com> Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com> Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com> Reviewed-by: Tomasz Lis <tomasz.lis@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20180207210544.26351-2-chris@chris-wilson.co.uk Reviewed-by: Michel Thierry <michel.thierry@intel.com>
595 lines
18 KiB
C
595 lines
18 KiB
C
/*
|
|
* Copyright © 2016 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
#include <drm/drm_print.h>
|
|
|
|
#include "intel_device_info.h"
|
|
#include "i915_drv.h"
|
|
|
|
#define PLATFORM_NAME(x) [INTEL_##x] = #x
|
|
static const char * const platform_names[] = {
|
|
PLATFORM_NAME(I830),
|
|
PLATFORM_NAME(I845G),
|
|
PLATFORM_NAME(I85X),
|
|
PLATFORM_NAME(I865G),
|
|
PLATFORM_NAME(I915G),
|
|
PLATFORM_NAME(I915GM),
|
|
PLATFORM_NAME(I945G),
|
|
PLATFORM_NAME(I945GM),
|
|
PLATFORM_NAME(G33),
|
|
PLATFORM_NAME(PINEVIEW),
|
|
PLATFORM_NAME(I965G),
|
|
PLATFORM_NAME(I965GM),
|
|
PLATFORM_NAME(G45),
|
|
PLATFORM_NAME(GM45),
|
|
PLATFORM_NAME(IRONLAKE),
|
|
PLATFORM_NAME(SANDYBRIDGE),
|
|
PLATFORM_NAME(IVYBRIDGE),
|
|
PLATFORM_NAME(VALLEYVIEW),
|
|
PLATFORM_NAME(HASWELL),
|
|
PLATFORM_NAME(BROADWELL),
|
|
PLATFORM_NAME(CHERRYVIEW),
|
|
PLATFORM_NAME(SKYLAKE),
|
|
PLATFORM_NAME(BROXTON),
|
|
PLATFORM_NAME(KABYLAKE),
|
|
PLATFORM_NAME(GEMINILAKE),
|
|
PLATFORM_NAME(COFFEELAKE),
|
|
PLATFORM_NAME(CANNONLAKE),
|
|
PLATFORM_NAME(ICELAKE),
|
|
};
|
|
#undef PLATFORM_NAME
|
|
|
|
const char *intel_platform_name(enum intel_platform platform)
|
|
{
|
|
BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS);
|
|
|
|
if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) ||
|
|
platform_names[platform] == NULL))
|
|
return "<unknown>";
|
|
|
|
return platform_names[platform];
|
|
}
|
|
|
|
void intel_device_info_dump_flags(const struct intel_device_info *info,
|
|
struct drm_printer *p)
|
|
{
|
|
#define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name));
|
|
DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
|
|
#undef PRINT_FLAG
|
|
}
|
|
|
|
static void sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
|
|
{
|
|
drm_printf(p, "slice mask: %04x\n", sseu->slice_mask);
|
|
drm_printf(p, "slice total: %u\n", hweight8(sseu->slice_mask));
|
|
drm_printf(p, "subslice total: %u\n", sseu_subslice_total(sseu));
|
|
drm_printf(p, "subslice mask %04x\n", sseu->subslice_mask);
|
|
drm_printf(p, "subslice per slice: %u\n",
|
|
hweight8(sseu->subslice_mask));
|
|
drm_printf(p, "EU total: %u\n", sseu->eu_total);
|
|
drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
|
|
drm_printf(p, "has slice power gating: %s\n",
|
|
yesno(sseu->has_slice_pg));
|
|
drm_printf(p, "has subslice power gating: %s\n",
|
|
yesno(sseu->has_subslice_pg));
|
|
drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg));
|
|
}
|
|
|
|
void intel_device_info_dump_runtime(const struct intel_device_info *info,
|
|
struct drm_printer *p)
|
|
{
|
|
sseu_dump(&info->sseu, p);
|
|
|
|
drm_printf(p, "CS timestamp frequency: %u kHz\n",
|
|
info->cs_timestamp_frequency_khz);
|
|
}
|
|
|
|
void intel_device_info_dump(const struct intel_device_info *info,
|
|
struct drm_printer *p)
|
|
{
|
|
struct drm_i915_private *dev_priv =
|
|
container_of(info, struct drm_i915_private, info);
|
|
|
|
drm_printf(p, "pciid=0x%04x rev=0x%02x platform=%s gen=%i\n",
|
|
INTEL_DEVID(dev_priv),
|
|
INTEL_REVID(dev_priv),
|
|
intel_platform_name(info->platform),
|
|
info->gen);
|
|
|
|
intel_device_info_dump_flags(info, p);
|
|
}
|
|
|
|
static void gen10_sseu_info_init(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
|
|
const u32 fuse2 = I915_READ(GEN8_FUSE2);
|
|
|
|
sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >>
|
|
GEN10_F2_S_ENA_SHIFT;
|
|
sseu->subslice_mask = (1 << 4) - 1;
|
|
sseu->subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >>
|
|
GEN10_F2_SS_DIS_SHIFT);
|
|
|
|
sseu->eu_total = hweight32(~I915_READ(GEN8_EU_DISABLE0));
|
|
sseu->eu_total += hweight32(~I915_READ(GEN8_EU_DISABLE1));
|
|
sseu->eu_total += hweight32(~I915_READ(GEN8_EU_DISABLE2));
|
|
sseu->eu_total += hweight8(~(I915_READ(GEN10_EU_DISABLE3) &
|
|
GEN10_EU_DIS_SS_MASK));
|
|
|
|
/*
|
|
* CNL is expected to always have a uniform distribution
|
|
* of EU across subslices with the exception that any one
|
|
* EU in any one subslice may be fused off for die
|
|
* recovery.
|
|
*/
|
|
sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
|
|
DIV_ROUND_UP(sseu->eu_total,
|
|
sseu_subslice_total(sseu)) : 0;
|
|
|
|
/* No restrictions on Power Gating */
|
|
sseu->has_slice_pg = 1;
|
|
sseu->has_subslice_pg = 1;
|
|
sseu->has_eu_pg = 1;
|
|
}
|
|
|
|
static void cherryview_sseu_info_init(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
|
|
u32 fuse, eu_dis;
|
|
|
|
fuse = I915_READ(CHV_FUSE_GT);
|
|
|
|
sseu->slice_mask = BIT(0);
|
|
|
|
if (!(fuse & CHV_FGT_DISABLE_SS0)) {
|
|
sseu->subslice_mask |= BIT(0);
|
|
eu_dis = fuse & (CHV_FGT_EU_DIS_SS0_R0_MASK |
|
|
CHV_FGT_EU_DIS_SS0_R1_MASK);
|
|
sseu->eu_total += 8 - hweight32(eu_dis);
|
|
}
|
|
|
|
if (!(fuse & CHV_FGT_DISABLE_SS1)) {
|
|
sseu->subslice_mask |= BIT(1);
|
|
eu_dis = fuse & (CHV_FGT_EU_DIS_SS1_R0_MASK |
|
|
CHV_FGT_EU_DIS_SS1_R1_MASK);
|
|
sseu->eu_total += 8 - hweight32(eu_dis);
|
|
}
|
|
|
|
/*
|
|
* CHV expected to always have a uniform distribution of EU
|
|
* across subslices.
|
|
*/
|
|
sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
|
|
sseu->eu_total / sseu_subslice_total(sseu) :
|
|
0;
|
|
/*
|
|
* CHV supports subslice power gating on devices with more than
|
|
* one subslice, and supports EU power gating on devices with
|
|
* more than one EU pair per subslice.
|
|
*/
|
|
sseu->has_slice_pg = 0;
|
|
sseu->has_subslice_pg = sseu_subslice_total(sseu) > 1;
|
|
sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
|
|
}
|
|
|
|
static void gen9_sseu_info_init(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_device_info *info = mkwrite_device_info(dev_priv);
|
|
struct sseu_dev_info *sseu = &info->sseu;
|
|
int s_max = 3, ss_max = 4, eu_max = 8;
|
|
int s, ss;
|
|
u32 fuse2, eu_disable;
|
|
u8 eu_mask = 0xff;
|
|
|
|
fuse2 = I915_READ(GEN8_FUSE2);
|
|
sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
|
|
|
|
/*
|
|
* The subslice disable field is global, i.e. it applies
|
|
* to each of the enabled slices.
|
|
*/
|
|
sseu->subslice_mask = (1 << ss_max) - 1;
|
|
sseu->subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
|
|
GEN9_F2_SS_DIS_SHIFT);
|
|
|
|
/*
|
|
* Iterate through enabled slices and subslices to
|
|
* count the total enabled EU.
|
|
*/
|
|
for (s = 0; s < s_max; s++) {
|
|
if (!(sseu->slice_mask & BIT(s)))
|
|
/* skip disabled slice */
|
|
continue;
|
|
|
|
eu_disable = I915_READ(GEN9_EU_DISABLE(s));
|
|
for (ss = 0; ss < ss_max; ss++) {
|
|
int eu_per_ss;
|
|
|
|
if (!(sseu->subslice_mask & BIT(ss)))
|
|
/* skip disabled subslice */
|
|
continue;
|
|
|
|
eu_per_ss = eu_max - hweight8((eu_disable >> (ss*8)) &
|
|
eu_mask);
|
|
|
|
/*
|
|
* Record which subslice(s) has(have) 7 EUs. we
|
|
* can tune the hash used to spread work among
|
|
* subslices if they are unbalanced.
|
|
*/
|
|
if (eu_per_ss == 7)
|
|
sseu->subslice_7eu[s] |= BIT(ss);
|
|
|
|
sseu->eu_total += eu_per_ss;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* SKL is expected to always have a uniform distribution
|
|
* of EU across subslices with the exception that any one
|
|
* EU in any one subslice may be fused off for die
|
|
* recovery. BXT is expected to be perfectly uniform in EU
|
|
* distribution.
|
|
*/
|
|
sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
|
|
DIV_ROUND_UP(sseu->eu_total,
|
|
sseu_subslice_total(sseu)) : 0;
|
|
/*
|
|
* SKL+ supports slice power gating on devices with more than
|
|
* one slice, and supports EU power gating on devices with
|
|
* more than one EU pair per subslice. BXT+ supports subslice
|
|
* power gating on devices with more than one subslice, and
|
|
* supports EU power gating on devices with more than one EU
|
|
* pair per subslice.
|
|
*/
|
|
sseu->has_slice_pg =
|
|
!IS_GEN9_LP(dev_priv) && hweight8(sseu->slice_mask) > 1;
|
|
sseu->has_subslice_pg =
|
|
IS_GEN9_LP(dev_priv) && sseu_subslice_total(sseu) > 1;
|
|
sseu->has_eu_pg = sseu->eu_per_subslice > 2;
|
|
|
|
if (IS_GEN9_LP(dev_priv)) {
|
|
#define IS_SS_DISABLED(ss) (!(sseu->subslice_mask & BIT(ss)))
|
|
info->has_pooled_eu = hweight8(sseu->subslice_mask) == 3;
|
|
|
|
sseu->min_eu_in_pool = 0;
|
|
if (info->has_pooled_eu) {
|
|
if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
|
|
sseu->min_eu_in_pool = 3;
|
|
else if (IS_SS_DISABLED(1))
|
|
sseu->min_eu_in_pool = 6;
|
|
else
|
|
sseu->min_eu_in_pool = 9;
|
|
}
|
|
#undef IS_SS_DISABLED
|
|
}
|
|
}
|
|
|
|
static void broadwell_sseu_info_init(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
|
|
const int s_max = 3, ss_max = 3, eu_max = 8;
|
|
int s, ss;
|
|
u32 fuse2, eu_disable[3]; /* s_max */
|
|
|
|
fuse2 = I915_READ(GEN8_FUSE2);
|
|
sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
|
|
/*
|
|
* The subslice disable field is global, i.e. it applies
|
|
* to each of the enabled slices.
|
|
*/
|
|
sseu->subslice_mask = GENMASK(ss_max - 1, 0);
|
|
sseu->subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
|
|
GEN8_F2_SS_DIS_SHIFT);
|
|
|
|
eu_disable[0] = I915_READ(GEN8_EU_DISABLE0) & GEN8_EU_DIS0_S0_MASK;
|
|
eu_disable[1] = (I915_READ(GEN8_EU_DISABLE0) >> GEN8_EU_DIS0_S1_SHIFT) |
|
|
((I915_READ(GEN8_EU_DISABLE1) & GEN8_EU_DIS1_S1_MASK) <<
|
|
(32 - GEN8_EU_DIS0_S1_SHIFT));
|
|
eu_disable[2] = (I915_READ(GEN8_EU_DISABLE1) >> GEN8_EU_DIS1_S2_SHIFT) |
|
|
((I915_READ(GEN8_EU_DISABLE2) & GEN8_EU_DIS2_S2_MASK) <<
|
|
(32 - GEN8_EU_DIS1_S2_SHIFT));
|
|
|
|
/*
|
|
* Iterate through enabled slices and subslices to
|
|
* count the total enabled EU.
|
|
*/
|
|
for (s = 0; s < s_max; s++) {
|
|
if (!(sseu->slice_mask & BIT(s)))
|
|
/* skip disabled slice */
|
|
continue;
|
|
|
|
for (ss = 0; ss < ss_max; ss++) {
|
|
u32 n_disabled;
|
|
|
|
if (!(sseu->subslice_mask & BIT(ss)))
|
|
/* skip disabled subslice */
|
|
continue;
|
|
|
|
n_disabled = hweight8(eu_disable[s] >> (ss * eu_max));
|
|
|
|
/*
|
|
* Record which subslices have 7 EUs.
|
|
*/
|
|
if (eu_max - n_disabled == 7)
|
|
sseu->subslice_7eu[s] |= 1 << ss;
|
|
|
|
sseu->eu_total += eu_max - n_disabled;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* BDW is expected to always have a uniform distribution of EU across
|
|
* subslices with the exception that any one EU in any one subslice may
|
|
* be fused off for die recovery.
|
|
*/
|
|
sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
|
|
DIV_ROUND_UP(sseu->eu_total,
|
|
sseu_subslice_total(sseu)) : 0;
|
|
|
|
/*
|
|
* BDW supports slice power gating on devices with more than
|
|
* one slice.
|
|
*/
|
|
sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
|
|
sseu->has_subslice_pg = 0;
|
|
sseu->has_eu_pg = 0;
|
|
}
|
|
|
|
static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv)
|
|
{
|
|
u32 ts_override = I915_READ(GEN9_TIMESTAMP_OVERRIDE);
|
|
u32 base_freq, frac_freq;
|
|
|
|
base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
|
|
GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
|
|
base_freq *= 1000;
|
|
|
|
frac_freq = ((ts_override &
|
|
GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
|
|
GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
|
|
frac_freq = 1000 / (frac_freq + 1);
|
|
|
|
return base_freq + frac_freq;
|
|
}
|
|
|
|
static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv)
|
|
{
|
|
u32 f12_5_mhz = 12500;
|
|
u32 f19_2_mhz = 19200;
|
|
u32 f24_mhz = 24000;
|
|
|
|
if (INTEL_GEN(dev_priv) <= 4) {
|
|
/* PRMs say:
|
|
*
|
|
* "The value in this register increments once every 16
|
|
* hclks." (through the “Clocking Configuration”
|
|
* (“CLKCFG”) MCHBAR register)
|
|
*/
|
|
return dev_priv->rawclk_freq / 16;
|
|
} else if (INTEL_GEN(dev_priv) <= 8) {
|
|
/* PRMs say:
|
|
*
|
|
* "The PCU TSC counts 10ns increments; this timestamp
|
|
* reflects bits 38:3 of the TSC (i.e. 80ns granularity,
|
|
* rolling over every 1.5 hours).
|
|
*/
|
|
return f12_5_mhz;
|
|
} else if (INTEL_GEN(dev_priv) <= 9) {
|
|
u32 ctc_reg = I915_READ(CTC_MODE);
|
|
u32 freq = 0;
|
|
|
|
if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
|
|
freq = read_reference_ts_freq(dev_priv);
|
|
} else {
|
|
freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz;
|
|
|
|
/* Now figure out how the command stream's timestamp
|
|
* register increments from this frequency (it might
|
|
* increment only every few clock cycle).
|
|
*/
|
|
freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
|
|
CTC_SHIFT_PARAMETER_SHIFT);
|
|
}
|
|
|
|
return freq;
|
|
} else if (INTEL_GEN(dev_priv) <= 10) {
|
|
u32 ctc_reg = I915_READ(CTC_MODE);
|
|
u32 freq = 0;
|
|
u32 rpm_config_reg = 0;
|
|
|
|
/* First figure out the reference frequency. There are 2 ways
|
|
* we can compute the frequency, either through the
|
|
* TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
|
|
* tells us which one we should use.
|
|
*/
|
|
if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
|
|
freq = read_reference_ts_freq(dev_priv);
|
|
} else {
|
|
u32 crystal_clock;
|
|
|
|
rpm_config_reg = I915_READ(RPM_CONFIG0);
|
|
crystal_clock = (rpm_config_reg &
|
|
GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
|
|
GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
|
|
switch (crystal_clock) {
|
|
case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
|
|
freq = f19_2_mhz;
|
|
break;
|
|
case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
|
|
freq = f24_mhz;
|
|
break;
|
|
}
|
|
|
|
/* Now figure out how the command stream's timestamp
|
|
* register increments from this frequency (it might
|
|
* increment only every few clock cycle).
|
|
*/
|
|
freq >>= 3 - ((rpm_config_reg &
|
|
GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
|
|
GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
|
|
}
|
|
|
|
return freq;
|
|
}
|
|
|
|
MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n");
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* intel_device_info_runtime_init - initialize runtime info
|
|
* @info: intel device info struct
|
|
*
|
|
* Determine various intel_device_info fields at runtime.
|
|
*
|
|
* Use it when either:
|
|
* - it's judged too laborious to fill n static structures with the limit
|
|
* when a simple if statement does the job,
|
|
* - run-time checks (eg read fuse/strap registers) are needed.
|
|
*
|
|
* This function needs to be called:
|
|
* - after the MMIO has been setup as we are reading registers,
|
|
* - after the PCH has been detected,
|
|
* - before the first usage of the fields it can tweak.
|
|
*/
|
|
void intel_device_info_runtime_init(struct intel_device_info *info)
|
|
{
|
|
struct drm_i915_private *dev_priv =
|
|
container_of(info, struct drm_i915_private, info);
|
|
enum pipe pipe;
|
|
|
|
if (INTEL_GEN(dev_priv) >= 10) {
|
|
for_each_pipe(dev_priv, pipe)
|
|
info->num_scalers[pipe] = 2;
|
|
} else if (INTEL_GEN(dev_priv) == 9) {
|
|
info->num_scalers[PIPE_A] = 2;
|
|
info->num_scalers[PIPE_B] = 2;
|
|
info->num_scalers[PIPE_C] = 1;
|
|
}
|
|
|
|
/*
|
|
* Skylake and Broxton currently don't expose the topmost plane as its
|
|
* use is exclusive with the legacy cursor and we only want to expose
|
|
* one of those, not both. Until we can safely expose the topmost plane
|
|
* as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported,
|
|
* we don't expose the topmost plane at all to prevent ABI breakage
|
|
* down the line.
|
|
*/
|
|
if (IS_GEN10(dev_priv) || IS_GEMINILAKE(dev_priv))
|
|
for_each_pipe(dev_priv, pipe)
|
|
info->num_sprites[pipe] = 3;
|
|
else if (IS_BROXTON(dev_priv)) {
|
|
info->num_sprites[PIPE_A] = 2;
|
|
info->num_sprites[PIPE_B] = 2;
|
|
info->num_sprites[PIPE_C] = 1;
|
|
} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
|
|
for_each_pipe(dev_priv, pipe)
|
|
info->num_sprites[pipe] = 2;
|
|
} else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
|
|
for_each_pipe(dev_priv, pipe)
|
|
info->num_sprites[pipe] = 1;
|
|
}
|
|
|
|
if (i915_modparams.disable_display) {
|
|
DRM_INFO("Display disabled (module parameter)\n");
|
|
info->num_pipes = 0;
|
|
} else if (info->num_pipes > 0 &&
|
|
(IS_GEN7(dev_priv) || IS_GEN8(dev_priv)) &&
|
|
HAS_PCH_SPLIT(dev_priv)) {
|
|
u32 fuse_strap = I915_READ(FUSE_STRAP);
|
|
u32 sfuse_strap = I915_READ(SFUSE_STRAP);
|
|
|
|
/*
|
|
* SFUSE_STRAP is supposed to have a bit signalling the display
|
|
* is fused off. Unfortunately it seems that, at least in
|
|
* certain cases, fused off display means that PCH display
|
|
* reads don't land anywhere. In that case, we read 0s.
|
|
*
|
|
* On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK
|
|
* should be set when taking over after the firmware.
|
|
*/
|
|
if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE ||
|
|
sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED ||
|
|
(HAS_PCH_CPT(dev_priv) &&
|
|
!(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) {
|
|
DRM_INFO("Display fused off, disabling\n");
|
|
info->num_pipes = 0;
|
|
} else if (fuse_strap & IVB_PIPE_C_DISABLE) {
|
|
DRM_INFO("PipeC fused off\n");
|
|
info->num_pipes -= 1;
|
|
}
|
|
} else if (info->num_pipes > 0 && IS_GEN9(dev_priv)) {
|
|
u32 dfsm = I915_READ(SKL_DFSM);
|
|
u8 disabled_mask = 0;
|
|
bool invalid;
|
|
int num_bits;
|
|
|
|
if (dfsm & SKL_DFSM_PIPE_A_DISABLE)
|
|
disabled_mask |= BIT(PIPE_A);
|
|
if (dfsm & SKL_DFSM_PIPE_B_DISABLE)
|
|
disabled_mask |= BIT(PIPE_B);
|
|
if (dfsm & SKL_DFSM_PIPE_C_DISABLE)
|
|
disabled_mask |= BIT(PIPE_C);
|
|
|
|
num_bits = hweight8(disabled_mask);
|
|
|
|
switch (disabled_mask) {
|
|
case BIT(PIPE_A):
|
|
case BIT(PIPE_B):
|
|
case BIT(PIPE_A) | BIT(PIPE_B):
|
|
case BIT(PIPE_A) | BIT(PIPE_C):
|
|
invalid = true;
|
|
break;
|
|
default:
|
|
invalid = false;
|
|
}
|
|
|
|
if (num_bits > info->num_pipes || invalid)
|
|
DRM_ERROR("invalid pipe fuse configuration: 0x%x\n",
|
|
disabled_mask);
|
|
else
|
|
info->num_pipes -= num_bits;
|
|
}
|
|
|
|
/* Initialize slice/subslice/EU info */
|
|
if (IS_CHERRYVIEW(dev_priv))
|
|
cherryview_sseu_info_init(dev_priv);
|
|
else if (IS_BROADWELL(dev_priv))
|
|
broadwell_sseu_info_init(dev_priv);
|
|
else if (INTEL_GEN(dev_priv) == 9)
|
|
gen9_sseu_info_init(dev_priv);
|
|
else if (INTEL_GEN(dev_priv) >= 10)
|
|
gen10_sseu_info_init(dev_priv);
|
|
|
|
/* Initialize command stream timestamp frequency */
|
|
info->cs_timestamp_frequency_khz = read_timestamp_frequency(dev_priv);
|
|
}
|
|
|
|
void intel_driver_caps_print(const struct intel_driver_caps *caps,
|
|
struct drm_printer *p)
|
|
{
|
|
drm_printf(p, "scheduler: %x\n", caps->scheduler);
|
|
}
|