00862edba1
GFP_TRANSHUGE tries very hard to allocate huge pages, which can result in long delays with high memory pressure. I have observed firefox freezing for up to around a minute due to this while restic was taking a full system backup. Since we don't really need huge pages, use GFP_TRANSHUGE_LIGHT | __GFP_NORETRY instead, in order to fail quickly when there are no huge pages available. Set __GFP_KSWAPD_RECLAIM as well, in order for huge pages to be freed up in the background if necessary. With these changes, I'm no longer seeing freezes during a restic backup. Cc: stable@vger.kernel.org Reviewed-by: Christian König <christian.koenig@amd.com> Signed-off-by: Michel Dänzer <michel.daenzer@amd.com> Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
1239 lines
29 KiB
C
1239 lines
29 KiB
C
/*
|
|
* Copyright (c) Red Hat Inc.
|
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sub license,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the
|
|
* next paragraph) shall be included in all copies or substantial portions
|
|
* of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* Authors: Dave Airlie <airlied@redhat.com>
|
|
* Jerome Glisse <jglisse@redhat.com>
|
|
* Pauli Nieminen <suokkos@gmail.com>
|
|
*/
|
|
|
|
/* simple list based uncached page pool
|
|
* - Pool collects resently freed pages for reuse
|
|
* - Use page->lru to keep a free list
|
|
* - doesn't track currently in use pages
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "[TTM] " fmt
|
|
|
|
#include <linux/list.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/mm_types.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/seq_file.h> /* for seq_printf */
|
|
#include <linux/slab.h>
|
|
#include <linux/dma-mapping.h>
|
|
|
|
#include <linux/atomic.h>
|
|
|
|
#include <drm/ttm/ttm_bo_driver.h>
|
|
#include <drm/ttm/ttm_page_alloc.h>
|
|
|
|
#if IS_ENABLED(CONFIG_AGP)
|
|
#include <asm/agp.h>
|
|
#endif
|
|
#ifdef CONFIG_X86
|
|
#include <asm/set_memory.h>
|
|
#endif
|
|
|
|
#define NUM_PAGES_TO_ALLOC (PAGE_SIZE/sizeof(struct page *))
|
|
#define SMALL_ALLOCATION 16
|
|
#define FREE_ALL_PAGES (~0U)
|
|
/* times are in msecs */
|
|
#define PAGE_FREE_INTERVAL 1000
|
|
|
|
/**
|
|
* struct ttm_page_pool - Pool to reuse recently allocated uc/wc pages.
|
|
*
|
|
* @lock: Protects the shared pool from concurrnet access. Must be used with
|
|
* irqsave/irqrestore variants because pool allocator maybe called from
|
|
* delayed work.
|
|
* @fill_lock: Prevent concurrent calls to fill.
|
|
* @list: Pool of free uc/wc pages for fast reuse.
|
|
* @gfp_flags: Flags to pass for alloc_page.
|
|
* @npages: Number of pages in pool.
|
|
*/
|
|
struct ttm_page_pool {
|
|
spinlock_t lock;
|
|
bool fill_lock;
|
|
struct list_head list;
|
|
gfp_t gfp_flags;
|
|
unsigned npages;
|
|
char *name;
|
|
unsigned long nfrees;
|
|
unsigned long nrefills;
|
|
unsigned int order;
|
|
};
|
|
|
|
/**
|
|
* Limits for the pool. They are handled without locks because only place where
|
|
* they may change is in sysfs store. They won't have immediate effect anyway
|
|
* so forcing serialization to access them is pointless.
|
|
*/
|
|
|
|
struct ttm_pool_opts {
|
|
unsigned alloc_size;
|
|
unsigned max_size;
|
|
unsigned small;
|
|
};
|
|
|
|
#define NUM_POOLS 6
|
|
|
|
/**
|
|
* struct ttm_pool_manager - Holds memory pools for fst allocation
|
|
*
|
|
* Manager is read only object for pool code so it doesn't need locking.
|
|
*
|
|
* @free_interval: minimum number of jiffies between freeing pages from pool.
|
|
* @page_alloc_inited: reference counting for pool allocation.
|
|
* @work: Work that is used to shrink the pool. Work is only run when there is
|
|
* some pages to free.
|
|
* @small_allocation: Limit in number of pages what is small allocation.
|
|
*
|
|
* @pools: All pool objects in use.
|
|
**/
|
|
struct ttm_pool_manager {
|
|
struct kobject kobj;
|
|
struct shrinker mm_shrink;
|
|
struct ttm_pool_opts options;
|
|
|
|
union {
|
|
struct ttm_page_pool pools[NUM_POOLS];
|
|
struct {
|
|
struct ttm_page_pool wc_pool;
|
|
struct ttm_page_pool uc_pool;
|
|
struct ttm_page_pool wc_pool_dma32;
|
|
struct ttm_page_pool uc_pool_dma32;
|
|
struct ttm_page_pool wc_pool_huge;
|
|
struct ttm_page_pool uc_pool_huge;
|
|
} ;
|
|
};
|
|
};
|
|
|
|
static struct attribute ttm_page_pool_max = {
|
|
.name = "pool_max_size",
|
|
.mode = S_IRUGO | S_IWUSR
|
|
};
|
|
static struct attribute ttm_page_pool_small = {
|
|
.name = "pool_small_allocation",
|
|
.mode = S_IRUGO | S_IWUSR
|
|
};
|
|
static struct attribute ttm_page_pool_alloc_size = {
|
|
.name = "pool_allocation_size",
|
|
.mode = S_IRUGO | S_IWUSR
|
|
};
|
|
|
|
static struct attribute *ttm_pool_attrs[] = {
|
|
&ttm_page_pool_max,
|
|
&ttm_page_pool_small,
|
|
&ttm_page_pool_alloc_size,
|
|
NULL
|
|
};
|
|
|
|
static void ttm_pool_kobj_release(struct kobject *kobj)
|
|
{
|
|
struct ttm_pool_manager *m =
|
|
container_of(kobj, struct ttm_pool_manager, kobj);
|
|
kfree(m);
|
|
}
|
|
|
|
static ssize_t ttm_pool_store(struct kobject *kobj,
|
|
struct attribute *attr, const char *buffer, size_t size)
|
|
{
|
|
struct ttm_pool_manager *m =
|
|
container_of(kobj, struct ttm_pool_manager, kobj);
|
|
int chars;
|
|
unsigned val;
|
|
chars = sscanf(buffer, "%u", &val);
|
|
if (chars == 0)
|
|
return size;
|
|
|
|
/* Convert kb to number of pages */
|
|
val = val / (PAGE_SIZE >> 10);
|
|
|
|
if (attr == &ttm_page_pool_max)
|
|
m->options.max_size = val;
|
|
else if (attr == &ttm_page_pool_small)
|
|
m->options.small = val;
|
|
else if (attr == &ttm_page_pool_alloc_size) {
|
|
if (val > NUM_PAGES_TO_ALLOC*8) {
|
|
pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
|
|
NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
|
|
NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
|
|
return size;
|
|
} else if (val > NUM_PAGES_TO_ALLOC) {
|
|
pr_warn("Setting allocation size to larger than %lu is not recommended\n",
|
|
NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
|
|
}
|
|
m->options.alloc_size = val;
|
|
}
|
|
|
|
return size;
|
|
}
|
|
|
|
static ssize_t ttm_pool_show(struct kobject *kobj,
|
|
struct attribute *attr, char *buffer)
|
|
{
|
|
struct ttm_pool_manager *m =
|
|
container_of(kobj, struct ttm_pool_manager, kobj);
|
|
unsigned val = 0;
|
|
|
|
if (attr == &ttm_page_pool_max)
|
|
val = m->options.max_size;
|
|
else if (attr == &ttm_page_pool_small)
|
|
val = m->options.small;
|
|
else if (attr == &ttm_page_pool_alloc_size)
|
|
val = m->options.alloc_size;
|
|
|
|
val = val * (PAGE_SIZE >> 10);
|
|
|
|
return snprintf(buffer, PAGE_SIZE, "%u\n", val);
|
|
}
|
|
|
|
static const struct sysfs_ops ttm_pool_sysfs_ops = {
|
|
.show = &ttm_pool_show,
|
|
.store = &ttm_pool_store,
|
|
};
|
|
|
|
static struct kobj_type ttm_pool_kobj_type = {
|
|
.release = &ttm_pool_kobj_release,
|
|
.sysfs_ops = &ttm_pool_sysfs_ops,
|
|
.default_attrs = ttm_pool_attrs,
|
|
};
|
|
|
|
static struct ttm_pool_manager *_manager;
|
|
|
|
#ifndef CONFIG_X86
|
|
static int set_pages_wb(struct page *page, int numpages)
|
|
{
|
|
#if IS_ENABLED(CONFIG_AGP)
|
|
int i;
|
|
|
|
for (i = 0; i < numpages; i++)
|
|
unmap_page_from_agp(page++);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static int set_pages_array_wb(struct page **pages, int addrinarray)
|
|
{
|
|
#if IS_ENABLED(CONFIG_AGP)
|
|
int i;
|
|
|
|
for (i = 0; i < addrinarray; i++)
|
|
unmap_page_from_agp(pages[i]);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static int set_pages_array_wc(struct page **pages, int addrinarray)
|
|
{
|
|
#if IS_ENABLED(CONFIG_AGP)
|
|
int i;
|
|
|
|
for (i = 0; i < addrinarray; i++)
|
|
map_page_into_agp(pages[i]);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static int set_pages_array_uc(struct page **pages, int addrinarray)
|
|
{
|
|
#if IS_ENABLED(CONFIG_AGP)
|
|
int i;
|
|
|
|
for (i = 0; i < addrinarray; i++)
|
|
map_page_into_agp(pages[i]);
|
|
#endif
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* Select the right pool or requested caching state and ttm flags. */
|
|
static struct ttm_page_pool *ttm_get_pool(int flags, bool huge,
|
|
enum ttm_caching_state cstate)
|
|
{
|
|
int pool_index;
|
|
|
|
if (cstate == tt_cached)
|
|
return NULL;
|
|
|
|
if (cstate == tt_wc)
|
|
pool_index = 0x0;
|
|
else
|
|
pool_index = 0x1;
|
|
|
|
if (flags & TTM_PAGE_FLAG_DMA32) {
|
|
if (huge)
|
|
return NULL;
|
|
pool_index |= 0x2;
|
|
|
|
} else if (huge) {
|
|
pool_index |= 0x4;
|
|
}
|
|
|
|
return &_manager->pools[pool_index];
|
|
}
|
|
|
|
/* set memory back to wb and free the pages. */
|
|
static void ttm_pages_put(struct page *pages[], unsigned npages,
|
|
unsigned int order)
|
|
{
|
|
unsigned int i, pages_nr = (1 << order);
|
|
|
|
if (order == 0) {
|
|
if (set_pages_array_wb(pages, npages))
|
|
pr_err("Failed to set %d pages to wb!\n", npages);
|
|
}
|
|
|
|
for (i = 0; i < npages; ++i) {
|
|
if (order > 0) {
|
|
if (set_pages_wb(pages[i], pages_nr))
|
|
pr_err("Failed to set %d pages to wb!\n", pages_nr);
|
|
}
|
|
__free_pages(pages[i], order);
|
|
}
|
|
}
|
|
|
|
static void ttm_pool_update_free_locked(struct ttm_page_pool *pool,
|
|
unsigned freed_pages)
|
|
{
|
|
pool->npages -= freed_pages;
|
|
pool->nfrees += freed_pages;
|
|
}
|
|
|
|
/**
|
|
* Free pages from pool.
|
|
*
|
|
* To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
|
|
* number of pages in one go.
|
|
*
|
|
* @pool: to free the pages from
|
|
* @free_all: If set to true will free all pages in pool
|
|
* @use_static: Safe to use static buffer
|
|
**/
|
|
static int ttm_page_pool_free(struct ttm_page_pool *pool, unsigned nr_free,
|
|
bool use_static)
|
|
{
|
|
static struct page *static_buf[NUM_PAGES_TO_ALLOC];
|
|
unsigned long irq_flags;
|
|
struct page *p;
|
|
struct page **pages_to_free;
|
|
unsigned freed_pages = 0,
|
|
npages_to_free = nr_free;
|
|
|
|
if (NUM_PAGES_TO_ALLOC < nr_free)
|
|
npages_to_free = NUM_PAGES_TO_ALLOC;
|
|
|
|
if (use_static)
|
|
pages_to_free = static_buf;
|
|
else
|
|
pages_to_free = kmalloc(npages_to_free * sizeof(struct page *),
|
|
GFP_KERNEL);
|
|
if (!pages_to_free) {
|
|
pr_debug("Failed to allocate memory for pool free operation\n");
|
|
return 0;
|
|
}
|
|
|
|
restart:
|
|
spin_lock_irqsave(&pool->lock, irq_flags);
|
|
|
|
list_for_each_entry_reverse(p, &pool->list, lru) {
|
|
if (freed_pages >= npages_to_free)
|
|
break;
|
|
|
|
pages_to_free[freed_pages++] = p;
|
|
/* We can only remove NUM_PAGES_TO_ALLOC at a time. */
|
|
if (freed_pages >= NUM_PAGES_TO_ALLOC) {
|
|
/* remove range of pages from the pool */
|
|
__list_del(p->lru.prev, &pool->list);
|
|
|
|
ttm_pool_update_free_locked(pool, freed_pages);
|
|
/**
|
|
* Because changing page caching is costly
|
|
* we unlock the pool to prevent stalling.
|
|
*/
|
|
spin_unlock_irqrestore(&pool->lock, irq_flags);
|
|
|
|
ttm_pages_put(pages_to_free, freed_pages, pool->order);
|
|
if (likely(nr_free != FREE_ALL_PAGES))
|
|
nr_free -= freed_pages;
|
|
|
|
if (NUM_PAGES_TO_ALLOC >= nr_free)
|
|
npages_to_free = nr_free;
|
|
else
|
|
npages_to_free = NUM_PAGES_TO_ALLOC;
|
|
|
|
freed_pages = 0;
|
|
|
|
/* free all so restart the processing */
|
|
if (nr_free)
|
|
goto restart;
|
|
|
|
/* Not allowed to fall through or break because
|
|
* following context is inside spinlock while we are
|
|
* outside here.
|
|
*/
|
|
goto out;
|
|
|
|
}
|
|
}
|
|
|
|
/* remove range of pages from the pool */
|
|
if (freed_pages) {
|
|
__list_del(&p->lru, &pool->list);
|
|
|
|
ttm_pool_update_free_locked(pool, freed_pages);
|
|
nr_free -= freed_pages;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&pool->lock, irq_flags);
|
|
|
|
if (freed_pages)
|
|
ttm_pages_put(pages_to_free, freed_pages, pool->order);
|
|
out:
|
|
if (pages_to_free != static_buf)
|
|
kfree(pages_to_free);
|
|
return nr_free;
|
|
}
|
|
|
|
/**
|
|
* Callback for mm to request pool to reduce number of page held.
|
|
*
|
|
* XXX: (dchinner) Deadlock warning!
|
|
*
|
|
* This code is crying out for a shrinker per pool....
|
|
*/
|
|
static unsigned long
|
|
ttm_pool_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
|
|
{
|
|
static DEFINE_MUTEX(lock);
|
|
static unsigned start_pool;
|
|
unsigned i;
|
|
unsigned pool_offset;
|
|
struct ttm_page_pool *pool;
|
|
int shrink_pages = sc->nr_to_scan;
|
|
unsigned long freed = 0;
|
|
unsigned int nr_free_pool;
|
|
|
|
if (!mutex_trylock(&lock))
|
|
return SHRINK_STOP;
|
|
pool_offset = ++start_pool % NUM_POOLS;
|
|
/* select start pool in round robin fashion */
|
|
for (i = 0; i < NUM_POOLS; ++i) {
|
|
unsigned nr_free = shrink_pages;
|
|
unsigned page_nr;
|
|
|
|
if (shrink_pages == 0)
|
|
break;
|
|
|
|
pool = &_manager->pools[(i + pool_offset)%NUM_POOLS];
|
|
page_nr = (1 << pool->order);
|
|
/* OK to use static buffer since global mutex is held. */
|
|
nr_free_pool = roundup(nr_free, page_nr) >> pool->order;
|
|
shrink_pages = ttm_page_pool_free(pool, nr_free_pool, true);
|
|
freed += (nr_free_pool - shrink_pages) << pool->order;
|
|
if (freed >= sc->nr_to_scan)
|
|
break;
|
|
shrink_pages <<= pool->order;
|
|
}
|
|
mutex_unlock(&lock);
|
|
return freed;
|
|
}
|
|
|
|
|
|
static unsigned long
|
|
ttm_pool_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
|
|
{
|
|
unsigned i;
|
|
unsigned long count = 0;
|
|
struct ttm_page_pool *pool;
|
|
|
|
for (i = 0; i < NUM_POOLS; ++i) {
|
|
pool = &_manager->pools[i];
|
|
count += (pool->npages << pool->order);
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static int ttm_pool_mm_shrink_init(struct ttm_pool_manager *manager)
|
|
{
|
|
manager->mm_shrink.count_objects = ttm_pool_shrink_count;
|
|
manager->mm_shrink.scan_objects = ttm_pool_shrink_scan;
|
|
manager->mm_shrink.seeks = 1;
|
|
return register_shrinker(&manager->mm_shrink);
|
|
}
|
|
|
|
static void ttm_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
|
|
{
|
|
unregister_shrinker(&manager->mm_shrink);
|
|
}
|
|
|
|
static int ttm_set_pages_caching(struct page **pages,
|
|
enum ttm_caching_state cstate, unsigned cpages)
|
|
{
|
|
int r = 0;
|
|
/* Set page caching */
|
|
switch (cstate) {
|
|
case tt_uncached:
|
|
r = set_pages_array_uc(pages, cpages);
|
|
if (r)
|
|
pr_err("Failed to set %d pages to uc!\n", cpages);
|
|
break;
|
|
case tt_wc:
|
|
r = set_pages_array_wc(pages, cpages);
|
|
if (r)
|
|
pr_err("Failed to set %d pages to wc!\n", cpages);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
* Free pages the pages that failed to change the caching state. If there is
|
|
* any pages that have changed their caching state already put them to the
|
|
* pool.
|
|
*/
|
|
static void ttm_handle_caching_state_failure(struct list_head *pages,
|
|
int ttm_flags, enum ttm_caching_state cstate,
|
|
struct page **failed_pages, unsigned cpages)
|
|
{
|
|
unsigned i;
|
|
/* Failed pages have to be freed */
|
|
for (i = 0; i < cpages; ++i) {
|
|
list_del(&failed_pages[i]->lru);
|
|
__free_page(failed_pages[i]);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Allocate new pages with correct caching.
|
|
*
|
|
* This function is reentrant if caller updates count depending on number of
|
|
* pages returned in pages array.
|
|
*/
|
|
static int ttm_alloc_new_pages(struct list_head *pages, gfp_t gfp_flags,
|
|
int ttm_flags, enum ttm_caching_state cstate,
|
|
unsigned count, unsigned order)
|
|
{
|
|
struct page **caching_array;
|
|
struct page *p;
|
|
int r = 0;
|
|
unsigned i, j, cpages;
|
|
unsigned npages = 1 << order;
|
|
unsigned max_cpages = min(count << order, (unsigned)NUM_PAGES_TO_ALLOC);
|
|
|
|
/* allocate array for page caching change */
|
|
caching_array = kmalloc(max_cpages*sizeof(struct page *), GFP_KERNEL);
|
|
|
|
if (!caching_array) {
|
|
pr_debug("Unable to allocate table for new pages\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for (i = 0, cpages = 0; i < count; ++i) {
|
|
p = alloc_pages(gfp_flags, order);
|
|
|
|
if (!p) {
|
|
pr_debug("Unable to get page %u\n", i);
|
|
|
|
/* store already allocated pages in the pool after
|
|
* setting the caching state */
|
|
if (cpages) {
|
|
r = ttm_set_pages_caching(caching_array,
|
|
cstate, cpages);
|
|
if (r)
|
|
ttm_handle_caching_state_failure(pages,
|
|
ttm_flags, cstate,
|
|
caching_array, cpages);
|
|
}
|
|
r = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
list_add(&p->lru, pages);
|
|
|
|
#ifdef CONFIG_HIGHMEM
|
|
/* gfp flags of highmem page should never be dma32 so we
|
|
* we should be fine in such case
|
|
*/
|
|
if (PageHighMem(p))
|
|
continue;
|
|
|
|
#endif
|
|
for (j = 0; j < npages; ++j) {
|
|
caching_array[cpages++] = p++;
|
|
if (cpages == max_cpages) {
|
|
|
|
r = ttm_set_pages_caching(caching_array,
|
|
cstate, cpages);
|
|
if (r) {
|
|
ttm_handle_caching_state_failure(pages,
|
|
ttm_flags, cstate,
|
|
caching_array, cpages);
|
|
goto out;
|
|
}
|
|
cpages = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (cpages) {
|
|
r = ttm_set_pages_caching(caching_array, cstate, cpages);
|
|
if (r)
|
|
ttm_handle_caching_state_failure(pages,
|
|
ttm_flags, cstate,
|
|
caching_array, cpages);
|
|
}
|
|
out:
|
|
kfree(caching_array);
|
|
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
* Fill the given pool if there aren't enough pages and the requested number of
|
|
* pages is small.
|
|
*/
|
|
static void ttm_page_pool_fill_locked(struct ttm_page_pool *pool, int ttm_flags,
|
|
enum ttm_caching_state cstate,
|
|
unsigned count, unsigned long *irq_flags)
|
|
{
|
|
struct page *p;
|
|
int r;
|
|
unsigned cpages = 0;
|
|
/**
|
|
* Only allow one pool fill operation at a time.
|
|
* If pool doesn't have enough pages for the allocation new pages are
|
|
* allocated from outside of pool.
|
|
*/
|
|
if (pool->fill_lock)
|
|
return;
|
|
|
|
pool->fill_lock = true;
|
|
|
|
/* If allocation request is small and there are not enough
|
|
* pages in a pool we fill the pool up first. */
|
|
if (count < _manager->options.small
|
|
&& count > pool->npages) {
|
|
struct list_head new_pages;
|
|
unsigned alloc_size = _manager->options.alloc_size;
|
|
|
|
/**
|
|
* Can't change page caching if in irqsave context. We have to
|
|
* drop the pool->lock.
|
|
*/
|
|
spin_unlock_irqrestore(&pool->lock, *irq_flags);
|
|
|
|
INIT_LIST_HEAD(&new_pages);
|
|
r = ttm_alloc_new_pages(&new_pages, pool->gfp_flags, ttm_flags,
|
|
cstate, alloc_size, 0);
|
|
spin_lock_irqsave(&pool->lock, *irq_flags);
|
|
|
|
if (!r) {
|
|
list_splice(&new_pages, &pool->list);
|
|
++pool->nrefills;
|
|
pool->npages += alloc_size;
|
|
} else {
|
|
pr_debug("Failed to fill pool (%p)\n", pool);
|
|
/* If we have any pages left put them to the pool. */
|
|
list_for_each_entry(p, &new_pages, lru) {
|
|
++cpages;
|
|
}
|
|
list_splice(&new_pages, &pool->list);
|
|
pool->npages += cpages;
|
|
}
|
|
|
|
}
|
|
pool->fill_lock = false;
|
|
}
|
|
|
|
/**
|
|
* Allocate pages from the pool and put them on the return list.
|
|
*
|
|
* @return zero for success or negative error code.
|
|
*/
|
|
static int ttm_page_pool_get_pages(struct ttm_page_pool *pool,
|
|
struct list_head *pages,
|
|
int ttm_flags,
|
|
enum ttm_caching_state cstate,
|
|
unsigned count, unsigned order)
|
|
{
|
|
unsigned long irq_flags;
|
|
struct list_head *p;
|
|
unsigned i;
|
|
int r = 0;
|
|
|
|
spin_lock_irqsave(&pool->lock, irq_flags);
|
|
if (!order)
|
|
ttm_page_pool_fill_locked(pool, ttm_flags, cstate, count,
|
|
&irq_flags);
|
|
|
|
if (count >= pool->npages) {
|
|
/* take all pages from the pool */
|
|
list_splice_init(&pool->list, pages);
|
|
count -= pool->npages;
|
|
pool->npages = 0;
|
|
goto out;
|
|
}
|
|
/* find the last pages to include for requested number of pages. Split
|
|
* pool to begin and halve it to reduce search space. */
|
|
if (count <= pool->npages/2) {
|
|
i = 0;
|
|
list_for_each(p, &pool->list) {
|
|
if (++i == count)
|
|
break;
|
|
}
|
|
} else {
|
|
i = pool->npages + 1;
|
|
list_for_each_prev(p, &pool->list) {
|
|
if (--i == count)
|
|
break;
|
|
}
|
|
}
|
|
/* Cut 'count' number of pages from the pool */
|
|
list_cut_position(pages, &pool->list, p);
|
|
pool->npages -= count;
|
|
count = 0;
|
|
out:
|
|
spin_unlock_irqrestore(&pool->lock, irq_flags);
|
|
|
|
/* clear the pages coming from the pool if requested */
|
|
if (ttm_flags & TTM_PAGE_FLAG_ZERO_ALLOC) {
|
|
struct page *page;
|
|
|
|
list_for_each_entry(page, pages, lru) {
|
|
if (PageHighMem(page))
|
|
clear_highpage(page);
|
|
else
|
|
clear_page(page_address(page));
|
|
}
|
|
}
|
|
|
|
/* If pool didn't have enough pages allocate new one. */
|
|
if (count) {
|
|
gfp_t gfp_flags = pool->gfp_flags;
|
|
|
|
/* set zero flag for page allocation if required */
|
|
if (ttm_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
|
|
gfp_flags |= __GFP_ZERO;
|
|
|
|
if (ttm_flags & TTM_PAGE_FLAG_NO_RETRY)
|
|
gfp_flags |= __GFP_RETRY_MAYFAIL;
|
|
|
|
/* ttm_alloc_new_pages doesn't reference pool so we can run
|
|
* multiple requests in parallel.
|
|
**/
|
|
r = ttm_alloc_new_pages(pages, gfp_flags, ttm_flags, cstate,
|
|
count, order);
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
/* Put all pages in pages list to correct pool to wait for reuse */
|
|
static void ttm_put_pages(struct page **pages, unsigned npages, int flags,
|
|
enum ttm_caching_state cstate)
|
|
{
|
|
struct ttm_page_pool *pool = ttm_get_pool(flags, false, cstate);
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
struct ttm_page_pool *huge = ttm_get_pool(flags, true, cstate);
|
|
#endif
|
|
unsigned long irq_flags;
|
|
unsigned i;
|
|
|
|
if (pool == NULL) {
|
|
/* No pool for this memory type so free the pages */
|
|
i = 0;
|
|
while (i < npages) {
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
struct page *p = pages[i];
|
|
#endif
|
|
unsigned order = 0, j;
|
|
|
|
if (!pages[i]) {
|
|
++i;
|
|
continue;
|
|
}
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
if (!(flags & TTM_PAGE_FLAG_DMA32)) {
|
|
for (j = 0; j < HPAGE_PMD_NR; ++j)
|
|
if (p++ != pages[i + j])
|
|
break;
|
|
|
|
if (j == HPAGE_PMD_NR)
|
|
order = HPAGE_PMD_ORDER;
|
|
}
|
|
#endif
|
|
|
|
if (page_count(pages[i]) != 1)
|
|
pr_err("Erroneous page count. Leaking pages.\n");
|
|
__free_pages(pages[i], order);
|
|
|
|
j = 1 << order;
|
|
while (j) {
|
|
pages[i++] = NULL;
|
|
--j;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
i = 0;
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
if (huge) {
|
|
unsigned max_size, n2free;
|
|
|
|
spin_lock_irqsave(&huge->lock, irq_flags);
|
|
while (i < npages) {
|
|
struct page *p = pages[i];
|
|
unsigned j;
|
|
|
|
if (!p)
|
|
break;
|
|
|
|
for (j = 0; j < HPAGE_PMD_NR; ++j)
|
|
if (p++ != pages[i + j])
|
|
break;
|
|
|
|
if (j != HPAGE_PMD_NR)
|
|
break;
|
|
|
|
list_add_tail(&pages[i]->lru, &huge->list);
|
|
|
|
for (j = 0; j < HPAGE_PMD_NR; ++j)
|
|
pages[i++] = NULL;
|
|
huge->npages++;
|
|
}
|
|
|
|
/* Check that we don't go over the pool limit */
|
|
max_size = _manager->options.max_size;
|
|
max_size /= HPAGE_PMD_NR;
|
|
if (huge->npages > max_size)
|
|
n2free = huge->npages - max_size;
|
|
else
|
|
n2free = 0;
|
|
spin_unlock_irqrestore(&huge->lock, irq_flags);
|
|
if (n2free)
|
|
ttm_page_pool_free(huge, n2free, false);
|
|
}
|
|
#endif
|
|
|
|
spin_lock_irqsave(&pool->lock, irq_flags);
|
|
while (i < npages) {
|
|
if (pages[i]) {
|
|
if (page_count(pages[i]) != 1)
|
|
pr_err("Erroneous page count. Leaking pages.\n");
|
|
list_add_tail(&pages[i]->lru, &pool->list);
|
|
pages[i] = NULL;
|
|
pool->npages++;
|
|
}
|
|
++i;
|
|
}
|
|
/* Check that we don't go over the pool limit */
|
|
npages = 0;
|
|
if (pool->npages > _manager->options.max_size) {
|
|
npages = pool->npages - _manager->options.max_size;
|
|
/* free at least NUM_PAGES_TO_ALLOC number of pages
|
|
* to reduce calls to set_memory_wb */
|
|
if (npages < NUM_PAGES_TO_ALLOC)
|
|
npages = NUM_PAGES_TO_ALLOC;
|
|
}
|
|
spin_unlock_irqrestore(&pool->lock, irq_flags);
|
|
if (npages)
|
|
ttm_page_pool_free(pool, npages, false);
|
|
}
|
|
|
|
/*
|
|
* On success pages list will hold count number of correctly
|
|
* cached pages.
|
|
*/
|
|
static int ttm_get_pages(struct page **pages, unsigned npages, int flags,
|
|
enum ttm_caching_state cstate)
|
|
{
|
|
struct ttm_page_pool *pool = ttm_get_pool(flags, false, cstate);
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
struct ttm_page_pool *huge = ttm_get_pool(flags, true, cstate);
|
|
#endif
|
|
struct list_head plist;
|
|
struct page *p = NULL;
|
|
unsigned count, first;
|
|
int r;
|
|
|
|
/* No pool for cached pages */
|
|
if (pool == NULL) {
|
|
gfp_t gfp_flags = GFP_USER;
|
|
unsigned i;
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
unsigned j;
|
|
#endif
|
|
|
|
/* set zero flag for page allocation if required */
|
|
if (flags & TTM_PAGE_FLAG_ZERO_ALLOC)
|
|
gfp_flags |= __GFP_ZERO;
|
|
|
|
if (flags & TTM_PAGE_FLAG_NO_RETRY)
|
|
gfp_flags |= __GFP_RETRY_MAYFAIL;
|
|
|
|
if (flags & TTM_PAGE_FLAG_DMA32)
|
|
gfp_flags |= GFP_DMA32;
|
|
else
|
|
gfp_flags |= GFP_HIGHUSER;
|
|
|
|
i = 0;
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
if (!(gfp_flags & GFP_DMA32)) {
|
|
while (npages >= HPAGE_PMD_NR) {
|
|
gfp_t huge_flags = gfp_flags;
|
|
|
|
huge_flags |= GFP_TRANSHUGE_LIGHT | __GFP_NORETRY |
|
|
__GFP_KSWAPD_RECLAIM;
|
|
huge_flags &= ~__GFP_MOVABLE;
|
|
huge_flags &= ~__GFP_COMP;
|
|
p = alloc_pages(huge_flags, HPAGE_PMD_ORDER);
|
|
if (!p)
|
|
break;
|
|
|
|
for (j = 0; j < HPAGE_PMD_NR; ++j)
|
|
pages[i++] = p++;
|
|
|
|
npages -= HPAGE_PMD_NR;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
first = i;
|
|
while (npages) {
|
|
p = alloc_page(gfp_flags);
|
|
if (!p) {
|
|
pr_debug("Unable to allocate page\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Swap the pages if we detect consecutive order */
|
|
if (i > first && pages[i - 1] == p - 1)
|
|
swap(p, pages[i - 1]);
|
|
|
|
pages[i++] = p;
|
|
--npages;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
count = 0;
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
if (huge && npages >= HPAGE_PMD_NR) {
|
|
INIT_LIST_HEAD(&plist);
|
|
ttm_page_pool_get_pages(huge, &plist, flags, cstate,
|
|
npages / HPAGE_PMD_NR,
|
|
HPAGE_PMD_ORDER);
|
|
|
|
list_for_each_entry(p, &plist, lru) {
|
|
unsigned j;
|
|
|
|
for (j = 0; j < HPAGE_PMD_NR; ++j)
|
|
pages[count++] = &p[j];
|
|
}
|
|
}
|
|
#endif
|
|
|
|
INIT_LIST_HEAD(&plist);
|
|
r = ttm_page_pool_get_pages(pool, &plist, flags, cstate,
|
|
npages - count, 0);
|
|
|
|
first = count;
|
|
list_for_each_entry(p, &plist, lru) {
|
|
struct page *tmp = p;
|
|
|
|
/* Swap the pages if we detect consecutive order */
|
|
if (count > first && pages[count - 1] == tmp - 1)
|
|
swap(tmp, pages[count - 1]);
|
|
pages[count++] = tmp;
|
|
}
|
|
|
|
if (r) {
|
|
/* If there is any pages in the list put them back to
|
|
* the pool.
|
|
*/
|
|
pr_debug("Failed to allocate extra pages for large request\n");
|
|
ttm_put_pages(pages, count, flags, cstate);
|
|
return r;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ttm_page_pool_init_locked(struct ttm_page_pool *pool, gfp_t flags,
|
|
char *name, unsigned int order)
|
|
{
|
|
spin_lock_init(&pool->lock);
|
|
pool->fill_lock = false;
|
|
INIT_LIST_HEAD(&pool->list);
|
|
pool->npages = pool->nfrees = 0;
|
|
pool->gfp_flags = flags;
|
|
pool->name = name;
|
|
pool->order = order;
|
|
}
|
|
|
|
int ttm_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
|
|
{
|
|
int ret;
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
unsigned order = HPAGE_PMD_ORDER;
|
|
#else
|
|
unsigned order = 0;
|
|
#endif
|
|
|
|
WARN_ON(_manager);
|
|
|
|
pr_info("Initializing pool allocator\n");
|
|
|
|
_manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
|
|
if (!_manager)
|
|
return -ENOMEM;
|
|
|
|
ttm_page_pool_init_locked(&_manager->wc_pool, GFP_HIGHUSER, "wc", 0);
|
|
|
|
ttm_page_pool_init_locked(&_manager->uc_pool, GFP_HIGHUSER, "uc", 0);
|
|
|
|
ttm_page_pool_init_locked(&_manager->wc_pool_dma32,
|
|
GFP_USER | GFP_DMA32, "wc dma", 0);
|
|
|
|
ttm_page_pool_init_locked(&_manager->uc_pool_dma32,
|
|
GFP_USER | GFP_DMA32, "uc dma", 0);
|
|
|
|
ttm_page_pool_init_locked(&_manager->wc_pool_huge,
|
|
(GFP_TRANSHUGE_LIGHT | __GFP_NORETRY |
|
|
__GFP_KSWAPD_RECLAIM) &
|
|
~(__GFP_MOVABLE | __GFP_COMP),
|
|
"wc huge", order);
|
|
|
|
ttm_page_pool_init_locked(&_manager->uc_pool_huge,
|
|
(GFP_TRANSHUGE_LIGHT | __GFP_NORETRY |
|
|
__GFP_KSWAPD_RECLAIM) &
|
|
~(__GFP_MOVABLE | __GFP_COMP)
|
|
, "uc huge", order);
|
|
|
|
_manager->options.max_size = max_pages;
|
|
_manager->options.small = SMALL_ALLOCATION;
|
|
_manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
|
|
|
|
ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
|
|
&glob->kobj, "pool");
|
|
if (unlikely(ret != 0))
|
|
goto error;
|
|
|
|
ret = ttm_pool_mm_shrink_init(_manager);
|
|
if (unlikely(ret != 0))
|
|
goto error;
|
|
return 0;
|
|
|
|
error:
|
|
kobject_put(&_manager->kobj);
|
|
_manager = NULL;
|
|
return ret;
|
|
}
|
|
|
|
void ttm_page_alloc_fini(void)
|
|
{
|
|
int i;
|
|
|
|
pr_info("Finalizing pool allocator\n");
|
|
ttm_pool_mm_shrink_fini(_manager);
|
|
|
|
/* OK to use static buffer since global mutex is no longer used. */
|
|
for (i = 0; i < NUM_POOLS; ++i)
|
|
ttm_page_pool_free(&_manager->pools[i], FREE_ALL_PAGES, true);
|
|
|
|
kobject_put(&_manager->kobj);
|
|
_manager = NULL;
|
|
}
|
|
|
|
static void
|
|
ttm_pool_unpopulate_helper(struct ttm_tt *ttm, unsigned mem_count_update)
|
|
{
|
|
struct ttm_mem_global *mem_glob = ttm->bdev->glob->mem_glob;
|
|
unsigned i;
|
|
|
|
if (mem_count_update == 0)
|
|
goto put_pages;
|
|
|
|
for (i = 0; i < mem_count_update; ++i) {
|
|
if (!ttm->pages[i])
|
|
continue;
|
|
|
|
ttm_mem_global_free_page(mem_glob, ttm->pages[i], PAGE_SIZE);
|
|
}
|
|
|
|
put_pages:
|
|
ttm_put_pages(ttm->pages, ttm->num_pages, ttm->page_flags,
|
|
ttm->caching_state);
|
|
ttm->state = tt_unpopulated;
|
|
}
|
|
|
|
int ttm_pool_populate(struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
|
|
{
|
|
struct ttm_mem_global *mem_glob = ttm->bdev->glob->mem_glob;
|
|
unsigned i;
|
|
int ret;
|
|
|
|
if (ttm->state != tt_unpopulated)
|
|
return 0;
|
|
|
|
if (ttm_check_under_lowerlimit(mem_glob, ttm->num_pages, ctx))
|
|
return -ENOMEM;
|
|
|
|
ret = ttm_get_pages(ttm->pages, ttm->num_pages, ttm->page_flags,
|
|
ttm->caching_state);
|
|
if (unlikely(ret != 0)) {
|
|
ttm_pool_unpopulate_helper(ttm, 0);
|
|
return ret;
|
|
}
|
|
|
|
for (i = 0; i < ttm->num_pages; ++i) {
|
|
ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
|
|
PAGE_SIZE, ctx);
|
|
if (unlikely(ret != 0)) {
|
|
ttm_pool_unpopulate_helper(ttm, i);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
|
|
ret = ttm_tt_swapin(ttm);
|
|
if (unlikely(ret != 0)) {
|
|
ttm_pool_unpopulate(ttm);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
ttm->state = tt_unbound;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(ttm_pool_populate);
|
|
|
|
void ttm_pool_unpopulate(struct ttm_tt *ttm)
|
|
{
|
|
ttm_pool_unpopulate_helper(ttm, ttm->num_pages);
|
|
}
|
|
EXPORT_SYMBOL(ttm_pool_unpopulate);
|
|
|
|
int ttm_populate_and_map_pages(struct device *dev, struct ttm_dma_tt *tt,
|
|
struct ttm_operation_ctx *ctx)
|
|
{
|
|
unsigned i, j;
|
|
int r;
|
|
|
|
r = ttm_pool_populate(&tt->ttm, ctx);
|
|
if (r)
|
|
return r;
|
|
|
|
for (i = 0; i < tt->ttm.num_pages; ++i) {
|
|
struct page *p = tt->ttm.pages[i];
|
|
size_t num_pages = 1;
|
|
|
|
for (j = i + 1; j < tt->ttm.num_pages; ++j) {
|
|
if (++p != tt->ttm.pages[j])
|
|
break;
|
|
|
|
++num_pages;
|
|
}
|
|
|
|
tt->dma_address[i] = dma_map_page(dev, tt->ttm.pages[i],
|
|
0, num_pages * PAGE_SIZE,
|
|
DMA_BIDIRECTIONAL);
|
|
if (dma_mapping_error(dev, tt->dma_address[i])) {
|
|
while (i--) {
|
|
dma_unmap_page(dev, tt->dma_address[i],
|
|
PAGE_SIZE, DMA_BIDIRECTIONAL);
|
|
tt->dma_address[i] = 0;
|
|
}
|
|
ttm_pool_unpopulate(&tt->ttm);
|
|
return -EFAULT;
|
|
}
|
|
|
|
for (j = 1; j < num_pages; ++j) {
|
|
tt->dma_address[i + 1] = tt->dma_address[i] + PAGE_SIZE;
|
|
++i;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(ttm_populate_and_map_pages);
|
|
|
|
void ttm_unmap_and_unpopulate_pages(struct device *dev, struct ttm_dma_tt *tt)
|
|
{
|
|
unsigned i, j;
|
|
|
|
for (i = 0; i < tt->ttm.num_pages;) {
|
|
struct page *p = tt->ttm.pages[i];
|
|
size_t num_pages = 1;
|
|
|
|
if (!tt->dma_address[i] || !tt->ttm.pages[i]) {
|
|
++i;
|
|
continue;
|
|
}
|
|
|
|
for (j = i + 1; j < tt->ttm.num_pages; ++j) {
|
|
if (++p != tt->ttm.pages[j])
|
|
break;
|
|
|
|
++num_pages;
|
|
}
|
|
|
|
dma_unmap_page(dev, tt->dma_address[i], num_pages * PAGE_SIZE,
|
|
DMA_BIDIRECTIONAL);
|
|
|
|
i += num_pages;
|
|
}
|
|
ttm_pool_unpopulate(&tt->ttm);
|
|
}
|
|
EXPORT_SYMBOL(ttm_unmap_and_unpopulate_pages);
|
|
|
|
int ttm_page_alloc_debugfs(struct seq_file *m, void *data)
|
|
{
|
|
struct ttm_page_pool *p;
|
|
unsigned i;
|
|
char *h[] = {"pool", "refills", "pages freed", "size"};
|
|
if (!_manager) {
|
|
seq_printf(m, "No pool allocator running.\n");
|
|
return 0;
|
|
}
|
|
seq_printf(m, "%7s %12s %13s %8s\n",
|
|
h[0], h[1], h[2], h[3]);
|
|
for (i = 0; i < NUM_POOLS; ++i) {
|
|
p = &_manager->pools[i];
|
|
|
|
seq_printf(m, "%7s %12ld %13ld %8d\n",
|
|
p->name, p->nrefills,
|
|
p->nfrees, p->npages);
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(ttm_page_alloc_debugfs);
|