linux/drivers/scsi/aacraid/aachba.c
Raghava Aditya Renukunta bbd16d96d1 scsi: aacraid: Get correct lun count
The correct lun count needs to be divided by 24, missed it in the
previous patch set.

Fixes: 4b00022753 (scsi: aacraid: Create helper functions to get lun info)
Signed-off-by: Raghava Aditya Renukunta <RaghavaAditya.Renukunta@microsemi.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-01-10 23:25:11 -05:00

4285 lines
117 KiB
C

/*
* Adaptec AAC series RAID controller driver
* (c) Copyright 2001 Red Hat Inc.
*
* based on the old aacraid driver that is..
* Adaptec aacraid device driver for Linux.
*
* Copyright (c) 2000-2010 Adaptec, Inc.
* 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
* 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Module Name:
* aachba.c
*
* Abstract: Contains Interfaces to manage IOs.
*
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/completion.h>
#include <linux/blkdev.h>
#include <linux/uaccess.h>
#include <linux/highmem.h> /* For flush_kernel_dcache_page */
#include <linux/module.h>
#include <asm/unaligned.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
#include "aacraid.h"
/* values for inqd_pdt: Peripheral device type in plain English */
#define INQD_PDT_DA 0x00 /* Direct-access (DISK) device */
#define INQD_PDT_PROC 0x03 /* Processor device */
#define INQD_PDT_CHNGR 0x08 /* Changer (jukebox, scsi2) */
#define INQD_PDT_COMM 0x09 /* Communication device (scsi2) */
#define INQD_PDT_NOLUN2 0x1f /* Unknown Device (scsi2) */
#define INQD_PDT_NOLUN 0x7f /* Logical Unit Not Present */
#define INQD_PDT_DMASK 0x1F /* Peripheral Device Type Mask */
#define INQD_PDT_QMASK 0xE0 /* Peripheral Device Qualifer Mask */
/*
* Sense codes
*/
#define SENCODE_NO_SENSE 0x00
#define SENCODE_END_OF_DATA 0x00
#define SENCODE_BECOMING_READY 0x04
#define SENCODE_INIT_CMD_REQUIRED 0x04
#define SENCODE_UNRECOVERED_READ_ERROR 0x11
#define SENCODE_PARAM_LIST_LENGTH_ERROR 0x1A
#define SENCODE_INVALID_COMMAND 0x20
#define SENCODE_LBA_OUT_OF_RANGE 0x21
#define SENCODE_INVALID_CDB_FIELD 0x24
#define SENCODE_LUN_NOT_SUPPORTED 0x25
#define SENCODE_INVALID_PARAM_FIELD 0x26
#define SENCODE_PARAM_NOT_SUPPORTED 0x26
#define SENCODE_PARAM_VALUE_INVALID 0x26
#define SENCODE_RESET_OCCURRED 0x29
#define SENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x3E
#define SENCODE_INQUIRY_DATA_CHANGED 0x3F
#define SENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x39
#define SENCODE_DIAGNOSTIC_FAILURE 0x40
#define SENCODE_INTERNAL_TARGET_FAILURE 0x44
#define SENCODE_INVALID_MESSAGE_ERROR 0x49
#define SENCODE_LUN_FAILED_SELF_CONFIG 0x4c
#define SENCODE_OVERLAPPED_COMMAND 0x4E
/*
* Additional sense codes
*/
#define ASENCODE_NO_SENSE 0x00
#define ASENCODE_END_OF_DATA 0x05
#define ASENCODE_BECOMING_READY 0x01
#define ASENCODE_INIT_CMD_REQUIRED 0x02
#define ASENCODE_PARAM_LIST_LENGTH_ERROR 0x00
#define ASENCODE_INVALID_COMMAND 0x00
#define ASENCODE_LBA_OUT_OF_RANGE 0x00
#define ASENCODE_INVALID_CDB_FIELD 0x00
#define ASENCODE_LUN_NOT_SUPPORTED 0x00
#define ASENCODE_INVALID_PARAM_FIELD 0x00
#define ASENCODE_PARAM_NOT_SUPPORTED 0x01
#define ASENCODE_PARAM_VALUE_INVALID 0x02
#define ASENCODE_RESET_OCCURRED 0x00
#define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x00
#define ASENCODE_INQUIRY_DATA_CHANGED 0x03
#define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x00
#define ASENCODE_DIAGNOSTIC_FAILURE 0x80
#define ASENCODE_INTERNAL_TARGET_FAILURE 0x00
#define ASENCODE_INVALID_MESSAGE_ERROR 0x00
#define ASENCODE_LUN_FAILED_SELF_CONFIG 0x00
#define ASENCODE_OVERLAPPED_COMMAND 0x00
#define AAC_STAT_GOOD (DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD)
#define BYTE0(x) (unsigned char)(x)
#define BYTE1(x) (unsigned char)((x) >> 8)
#define BYTE2(x) (unsigned char)((x) >> 16)
#define BYTE3(x) (unsigned char)((x) >> 24)
/* MODE_SENSE data format */
typedef struct {
struct {
u8 data_length;
u8 med_type;
u8 dev_par;
u8 bd_length;
} __attribute__((packed)) hd;
struct {
u8 dens_code;
u8 block_count[3];
u8 reserved;
u8 block_length[3];
} __attribute__((packed)) bd;
u8 mpc_buf[3];
} __attribute__((packed)) aac_modep_data;
/* MODE_SENSE_10 data format */
typedef struct {
struct {
u8 data_length[2];
u8 med_type;
u8 dev_par;
u8 rsrvd[2];
u8 bd_length[2];
} __attribute__((packed)) hd;
struct {
u8 dens_code;
u8 block_count[3];
u8 reserved;
u8 block_length[3];
} __attribute__((packed)) bd;
u8 mpc_buf[3];
} __attribute__((packed)) aac_modep10_data;
/*------------------------------------------------------------------------------
* S T R U C T S / T Y P E D E F S
*----------------------------------------------------------------------------*/
/* SCSI inquiry data */
struct inquiry_data {
u8 inqd_pdt; /* Peripheral qualifier | Peripheral Device Type */
u8 inqd_dtq; /* RMB | Device Type Qualifier */
u8 inqd_ver; /* ISO version | ECMA version | ANSI-approved version */
u8 inqd_rdf; /* AENC | TrmIOP | Response data format */
u8 inqd_len; /* Additional length (n-4) */
u8 inqd_pad1[2];/* Reserved - must be zero */
u8 inqd_pad2; /* RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
u8 inqd_vid[8]; /* Vendor ID */
u8 inqd_pid[16];/* Product ID */
u8 inqd_prl[4]; /* Product Revision Level */
};
/* Added for VPD 0x83 */
struct tvpd_id_descriptor_type_1 {
u8 codeset:4; /* VPD_CODE_SET */
u8 reserved:4;
u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */
u8 reserved2:4;
u8 reserved3;
u8 identifierlength;
u8 venid[8];
u8 productid[16];
u8 serialnumber[8]; /* SN in ASCII */
};
struct tvpd_id_descriptor_type_2 {
u8 codeset:4; /* VPD_CODE_SET */
u8 reserved:4;
u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */
u8 reserved2:4;
u8 reserved3;
u8 identifierlength;
struct teu64id {
u32 Serial;
/* The serial number supposed to be 40 bits,
* bit we only support 32, so make the last byte zero. */
u8 reserved;
u8 venid[3];
} eu64id;
};
struct tvpd_id_descriptor_type_3 {
u8 codeset : 4; /* VPD_CODE_SET */
u8 reserved : 4;
u8 identifiertype : 4; /* VPD_IDENTIFIER_TYPE */
u8 reserved2 : 4;
u8 reserved3;
u8 identifierlength;
u8 Identifier[16];
};
struct tvpd_page83 {
u8 DeviceType:5;
u8 DeviceTypeQualifier:3;
u8 PageCode;
u8 reserved;
u8 PageLength;
struct tvpd_id_descriptor_type_1 type1;
struct tvpd_id_descriptor_type_2 type2;
struct tvpd_id_descriptor_type_3 type3;
};
/*
* M O D U L E G L O B A L S
*/
static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *sgmap);
static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg);
static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg);
static long aac_build_sgraw2(struct scsi_cmnd *scsicmd,
struct aac_raw_io2 *rio2, int sg_max);
static long aac_build_sghba(struct scsi_cmnd *scsicmd,
struct aac_hba_cmd_req *hbacmd,
int sg_max, u64 sg_address);
static int aac_convert_sgraw2(struct aac_raw_io2 *rio2,
int pages, int nseg, int nseg_new);
static int aac_send_srb_fib(struct scsi_cmnd* scsicmd);
static int aac_send_hba_fib(struct scsi_cmnd *scsicmd);
#ifdef AAC_DETAILED_STATUS_INFO
static char *aac_get_status_string(u32 status);
#endif
/*
* Non dasd selection is handled entirely in aachba now
*/
static int nondasd = -1;
static int aac_cache = 2; /* WCE=0 to avoid performance problems */
static int dacmode = -1;
int aac_msi;
int aac_commit = -1;
int startup_timeout = 180;
int aif_timeout = 120;
int aac_sync_mode; /* Only Sync. transfer - disabled */
int aac_convert_sgl = 1; /* convert non-conformable s/g list - enabled */
module_param(aac_sync_mode, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(aac_sync_mode, "Force sync. transfer mode"
" 0=off, 1=on");
module_param(aac_convert_sgl, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(aac_convert_sgl, "Convert non-conformable s/g list"
" 0=off, 1=on");
module_param(nondasd, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices."
" 0=off, 1=on");
module_param_named(cache, aac_cache, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(cache, "Disable Queue Flush commands:\n"
"\tbit 0 - Disable FUA in WRITE SCSI commands\n"
"\tbit 1 - Disable SYNCHRONIZE_CACHE SCSI command\n"
"\tbit 2 - Disable only if Battery is protecting Cache");
module_param(dacmode, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC."
" 0=off, 1=on");
module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the"
" adapter for foreign arrays.\n"
"This is typically needed in systems that do not have a BIOS."
" 0=off, 1=on");
module_param_named(msi, aac_msi, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(msi, "IRQ handling."
" 0=PIC(default), 1=MSI, 2=MSI-X)");
module_param(startup_timeout, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for"
" adapter to have it's kernel up and\n"
"running. This is typically adjusted for large systems that do not"
" have a BIOS.");
module_param(aif_timeout, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for"
" applications to pick up AIFs before\n"
"deregistering them. This is typically adjusted for heavily burdened"
" systems.");
int aac_fib_dump;
module_param(aac_fib_dump, int, 0644);
MODULE_PARM_DESC(aac_fib_dump, "Dump controller fibs prior to IOP_RESET 0=off, 1=on");
int numacb = -1;
module_param(numacb, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control"
" blocks (FIB) allocated. Valid values are 512 and down. Default is"
" to use suggestion from Firmware.");
int acbsize = -1;
module_param(acbsize, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB)"
" size. Valid values are 512, 2048, 4096 and 8192. Default is to use"
" suggestion from Firmware.");
int update_interval = 30 * 60;
module_param(update_interval, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync"
" updates issued to adapter.");
int check_interval = 60;
module_param(check_interval, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health"
" checks.");
int aac_check_reset = 1;
module_param_named(check_reset, aac_check_reset, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(check_reset, "If adapter fails health check, reset the"
" adapter. a value of -1 forces the reset to adapters programmed to"
" ignore it.");
int expose_physicals = -1;
module_param(expose_physicals, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays."
" -1=protect 0=off, 1=on");
int aac_reset_devices;
module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization.");
int aac_wwn = 1;
module_param_named(wwn, aac_wwn, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(wwn, "Select a WWN type for the arrays:\n"
"\t0 - Disable\n"
"\t1 - Array Meta Data Signature (default)\n"
"\t2 - Adapter Serial Number");
static inline int aac_valid_context(struct scsi_cmnd *scsicmd,
struct fib *fibptr) {
struct scsi_device *device;
if (unlikely(!scsicmd || !scsicmd->scsi_done)) {
dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n"));
aac_fib_complete(fibptr);
return 0;
}
scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;
device = scsicmd->device;
if (unlikely(!device)) {
dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n"));
aac_fib_complete(fibptr);
return 0;
}
return 1;
}
/**
* aac_get_config_status - check the adapter configuration
* @common: adapter to query
*
* Query config status, and commit the configuration if needed.
*/
int aac_get_config_status(struct aac_dev *dev, int commit_flag)
{
int status = 0;
struct fib * fibptr;
if (!(fibptr = aac_fib_alloc(dev)))
return -ENOMEM;
aac_fib_init(fibptr);
{
struct aac_get_config_status *dinfo;
dinfo = (struct aac_get_config_status *) fib_data(fibptr);
dinfo->command = cpu_to_le32(VM_ContainerConfig);
dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS);
dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data));
}
status = aac_fib_send(ContainerCommand,
fibptr,
sizeof (struct aac_get_config_status),
FsaNormal,
1, 1,
NULL, NULL);
if (status < 0) {
printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n");
} else {
struct aac_get_config_status_resp *reply
= (struct aac_get_config_status_resp *) fib_data(fibptr);
dprintk((KERN_WARNING
"aac_get_config_status: response=%d status=%d action=%d\n",
le32_to_cpu(reply->response),
le32_to_cpu(reply->status),
le32_to_cpu(reply->data.action)));
if ((le32_to_cpu(reply->response) != ST_OK) ||
(le32_to_cpu(reply->status) != CT_OK) ||
(le32_to_cpu(reply->data.action) > CFACT_PAUSE)) {
printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n");
status = -EINVAL;
}
}
/* Do not set XferState to zero unless receives a response from F/W */
if (status >= 0)
aac_fib_complete(fibptr);
/* Send a CT_COMMIT_CONFIG to enable discovery of devices */
if (status >= 0) {
if ((aac_commit == 1) || commit_flag) {
struct aac_commit_config * dinfo;
aac_fib_init(fibptr);
dinfo = (struct aac_commit_config *) fib_data(fibptr);
dinfo->command = cpu_to_le32(VM_ContainerConfig);
dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG);
status = aac_fib_send(ContainerCommand,
fibptr,
sizeof (struct aac_commit_config),
FsaNormal,
1, 1,
NULL, NULL);
/* Do not set XferState to zero unless
* receives a response from F/W */
if (status >= 0)
aac_fib_complete(fibptr);
} else if (aac_commit == 0) {
printk(KERN_WARNING
"aac_get_config_status: Foreign device configurations are being ignored\n");
}
}
/* FIB should be freed only after getting the response from the F/W */
if (status != -ERESTARTSYS)
aac_fib_free(fibptr);
return status;
}
static void aac_expose_phy_device(struct scsi_cmnd *scsicmd)
{
char inq_data;
scsi_sg_copy_to_buffer(scsicmd, &inq_data, sizeof(inq_data));
if ((inq_data & 0x20) && (inq_data & 0x1f) == TYPE_DISK) {
inq_data &= 0xdf;
scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
}
}
/**
* aac_get_containers - list containers
* @common: adapter to probe
*
* Make a list of all containers on this controller
*/
int aac_get_containers(struct aac_dev *dev)
{
struct fsa_dev_info *fsa_dev_ptr;
u32 index;
int status = 0;
struct fib * fibptr;
struct aac_get_container_count *dinfo;
struct aac_get_container_count_resp *dresp;
int maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
if (!(fibptr = aac_fib_alloc(dev)))
return -ENOMEM;
aac_fib_init(fibptr);
dinfo = (struct aac_get_container_count *) fib_data(fibptr);
dinfo->command = cpu_to_le32(VM_ContainerConfig);
dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT);
status = aac_fib_send(ContainerCommand,
fibptr,
sizeof (struct aac_get_container_count),
FsaNormal,
1, 1,
NULL, NULL);
if (status >= 0) {
dresp = (struct aac_get_container_count_resp *)fib_data(fibptr);
maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries);
if (fibptr->dev->supplement_adapter_info.supported_options2 &
AAC_OPTION_SUPPORTED_240_VOLUMES) {
maximum_num_containers =
le32_to_cpu(dresp->MaxSimpleVolumes);
}
aac_fib_complete(fibptr);
}
/* FIB should be freed only after getting the response from the F/W */
if (status != -ERESTARTSYS)
aac_fib_free(fibptr);
if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS)
maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
if (dev->fsa_dev == NULL ||
dev->maximum_num_containers != maximum_num_containers) {
fsa_dev_ptr = dev->fsa_dev;
dev->fsa_dev = kcalloc(maximum_num_containers,
sizeof(*fsa_dev_ptr), GFP_KERNEL);
kfree(fsa_dev_ptr);
fsa_dev_ptr = NULL;
if (!dev->fsa_dev)
return -ENOMEM;
dev->maximum_num_containers = maximum_num_containers;
}
for (index = 0; index < dev->maximum_num_containers; index++) {
dev->fsa_dev[index].devname[0] = '\0';
dev->fsa_dev[index].valid = 0;
status = aac_probe_container(dev, index);
if (status < 0) {
printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n");
break;
}
}
return status;
}
static void get_container_name_callback(void *context, struct fib * fibptr)
{
struct aac_get_name_resp * get_name_reply;
struct scsi_cmnd * scsicmd;
scsicmd = (struct scsi_cmnd *) context;
if (!aac_valid_context(scsicmd, fibptr))
return;
dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies));
BUG_ON(fibptr == NULL);
get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr);
/* Failure is irrelevant, using default value instead */
if ((le32_to_cpu(get_name_reply->status) == CT_OK)
&& (get_name_reply->data[0] != '\0')) {
char *sp = get_name_reply->data;
int data_size = FIELD_SIZEOF(struct aac_get_name_resp, data);
sp[data_size - 1] = '\0';
while (*sp == ' ')
++sp;
if (*sp) {
struct inquiry_data inq;
char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)];
int count = sizeof(d);
char *dp = d;
do {
*dp++ = (*sp) ? *sp++ : ' ';
} while (--count > 0);
scsi_sg_copy_to_buffer(scsicmd, &inq, sizeof(inq));
memcpy(inq.inqd_pid, d, sizeof(d));
scsi_sg_copy_from_buffer(scsicmd, &inq, sizeof(inq));
}
}
scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
aac_fib_complete(fibptr);
scsicmd->scsi_done(scsicmd);
}
/**
* aac_get_container_name - get container name, none blocking.
*/
static int aac_get_container_name(struct scsi_cmnd * scsicmd)
{
int status;
int data_size;
struct aac_get_name *dinfo;
struct fib * cmd_fibcontext;
struct aac_dev * dev;
dev = (struct aac_dev *)scsicmd->device->host->hostdata;
data_size = FIELD_SIZEOF(struct aac_get_name_resp, data);
cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
aac_fib_init(cmd_fibcontext);
dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext);
scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
dinfo->command = cpu_to_le32(VM_ContainerConfig);
dinfo->type = cpu_to_le32(CT_READ_NAME);
dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
dinfo->count = cpu_to_le32(data_size - 1);
status = aac_fib_send(ContainerCommand,
cmd_fibcontext,
sizeof(struct aac_get_name_resp),
FsaNormal,
0, 1,
(fib_callback)get_container_name_callback,
(void *) scsicmd);
/*
* Check that the command queued to the controller
*/
if (status == -EINPROGRESS)
return 0;
printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status);
aac_fib_complete(cmd_fibcontext);
return -1;
}
static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd)
{
struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1))
return aac_scsi_cmd(scsicmd);
scsicmd->result = DID_NO_CONNECT << 16;
scsicmd->scsi_done(scsicmd);
return 0;
}
static void _aac_probe_container2(void * context, struct fib * fibptr)
{
struct fsa_dev_info *fsa_dev_ptr;
int (*callback)(struct scsi_cmnd *);
struct scsi_cmnd * scsicmd = (struct scsi_cmnd *)context;
int i;
if (!aac_valid_context(scsicmd, fibptr))
return;
scsicmd->SCp.Status = 0;
fsa_dev_ptr = fibptr->dev->fsa_dev;
if (fsa_dev_ptr) {
struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr);
__le32 sup_options2;
fsa_dev_ptr += scmd_id(scsicmd);
sup_options2 =
fibptr->dev->supplement_adapter_info.supported_options2;
if ((le32_to_cpu(dresp->status) == ST_OK) &&
(le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
(le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
if (!(sup_options2 & AAC_OPTION_VARIABLE_BLOCK_SIZE)) {
dresp->mnt[0].fileinfo.bdevinfo.block_size = 0x200;
fsa_dev_ptr->block_size = 0x200;
} else {
fsa_dev_ptr->block_size =
le32_to_cpu(dresp->mnt[0].fileinfo.bdevinfo.block_size);
}
for (i = 0; i < 16; i++)
fsa_dev_ptr->identifier[i] =
dresp->mnt[0].fileinfo.bdevinfo
.identifier[i];
fsa_dev_ptr->valid = 1;
/* sense_key holds the current state of the spin-up */
if (dresp->mnt[0].state & cpu_to_le32(FSCS_NOT_READY))
fsa_dev_ptr->sense_data.sense_key = NOT_READY;
else if (fsa_dev_ptr->sense_data.sense_key == NOT_READY)
fsa_dev_ptr->sense_data.sense_key = NO_SENSE;
fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol);
fsa_dev_ptr->size
= ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
(((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0);
}
if ((fsa_dev_ptr->valid & 1) == 0)
fsa_dev_ptr->valid = 0;
scsicmd->SCp.Status = le32_to_cpu(dresp->count);
}
aac_fib_complete(fibptr);
aac_fib_free(fibptr);
callback = (int (*)(struct scsi_cmnd *))(scsicmd->SCp.ptr);
scsicmd->SCp.ptr = NULL;
(*callback)(scsicmd);
return;
}
static void _aac_probe_container1(void * context, struct fib * fibptr)
{
struct scsi_cmnd * scsicmd;
struct aac_mount * dresp;
struct aac_query_mount *dinfo;
int status;
dresp = (struct aac_mount *) fib_data(fibptr);
if (!aac_supports_2T(fibptr->dev)) {
dresp->mnt[0].capacityhigh = 0;
if ((le32_to_cpu(dresp->status) == ST_OK) &&
(le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) {
_aac_probe_container2(context, fibptr);
return;
}
}
scsicmd = (struct scsi_cmnd *) context;
if (!aac_valid_context(scsicmd, fibptr))
return;
aac_fib_init(fibptr);
dinfo = (struct aac_query_mount *)fib_data(fibptr);
if (fibptr->dev->supplement_adapter_info.supported_options2 &
AAC_OPTION_VARIABLE_BLOCK_SIZE)
dinfo->command = cpu_to_le32(VM_NameServeAllBlk);
else
dinfo->command = cpu_to_le32(VM_NameServe64);
dinfo->count = cpu_to_le32(scmd_id(scsicmd));
dinfo->type = cpu_to_le32(FT_FILESYS);
scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
status = aac_fib_send(ContainerCommand,
fibptr,
sizeof(struct aac_query_mount),
FsaNormal,
0, 1,
_aac_probe_container2,
(void *) scsicmd);
/*
* Check that the command queued to the controller
*/
if (status < 0 && status != -EINPROGRESS) {
/* Inherit results from VM_NameServe, if any */
dresp->status = cpu_to_le32(ST_OK);
_aac_probe_container2(context, fibptr);
}
}
static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *))
{
struct fib * fibptr;
int status = -ENOMEM;
if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) {
struct aac_query_mount *dinfo;
aac_fib_init(fibptr);
dinfo = (struct aac_query_mount *)fib_data(fibptr);
if (fibptr->dev->supplement_adapter_info.supported_options2 &
AAC_OPTION_VARIABLE_BLOCK_SIZE)
dinfo->command = cpu_to_le32(VM_NameServeAllBlk);
else
dinfo->command = cpu_to_le32(VM_NameServe);
dinfo->count = cpu_to_le32(scmd_id(scsicmd));
dinfo->type = cpu_to_le32(FT_FILESYS);
scsicmd->SCp.ptr = (char *)callback;
scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
status = aac_fib_send(ContainerCommand,
fibptr,
sizeof(struct aac_query_mount),
FsaNormal,
0, 1,
_aac_probe_container1,
(void *) scsicmd);
/*
* Check that the command queued to the controller
*/
if (status == -EINPROGRESS)
return 0;
if (status < 0) {
scsicmd->SCp.ptr = NULL;
aac_fib_complete(fibptr);
aac_fib_free(fibptr);
}
}
if (status < 0) {
struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
if (fsa_dev_ptr) {
fsa_dev_ptr += scmd_id(scsicmd);
if ((fsa_dev_ptr->valid & 1) == 0) {
fsa_dev_ptr->valid = 0;
return (*callback)(scsicmd);
}
}
}
return status;
}
/**
* aac_probe_container - query a logical volume
* @dev: device to query
* @cid: container identifier
*
* Queries the controller about the given volume. The volume information
* is updated in the struct fsa_dev_info structure rather than returned.
*/
static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd)
{
scsicmd->device = NULL;
return 0;
}
int aac_probe_container(struct aac_dev *dev, int cid)
{
struct scsi_cmnd *scsicmd = kmalloc(sizeof(*scsicmd), GFP_KERNEL);
struct scsi_device *scsidev = kmalloc(sizeof(*scsidev), GFP_KERNEL);
int status;
if (!scsicmd || !scsidev) {
kfree(scsicmd);
kfree(scsidev);
return -ENOMEM;
}
scsicmd->list.next = NULL;
scsicmd->scsi_done = (void (*)(struct scsi_cmnd*))aac_probe_container_callback1;
scsicmd->device = scsidev;
scsidev->sdev_state = 0;
scsidev->id = cid;
scsidev->host = dev->scsi_host_ptr;
if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0)
while (scsicmd->device == scsidev)
schedule();
kfree(scsidev);
status = scsicmd->SCp.Status;
kfree(scsicmd);
return status;
}
/* Local Structure to set SCSI inquiry data strings */
struct scsi_inq {
char vid[8]; /* Vendor ID */
char pid[16]; /* Product ID */
char prl[4]; /* Product Revision Level */
};
/**
* InqStrCopy - string merge
* @a: string to copy from
* @b: string to copy to
*
* Copy a String from one location to another
* without copying \0
*/
static void inqstrcpy(char *a, char *b)
{
while (*a != (char)0)
*b++ = *a++;
}
static char *container_types[] = {
"None",
"Volume",
"Mirror",
"Stripe",
"RAID5",
"SSRW",
"SSRO",
"Morph",
"Legacy",
"RAID4",
"RAID10",
"RAID00",
"V-MIRRORS",
"PSEUDO R4",
"RAID50",
"RAID5D",
"RAID5D0",
"RAID1E",
"RAID6",
"RAID60",
"Unknown"
};
char * get_container_type(unsigned tindex)
{
if (tindex >= ARRAY_SIZE(container_types))
tindex = ARRAY_SIZE(container_types) - 1;
return container_types[tindex];
}
/* Function: setinqstr
*
* Arguments: [1] pointer to void [1] int
*
* Purpose: Sets SCSI inquiry data strings for vendor, product
* and revision level. Allows strings to be set in platform dependent
* files instead of in OS dependent driver source.
*/
static void setinqstr(struct aac_dev *dev, void *data, int tindex)
{
struct scsi_inq *str;
struct aac_supplement_adapter_info *sup_adap_info;
sup_adap_info = &dev->supplement_adapter_info;
str = (struct scsi_inq *)(data); /* cast data to scsi inq block */
memset(str, ' ', sizeof(*str));
if (sup_adap_info->adapter_type_text[0]) {
int c;
char *cp;
char *cname = kmemdup(sup_adap_info->adapter_type_text,
sizeof(sup_adap_info->adapter_type_text),
GFP_ATOMIC);
if (!cname)
return;
cp = cname;
if ((cp[0] == 'A') && (cp[1] == 'O') && (cp[2] == 'C'))
inqstrcpy("SMC", str->vid);
else {
c = sizeof(str->vid);
while (*cp && *cp != ' ' && --c)
++cp;
c = *cp;
*cp = '\0';
inqstrcpy(cname, str->vid);
*cp = c;
while (*cp && *cp != ' ')
++cp;
}
while (*cp == ' ')
++cp;
/* last six chars reserved for vol type */
if (strlen(cp) > sizeof(str->pid))
cp[sizeof(str->pid)] = '\0';
inqstrcpy (cp, str->pid);
kfree(cname);
} else {
struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype);
inqstrcpy (mp->vname, str->vid);
/* last six chars reserved for vol type */
inqstrcpy (mp->model, str->pid);
}
if (tindex < ARRAY_SIZE(container_types)){
char *findit = str->pid;
for ( ; *findit != ' '; findit++); /* walk till we find a space */
/* RAID is superfluous in the context of a RAID device */
if (memcmp(findit-4, "RAID", 4) == 0)
*(findit -= 4) = ' ';
if (((findit - str->pid) + strlen(container_types[tindex]))
< (sizeof(str->pid) + sizeof(str->prl)))
inqstrcpy (container_types[tindex], findit + 1);
}
inqstrcpy ("V1.0", str->prl);
}
static void build_vpd83_type3(struct tvpd_page83 *vpdpage83data,
struct aac_dev *dev, struct scsi_cmnd *scsicmd)
{
int container;
vpdpage83data->type3.codeset = 1;
vpdpage83data->type3.identifiertype = 3;
vpdpage83data->type3.identifierlength = sizeof(vpdpage83data->type3)
- 4;
for (container = 0; container < dev->maximum_num_containers;
container++) {
if (scmd_id(scsicmd) == container) {
memcpy(vpdpage83data->type3.Identifier,
dev->fsa_dev[container].identifier,
16);
break;
}
}
}
static void get_container_serial_callback(void *context, struct fib * fibptr)
{
struct aac_get_serial_resp * get_serial_reply;
struct scsi_cmnd * scsicmd;
BUG_ON(fibptr == NULL);
scsicmd = (struct scsi_cmnd *) context;
if (!aac_valid_context(scsicmd, fibptr))
return;
get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr);
/* Failure is irrelevant, using default value instead */
if (le32_to_cpu(get_serial_reply->status) == CT_OK) {
/*Check to see if it's for VPD 0x83 or 0x80 */
if (scsicmd->cmnd[2] == 0x83) {
/* vpd page 0x83 - Device Identification Page */
struct aac_dev *dev;
int i;
struct tvpd_page83 vpdpage83data;
dev = (struct aac_dev *)scsicmd->device->host->hostdata;
memset(((u8 *)&vpdpage83data), 0,
sizeof(vpdpage83data));
/* DIRECT_ACCESS_DEVIC */
vpdpage83data.DeviceType = 0;
/* DEVICE_CONNECTED */
vpdpage83data.DeviceTypeQualifier = 0;
/* VPD_DEVICE_IDENTIFIERS */
vpdpage83data.PageCode = 0x83;
vpdpage83data.reserved = 0;
vpdpage83data.PageLength =
sizeof(vpdpage83data.type1) +
sizeof(vpdpage83data.type2);
/* VPD 83 Type 3 is not supported for ARC */
if (dev->sa_firmware)
vpdpage83data.PageLength +=
sizeof(vpdpage83data.type3);
/* T10 Vendor Identifier Field Format */
/* VpdcodesetAscii */
vpdpage83data.type1.codeset = 2;
/* VpdIdentifierTypeVendorId */
vpdpage83data.type1.identifiertype = 1;
vpdpage83data.type1.identifierlength =
sizeof(vpdpage83data.type1) - 4;
/* "ADAPTEC " for adaptec */
memcpy(vpdpage83data.type1.venid,
"ADAPTEC ",
sizeof(vpdpage83data.type1.venid));
memcpy(vpdpage83data.type1.productid,
"ARRAY ",
sizeof(
vpdpage83data.type1.productid));
/* Convert to ascii based serial number.
* The LSB is the the end.
*/
for (i = 0; i < 8; i++) {
u8 temp =
(u8)((get_serial_reply->uid >> ((7 - i) * 4)) & 0xF);
if (temp > 0x9) {
vpdpage83data.type1.serialnumber[i] =
'A' + (temp - 0xA);
} else {
vpdpage83data.type1.serialnumber[i] =
'0' + temp;
}
}
/* VpdCodeSetBinary */
vpdpage83data.type2.codeset = 1;
/* VpdidentifiertypeEUI64 */
vpdpage83data.type2.identifiertype = 2;
vpdpage83data.type2.identifierlength =
sizeof(vpdpage83data.type2) - 4;
vpdpage83data.type2.eu64id.venid[0] = 0xD0;
vpdpage83data.type2.eu64id.venid[1] = 0;
vpdpage83data.type2.eu64id.venid[2] = 0;
vpdpage83data.type2.eu64id.Serial =
get_serial_reply->uid;
vpdpage83data.type2.eu64id.reserved = 0;
/*
* VpdIdentifierTypeFCPHName
* VPD 0x83 Type 3 not supported for ARC
*/
if (dev->sa_firmware) {
build_vpd83_type3(&vpdpage83data,
dev, scsicmd);
}
/* Move the inquiry data to the response buffer. */
scsi_sg_copy_from_buffer(scsicmd, &vpdpage83data,
sizeof(vpdpage83data));
} else {
/* It must be for VPD 0x80 */
char sp[13];
/* EVPD bit set */
sp[0] = INQD_PDT_DA;
sp[1] = scsicmd->cmnd[2];
sp[2] = 0;
sp[3] = snprintf(sp+4, sizeof(sp)-4, "%08X",
le32_to_cpu(get_serial_reply->uid));
scsi_sg_copy_from_buffer(scsicmd, sp,
sizeof(sp));
}
}
scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
aac_fib_complete(fibptr);
scsicmd->scsi_done(scsicmd);
}
/**
* aac_get_container_serial - get container serial, none blocking.
*/
static int aac_get_container_serial(struct scsi_cmnd * scsicmd)
{
int status;
struct aac_get_serial *dinfo;
struct fib * cmd_fibcontext;
struct aac_dev * dev;
dev = (struct aac_dev *)scsicmd->device->host->hostdata;
cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
aac_fib_init(cmd_fibcontext);
dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext);
dinfo->command = cpu_to_le32(VM_ContainerConfig);
dinfo->type = cpu_to_le32(CT_CID_TO_32BITS_UID);
dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
status = aac_fib_send(ContainerCommand,
cmd_fibcontext,
sizeof(struct aac_get_serial_resp),
FsaNormal,
0, 1,
(fib_callback) get_container_serial_callback,
(void *) scsicmd);
/*
* Check that the command queued to the controller
*/
if (status == -EINPROGRESS)
return 0;
printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status);
aac_fib_complete(cmd_fibcontext);
return -1;
}
/* Function: setinqserial
*
* Arguments: [1] pointer to void [1] int
*
* Purpose: Sets SCSI Unit Serial number.
* This is a fake. We should read a proper
* serial number from the container. <SuSE>But
* without docs it's quite hard to do it :-)
* So this will have to do in the meantime.</SuSE>
*/
static int setinqserial(struct aac_dev *dev, void *data, int cid)
{
/*
* This breaks array migration.
*/
return snprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X",
le32_to_cpu(dev->adapter_info.serial[0]), cid);
}
static inline void set_sense(struct sense_data *sense_data, u8 sense_key,
u8 sense_code, u8 a_sense_code, u8 bit_pointer, u16 field_pointer)
{
u8 *sense_buf = (u8 *)sense_data;
/* Sense data valid, err code 70h */
sense_buf[0] = 0x70; /* No info field */
sense_buf[1] = 0; /* Segment number, always zero */
sense_buf[2] = sense_key; /* Sense key */
sense_buf[12] = sense_code; /* Additional sense code */
sense_buf[13] = a_sense_code; /* Additional sense code qualifier */
if (sense_key == ILLEGAL_REQUEST) {
sense_buf[7] = 10; /* Additional sense length */
sense_buf[15] = bit_pointer;
/* Illegal parameter is in the parameter block */
if (sense_code == SENCODE_INVALID_CDB_FIELD)
sense_buf[15] |= 0xc0;/* Std sense key specific field */
/* Illegal parameter is in the CDB block */
sense_buf[16] = field_pointer >> 8; /* MSB */
sense_buf[17] = field_pointer; /* LSB */
} else
sense_buf[7] = 6; /* Additional sense length */
}
static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
{
if (lba & 0xffffffff00000000LL) {
int cid = scmd_id(cmd);
dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
SAM_STAT_CHECK_CONDITION;
set_sense(&dev->fsa_dev[cid].sense_data,
HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
SCSI_SENSE_BUFFERSIZE));
cmd->scsi_done(cmd);
return 1;
}
return 0;
}
static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
{
return 0;
}
static void io_callback(void *context, struct fib * fibptr);
static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
{
struct aac_dev *dev = fib->dev;
u16 fibsize, command;
long ret;
aac_fib_init(fib);
if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) &&
!dev->sync_mode) {
struct aac_raw_io2 *readcmd2;
readcmd2 = (struct aac_raw_io2 *) fib_data(fib);
memset(readcmd2, 0, sizeof(struct aac_raw_io2));
readcmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff));
readcmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
readcmd2->byteCount = cpu_to_le32(count *
dev->fsa_dev[scmd_id(cmd)].block_size);
readcmd2->cid = cpu_to_le16(scmd_id(cmd));
readcmd2->flags = cpu_to_le16(RIO2_IO_TYPE_READ);
ret = aac_build_sgraw2(cmd, readcmd2,
dev->scsi_host_ptr->sg_tablesize);
if (ret < 0)
return ret;
command = ContainerRawIo2;
fibsize = sizeof(struct aac_raw_io2) +
((le32_to_cpu(readcmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212));
} else {
struct aac_raw_io *readcmd;
readcmd = (struct aac_raw_io *) fib_data(fib);
readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
readcmd->count = cpu_to_le32(count *
dev->fsa_dev[scmd_id(cmd)].block_size);
readcmd->cid = cpu_to_le16(scmd_id(cmd));
readcmd->flags = cpu_to_le16(RIO_TYPE_READ);
readcmd->bpTotal = 0;
readcmd->bpComplete = 0;
ret = aac_build_sgraw(cmd, &readcmd->sg);
if (ret < 0)
return ret;
command = ContainerRawIo;
fibsize = sizeof(struct aac_raw_io) +
((le32_to_cpu(readcmd->sg.count)-1) * sizeof(struct sgentryraw));
}
BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
/*
* Now send the Fib to the adapter
*/
return aac_fib_send(command,
fib,
fibsize,
FsaNormal,
0, 1,
(fib_callback) io_callback,
(void *) cmd);
}
static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
{
u16 fibsize;
struct aac_read64 *readcmd;
long ret;
aac_fib_init(fib);
readcmd = (struct aac_read64 *) fib_data(fib);
readcmd->command = cpu_to_le32(VM_CtHostRead64);
readcmd->cid = cpu_to_le16(scmd_id(cmd));
readcmd->sector_count = cpu_to_le16(count);
readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
readcmd->pad = 0;
readcmd->flags = 0;
ret = aac_build_sg64(cmd, &readcmd->sg);
if (ret < 0)
return ret;
fibsize = sizeof(struct aac_read64) +
((le32_to_cpu(readcmd->sg.count) - 1) *
sizeof (struct sgentry64));
BUG_ON (fibsize > (fib->dev->max_fib_size -
sizeof(struct aac_fibhdr)));
/*
* Now send the Fib to the adapter
*/
return aac_fib_send(ContainerCommand64,
fib,
fibsize,
FsaNormal,
0, 1,
(fib_callback) io_callback,
(void *) cmd);
}
static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
{
u16 fibsize;
struct aac_read *readcmd;
struct aac_dev *dev = fib->dev;
long ret;
aac_fib_init(fib);
readcmd = (struct aac_read *) fib_data(fib);
readcmd->command = cpu_to_le32(VM_CtBlockRead);
readcmd->cid = cpu_to_le32(scmd_id(cmd));
readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
readcmd->count = cpu_to_le32(count *
dev->fsa_dev[scmd_id(cmd)].block_size);
ret = aac_build_sg(cmd, &readcmd->sg);
if (ret < 0)
return ret;
fibsize = sizeof(struct aac_read) +
((le32_to_cpu(readcmd->sg.count) - 1) *
sizeof (struct sgentry));
BUG_ON (fibsize > (fib->dev->max_fib_size -
sizeof(struct aac_fibhdr)));
/*
* Now send the Fib to the adapter
*/
return aac_fib_send(ContainerCommand,
fib,
fibsize,
FsaNormal,
0, 1,
(fib_callback) io_callback,
(void *) cmd);
}
static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
{
struct aac_dev *dev = fib->dev;
u16 fibsize, command;
long ret;
aac_fib_init(fib);
if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) &&
!dev->sync_mode) {
struct aac_raw_io2 *writecmd2;
writecmd2 = (struct aac_raw_io2 *) fib_data(fib);
memset(writecmd2, 0, sizeof(struct aac_raw_io2));
writecmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff));
writecmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
writecmd2->byteCount = cpu_to_le32(count *
dev->fsa_dev[scmd_id(cmd)].block_size);
writecmd2->cid = cpu_to_le16(scmd_id(cmd));
writecmd2->flags = (fua && ((aac_cache & 5) != 1) &&
(((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
cpu_to_le16(RIO2_IO_TYPE_WRITE|RIO2_IO_SUREWRITE) :
cpu_to_le16(RIO2_IO_TYPE_WRITE);
ret = aac_build_sgraw2(cmd, writecmd2,
dev->scsi_host_ptr->sg_tablesize);
if (ret < 0)
return ret;
command = ContainerRawIo2;
fibsize = sizeof(struct aac_raw_io2) +
((le32_to_cpu(writecmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212));
} else {
struct aac_raw_io *writecmd;
writecmd = (struct aac_raw_io *) fib_data(fib);
writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
writecmd->count = cpu_to_le32(count *
dev->fsa_dev[scmd_id(cmd)].block_size);
writecmd->cid = cpu_to_le16(scmd_id(cmd));
writecmd->flags = (fua && ((aac_cache & 5) != 1) &&
(((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
cpu_to_le16(RIO_TYPE_WRITE|RIO_SUREWRITE) :
cpu_to_le16(RIO_TYPE_WRITE);
writecmd->bpTotal = 0;
writecmd->bpComplete = 0;
ret = aac_build_sgraw(cmd, &writecmd->sg);
if (ret < 0)
return ret;
command = ContainerRawIo;
fibsize = sizeof(struct aac_raw_io) +
((le32_to_cpu(writecmd->sg.count)-1) * sizeof (struct sgentryraw));
}
BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
/*
* Now send the Fib to the adapter
*/
return aac_fib_send(command,
fib,
fibsize,
FsaNormal,
0, 1,
(fib_callback) io_callback,
(void *) cmd);
}
static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
{
u16 fibsize;
struct aac_write64 *writecmd;
long ret;
aac_fib_init(fib);
writecmd = (struct aac_write64 *) fib_data(fib);
writecmd->command = cpu_to_le32(VM_CtHostWrite64);
writecmd->cid = cpu_to_le16(scmd_id(cmd));
writecmd->sector_count = cpu_to_le16(count);
writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
writecmd->pad = 0;
writecmd->flags = 0;
ret = aac_build_sg64(cmd, &writecmd->sg);
if (ret < 0)
return ret;
fibsize = sizeof(struct aac_write64) +
((le32_to_cpu(writecmd->sg.count) - 1) *
sizeof (struct sgentry64));
BUG_ON (fibsize > (fib->dev->max_fib_size -
sizeof(struct aac_fibhdr)));
/*
* Now send the Fib to the adapter
*/
return aac_fib_send(ContainerCommand64,
fib,
fibsize,
FsaNormal,
0, 1,
(fib_callback) io_callback,
(void *) cmd);
}
static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
{
u16 fibsize;
struct aac_write *writecmd;
struct aac_dev *dev = fib->dev;
long ret;
aac_fib_init(fib);
writecmd = (struct aac_write *) fib_data(fib);
writecmd->command = cpu_to_le32(VM_CtBlockWrite);
writecmd->cid = cpu_to_le32(scmd_id(cmd));
writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
writecmd->count = cpu_to_le32(count *
dev->fsa_dev[scmd_id(cmd)].block_size);
writecmd->sg.count = cpu_to_le32(1);
/* ->stable is not used - it did mean which type of write */
ret = aac_build_sg(cmd, &writecmd->sg);
if (ret < 0)
return ret;
fibsize = sizeof(struct aac_write) +
((le32_to_cpu(writecmd->sg.count) - 1) *
sizeof (struct sgentry));
BUG_ON (fibsize > (fib->dev->max_fib_size -
sizeof(struct aac_fibhdr)));
/*
* Now send the Fib to the adapter
*/
return aac_fib_send(ContainerCommand,
fib,
fibsize,
FsaNormal,
0, 1,
(fib_callback) io_callback,
(void *) cmd);
}
static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd)
{
struct aac_srb * srbcmd;
u32 flag;
u32 timeout;
aac_fib_init(fib);
switch(cmd->sc_data_direction){
case DMA_TO_DEVICE:
flag = SRB_DataOut;
break;
case DMA_BIDIRECTIONAL:
flag = SRB_DataIn | SRB_DataOut;
break;
case DMA_FROM_DEVICE:
flag = SRB_DataIn;
break;
case DMA_NONE:
default: /* shuts up some versions of gcc */
flag = SRB_NoDataXfer;
break;
}
srbcmd = (struct aac_srb*) fib_data(fib);
srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
srbcmd->channel = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd)));
srbcmd->id = cpu_to_le32(scmd_id(cmd));
srbcmd->lun = cpu_to_le32(cmd->device->lun);
srbcmd->flags = cpu_to_le32(flag);
timeout = cmd->request->timeout/HZ;
if (timeout == 0)
timeout = 1;
srbcmd->timeout = cpu_to_le32(timeout); // timeout in seconds
srbcmd->retry_limit = 0; /* Obsolete parameter */
srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len);
return srbcmd;
}
static struct aac_hba_cmd_req *aac_construct_hbacmd(struct fib *fib,
struct scsi_cmnd *cmd)
{
struct aac_hba_cmd_req *hbacmd;
struct aac_dev *dev;
int bus, target;
u64 address;
dev = (struct aac_dev *)cmd->device->host->hostdata;
hbacmd = (struct aac_hba_cmd_req *)fib->hw_fib_va;
memset(hbacmd, 0, 96); /* sizeof(*hbacmd) is not necessary */
/* iu_type is a parameter of aac_hba_send */
switch (cmd->sc_data_direction) {
case DMA_TO_DEVICE:
hbacmd->byte1 = 2;
break;
case DMA_FROM_DEVICE:
case DMA_BIDIRECTIONAL:
hbacmd->byte1 = 1;
break;
case DMA_NONE:
default:
break;
}
hbacmd->lun[1] = cpu_to_le32(cmd->device->lun);
bus = aac_logical_to_phys(scmd_channel(cmd));
target = scmd_id(cmd);
hbacmd->it_nexus = dev->hba_map[bus][target].rmw_nexus;
/* we fill in reply_qid later in aac_src_deliver_message */
/* we fill in iu_type, request_id later in aac_hba_send */
/* we fill in emb_data_desc_count later in aac_build_sghba */
memcpy(hbacmd->cdb, cmd->cmnd, cmd->cmd_len);
hbacmd->data_length = cpu_to_le32(scsi_bufflen(cmd));
address = (u64)fib->hw_error_pa;
hbacmd->error_ptr_hi = cpu_to_le32((u32)(address >> 32));
hbacmd->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff));
hbacmd->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE);
return hbacmd;
}
static void aac_srb_callback(void *context, struct fib * fibptr);
static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd)
{
u16 fibsize;
struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
long ret;
ret = aac_build_sg64(cmd, (struct sgmap64 *) &srbcmd->sg);
if (ret < 0)
return ret;
srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
/*
* Build Scatter/Gather list
*/
fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) +
((le32_to_cpu(srbcmd->sg.count) & 0xff) *
sizeof (struct sgentry64));
BUG_ON (fibsize > (fib->dev->max_fib_size -
sizeof(struct aac_fibhdr)));
/*
* Now send the Fib to the adapter
*/
return aac_fib_send(ScsiPortCommand64, fib,
fibsize, FsaNormal, 0, 1,
(fib_callback) aac_srb_callback,
(void *) cmd);
}
static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd)
{
u16 fibsize;
struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
long ret;
ret = aac_build_sg(cmd, (struct sgmap *)&srbcmd->sg);
if (ret < 0)
return ret;
srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
/*
* Build Scatter/Gather list
*/
fibsize = sizeof (struct aac_srb) +
(((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) *
sizeof (struct sgentry));
BUG_ON (fibsize > (fib->dev->max_fib_size -
sizeof(struct aac_fibhdr)));
/*
* Now send the Fib to the adapter
*/
return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1,
(fib_callback) aac_srb_callback, (void *) cmd);
}
static int aac_scsi_32_64(struct fib * fib, struct scsi_cmnd * cmd)
{
if ((sizeof(dma_addr_t) > 4) && fib->dev->needs_dac &&
(fib->dev->adapter_info.options & AAC_OPT_SGMAP_HOST64))
return FAILED;
return aac_scsi_32(fib, cmd);
}
static int aac_adapter_hba(struct fib *fib, struct scsi_cmnd *cmd)
{
struct aac_hba_cmd_req *hbacmd = aac_construct_hbacmd(fib, cmd);
struct aac_dev *dev;
long ret;
dev = (struct aac_dev *)cmd->device->host->hostdata;
ret = aac_build_sghba(cmd, hbacmd,
dev->scsi_host_ptr->sg_tablesize, (u64)fib->hw_sgl_pa);
if (ret < 0)
return ret;
/*
* Now send the HBA command to the adapter
*/
fib->hbacmd_size = 64 + le32_to_cpu(hbacmd->emb_data_desc_count) *
sizeof(struct aac_hba_sgl);
return aac_hba_send(HBA_IU_TYPE_SCSI_CMD_REQ, fib,
(fib_callback) aac_hba_callback,
(void *) cmd);
}
static int aac_send_safw_bmic_cmd(struct aac_dev *dev,
struct aac_srb_unit *srbu, void *xfer_buf, int xfer_len)
{
struct fib *fibptr;
dma_addr_t addr;
int rcode;
int fibsize;
struct aac_srb *srb;
struct aac_srb_reply *srb_reply;
struct sgmap64 *sg64;
u32 vbus;
u32 vid;
if (!dev->sa_firmware)
return 0;
/* allocate FIB */
fibptr = aac_fib_alloc(dev);
if (!fibptr)
return -ENOMEM;
aac_fib_init(fibptr);
fibptr->hw_fib_va->header.XferState &=
~cpu_to_le32(FastResponseCapable);
fibsize = sizeof(struct aac_srb) - sizeof(struct sgentry) +
sizeof(struct sgentry64);
/* allocate DMA buffer for response */
addr = dma_map_single(&dev->pdev->dev, xfer_buf, xfer_len,
DMA_BIDIRECTIONAL);
if (dma_mapping_error(&dev->pdev->dev, addr)) {
rcode = -ENOMEM;
goto fib_error;
}
srb = fib_data(fibptr);
memcpy(srb, &srbu->srb, sizeof(struct aac_srb));
vbus = (u32)le16_to_cpu(
dev->supplement_adapter_info.virt_device_bus);
vid = (u32)le16_to_cpu(
dev->supplement_adapter_info.virt_device_target);
/* set the common request fields */
srb->channel = cpu_to_le32(vbus);
srb->id = cpu_to_le32(vid);
srb->lun = 0;
srb->function = cpu_to_le32(SRBF_ExecuteScsi);
srb->timeout = 0;
srb->retry_limit = 0;
srb->cdb_size = cpu_to_le32(16);
srb->count = cpu_to_le32(xfer_len);
sg64 = (struct sgmap64 *)&srb->sg;
sg64->count = cpu_to_le32(1);
sg64->sg[0].addr[1] = cpu_to_le32(upper_32_bits(addr));
sg64->sg[0].addr[0] = cpu_to_le32(lower_32_bits(addr));
sg64->sg[0].count = cpu_to_le32(xfer_len);
/*
* Copy the updated data for other dumping or other usage if needed
*/
memcpy(&srbu->srb, srb, sizeof(struct aac_srb));
/* issue request to the controller */
rcode = aac_fib_send(ScsiPortCommand64, fibptr, fibsize, FsaNormal,
1, 1, NULL, NULL);
if (rcode == -ERESTARTSYS)
rcode = -ERESTART;
if (unlikely(rcode < 0))
goto bmic_error;
srb_reply = (struct aac_srb_reply *)fib_data(fibptr);
memcpy(&srbu->srb_reply, srb_reply, sizeof(struct aac_srb_reply));
bmic_error:
dma_unmap_single(&dev->pdev->dev, addr, xfer_len, DMA_BIDIRECTIONAL);
fib_error:
aac_fib_complete(fibptr);
aac_fib_free(fibptr);
return rcode;
}
static void aac_set_safw_target_qd(struct aac_dev *dev, int bus, int target)
{
struct aac_ciss_identify_pd *identify_resp;
if (dev->hba_map[bus][target].devtype != AAC_DEVTYPE_NATIVE_RAW)
return;
identify_resp = dev->hba_map[bus][target].safw_identify_resp;
if (identify_resp == NULL) {
dev->hba_map[bus][target].qd_limit = 32;
return;
}
if (identify_resp->current_queue_depth_limit <= 0 ||
identify_resp->current_queue_depth_limit > 255)
dev->hba_map[bus][target].qd_limit = 32;
else
dev->hba_map[bus][target].qd_limit =
identify_resp->current_queue_depth_limit;
}
static int aac_issue_safw_bmic_identify(struct aac_dev *dev,
struct aac_ciss_identify_pd **identify_resp, u32 bus, u32 target)
{
int rcode = -ENOMEM;
int datasize;
struct aac_srb_unit srbu;
struct aac_srb *srbcmd;
struct aac_ciss_identify_pd *identify_reply;
datasize = sizeof(struct aac_ciss_identify_pd);
identify_reply = kmalloc(datasize, GFP_KERNEL);
if (!identify_reply)
goto out;
memset(&srbu, 0, sizeof(struct aac_srb_unit));
srbcmd = &srbu.srb;
srbcmd->flags = cpu_to_le32(SRB_DataIn);
srbcmd->cdb[0] = 0x26;
srbcmd->cdb[2] = (u8)((AAC_MAX_LUN + target) & 0x00FF);
srbcmd->cdb[6] = CISS_IDENTIFY_PHYSICAL_DEVICE;
rcode = aac_send_safw_bmic_cmd(dev, &srbu, identify_reply, datasize);
if (unlikely(rcode < 0))
goto mem_free_all;
*identify_resp = identify_reply;
out:
return rcode;
mem_free_all:
kfree(identify_reply);
goto out;
}
static inline void aac_free_safw_ciss_luns(struct aac_dev *dev)
{
kfree(dev->safw_phys_luns);
dev->safw_phys_luns = NULL;
}
/**
* aac_get_safw_ciss_luns() Process topology change
* @dev: aac_dev structure
*
* Execute a CISS REPORT PHYS LUNS and process the results into
* the current hba_map.
*/
static int aac_get_safw_ciss_luns(struct aac_dev *dev)
{
int rcode = -ENOMEM;
int datasize;
struct aac_srb *srbcmd;
struct aac_srb_unit srbu;
struct aac_ciss_phys_luns_resp *phys_luns;
datasize = sizeof(struct aac_ciss_phys_luns_resp) +
(AAC_MAX_TARGETS - 1) * sizeof(struct _ciss_lun);
phys_luns = kmalloc(datasize, GFP_KERNEL);
if (phys_luns == NULL)
goto out;
memset(&srbu, 0, sizeof(struct aac_srb_unit));
srbcmd = &srbu.srb;
srbcmd->flags = cpu_to_le32(SRB_DataIn);
srbcmd->cdb[0] = CISS_REPORT_PHYSICAL_LUNS;
srbcmd->cdb[1] = 2; /* extended reporting */
srbcmd->cdb[8] = (u8)(datasize >> 8);
srbcmd->cdb[9] = (u8)(datasize);
rcode = aac_send_safw_bmic_cmd(dev, &srbu, phys_luns, datasize);
if (unlikely(rcode < 0))
goto mem_free_all;
if (phys_luns->resp_flag != 2) {
rcode = -ENOMSG;
goto mem_free_all;
}
dev->safw_phys_luns = phys_luns;
out:
return rcode;
mem_free_all:
kfree(phys_luns);
goto out;
}
static inline u32 aac_get_safw_phys_lun_count(struct aac_dev *dev)
{
return get_unaligned_be32(&dev->safw_phys_luns->list_length[0])/24;
}
static inline u32 aac_get_safw_phys_bus(struct aac_dev *dev, int lun)
{
return dev->safw_phys_luns->lun[lun].level2[1] & 0x3f;
}
static inline u32 aac_get_safw_phys_target(struct aac_dev *dev, int lun)
{
return dev->safw_phys_luns->lun[lun].level2[0];
}
static inline u32 aac_get_safw_phys_expose_flag(struct aac_dev *dev, int lun)
{
return dev->safw_phys_luns->lun[lun].bus >> 6;
}
static inline u32 aac_get_safw_phys_attribs(struct aac_dev *dev, int lun)
{
return dev->safw_phys_luns->lun[lun].node_ident[9];
}
static inline u32 aac_get_safw_phys_nexus(struct aac_dev *dev, int lun)
{
return *((u32 *)&dev->safw_phys_luns->lun[lun].node_ident[12]);
}
static inline u32 aac_get_safw_phys_device_type(struct aac_dev *dev, int lun)
{
return dev->safw_phys_luns->lun[lun].node_ident[8];
}
static inline void aac_free_safw_identify_resp(struct aac_dev *dev,
int bus, int target)
{
kfree(dev->hba_map[bus][target].safw_identify_resp);
dev->hba_map[bus][target].safw_identify_resp = NULL;
}
static inline void aac_free_safw_all_identify_resp(struct aac_dev *dev,
int lun_count)
{
int luns;
int i;
u32 bus;
u32 target;
luns = aac_get_safw_phys_lun_count(dev);
if (luns < lun_count)
lun_count = luns;
else if (lun_count < 0)
lun_count = luns;
for (i = 0; i < lun_count; i++) {
bus = aac_get_safw_phys_bus(dev, i);
target = aac_get_safw_phys_target(dev, i);
aac_free_safw_identify_resp(dev, bus, target);
}
}
static int aac_get_safw_attr_all_targets(struct aac_dev *dev)
{
int i;
int rcode = 0;
u32 lun_count;
u32 bus;
u32 target;
struct aac_ciss_identify_pd *identify_resp = NULL;
lun_count = aac_get_safw_phys_lun_count(dev);
for (i = 0; i < lun_count; ++i) {
bus = aac_get_safw_phys_bus(dev, i);
target = aac_get_safw_phys_target(dev, i);
rcode = aac_issue_safw_bmic_identify(dev,
&identify_resp, bus, target);
if (unlikely(rcode < 0))
goto free_identify_resp;
dev->hba_map[bus][target].safw_identify_resp = identify_resp;
}
out:
return rcode;
free_identify_resp:
aac_free_safw_all_identify_resp(dev, i);
goto out;
}
/**
* aac_set_safw_attr_all_targets- update current hba map with data from FW
* @dev: aac_dev structure
* @phys_luns: FW information from report phys luns
* @rescan: Indicates scan type
*
* Update our hba map with the information gathered from the FW
*/
static void aac_set_safw_attr_all_targets(struct aac_dev *dev)
{
/* ok and extended reporting */
u32 lun_count, nexus;
u32 i, bus, target;
u8 expose_flag, attribs;
u8 devtype;
lun_count = aac_get_safw_phys_lun_count(dev);
dev->scan_counter++;
for (i = 0; i < lun_count; ++i) {
bus = aac_get_safw_phys_bus(dev, i);
target = aac_get_safw_phys_target(dev, i);
expose_flag = aac_get_safw_phys_expose_flag(dev, i);
attribs = aac_get_safw_phys_attribs(dev, i);
nexus = aac_get_safw_phys_nexus(dev, i);
if (bus >= AAC_MAX_BUSES || target >= AAC_MAX_TARGETS)
continue;
if (expose_flag != 0) {
devtype = AAC_DEVTYPE_RAID_MEMBER;
goto update_devtype;
}
if (nexus != 0 && (attribs & 8)) {
devtype = AAC_DEVTYPE_NATIVE_RAW;
dev->hba_map[bus][target].rmw_nexus =
nexus;
} else
devtype = AAC_DEVTYPE_ARC_RAW;
dev->hba_map[bus][target].scan_counter = dev->scan_counter;
aac_set_safw_target_qd(dev, bus, target);
update_devtype:
dev->hba_map[bus][target].devtype = devtype;
}
}
static int aac_setup_safw_targets(struct aac_dev *dev)
{
int rcode = 0;
rcode = aac_get_containers(dev);
if (unlikely(rcode < 0))
goto out;
rcode = aac_get_safw_ciss_luns(dev);
if (unlikely(rcode < 0))
goto out;
rcode = aac_get_safw_attr_all_targets(dev);
if (unlikely(rcode < 0))
goto free_ciss_luns;
aac_set_safw_attr_all_targets(dev);
aac_free_safw_all_identify_resp(dev, -1);
free_ciss_luns:
aac_free_safw_ciss_luns(dev);
out:
return rcode;
}
int aac_setup_safw_adapter(struct aac_dev *dev)
{
return aac_setup_safw_targets(dev);
}
int aac_get_adapter_info(struct aac_dev* dev)
{
struct fib* fibptr;
int rcode;
u32 tmp, bus, target;
struct aac_adapter_info *info;
struct aac_bus_info *command;
struct aac_bus_info_response *bus_info;
if (!(fibptr = aac_fib_alloc(dev)))
return -ENOMEM;
aac_fib_init(fibptr);
info = (struct aac_adapter_info *) fib_data(fibptr);
memset(info,0,sizeof(*info));
rcode = aac_fib_send(RequestAdapterInfo,
fibptr,
sizeof(*info),
FsaNormal,
-1, 1, /* First `interrupt' command uses special wait */
NULL,
NULL);
if (rcode < 0) {
/* FIB should be freed only after
* getting the response from the F/W */
if (rcode != -ERESTARTSYS) {
aac_fib_complete(fibptr);
aac_fib_free(fibptr);
}
return rcode;
}
memcpy(&dev->adapter_info, info, sizeof(*info));
dev->supplement_adapter_info.virt_device_bus = 0xffff;
if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) {
struct aac_supplement_adapter_info * sinfo;
aac_fib_init(fibptr);
sinfo = (struct aac_supplement_adapter_info *) fib_data(fibptr);
memset(sinfo,0,sizeof(*sinfo));
rcode = aac_fib_send(RequestSupplementAdapterInfo,
fibptr,
sizeof(*sinfo),
FsaNormal,
1, 1,
NULL,
NULL);
if (rcode >= 0)
memcpy(&dev->supplement_adapter_info, sinfo, sizeof(*sinfo));
if (rcode == -ERESTARTSYS) {
fibptr = aac_fib_alloc(dev);
if (!fibptr)
return -ENOMEM;
}
}
/* reset all previous mapped devices (i.e. for init. after IOP_RESET) */
for (bus = 0; bus < AAC_MAX_BUSES; bus++) {
for (target = 0; target < AAC_MAX_TARGETS; target++) {
dev->hba_map[bus][target].devtype = 0;
dev->hba_map[bus][target].qd_limit = 0;
}
}
/*
* GetBusInfo
*/
aac_fib_init(fibptr);
bus_info = (struct aac_bus_info_response *) fib_data(fibptr);
memset(bus_info, 0, sizeof(*bus_info));
command = (struct aac_bus_info *)bus_info;
command->Command = cpu_to_le32(VM_Ioctl);
command->ObjType = cpu_to_le32(FT_DRIVE);
command->MethodId = cpu_to_le32(1);
command->CtlCmd = cpu_to_le32(GetBusInfo);
rcode = aac_fib_send(ContainerCommand,
fibptr,
sizeof (*bus_info),
FsaNormal,
1, 1,
NULL, NULL);
/* reasoned default */
dev->maximum_num_physicals = 16;
if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) {
dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus);
dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount);
}
if (!dev->in_reset) {
char buffer[16];
tmp = le32_to_cpu(dev->adapter_info.kernelrev);
printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n",
dev->name,
dev->id,
tmp>>24,
(tmp>>16)&0xff,
tmp&0xff,
le32_to_cpu(dev->adapter_info.kernelbuild),
(int)sizeof(dev->supplement_adapter_info.build_date),
dev->supplement_adapter_info.build_date);
tmp = le32_to_cpu(dev->adapter_info.monitorrev);
printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n",
dev->name, dev->id,
tmp>>24,(tmp>>16)&0xff,tmp&0xff,
le32_to_cpu(dev->adapter_info.monitorbuild));
tmp = le32_to_cpu(dev->adapter_info.biosrev);
printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n",
dev->name, dev->id,
tmp>>24,(tmp>>16)&0xff,tmp&0xff,
le32_to_cpu(dev->adapter_info.biosbuild));
buffer[0] = '\0';
if (aac_get_serial_number(
shost_to_class(dev->scsi_host_ptr), buffer))
printk(KERN_INFO "%s%d: serial %s",
dev->name, dev->id, buffer);
if (dev->supplement_adapter_info.vpd_info.tsid[0]) {
printk(KERN_INFO "%s%d: TSID %.*s\n",
dev->name, dev->id,
(int)sizeof(dev->supplement_adapter_info
.vpd_info.tsid),
dev->supplement_adapter_info.vpd_info.tsid);
}
if (!aac_check_reset || ((aac_check_reset == 1) &&
(dev->supplement_adapter_info.supported_options2 &
AAC_OPTION_IGNORE_RESET))) {
printk(KERN_INFO "%s%d: Reset Adapter Ignored\n",
dev->name, dev->id);
}
}
dev->cache_protected = 0;
dev->jbod = ((dev->supplement_adapter_info.feature_bits &
AAC_FEATURE_JBOD) != 0);
dev->nondasd_support = 0;
dev->raid_scsi_mode = 0;
if(dev->adapter_info.options & AAC_OPT_NONDASD)
dev->nondasd_support = 1;
/*
* If the firmware supports ROMB RAID/SCSI mode and we are currently
* in RAID/SCSI mode, set the flag. For now if in this mode we will
* force nondasd support on. If we decide to allow the non-dasd flag
* additional changes changes will have to be made to support
* RAID/SCSI. the function aac_scsi_cmd in this module will have to be
* changed to support the new dev->raid_scsi_mode flag instead of
* leaching off of the dev->nondasd_support flag. Also in linit.c the
* function aac_detect will have to be modified where it sets up the
* max number of channels based on the aac->nondasd_support flag only.
*/
if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) &&
(dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) {
dev->nondasd_support = 1;
dev->raid_scsi_mode = 1;
}
if (dev->raid_scsi_mode != 0)
printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n",
dev->name, dev->id);
if (nondasd != -1)
dev->nondasd_support = (nondasd!=0);
if (dev->nondasd_support && !dev->in_reset)
printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id);
if (dma_get_required_mask(&dev->pdev->dev) > DMA_BIT_MASK(32))
dev->needs_dac = 1;
dev->dac_support = 0;
if ((sizeof(dma_addr_t) > 4) && dev->needs_dac &&
(dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) {
if (!dev->in_reset)
printk(KERN_INFO "%s%d: 64bit support enabled.\n",
dev->name, dev->id);
dev->dac_support = 1;
}
if(dacmode != -1) {
dev->dac_support = (dacmode!=0);
}
/* avoid problems with AAC_QUIRK_SCSI_32 controllers */
if (dev->dac_support && (aac_get_driver_ident(dev->cardtype)->quirks
& AAC_QUIRK_SCSI_32)) {
dev->nondasd_support = 0;
dev->jbod = 0;
expose_physicals = 0;
}
if (dev->dac_support) {
if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(64))) {
if (!dev->in_reset)
dev_info(&dev->pdev->dev, "64 Bit DAC enabled\n");
} else if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(32))) {
dev_info(&dev->pdev->dev, "DMA mask set failed, 64 Bit DAC disabled\n");
dev->dac_support = 0;
} else {
dev_info(&dev->pdev->dev, "No suitable DMA available\n");
rcode = -ENOMEM;
}
}
/*
* Deal with configuring for the individualized limits of each packet
* interface.
*/
dev->a_ops.adapter_scsi = (dev->dac_support)
? ((aac_get_driver_ident(dev->cardtype)->quirks & AAC_QUIRK_SCSI_32)
? aac_scsi_32_64
: aac_scsi_64)
: aac_scsi_32;
if (dev->raw_io_interface) {
dev->a_ops.adapter_bounds = (dev->raw_io_64)
? aac_bounds_64
: aac_bounds_32;
dev->a_ops.adapter_read = aac_read_raw_io;
dev->a_ops.adapter_write = aac_write_raw_io;
} else {
dev->a_ops.adapter_bounds = aac_bounds_32;
dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
sizeof(struct aac_fibhdr) -
sizeof(struct aac_write) + sizeof(struct sgentry)) /
sizeof(struct sgentry);
if (dev->dac_support) {
dev->a_ops.adapter_read = aac_read_block64;
dev->a_ops.adapter_write = aac_write_block64;
/*
* 38 scatter gather elements
*/
dev->scsi_host_ptr->sg_tablesize =
(dev->max_fib_size -
sizeof(struct aac_fibhdr) -
sizeof(struct aac_write64) +
sizeof(struct sgentry64)) /
sizeof(struct sgentry64);
} else {
dev->a_ops.adapter_read = aac_read_block;
dev->a_ops.adapter_write = aac_write_block;
}
dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
if (!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
/*
* Worst case size that could cause sg overflow when
* we break up SG elements that are larger than 64KB.
* Would be nice if we could tell the SCSI layer what
* the maximum SG element size can be. Worst case is
* (sg_tablesize-1) 4KB elements with one 64KB
* element.
* 32bit -> 468 or 238KB 64bit -> 424 or 212KB
*/
dev->scsi_host_ptr->max_sectors =
(dev->scsi_host_ptr->sg_tablesize * 8) + 112;
}
}
if (!dev->sync_mode && dev->sa_firmware &&
dev->scsi_host_ptr->sg_tablesize > HBA_MAX_SG_SEPARATE)
dev->scsi_host_ptr->sg_tablesize = dev->sg_tablesize =
HBA_MAX_SG_SEPARATE;
/* FIB should be freed only after getting the response from the F/W */
if (rcode != -ERESTARTSYS) {
aac_fib_complete(fibptr);
aac_fib_free(fibptr);
}
return rcode;
}
static void io_callback(void *context, struct fib * fibptr)
{
struct aac_dev *dev;
struct aac_read_reply *readreply;
struct scsi_cmnd *scsicmd;
u32 cid;
scsicmd = (struct scsi_cmnd *) context;
if (!aac_valid_context(scsicmd, fibptr))
return;
dev = fibptr->dev;
cid = scmd_id(scsicmd);
if (nblank(dprintk(x))) {
u64 lba;
switch (scsicmd->cmnd[0]) {
case WRITE_6:
case READ_6:
lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
(scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
break;
case WRITE_16:
case READ_16:
lba = ((u64)scsicmd->cmnd[2] << 56) |
((u64)scsicmd->cmnd[3] << 48) |
((u64)scsicmd->cmnd[4] << 40) |
((u64)scsicmd->cmnd[5] << 32) |
((u64)scsicmd->cmnd[6] << 24) |
(scsicmd->cmnd[7] << 16) |
(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
break;
case WRITE_12:
case READ_12:
lba = ((u64)scsicmd->cmnd[2] << 24) |
(scsicmd->cmnd[3] << 16) |
(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
break;
default:
lba = ((u64)scsicmd->cmnd[2] << 24) |
(scsicmd->cmnd[3] << 16) |
(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
break;
}
printk(KERN_DEBUG
"io_callback[cpu %d]: lba = %llu, t = %ld.\n",
smp_processor_id(), (unsigned long long)lba, jiffies);
}
BUG_ON(fibptr == NULL);
scsi_dma_unmap(scsicmd);
readreply = (struct aac_read_reply *)fib_data(fibptr);
switch (le32_to_cpu(readreply->status)) {
case ST_OK:
scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
SAM_STAT_GOOD;
dev->fsa_dev[cid].sense_data.sense_key = NO_SENSE;
break;
case ST_NOT_READY:
scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
SAM_STAT_CHECK_CONDITION;
set_sense(&dev->fsa_dev[cid].sense_data, NOT_READY,
SENCODE_BECOMING_READY, ASENCODE_BECOMING_READY, 0, 0);
memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
SCSI_SENSE_BUFFERSIZE));
break;
case ST_MEDERR:
scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
SAM_STAT_CHECK_CONDITION;
set_sense(&dev->fsa_dev[cid].sense_data, MEDIUM_ERROR,
SENCODE_UNRECOVERED_READ_ERROR, ASENCODE_NO_SENSE, 0, 0);
memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
SCSI_SENSE_BUFFERSIZE));
break;
default:
#ifdef AAC_DETAILED_STATUS_INFO
printk(KERN_WARNING "io_callback: io failed, status = %d\n",
le32_to_cpu(readreply->status));
#endif
scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
SAM_STAT_CHECK_CONDITION;
set_sense(&dev->fsa_dev[cid].sense_data,
HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
SCSI_SENSE_BUFFERSIZE));
break;
}
aac_fib_complete(fibptr);
scsicmd->scsi_done(scsicmd);
}
static int aac_read(struct scsi_cmnd * scsicmd)
{
u64 lba;
u32 count;
int status;
struct aac_dev *dev;
struct fib * cmd_fibcontext;
int cid;
dev = (struct aac_dev *)scsicmd->device->host->hostdata;
/*
* Get block address and transfer length
*/
switch (scsicmd->cmnd[0]) {
case READ_6:
dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd)));
lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
(scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
count = scsicmd->cmnd[4];
if (count == 0)
count = 256;
break;
case READ_16:
dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd)));
lba = ((u64)scsicmd->cmnd[2] << 56) |
((u64)scsicmd->cmnd[3] << 48) |
((u64)scsicmd->cmnd[4] << 40) |
((u64)scsicmd->cmnd[5] << 32) |
((u64)scsicmd->cmnd[6] << 24) |
(scsicmd->cmnd[7] << 16) |
(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
count = (scsicmd->cmnd[10] << 24) |
(scsicmd->cmnd[11] << 16) |
(scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
break;
case READ_12:
dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd)));
lba = ((u64)scsicmd->cmnd[2] << 24) |
(scsicmd->cmnd[3] << 16) |
(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
count = (scsicmd->cmnd[6] << 24) |
(scsicmd->cmnd[7] << 16) |
(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
break;
default:
dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd)));
lba = ((u64)scsicmd->cmnd[2] << 24) |
(scsicmd->cmnd[3] << 16) |
(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
break;
}
if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
cid = scmd_id(scsicmd);
dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
SAM_STAT_CHECK_CONDITION;
set_sense(&dev->fsa_dev[cid].sense_data,
HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
SCSI_SENSE_BUFFERSIZE));
scsicmd->scsi_done(scsicmd);
return 1;
}
dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n",
smp_processor_id(), (unsigned long long)lba, jiffies));
if (aac_adapter_bounds(dev,scsicmd,lba))
return 0;
/*
* Alocate and initialize a Fib
*/
cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count);
/*
* Check that the command queued to the controller
*/
if (status == -EINPROGRESS)
return 0;
printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status);
/*
* For some reason, the Fib didn't queue, return QUEUE_FULL
*/
scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
scsicmd->scsi_done(scsicmd);
aac_fib_complete(cmd_fibcontext);
aac_fib_free(cmd_fibcontext);
return 0;
}
static int aac_write(struct scsi_cmnd * scsicmd)
{
u64 lba;
u32 count;
int fua;
int status;
struct aac_dev *dev;
struct fib * cmd_fibcontext;
int cid;
dev = (struct aac_dev *)scsicmd->device->host->hostdata;
/*
* Get block address and transfer length
*/
if (scsicmd->cmnd[0] == WRITE_6) /* 6 byte command */
{
lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
count = scsicmd->cmnd[4];
if (count == 0)
count = 256;
fua = 0;
} else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */
dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd)));
lba = ((u64)scsicmd->cmnd[2] << 56) |
((u64)scsicmd->cmnd[3] << 48) |
((u64)scsicmd->cmnd[4] << 40) |
((u64)scsicmd->cmnd[5] << 32) |
((u64)scsicmd->cmnd[6] << 24) |
(scsicmd->cmnd[7] << 16) |
(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) |
(scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
fua = scsicmd->cmnd[1] & 0x8;
} else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */
dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd)));
lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16)
| (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16)
| (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
fua = scsicmd->cmnd[1] & 0x8;
} else {
dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd)));
lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
fua = scsicmd->cmnd[1] & 0x8;
}
if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
cid = scmd_id(scsicmd);
dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
SAM_STAT_CHECK_CONDITION;
set_sense(&dev->fsa_dev[cid].sense_data,
HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
SCSI_SENSE_BUFFERSIZE));
scsicmd->scsi_done(scsicmd);
return 1;
}
dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n",
smp_processor_id(), (unsigned long long)lba, jiffies));
if (aac_adapter_bounds(dev,scsicmd,lba))
return 0;
/*
* Allocate and initialize a Fib then setup a BlockWrite command
*/
cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua);
/*
* Check that the command queued to the controller
*/
if (status == -EINPROGRESS)
return 0;
printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status);
/*
* For some reason, the Fib didn't queue, return QUEUE_FULL
*/
scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
scsicmd->scsi_done(scsicmd);
aac_fib_complete(cmd_fibcontext);
aac_fib_free(cmd_fibcontext);
return 0;
}
static void synchronize_callback(void *context, struct fib *fibptr)
{
struct aac_synchronize_reply *synchronizereply;
struct scsi_cmnd *cmd;
cmd = context;
if (!aac_valid_context(cmd, fibptr))
return;
dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n",
smp_processor_id(), jiffies));
BUG_ON(fibptr == NULL);
synchronizereply = fib_data(fibptr);
if (le32_to_cpu(synchronizereply->status) == CT_OK)
cmd->result = DID_OK << 16 |
COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
else {
struct scsi_device *sdev = cmd->device;
struct aac_dev *dev = fibptr->dev;
u32 cid = sdev_id(sdev);
printk(KERN_WARNING
"synchronize_callback: synchronize failed, status = %d\n",
le32_to_cpu(synchronizereply->status));
cmd->result = DID_OK << 16 |
COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
set_sense(&dev->fsa_dev[cid].sense_data,
HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
SCSI_SENSE_BUFFERSIZE));
}
aac_fib_complete(fibptr);
aac_fib_free(fibptr);
cmd->scsi_done(cmd);
}
static int aac_synchronize(struct scsi_cmnd *scsicmd)
{
int status;
struct fib *cmd_fibcontext;
struct aac_synchronize *synchronizecmd;
struct scsi_cmnd *cmd;
struct scsi_device *sdev = scsicmd->device;
int active = 0;
struct aac_dev *aac;
u64 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) |
(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
u32 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
unsigned long flags;
/*
* Wait for all outstanding queued commands to complete to this
* specific target (block).
*/
spin_lock_irqsave(&sdev->list_lock, flags);
list_for_each_entry(cmd, &sdev->cmd_list, list)
if (cmd->SCp.phase == AAC_OWNER_FIRMWARE) {
u64 cmnd_lba;
u32 cmnd_count;
if (cmd->cmnd[0] == WRITE_6) {
cmnd_lba = ((cmd->cmnd[1] & 0x1F) << 16) |
(cmd->cmnd[2] << 8) |
cmd->cmnd[3];
cmnd_count = cmd->cmnd[4];
if (cmnd_count == 0)
cmnd_count = 256;
} else if (cmd->cmnd[0] == WRITE_16) {
cmnd_lba = ((u64)cmd->cmnd[2] << 56) |
((u64)cmd->cmnd[3] << 48) |
((u64)cmd->cmnd[4] << 40) |
((u64)cmd->cmnd[5] << 32) |
((u64)cmd->cmnd[6] << 24) |
(cmd->cmnd[7] << 16) |
(cmd->cmnd[8] << 8) |
cmd->cmnd[9];
cmnd_count = (cmd->cmnd[10] << 24) |
(cmd->cmnd[11] << 16) |
(cmd->cmnd[12] << 8) |
cmd->cmnd[13];
} else if (cmd->cmnd[0] == WRITE_12) {
cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
(cmd->cmnd[3] << 16) |
(cmd->cmnd[4] << 8) |
cmd->cmnd[5];
cmnd_count = (cmd->cmnd[6] << 24) |
(cmd->cmnd[7] << 16) |
(cmd->cmnd[8] << 8) |
cmd->cmnd[9];
} else if (cmd->cmnd[0] == WRITE_10) {
cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
(cmd->cmnd[3] << 16) |
(cmd->cmnd[4] << 8) |
cmd->cmnd[5];
cmnd_count = (cmd->cmnd[7] << 8) |
cmd->cmnd[8];
} else
continue;
if (((cmnd_lba + cmnd_count) < lba) ||
(count && ((lba + count) < cmnd_lba)))
continue;
++active;
break;
}
spin_unlock_irqrestore(&sdev->list_lock, flags);
/*
* Yield the processor (requeue for later)
*/
if (active)
return SCSI_MLQUEUE_DEVICE_BUSY;
aac = (struct aac_dev *)sdev->host->hostdata;
if (aac->in_reset)
return SCSI_MLQUEUE_HOST_BUSY;
/*
* Allocate and initialize a Fib
*/
if (!(cmd_fibcontext = aac_fib_alloc(aac)))
return SCSI_MLQUEUE_HOST_BUSY;
aac_fib_init(cmd_fibcontext);
synchronizecmd = fib_data(cmd_fibcontext);
synchronizecmd->command = cpu_to_le32(VM_ContainerConfig);
synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE);
synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd));
synchronizecmd->count =
cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data));
scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
/*
* Now send the Fib to the adapter
*/
status = aac_fib_send(ContainerCommand,
cmd_fibcontext,
sizeof(struct aac_synchronize),
FsaNormal,
0, 1,
(fib_callback)synchronize_callback,
(void *)scsicmd);
/*
* Check that the command queued to the controller
*/
if (status == -EINPROGRESS)
return 0;
printk(KERN_WARNING
"aac_synchronize: aac_fib_send failed with status: %d.\n", status);
aac_fib_complete(cmd_fibcontext);
aac_fib_free(cmd_fibcontext);
return SCSI_MLQUEUE_HOST_BUSY;
}
static void aac_start_stop_callback(void *context, struct fib *fibptr)
{
struct scsi_cmnd *scsicmd = context;
if (!aac_valid_context(scsicmd, fibptr))
return;
BUG_ON(fibptr == NULL);
scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
aac_fib_complete(fibptr);
aac_fib_free(fibptr);
scsicmd->scsi_done(scsicmd);
}
static int aac_start_stop(struct scsi_cmnd *scsicmd)
{
int status;
struct fib *cmd_fibcontext;
struct aac_power_management *pmcmd;
struct scsi_device *sdev = scsicmd->device;
struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata;
if (!(aac->supplement_adapter_info.supported_options2 &
AAC_OPTION_POWER_MANAGEMENT)) {
scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
SAM_STAT_GOOD;
scsicmd->scsi_done(scsicmd);
return 0;
}
if (aac->in_reset)
return SCSI_MLQUEUE_HOST_BUSY;
/*
* Allocate and initialize a Fib
*/
cmd_fibcontext = aac_fib_alloc_tag(aac, scsicmd);
aac_fib_init(cmd_fibcontext);
pmcmd = fib_data(cmd_fibcontext);
pmcmd->command = cpu_to_le32(VM_ContainerConfig);
pmcmd->type = cpu_to_le32(CT_POWER_MANAGEMENT);
/* Eject bit ignored, not relevant */
pmcmd->sub = (scsicmd->cmnd[4] & 1) ?
cpu_to_le32(CT_PM_START_UNIT) : cpu_to_le32(CT_PM_STOP_UNIT);
pmcmd->cid = cpu_to_le32(sdev_id(sdev));
pmcmd->parm = (scsicmd->cmnd[1] & 1) ?
cpu_to_le32(CT_PM_UNIT_IMMEDIATE) : 0;
scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
/*
* Now send the Fib to the adapter
*/
status = aac_fib_send(ContainerCommand,
cmd_fibcontext,
sizeof(struct aac_power_management),
FsaNormal,
0, 1,
(fib_callback)aac_start_stop_callback,
(void *)scsicmd);
/*
* Check that the command queued to the controller
*/
if (status == -EINPROGRESS)
return 0;
aac_fib_complete(cmd_fibcontext);
aac_fib_free(cmd_fibcontext);
return SCSI_MLQUEUE_HOST_BUSY;
}
/**
* aac_scsi_cmd() - Process SCSI command
* @scsicmd: SCSI command block
*
* Emulate a SCSI command and queue the required request for the
* aacraid firmware.
*/
int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
{
u32 cid, bus;
struct Scsi_Host *host = scsicmd->device->host;
struct aac_dev *dev = (struct aac_dev *)host->hostdata;
struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev;
if (fsa_dev_ptr == NULL)
return -1;
/*
* If the bus, id or lun is out of range, return fail
* Test does not apply to ID 16, the pseudo id for the controller
* itself.
*/
cid = scmd_id(scsicmd);
if (cid != host->this_id) {
if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) {
if((cid >= dev->maximum_num_containers) ||
(scsicmd->device->lun != 0)) {
scsicmd->result = DID_NO_CONNECT << 16;
goto scsi_done_ret;
}
/*
* If the target container doesn't exist, it may have
* been newly created
*/
if (((fsa_dev_ptr[cid].valid & 1) == 0) ||
(fsa_dev_ptr[cid].sense_data.sense_key ==
NOT_READY)) {
switch (scsicmd->cmnd[0]) {
case SERVICE_ACTION_IN_16:
if (!(dev->raw_io_interface) ||
!(dev->raw_io_64) ||
((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
break;
case INQUIRY:
case READ_CAPACITY:
case TEST_UNIT_READY:
if (dev->in_reset)
return -1;
return _aac_probe_container(scsicmd,
aac_probe_container_callback2);
default:
break;
}
}
} else { /* check for physical non-dasd devices */
bus = aac_logical_to_phys(scmd_channel(scsicmd));
if (bus < AAC_MAX_BUSES && cid < AAC_MAX_TARGETS &&
dev->hba_map[bus][cid].devtype
== AAC_DEVTYPE_NATIVE_RAW) {
if (dev->in_reset)
return -1;
return aac_send_hba_fib(scsicmd);
} else if (dev->nondasd_support || expose_physicals ||
dev->jbod) {
if (dev->in_reset)
return -1;
return aac_send_srb_fib(scsicmd);
} else {
scsicmd->result = DID_NO_CONNECT << 16;
goto scsi_done_ret;
}
}
}
/*
* else Command for the controller itself
*/
else if ((scsicmd->cmnd[0] != INQUIRY) && /* only INQUIRY & TUR cmnd supported for controller */
(scsicmd->cmnd[0] != TEST_UNIT_READY))
{
dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0]));
scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
set_sense(&dev->fsa_dev[cid].sense_data,
ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
ASENCODE_INVALID_COMMAND, 0, 0);
memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
SCSI_SENSE_BUFFERSIZE));
goto scsi_done_ret;
}
switch (scsicmd->cmnd[0]) {
case READ_6:
case READ_10:
case READ_12:
case READ_16:
if (dev->in_reset)
return -1;
return aac_read(scsicmd);
case WRITE_6:
case WRITE_10:
case WRITE_12:
case WRITE_16:
if (dev->in_reset)
return -1;
return aac_write(scsicmd);
case SYNCHRONIZE_CACHE:
if (((aac_cache & 6) == 6) && dev->cache_protected) {
scsicmd->result = AAC_STAT_GOOD;
break;
}
/* Issue FIB to tell Firmware to flush it's cache */
if ((aac_cache & 6) != 2)
return aac_synchronize(scsicmd);
case INQUIRY:
{
struct inquiry_data inq_data;
dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid));
memset(&inq_data, 0, sizeof (struct inquiry_data));
if ((scsicmd->cmnd[1] & 0x1) && aac_wwn) {
char *arr = (char *)&inq_data;
/* EVPD bit set */
arr[0] = (scmd_id(scsicmd) == host->this_id) ?
INQD_PDT_PROC : INQD_PDT_DA;
if (scsicmd->cmnd[2] == 0) {
/* supported vital product data pages */
arr[3] = 3;
arr[4] = 0x0;
arr[5] = 0x80;
arr[6] = 0x83;
arr[1] = scsicmd->cmnd[2];
scsi_sg_copy_from_buffer(scsicmd, &inq_data,
sizeof(inq_data));
scsicmd->result = AAC_STAT_GOOD;
} else if (scsicmd->cmnd[2] == 0x80) {
/* unit serial number page */
arr[3] = setinqserial(dev, &arr[4],
scmd_id(scsicmd));
arr[1] = scsicmd->cmnd[2];
scsi_sg_copy_from_buffer(scsicmd, &inq_data,
sizeof(inq_data));
if (aac_wwn != 2)
return aac_get_container_serial(
scsicmd);
scsicmd->result = AAC_STAT_GOOD;
} else if (scsicmd->cmnd[2] == 0x83) {
/* vpd page 0x83 - Device Identification Page */
char *sno = (char *)&inq_data;
sno[3] = setinqserial(dev, &sno[4],
scmd_id(scsicmd));
if (aac_wwn != 2)
return aac_get_container_serial(
scsicmd);
scsicmd->result = AAC_STAT_GOOD;
} else {
/* vpd page not implemented */
scsicmd->result = DID_OK << 16 |
COMMAND_COMPLETE << 8 |
SAM_STAT_CHECK_CONDITION;
set_sense(&dev->fsa_dev[cid].sense_data,
ILLEGAL_REQUEST, SENCODE_INVALID_CDB_FIELD,
ASENCODE_NO_SENSE, 7, 2);
memcpy(scsicmd->sense_buffer,
&dev->fsa_dev[cid].sense_data,
min_t(size_t,
sizeof(dev->fsa_dev[cid].sense_data),
SCSI_SENSE_BUFFERSIZE));
}
break;
}
inq_data.inqd_ver = 2; /* claim compliance to SCSI-2 */
inq_data.inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
inq_data.inqd_len = 31;
/*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
inq_data.inqd_pad2= 0x32 ; /*WBus16|Sync|CmdQue */
/*
* Set the Vendor, Product, and Revision Level
* see: <vendor>.c i.e. aac.c
*/
if (cid == host->this_id) {
setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types));
inq_data.inqd_pdt = INQD_PDT_PROC; /* Processor device */
scsi_sg_copy_from_buffer(scsicmd, &inq_data,
sizeof(inq_data));
scsicmd->result = AAC_STAT_GOOD;
break;
}
if (dev->in_reset)
return -1;
setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type);
inq_data.inqd_pdt = INQD_PDT_DA; /* Direct/random access device */
scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
return aac_get_container_name(scsicmd);
}
case SERVICE_ACTION_IN_16:
if (!(dev->raw_io_interface) ||
!(dev->raw_io_64) ||
((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
break;
{
u64 capacity;
char cp[13];
unsigned int alloc_len;
dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n"));
capacity = fsa_dev_ptr[cid].size - 1;
cp[0] = (capacity >> 56) & 0xff;
cp[1] = (capacity >> 48) & 0xff;
cp[2] = (capacity >> 40) & 0xff;
cp[3] = (capacity >> 32) & 0xff;
cp[4] = (capacity >> 24) & 0xff;
cp[5] = (capacity >> 16) & 0xff;
cp[6] = (capacity >> 8) & 0xff;
cp[7] = (capacity >> 0) & 0xff;
cp[8] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff;
cp[9] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
cp[10] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
cp[11] = (fsa_dev_ptr[cid].block_size) & 0xff;
cp[12] = 0;
alloc_len = ((scsicmd->cmnd[10] << 24)
+ (scsicmd->cmnd[11] << 16)
+ (scsicmd->cmnd[12] << 8) + scsicmd->cmnd[13]);
alloc_len = min_t(size_t, alloc_len, sizeof(cp));
scsi_sg_copy_from_buffer(scsicmd, cp, alloc_len);
if (alloc_len < scsi_bufflen(scsicmd))
scsi_set_resid(scsicmd,
scsi_bufflen(scsicmd) - alloc_len);
/* Do not cache partition table for arrays */
scsicmd->device->removable = 1;
scsicmd->result = AAC_STAT_GOOD;
break;
}
case READ_CAPACITY:
{
u32 capacity;
char cp[8];
dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
capacity = fsa_dev_ptr[cid].size - 1;
else
capacity = (u32)-1;
cp[0] = (capacity >> 24) & 0xff;
cp[1] = (capacity >> 16) & 0xff;
cp[2] = (capacity >> 8) & 0xff;
cp[3] = (capacity >> 0) & 0xff;
cp[4] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff;
cp[5] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
cp[6] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
cp[7] = (fsa_dev_ptr[cid].block_size) & 0xff;
scsi_sg_copy_from_buffer(scsicmd, cp, sizeof(cp));
/* Do not cache partition table for arrays */
scsicmd->device->removable = 1;
scsicmd->result = AAC_STAT_GOOD;
break;
}
case MODE_SENSE:
{
int mode_buf_length = 4;
u32 capacity;
aac_modep_data mpd;
if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
capacity = fsa_dev_ptr[cid].size - 1;
else
capacity = (u32)-1;
dprintk((KERN_DEBUG "MODE SENSE command.\n"));
memset((char *)&mpd, 0, sizeof(aac_modep_data));
/* Mode data length */
mpd.hd.data_length = sizeof(mpd.hd) - 1;
/* Medium type - default */
mpd.hd.med_type = 0;
/* Device-specific param,
bit 8: 0/1 = write enabled/protected
bit 4: 0/1 = FUA enabled */
mpd.hd.dev_par = 0;
if (dev->raw_io_interface && ((aac_cache & 5) != 1))
mpd.hd.dev_par = 0x10;
if (scsicmd->cmnd[1] & 0x8)
mpd.hd.bd_length = 0; /* Block descriptor length */
else {
mpd.hd.bd_length = sizeof(mpd.bd);
mpd.hd.data_length += mpd.hd.bd_length;
mpd.bd.block_length[0] =
(fsa_dev_ptr[cid].block_size >> 16) & 0xff;
mpd.bd.block_length[1] =
(fsa_dev_ptr[cid].block_size >> 8) & 0xff;
mpd.bd.block_length[2] =
fsa_dev_ptr[cid].block_size & 0xff;
mpd.mpc_buf[0] = scsicmd->cmnd[2];
if (scsicmd->cmnd[2] == 0x1C) {
/* page length */
mpd.mpc_buf[1] = 0xa;
/* Mode data length */
mpd.hd.data_length = 23;
} else {
/* Mode data length */
mpd.hd.data_length = 15;
}
if (capacity > 0xffffff) {
mpd.bd.block_count[0] = 0xff;
mpd.bd.block_count[1] = 0xff;
mpd.bd.block_count[2] = 0xff;
} else {
mpd.bd.block_count[0] = (capacity >> 16) & 0xff;
mpd.bd.block_count[1] = (capacity >> 8) & 0xff;
mpd.bd.block_count[2] = capacity & 0xff;
}
}
if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
mpd.hd.data_length += 3;
mpd.mpc_buf[0] = 8;
mpd.mpc_buf[1] = 1;
mpd.mpc_buf[2] = ((aac_cache & 6) == 2)
? 0 : 0x04; /* WCE */
mode_buf_length = sizeof(mpd);
}
if (mode_buf_length > scsicmd->cmnd[4])
mode_buf_length = scsicmd->cmnd[4];
else
mode_buf_length = sizeof(mpd);
scsi_sg_copy_from_buffer(scsicmd,
(char *)&mpd,
mode_buf_length);
scsicmd->result = AAC_STAT_GOOD;
break;
}
case MODE_SENSE_10:
{
u32 capacity;
int mode_buf_length = 8;
aac_modep10_data mpd10;
if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
capacity = fsa_dev_ptr[cid].size - 1;
else
capacity = (u32)-1;
dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n"));
memset((char *)&mpd10, 0, sizeof(aac_modep10_data));
/* Mode data length (MSB) */
mpd10.hd.data_length[0] = 0;
/* Mode data length (LSB) */
mpd10.hd.data_length[1] = sizeof(mpd10.hd) - 1;
/* Medium type - default */
mpd10.hd.med_type = 0;
/* Device-specific param,
bit 8: 0/1 = write enabled/protected
bit 4: 0/1 = FUA enabled */
mpd10.hd.dev_par = 0;
if (dev->raw_io_interface && ((aac_cache & 5) != 1))
mpd10.hd.dev_par = 0x10;
mpd10.hd.rsrvd[0] = 0; /* reserved */
mpd10.hd.rsrvd[1] = 0; /* reserved */
if (scsicmd->cmnd[1] & 0x8) {
/* Block descriptor length (MSB) */
mpd10.hd.bd_length[0] = 0;
/* Block descriptor length (LSB) */
mpd10.hd.bd_length[1] = 0;
} else {
mpd10.hd.bd_length[0] = 0;
mpd10.hd.bd_length[1] = sizeof(mpd10.bd);
mpd10.hd.data_length[1] += mpd10.hd.bd_length[1];
mpd10.bd.block_length[0] =
(fsa_dev_ptr[cid].block_size >> 16) & 0xff;
mpd10.bd.block_length[1] =
(fsa_dev_ptr[cid].block_size >> 8) & 0xff;
mpd10.bd.block_length[2] =
fsa_dev_ptr[cid].block_size & 0xff;
if (capacity > 0xffffff) {
mpd10.bd.block_count[0] = 0xff;
mpd10.bd.block_count[1] = 0xff;
mpd10.bd.block_count[2] = 0xff;
} else {
mpd10.bd.block_count[0] =
(capacity >> 16) & 0xff;
mpd10.bd.block_count[1] =
(capacity >> 8) & 0xff;
mpd10.bd.block_count[2] =
capacity & 0xff;
}
}
if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
mpd10.hd.data_length[1] += 3;
mpd10.mpc_buf[0] = 8;
mpd10.mpc_buf[1] = 1;
mpd10.mpc_buf[2] = ((aac_cache & 6) == 2)
? 0 : 0x04; /* WCE */
mode_buf_length = sizeof(mpd10);
if (mode_buf_length > scsicmd->cmnd[8])
mode_buf_length = scsicmd->cmnd[8];
}
scsi_sg_copy_from_buffer(scsicmd,
(char *)&mpd10,
mode_buf_length);
scsicmd->result = AAC_STAT_GOOD;
break;
}
case REQUEST_SENSE:
dprintk((KERN_DEBUG "REQUEST SENSE command.\n"));
memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
sizeof(struct sense_data));
memset(&dev->fsa_dev[cid].sense_data, 0,
sizeof(struct sense_data));
scsicmd->result = AAC_STAT_GOOD;
break;
case ALLOW_MEDIUM_REMOVAL:
dprintk((KERN_DEBUG "LOCK command.\n"));
if (scsicmd->cmnd[4])
fsa_dev_ptr[cid].locked = 1;
else
fsa_dev_ptr[cid].locked = 0;
scsicmd->result = AAC_STAT_GOOD;
break;
/*
* These commands are all No-Ops
*/
case TEST_UNIT_READY:
if (fsa_dev_ptr[cid].sense_data.sense_key == NOT_READY) {
scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
SAM_STAT_CHECK_CONDITION;
set_sense(&dev->fsa_dev[cid].sense_data,
NOT_READY, SENCODE_BECOMING_READY,
ASENCODE_BECOMING_READY, 0, 0);
memcpy(scsicmd->sense_buffer,
&dev->fsa_dev[cid].sense_data,
min_t(size_t,
sizeof(dev->fsa_dev[cid].sense_data),
SCSI_SENSE_BUFFERSIZE));
break;
}
case RESERVE:
case RELEASE:
case REZERO_UNIT:
case REASSIGN_BLOCKS:
case SEEK_10:
scsicmd->result = AAC_STAT_GOOD;
break;
case START_STOP:
return aac_start_stop(scsicmd);
/* FALLTHRU */
default:
/*
* Unhandled commands
*/
dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n",
scsicmd->cmnd[0]));
scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
SAM_STAT_CHECK_CONDITION;
set_sense(&dev->fsa_dev[cid].sense_data,
ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
ASENCODE_INVALID_COMMAND, 0, 0);
memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
min_t(size_t,
sizeof(dev->fsa_dev[cid].sense_data),
SCSI_SENSE_BUFFERSIZE));
}
scsi_done_ret:
scsicmd->scsi_done(scsicmd);
return 0;
}
static int query_disk(struct aac_dev *dev, void __user *arg)
{
struct aac_query_disk qd;
struct fsa_dev_info *fsa_dev_ptr;
fsa_dev_ptr = dev->fsa_dev;
if (!fsa_dev_ptr)
return -EBUSY;
if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk)))
return -EFAULT;
if (qd.cnum == -1) {
if (qd.id < 0 || qd.id >= dev->maximum_num_containers)
return -EINVAL;
qd.cnum = qd.id;
} else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1)) {
if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers)
return -EINVAL;
qd.instance = dev->scsi_host_ptr->host_no;
qd.bus = 0;
qd.id = CONTAINER_TO_ID(qd.cnum);
qd.lun = CONTAINER_TO_LUN(qd.cnum);
}
else return -EINVAL;
qd.valid = fsa_dev_ptr[qd.cnum].valid != 0;
qd.locked = fsa_dev_ptr[qd.cnum].locked;
qd.deleted = fsa_dev_ptr[qd.cnum].deleted;
if (fsa_dev_ptr[qd.cnum].devname[0] == '\0')
qd.unmapped = 1;
else
qd.unmapped = 0;
strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname,
min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1));
if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk)))
return -EFAULT;
return 0;
}
static int force_delete_disk(struct aac_dev *dev, void __user *arg)
{
struct aac_delete_disk dd;
struct fsa_dev_info *fsa_dev_ptr;
fsa_dev_ptr = dev->fsa_dev;
if (!fsa_dev_ptr)
return -EBUSY;
if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
return -EFAULT;
if (dd.cnum >= dev->maximum_num_containers)
return -EINVAL;
/*
* Mark this container as being deleted.
*/
fsa_dev_ptr[dd.cnum].deleted = 1;
/*
* Mark the container as no longer valid
*/
fsa_dev_ptr[dd.cnum].valid = 0;
return 0;
}
static int delete_disk(struct aac_dev *dev, void __user *arg)
{
struct aac_delete_disk dd;
struct fsa_dev_info *fsa_dev_ptr;
fsa_dev_ptr = dev->fsa_dev;
if (!fsa_dev_ptr)
return -EBUSY;
if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
return -EFAULT;
if (dd.cnum >= dev->maximum_num_containers)
return -EINVAL;
/*
* If the container is locked, it can not be deleted by the API.
*/
if (fsa_dev_ptr[dd.cnum].locked)
return -EBUSY;
else {
/*
* Mark the container as no longer being valid.
*/
fsa_dev_ptr[dd.cnum].valid = 0;
fsa_dev_ptr[dd.cnum].devname[0] = '\0';
return 0;
}
}
int aac_dev_ioctl(struct aac_dev *dev, int cmd, void __user *arg)
{
switch (cmd) {
case FSACTL_QUERY_DISK:
return query_disk(dev, arg);
case FSACTL_DELETE_DISK:
return delete_disk(dev, arg);
case FSACTL_FORCE_DELETE_DISK:
return force_delete_disk(dev, arg);
case FSACTL_GET_CONTAINERS:
return aac_get_containers(dev);
default:
return -ENOTTY;
}
}
/**
*
* aac_srb_callback
* @context: the context set in the fib - here it is scsi cmd
* @fibptr: pointer to the fib
*
* Handles the completion of a scsi command to a non dasd device
*
*/
static void aac_srb_callback(void *context, struct fib * fibptr)
{
struct aac_dev *dev;
struct aac_srb_reply *srbreply;
struct scsi_cmnd *scsicmd;
scsicmd = (struct scsi_cmnd *) context;
if (!aac_valid_context(scsicmd, fibptr))
return;
BUG_ON(fibptr == NULL);
dev = fibptr->dev;
srbreply = (struct aac_srb_reply *) fib_data(fibptr);
scsicmd->sense_buffer[0] = '\0'; /* Initialize sense valid flag to false */
if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) {
/* fast response */
srbreply->srb_status = cpu_to_le32(SRB_STATUS_SUCCESS);
srbreply->scsi_status = cpu_to_le32(SAM_STAT_GOOD);
} else {
/*
* Calculate resid for sg
*/
scsi_set_resid(scsicmd, scsi_bufflen(scsicmd)
- le32_to_cpu(srbreply->data_xfer_length));
}
scsi_dma_unmap(scsicmd);
/* expose physical device if expose_physicald flag is on */
if (scsicmd->cmnd[0] == INQUIRY && !(scsicmd->cmnd[1] & 0x01)
&& expose_physicals > 0)
aac_expose_phy_device(scsicmd);
/*
* First check the fib status
*/
if (le32_to_cpu(srbreply->status) != ST_OK) {
int len;
pr_warn("aac_srb_callback: srb failed, status = %d\n",
le32_to_cpu(srbreply->status));
len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
SCSI_SENSE_BUFFERSIZE);
scsicmd->result = DID_ERROR << 16
| COMMAND_COMPLETE << 8
| SAM_STAT_CHECK_CONDITION;
memcpy(scsicmd->sense_buffer,
srbreply->sense_data, len);
}
/*
* Next check the srb status
*/
switch ((le32_to_cpu(srbreply->srb_status))&0x3f) {
case SRB_STATUS_ERROR_RECOVERY:
case SRB_STATUS_PENDING:
case SRB_STATUS_SUCCESS:
scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
break;
case SRB_STATUS_DATA_OVERRUN:
switch (scsicmd->cmnd[0]) {
case READ_6:
case WRITE_6:
case READ_10:
case WRITE_10:
case READ_12:
case WRITE_12:
case READ_16:
case WRITE_16:
if (le32_to_cpu(srbreply->data_xfer_length)
< scsicmd->underflow)
pr_warn("aacraid: SCSI CMD underflow\n");
else
pr_warn("aacraid: SCSI CMD Data Overrun\n");
scsicmd->result = DID_ERROR << 16
| COMMAND_COMPLETE << 8;
break;
case INQUIRY:
scsicmd->result = DID_OK << 16
| COMMAND_COMPLETE << 8;
break;
default:
scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
break;
}
break;
case SRB_STATUS_ABORTED:
scsicmd->result = DID_ABORT << 16 | ABORT << 8;
break;
case SRB_STATUS_ABORT_FAILED:
/*
* Not sure about this one - but assuming the
* hba was trying to abort for some reason
*/
scsicmd->result = DID_ERROR << 16 | ABORT << 8;
break;
case SRB_STATUS_PARITY_ERROR:
scsicmd->result = DID_PARITY << 16
| MSG_PARITY_ERROR << 8;
break;
case SRB_STATUS_NO_DEVICE:
case SRB_STATUS_INVALID_PATH_ID:
case SRB_STATUS_INVALID_TARGET_ID:
case SRB_STATUS_INVALID_LUN:
case SRB_STATUS_SELECTION_TIMEOUT:
scsicmd->result = DID_NO_CONNECT << 16
| COMMAND_COMPLETE << 8;
break;
case SRB_STATUS_COMMAND_TIMEOUT:
case SRB_STATUS_TIMEOUT:
scsicmd->result = DID_TIME_OUT << 16
| COMMAND_COMPLETE << 8;
break;
case SRB_STATUS_BUSY:
scsicmd->result = DID_BUS_BUSY << 16
| COMMAND_COMPLETE << 8;
break;
case SRB_STATUS_BUS_RESET:
scsicmd->result = DID_RESET << 16
| COMMAND_COMPLETE << 8;
break;
case SRB_STATUS_MESSAGE_REJECTED:
scsicmd->result = DID_ERROR << 16
| MESSAGE_REJECT << 8;
break;
case SRB_STATUS_REQUEST_FLUSHED:
case SRB_STATUS_ERROR:
case SRB_STATUS_INVALID_REQUEST:
case SRB_STATUS_REQUEST_SENSE_FAILED:
case SRB_STATUS_NO_HBA:
case SRB_STATUS_UNEXPECTED_BUS_FREE:
case SRB_STATUS_PHASE_SEQUENCE_FAILURE:
case SRB_STATUS_BAD_SRB_BLOCK_LENGTH:
case SRB_STATUS_DELAYED_RETRY:
case SRB_STATUS_BAD_FUNCTION:
case SRB_STATUS_NOT_STARTED:
case SRB_STATUS_NOT_IN_USE:
case SRB_STATUS_FORCE_ABORT:
case SRB_STATUS_DOMAIN_VALIDATION_FAIL:
default:
#ifdef AAC_DETAILED_STATUS_INFO
pr_info("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x -scsi status 0x%x\n",
le32_to_cpu(srbreply->srb_status) & 0x3F,
aac_get_status_string(
le32_to_cpu(srbreply->srb_status) & 0x3F),
scsicmd->cmnd[0],
le32_to_cpu(srbreply->scsi_status));
#endif
/*
* When the CC bit is SET by the host in ATA pass thru CDB,
* driver is supposed to return DID_OK
*
* When the CC bit is RESET by the host, driver should
* return DID_ERROR
*/
if ((scsicmd->cmnd[0] == ATA_12)
|| (scsicmd->cmnd[0] == ATA_16)) {
if (scsicmd->cmnd[2] & (0x01 << 5)) {
scsicmd->result = DID_OK << 16
| COMMAND_COMPLETE << 8;
break;
} else {
scsicmd->result = DID_ERROR << 16
| COMMAND_COMPLETE << 8;
break;
}
} else {
scsicmd->result = DID_ERROR << 16
| COMMAND_COMPLETE << 8;
break;
}
}
if (le32_to_cpu(srbreply->scsi_status)
== SAM_STAT_CHECK_CONDITION) {
int len;
scsicmd->result |= SAM_STAT_CHECK_CONDITION;
len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
SCSI_SENSE_BUFFERSIZE);
#ifdef AAC_DETAILED_STATUS_INFO
pr_warn("aac_srb_callback: check condition, status = %d len=%d\n",
le32_to_cpu(srbreply->status), len);
#endif
memcpy(scsicmd->sense_buffer,
srbreply->sense_data, len);
}
/*
* OR in the scsi status (already shifted up a bit)
*/
scsicmd->result |= le32_to_cpu(srbreply->scsi_status);
aac_fib_complete(fibptr);
scsicmd->scsi_done(scsicmd);
}
static void hba_resp_task_complete(struct aac_dev *dev,
struct scsi_cmnd *scsicmd,
struct aac_hba_resp *err) {
scsicmd->result = err->status;
/* set residual count */
scsi_set_resid(scsicmd, le32_to_cpu(err->residual_count));
switch (err->status) {
case SAM_STAT_GOOD:
scsicmd->result |= DID_OK << 16 | COMMAND_COMPLETE << 8;
break;
case SAM_STAT_CHECK_CONDITION:
{
int len;
len = min_t(u8, err->sense_response_data_len,
SCSI_SENSE_BUFFERSIZE);
if (len)
memcpy(scsicmd->sense_buffer,
err->sense_response_buf, len);
scsicmd->result |= DID_OK << 16 | COMMAND_COMPLETE << 8;
break;
}
case SAM_STAT_BUSY:
scsicmd->result |= DID_BUS_BUSY << 16 | COMMAND_COMPLETE << 8;
break;
case SAM_STAT_TASK_ABORTED:
scsicmd->result |= DID_ABORT << 16 | ABORT << 8;
break;
case SAM_STAT_RESERVATION_CONFLICT:
case SAM_STAT_TASK_SET_FULL:
default:
scsicmd->result |= DID_ERROR << 16 | COMMAND_COMPLETE << 8;
break;
}
}
static void hba_resp_task_failure(struct aac_dev *dev,
struct scsi_cmnd *scsicmd,
struct aac_hba_resp *err)
{
switch (err->status) {
case HBA_RESP_STAT_HBAMODE_DISABLED:
{
u32 bus, cid;
bus = aac_logical_to_phys(scmd_channel(scsicmd));
cid = scmd_id(scsicmd);
if (dev->hba_map[bus][cid].devtype == AAC_DEVTYPE_NATIVE_RAW) {
dev->hba_map[bus][cid].devtype = AAC_DEVTYPE_ARC_RAW;
dev->hba_map[bus][cid].rmw_nexus = 0xffffffff;
}
scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
break;
}
case HBA_RESP_STAT_IO_ERROR:
case HBA_RESP_STAT_NO_PATH_TO_DEVICE:
scsicmd->result = DID_OK << 16 |
COMMAND_COMPLETE << 8 | SAM_STAT_BUSY;
break;
case HBA_RESP_STAT_IO_ABORTED:
scsicmd->result = DID_ABORT << 16 | ABORT << 8;
break;
case HBA_RESP_STAT_INVALID_DEVICE:
scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
break;
case HBA_RESP_STAT_UNDERRUN:
/* UNDERRUN is OK */
scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
break;
case HBA_RESP_STAT_OVERRUN:
default:
scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
break;
}
}
/**
*
* aac_hba_callback
* @context: the context set in the fib - here it is scsi cmd
* @fibptr: pointer to the fib
*
* Handles the completion of a native HBA scsi command
*
*/
void aac_hba_callback(void *context, struct fib *fibptr)
{
struct aac_dev *dev;
struct scsi_cmnd *scsicmd;
struct aac_hba_resp *err =
&((struct aac_native_hba *)fibptr->hw_fib_va)->resp.err;
scsicmd = (struct scsi_cmnd *) context;
if (!aac_valid_context(scsicmd, fibptr))
return;
WARN_ON(fibptr == NULL);
dev = fibptr->dev;
if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF))
scsi_dma_unmap(scsicmd);
if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) {
/* fast response */
scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
goto out;
}
switch (err->service_response) {
case HBA_RESP_SVCRES_TASK_COMPLETE:
hba_resp_task_complete(dev, scsicmd, err);
break;
case HBA_RESP_SVCRES_FAILURE:
hba_resp_task_failure(dev, scsicmd, err);
break;
case HBA_RESP_SVCRES_TMF_REJECTED:
scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8;
break;
case HBA_RESP_SVCRES_TMF_LUN_INVALID:
scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
break;
case HBA_RESP_SVCRES_TMF_COMPLETE:
case HBA_RESP_SVCRES_TMF_SUCCEEDED:
scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
break;
default:
scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
break;
}
out:
aac_fib_complete(fibptr);
if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF)
scsicmd->SCp.sent_command = 1;
else
scsicmd->scsi_done(scsicmd);
}
/**
*
* aac_send_srb_fib
* @scsicmd: the scsi command block
*
* This routine will form a FIB and fill in the aac_srb from the
* scsicmd passed in.
*/
static int aac_send_srb_fib(struct scsi_cmnd* scsicmd)
{
struct fib* cmd_fibcontext;
struct aac_dev* dev;
int status;
dev = (struct aac_dev *)scsicmd->device->host->hostdata;
if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
scsicmd->device->lun > 7) {
scsicmd->result = DID_NO_CONNECT << 16;
scsicmd->scsi_done(scsicmd);
return 0;
}
/*
* Allocate and initialize a Fib then setup a BlockWrite command
*/
cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
status = aac_adapter_scsi(cmd_fibcontext, scsicmd);
/*
* Check that the command queued to the controller
*/
if (status == -EINPROGRESS)
return 0;
printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status);
aac_fib_complete(cmd_fibcontext);
aac_fib_free(cmd_fibcontext);
return -1;
}
/**
*
* aac_send_hba_fib
* @scsicmd: the scsi command block
*
* This routine will form a FIB and fill in the aac_hba_cmd_req from the
* scsicmd passed in.
*/
static int aac_send_hba_fib(struct scsi_cmnd *scsicmd)
{
struct fib *cmd_fibcontext;
struct aac_dev *dev;
int status;
dev = shost_priv(scsicmd->device->host);
if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
scsicmd->device->lun > AAC_MAX_LUN - 1) {
scsicmd->result = DID_NO_CONNECT << 16;
scsicmd->scsi_done(scsicmd);
return 0;
}
/*
* Allocate and initialize a Fib then setup a BlockWrite command
*/
cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
if (!cmd_fibcontext)
return -1;
scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
status = aac_adapter_hba(cmd_fibcontext, scsicmd);
/*
* Check that the command queued to the controller
*/
if (status == -EINPROGRESS)
return 0;
pr_warn("aac_hba_cmd_req: aac_fib_send failed with status: %d\n",
status);
aac_fib_complete(cmd_fibcontext);
aac_fib_free(cmd_fibcontext);
return -1;
}
static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *psg)
{
struct aac_dev *dev;
unsigned long byte_count = 0;
int nseg;
struct scatterlist *sg;
int i;
dev = (struct aac_dev *)scsicmd->device->host->hostdata;
// Get rid of old data
psg->count = 0;
psg->sg[0].addr = 0;
psg->sg[0].count = 0;
nseg = scsi_dma_map(scsicmd);
if (nseg <= 0)
return nseg;
psg->count = cpu_to_le32(nseg);
scsi_for_each_sg(scsicmd, sg, nseg, i) {
psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg));
psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
byte_count += sg_dma_len(sg);
}
/* hba wants the size to be exact */
if (byte_count > scsi_bufflen(scsicmd)) {
u32 temp = le32_to_cpu(psg->sg[i-1].count) -
(byte_count - scsi_bufflen(scsicmd));
psg->sg[i-1].count = cpu_to_le32(temp);
byte_count = scsi_bufflen(scsicmd);
}
/* Check for command underflow */
if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
byte_count, scsicmd->underflow);
}
return byte_count;
}
static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg)
{
struct aac_dev *dev;
unsigned long byte_count = 0;
u64 addr;
int nseg;
struct scatterlist *sg;
int i;
dev = (struct aac_dev *)scsicmd->device->host->hostdata;
// Get rid of old data
psg->count = 0;
psg->sg[0].addr[0] = 0;
psg->sg[0].addr[1] = 0;
psg->sg[0].count = 0;
nseg = scsi_dma_map(scsicmd);
if (nseg <= 0)
return nseg;
scsi_for_each_sg(scsicmd, sg, nseg, i) {
int count = sg_dma_len(sg);
addr = sg_dma_address(sg);
psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
psg->sg[i].count = cpu_to_le32(count);
byte_count += count;
}
psg->count = cpu_to_le32(nseg);
/* hba wants the size to be exact */
if (byte_count > scsi_bufflen(scsicmd)) {
u32 temp = le32_to_cpu(psg->sg[i-1].count) -
(byte_count - scsi_bufflen(scsicmd));
psg->sg[i-1].count = cpu_to_le32(temp);
byte_count = scsi_bufflen(scsicmd);
}
/* Check for command underflow */
if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
byte_count, scsicmd->underflow);
}
return byte_count;
}
static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg)
{
unsigned long byte_count = 0;
int nseg;
struct scatterlist *sg;
int i;
// Get rid of old data
psg->count = 0;
psg->sg[0].next = 0;
psg->sg[0].prev = 0;
psg->sg[0].addr[0] = 0;
psg->sg[0].addr[1] = 0;
psg->sg[0].count = 0;
psg->sg[0].flags = 0;
nseg = scsi_dma_map(scsicmd);
if (nseg <= 0)
return nseg;
scsi_for_each_sg(scsicmd, sg, nseg, i) {
int count = sg_dma_len(sg);
u64 addr = sg_dma_address(sg);
psg->sg[i].next = 0;
psg->sg[i].prev = 0;
psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32));
psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
psg->sg[i].count = cpu_to_le32(count);
psg->sg[i].flags = 0;
byte_count += count;
}
psg->count = cpu_to_le32(nseg);
/* hba wants the size to be exact */
if (byte_count > scsi_bufflen(scsicmd)) {
u32 temp = le32_to_cpu(psg->sg[i-1].count) -
(byte_count - scsi_bufflen(scsicmd));
psg->sg[i-1].count = cpu_to_le32(temp);
byte_count = scsi_bufflen(scsicmd);
}
/* Check for command underflow */
if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
byte_count, scsicmd->underflow);
}
return byte_count;
}
static long aac_build_sgraw2(struct scsi_cmnd *scsicmd,
struct aac_raw_io2 *rio2, int sg_max)
{
unsigned long byte_count = 0;
int nseg;
struct scatterlist *sg;
int i, conformable = 0;
u32 min_size = PAGE_SIZE, cur_size;
nseg = scsi_dma_map(scsicmd);
if (nseg <= 0)
return nseg;
scsi_for_each_sg(scsicmd, sg, nseg, i) {
int count = sg_dma_len(sg);
u64 addr = sg_dma_address(sg);
BUG_ON(i >= sg_max);
rio2->sge[i].addrHigh = cpu_to_le32((u32)(addr>>32));
rio2->sge[i].addrLow = cpu_to_le32((u32)(addr & 0xffffffff));
cur_size = cpu_to_le32(count);
rio2->sge[i].length = cur_size;
rio2->sge[i].flags = 0;
if (i == 0) {
conformable = 1;
rio2->sgeFirstSize = cur_size;
} else if (i == 1) {
rio2->sgeNominalSize = cur_size;
min_size = cur_size;
} else if ((i+1) < nseg && cur_size != rio2->sgeNominalSize) {
conformable = 0;
if (cur_size < min_size)
min_size = cur_size;
}
byte_count += count;
}
/* hba wants the size to be exact */
if (byte_count > scsi_bufflen(scsicmd)) {
u32 temp = le32_to_cpu(rio2->sge[i-1].length) -
(byte_count - scsi_bufflen(scsicmd));
rio2->sge[i-1].length = cpu_to_le32(temp);
byte_count = scsi_bufflen(scsicmd);
}
rio2->sgeCnt = cpu_to_le32(nseg);
rio2->flags |= cpu_to_le16(RIO2_SG_FORMAT_IEEE1212);
/* not conformable: evaluate required sg elements */
if (!conformable) {
int j, nseg_new = nseg, err_found;
for (i = min_size / PAGE_SIZE; i >= 1; --i) {
err_found = 0;
nseg_new = 2;
for (j = 1; j < nseg - 1; ++j) {
if (rio2->sge[j].length % (i*PAGE_SIZE)) {
err_found = 1;
break;
}
nseg_new += (rio2->sge[j].length / (i*PAGE_SIZE));
}
if (!err_found)
break;
}
if (i > 0 && nseg_new <= sg_max) {
int ret = aac_convert_sgraw2(rio2, i, nseg, nseg_new);
if (ret < 0)
return ret;
}
} else
rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT);
/* Check for command underflow */
if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
byte_count, scsicmd->underflow);
}
return byte_count;
}
static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, int pages, int nseg, int nseg_new)
{
struct sge_ieee1212 *sge;
int i, j, pos;
u32 addr_low;
if (aac_convert_sgl == 0)
return 0;
sge = kmalloc(nseg_new * sizeof(struct sge_ieee1212), GFP_ATOMIC);
if (sge == NULL)
return -ENOMEM;
for (i = 1, pos = 1; i < nseg-1; ++i) {
for (j = 0; j < rio2->sge[i].length / (pages * PAGE_SIZE); ++j) {
addr_low = rio2->sge[i].addrLow + j * pages * PAGE_SIZE;
sge[pos].addrLow = addr_low;
sge[pos].addrHigh = rio2->sge[i].addrHigh;
if (addr_low < rio2->sge[i].addrLow)
sge[pos].addrHigh++;
sge[pos].length = pages * PAGE_SIZE;
sge[pos].flags = 0;
pos++;
}
}
sge[pos] = rio2->sge[nseg-1];
memcpy(&rio2->sge[1], &sge[1], (nseg_new-1)*sizeof(struct sge_ieee1212));
kfree(sge);
rio2->sgeCnt = cpu_to_le32(nseg_new);
rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT);
rio2->sgeNominalSize = pages * PAGE_SIZE;
return 0;
}
static long aac_build_sghba(struct scsi_cmnd *scsicmd,
struct aac_hba_cmd_req *hbacmd,
int sg_max,
u64 sg_address)
{
unsigned long byte_count = 0;
int nseg;
struct scatterlist *sg;
int i;
u32 cur_size;
struct aac_hba_sgl *sge;
nseg = scsi_dma_map(scsicmd);
if (nseg <= 0) {
byte_count = nseg;
goto out;
}
if (nseg > HBA_MAX_SG_EMBEDDED)
sge = &hbacmd->sge[2];
else
sge = &hbacmd->sge[0];
scsi_for_each_sg(scsicmd, sg, nseg, i) {
int count = sg_dma_len(sg);
u64 addr = sg_dma_address(sg);
WARN_ON(i >= sg_max);
sge->addr_hi = cpu_to_le32((u32)(addr>>32));
sge->addr_lo = cpu_to_le32((u32)(addr & 0xffffffff));
cur_size = cpu_to_le32(count);
sge->len = cur_size;
sge->flags = 0;
byte_count += count;
sge++;
}
sge--;
/* hba wants the size to be exact */
if (byte_count > scsi_bufflen(scsicmd)) {
u32 temp;
temp = le32_to_cpu(sge->len) - byte_count
- scsi_bufflen(scsicmd);
sge->len = cpu_to_le32(temp);
byte_count = scsi_bufflen(scsicmd);
}
if (nseg <= HBA_MAX_SG_EMBEDDED) {
hbacmd->emb_data_desc_count = cpu_to_le32(nseg);
sge->flags = cpu_to_le32(0x40000000);
} else {
/* not embedded */
hbacmd->sge[0].flags = cpu_to_le32(0x80000000);
hbacmd->emb_data_desc_count = (u8)cpu_to_le32(1);
hbacmd->sge[0].addr_hi = (u32)cpu_to_le32(sg_address >> 32);
hbacmd->sge[0].addr_lo =
cpu_to_le32((u32)(sg_address & 0xffffffff));
}
/* Check for command underflow */
if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
pr_warn("aacraid: cmd len %08lX cmd underflow %08X\n",
byte_count, scsicmd->underflow);
}
out:
return byte_count;
}
#ifdef AAC_DETAILED_STATUS_INFO
struct aac_srb_status_info {
u32 status;
char *str;
};
static struct aac_srb_status_info srb_status_info[] = {
{ SRB_STATUS_PENDING, "Pending Status"},
{ SRB_STATUS_SUCCESS, "Success"},
{ SRB_STATUS_ABORTED, "Aborted Command"},
{ SRB_STATUS_ABORT_FAILED, "Abort Failed"},
{ SRB_STATUS_ERROR, "Error Event"},
{ SRB_STATUS_BUSY, "Device Busy"},
{ SRB_STATUS_INVALID_REQUEST, "Invalid Request"},
{ SRB_STATUS_INVALID_PATH_ID, "Invalid Path ID"},
{ SRB_STATUS_NO_DEVICE, "No Device"},
{ SRB_STATUS_TIMEOUT, "Timeout"},
{ SRB_STATUS_SELECTION_TIMEOUT, "Selection Timeout"},
{ SRB_STATUS_COMMAND_TIMEOUT, "Command Timeout"},
{ SRB_STATUS_MESSAGE_REJECTED, "Message Rejected"},
{ SRB_STATUS_BUS_RESET, "Bus Reset"},
{ SRB_STATUS_PARITY_ERROR, "Parity Error"},
{ SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"},
{ SRB_STATUS_NO_HBA, "No HBA"},
{ SRB_STATUS_DATA_OVERRUN, "Data Overrun/Data Underrun"},
{ SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"},
{ SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"},
{ SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"},
{ SRB_STATUS_REQUEST_FLUSHED, "Request Flushed"},
{ SRB_STATUS_DELAYED_RETRY, "Delayed Retry"},
{ SRB_STATUS_INVALID_LUN, "Invalid LUN"},
{ SRB_STATUS_INVALID_TARGET_ID, "Invalid TARGET ID"},
{ SRB_STATUS_BAD_FUNCTION, "Bad Function"},
{ SRB_STATUS_ERROR_RECOVERY, "Error Recovery"},
{ SRB_STATUS_NOT_STARTED, "Not Started"},
{ SRB_STATUS_NOT_IN_USE, "Not In Use"},
{ SRB_STATUS_FORCE_ABORT, "Force Abort"},
{ SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"},
{ 0xff, "Unknown Error"}
};
char *aac_get_status_string(u32 status)
{
int i;
for (i = 0; i < ARRAY_SIZE(srb_status_info); i++)
if (srb_status_info[i].status == status)
return srb_status_info[i].str;
return "Bad Status Code";
}
#endif