9dad5feb49
fscrypt_get_encryption_info() has never actually been safe to call in a context that needs GFP_NOFS, since it calls crypto_alloc_skcipher(). crypto_alloc_skcipher() isn't GFP_NOFS-safe, even if called under memalloc_nofs_save(). This is because it may load kernel modules, and also because it internally takes crypto_alg_sem. Other tasks can do GFP_KERNEL allocations while holding crypto_alg_sem for write. The use of fscrypt_init_mutex isn't GFP_NOFS-safe either. So, stop pretending that fscrypt_get_encryption_info() is nofs-safe. I.e., when it allocates memory, just use GFP_KERNEL instead of GFP_NOFS. Note, another reason to do this is that GFP_NOFS is deprecated in favor of using memalloc_nofs_save() in the proper places. Acked-by: Jeff Layton <jlayton@kernel.org> Link: https://lore.kernel.org/r/20200917041136.178600-10-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com>
366 lines
11 KiB
C
366 lines
11 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Inline encryption support for fscrypt
|
|
*
|
|
* Copyright 2019 Google LLC
|
|
*/
|
|
|
|
/*
|
|
* With "inline encryption", the block layer handles the decryption/encryption
|
|
* as part of the bio, instead of the filesystem doing the crypto itself via
|
|
* crypto API. See Documentation/block/inline-encryption.rst. fscrypt still
|
|
* provides the key and IV to use.
|
|
*/
|
|
|
|
#include <linux/blk-crypto.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include "fscrypt_private.h"
|
|
|
|
struct fscrypt_blk_crypto_key {
|
|
struct blk_crypto_key base;
|
|
int num_devs;
|
|
struct request_queue *devs[];
|
|
};
|
|
|
|
static int fscrypt_get_num_devices(struct super_block *sb)
|
|
{
|
|
if (sb->s_cop->get_num_devices)
|
|
return sb->s_cop->get_num_devices(sb);
|
|
return 1;
|
|
}
|
|
|
|
static void fscrypt_get_devices(struct super_block *sb, int num_devs,
|
|
struct request_queue **devs)
|
|
{
|
|
if (num_devs == 1)
|
|
devs[0] = bdev_get_queue(sb->s_bdev);
|
|
else
|
|
sb->s_cop->get_devices(sb, devs);
|
|
}
|
|
|
|
static unsigned int fscrypt_get_dun_bytes(const struct fscrypt_info *ci)
|
|
{
|
|
struct super_block *sb = ci->ci_inode->i_sb;
|
|
unsigned int flags = fscrypt_policy_flags(&ci->ci_policy);
|
|
int ino_bits = 64, lblk_bits = 64;
|
|
|
|
if (flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY)
|
|
return offsetofend(union fscrypt_iv, nonce);
|
|
|
|
if (flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64)
|
|
return sizeof(__le64);
|
|
|
|
if (flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32)
|
|
return sizeof(__le32);
|
|
|
|
/* Default case: IVs are just the file logical block number */
|
|
if (sb->s_cop->get_ino_and_lblk_bits)
|
|
sb->s_cop->get_ino_and_lblk_bits(sb, &ino_bits, &lblk_bits);
|
|
return DIV_ROUND_UP(lblk_bits, 8);
|
|
}
|
|
|
|
/* Enable inline encryption for this file if supported. */
|
|
int fscrypt_select_encryption_impl(struct fscrypt_info *ci)
|
|
{
|
|
const struct inode *inode = ci->ci_inode;
|
|
struct super_block *sb = inode->i_sb;
|
|
struct blk_crypto_config crypto_cfg;
|
|
int num_devs;
|
|
struct request_queue **devs;
|
|
int i;
|
|
|
|
/* The file must need contents encryption, not filenames encryption */
|
|
if (!fscrypt_needs_contents_encryption(inode))
|
|
return 0;
|
|
|
|
/* The crypto mode must have a blk-crypto counterpart */
|
|
if (ci->ci_mode->blk_crypto_mode == BLK_ENCRYPTION_MODE_INVALID)
|
|
return 0;
|
|
|
|
/* The filesystem must be mounted with -o inlinecrypt */
|
|
if (!(sb->s_flags & SB_INLINECRYPT))
|
|
return 0;
|
|
|
|
/*
|
|
* When a page contains multiple logically contiguous filesystem blocks,
|
|
* some filesystem code only calls fscrypt_mergeable_bio() for the first
|
|
* block in the page. This is fine for most of fscrypt's IV generation
|
|
* strategies, where contiguous blocks imply contiguous IVs. But it
|
|
* doesn't work with IV_INO_LBLK_32. For now, simply exclude
|
|
* IV_INO_LBLK_32 with blocksize != PAGE_SIZE from inline encryption.
|
|
*/
|
|
if ((fscrypt_policy_flags(&ci->ci_policy) &
|
|
FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) &&
|
|
sb->s_blocksize != PAGE_SIZE)
|
|
return 0;
|
|
|
|
/*
|
|
* On all the filesystem's devices, blk-crypto must support the crypto
|
|
* configuration that the file would use.
|
|
*/
|
|
crypto_cfg.crypto_mode = ci->ci_mode->blk_crypto_mode;
|
|
crypto_cfg.data_unit_size = sb->s_blocksize;
|
|
crypto_cfg.dun_bytes = fscrypt_get_dun_bytes(ci);
|
|
num_devs = fscrypt_get_num_devices(sb);
|
|
devs = kmalloc_array(num_devs, sizeof(*devs), GFP_KERNEL);
|
|
if (!devs)
|
|
return -ENOMEM;
|
|
fscrypt_get_devices(sb, num_devs, devs);
|
|
|
|
for (i = 0; i < num_devs; i++) {
|
|
if (!blk_crypto_config_supported(devs[i], &crypto_cfg))
|
|
goto out_free_devs;
|
|
}
|
|
|
|
ci->ci_inlinecrypt = true;
|
|
out_free_devs:
|
|
kfree(devs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
|
|
const u8 *raw_key,
|
|
const struct fscrypt_info *ci)
|
|
{
|
|
const struct inode *inode = ci->ci_inode;
|
|
struct super_block *sb = inode->i_sb;
|
|
enum blk_crypto_mode_num crypto_mode = ci->ci_mode->blk_crypto_mode;
|
|
int num_devs = fscrypt_get_num_devices(sb);
|
|
int queue_refs = 0;
|
|
struct fscrypt_blk_crypto_key *blk_key;
|
|
int err;
|
|
int i;
|
|
|
|
blk_key = kzalloc(struct_size(blk_key, devs, num_devs), GFP_KERNEL);
|
|
if (!blk_key)
|
|
return -ENOMEM;
|
|
|
|
blk_key->num_devs = num_devs;
|
|
fscrypt_get_devices(sb, num_devs, blk_key->devs);
|
|
|
|
err = blk_crypto_init_key(&blk_key->base, raw_key, crypto_mode,
|
|
fscrypt_get_dun_bytes(ci), sb->s_blocksize);
|
|
if (err) {
|
|
fscrypt_err(inode, "error %d initializing blk-crypto key", err);
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* We have to start using blk-crypto on all the filesystem's devices.
|
|
* We also have to save all the request_queue's for later so that the
|
|
* key can be evicted from them. This is needed because some keys
|
|
* aren't destroyed until after the filesystem was already unmounted
|
|
* (namely, the per-mode keys in struct fscrypt_master_key).
|
|
*/
|
|
for (i = 0; i < num_devs; i++) {
|
|
if (!blk_get_queue(blk_key->devs[i])) {
|
|
fscrypt_err(inode, "couldn't get request_queue");
|
|
err = -EAGAIN;
|
|
goto fail;
|
|
}
|
|
queue_refs++;
|
|
|
|
err = blk_crypto_start_using_key(&blk_key->base,
|
|
blk_key->devs[i]);
|
|
if (err) {
|
|
fscrypt_err(inode,
|
|
"error %d starting to use blk-crypto", err);
|
|
goto fail;
|
|
}
|
|
}
|
|
/*
|
|
* Pairs with the smp_load_acquire() in fscrypt_is_key_prepared().
|
|
* I.e., here we publish ->blk_key with a RELEASE barrier so that
|
|
* concurrent tasks can ACQUIRE it. Note that this concurrency is only
|
|
* possible for per-mode keys, not for per-file keys.
|
|
*/
|
|
smp_store_release(&prep_key->blk_key, blk_key);
|
|
return 0;
|
|
|
|
fail:
|
|
for (i = 0; i < queue_refs; i++)
|
|
blk_put_queue(blk_key->devs[i]);
|
|
kfree_sensitive(blk_key);
|
|
return err;
|
|
}
|
|
|
|
void fscrypt_destroy_inline_crypt_key(struct fscrypt_prepared_key *prep_key)
|
|
{
|
|
struct fscrypt_blk_crypto_key *blk_key = prep_key->blk_key;
|
|
int i;
|
|
|
|
if (blk_key) {
|
|
for (i = 0; i < blk_key->num_devs; i++) {
|
|
blk_crypto_evict_key(blk_key->devs[i], &blk_key->base);
|
|
blk_put_queue(blk_key->devs[i]);
|
|
}
|
|
kfree_sensitive(blk_key);
|
|
}
|
|
}
|
|
|
|
bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode)
|
|
{
|
|
return inode->i_crypt_info->ci_inlinecrypt;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__fscrypt_inode_uses_inline_crypto);
|
|
|
|
static void fscrypt_generate_dun(const struct fscrypt_info *ci, u64 lblk_num,
|
|
u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE])
|
|
{
|
|
union fscrypt_iv iv;
|
|
int i;
|
|
|
|
fscrypt_generate_iv(&iv, lblk_num, ci);
|
|
|
|
BUILD_BUG_ON(FSCRYPT_MAX_IV_SIZE > BLK_CRYPTO_MAX_IV_SIZE);
|
|
memset(dun, 0, BLK_CRYPTO_MAX_IV_SIZE);
|
|
for (i = 0; i < ci->ci_mode->ivsize/sizeof(dun[0]); i++)
|
|
dun[i] = le64_to_cpu(iv.dun[i]);
|
|
}
|
|
|
|
/**
|
|
* fscrypt_set_bio_crypt_ctx() - prepare a file contents bio for inline crypto
|
|
* @bio: a bio which will eventually be submitted to the file
|
|
* @inode: the file's inode
|
|
* @first_lblk: the first file logical block number in the I/O
|
|
* @gfp_mask: memory allocation flags - these must be a waiting mask so that
|
|
* bio_crypt_set_ctx can't fail.
|
|
*
|
|
* If the contents of the file should be encrypted (or decrypted) with inline
|
|
* encryption, then assign the appropriate encryption context to the bio.
|
|
*
|
|
* Normally the bio should be newly allocated (i.e. no pages added yet), as
|
|
* otherwise fscrypt_mergeable_bio() won't work as intended.
|
|
*
|
|
* The encryption context will be freed automatically when the bio is freed.
|
|
*/
|
|
void fscrypt_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
|
|
u64 first_lblk, gfp_t gfp_mask)
|
|
{
|
|
const struct fscrypt_info *ci;
|
|
u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
|
|
|
|
if (!fscrypt_inode_uses_inline_crypto(inode))
|
|
return;
|
|
ci = inode->i_crypt_info;
|
|
|
|
fscrypt_generate_dun(ci, first_lblk, dun);
|
|
bio_crypt_set_ctx(bio, &ci->ci_enc_key.blk_key->base, dun, gfp_mask);
|
|
}
|
|
EXPORT_SYMBOL_GPL(fscrypt_set_bio_crypt_ctx);
|
|
|
|
/* Extract the inode and logical block number from a buffer_head. */
|
|
static bool bh_get_inode_and_lblk_num(const struct buffer_head *bh,
|
|
const struct inode **inode_ret,
|
|
u64 *lblk_num_ret)
|
|
{
|
|
struct page *page = bh->b_page;
|
|
const struct address_space *mapping;
|
|
const struct inode *inode;
|
|
|
|
/*
|
|
* The ext4 journal (jbd2) can submit a buffer_head it directly created
|
|
* for a non-pagecache page. fscrypt doesn't care about these.
|
|
*/
|
|
mapping = page_mapping(page);
|
|
if (!mapping)
|
|
return false;
|
|
inode = mapping->host;
|
|
|
|
*inode_ret = inode;
|
|
*lblk_num_ret = ((u64)page->index << (PAGE_SHIFT - inode->i_blkbits)) +
|
|
(bh_offset(bh) >> inode->i_blkbits);
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* fscrypt_set_bio_crypt_ctx_bh() - prepare a file contents bio for inline
|
|
* crypto
|
|
* @bio: a bio which will eventually be submitted to the file
|
|
* @first_bh: the first buffer_head for which I/O will be submitted
|
|
* @gfp_mask: memory allocation flags
|
|
*
|
|
* Same as fscrypt_set_bio_crypt_ctx(), except this takes a buffer_head instead
|
|
* of an inode and block number directly.
|
|
*/
|
|
void fscrypt_set_bio_crypt_ctx_bh(struct bio *bio,
|
|
const struct buffer_head *first_bh,
|
|
gfp_t gfp_mask)
|
|
{
|
|
const struct inode *inode;
|
|
u64 first_lblk;
|
|
|
|
if (bh_get_inode_and_lblk_num(first_bh, &inode, &first_lblk))
|
|
fscrypt_set_bio_crypt_ctx(bio, inode, first_lblk, gfp_mask);
|
|
}
|
|
EXPORT_SYMBOL_GPL(fscrypt_set_bio_crypt_ctx_bh);
|
|
|
|
/**
|
|
* fscrypt_mergeable_bio() - test whether data can be added to a bio
|
|
* @bio: the bio being built up
|
|
* @inode: the inode for the next part of the I/O
|
|
* @next_lblk: the next file logical block number in the I/O
|
|
*
|
|
* When building a bio which may contain data which should undergo inline
|
|
* encryption (or decryption) via fscrypt, filesystems should call this function
|
|
* to ensure that the resulting bio contains only contiguous data unit numbers.
|
|
* This will return false if the next part of the I/O cannot be merged with the
|
|
* bio because either the encryption key would be different or the encryption
|
|
* data unit numbers would be discontiguous.
|
|
*
|
|
* fscrypt_set_bio_crypt_ctx() must have already been called on the bio.
|
|
*
|
|
* Return: true iff the I/O is mergeable
|
|
*/
|
|
bool fscrypt_mergeable_bio(struct bio *bio, const struct inode *inode,
|
|
u64 next_lblk)
|
|
{
|
|
const struct bio_crypt_ctx *bc = bio->bi_crypt_context;
|
|
u64 next_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
|
|
|
|
if (!!bc != fscrypt_inode_uses_inline_crypto(inode))
|
|
return false;
|
|
if (!bc)
|
|
return true;
|
|
|
|
/*
|
|
* Comparing the key pointers is good enough, as all I/O for each key
|
|
* uses the same pointer. I.e., there's currently no need to support
|
|
* merging requests where the keys are the same but the pointers differ.
|
|
*/
|
|
if (bc->bc_key != &inode->i_crypt_info->ci_enc_key.blk_key->base)
|
|
return false;
|
|
|
|
fscrypt_generate_dun(inode->i_crypt_info, next_lblk, next_dun);
|
|
return bio_crypt_dun_is_contiguous(bc, bio->bi_iter.bi_size, next_dun);
|
|
}
|
|
EXPORT_SYMBOL_GPL(fscrypt_mergeable_bio);
|
|
|
|
/**
|
|
* fscrypt_mergeable_bio_bh() - test whether data can be added to a bio
|
|
* @bio: the bio being built up
|
|
* @next_bh: the next buffer_head for which I/O will be submitted
|
|
*
|
|
* Same as fscrypt_mergeable_bio(), except this takes a buffer_head instead of
|
|
* an inode and block number directly.
|
|
*
|
|
* Return: true iff the I/O is mergeable
|
|
*/
|
|
bool fscrypt_mergeable_bio_bh(struct bio *bio,
|
|
const struct buffer_head *next_bh)
|
|
{
|
|
const struct inode *inode;
|
|
u64 next_lblk;
|
|
|
|
if (!bh_get_inode_and_lblk_num(next_bh, &inode, &next_lblk))
|
|
return !bio->bi_crypt_context;
|
|
|
|
return fscrypt_mergeable_bio(bio, inode, next_lblk);
|
|
}
|
|
EXPORT_SYMBOL_GPL(fscrypt_mergeable_bio_bh);
|