linux/arch/x86/kernel/cpu/intel_rdt.c
Vikas Shivappa adcbdd7030 x86/intel_rdt: Fix padding when resource is enabled via mount
Currently max width of 'resource name' and 'resource data' is being
initialized based on 'enabled resources' during boot. But the mount can
enable different capable resources at a later time which upsets the
tabular format of schemata. Fix this to be based on 'all capable'
resources.

Signed-off-by: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Tested-by: Prakhya, Sai Praneeth <sai.praneeth.prakhya@intel.com>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: ravi.v.shankar@intel.com
Cc: vikas.shivappa@intel.com
Link: http://lkml.kernel.org/r/1492645804-17465-2-git-send-email-vikas.shivappa@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2017-04-20 15:57:59 +02:00

566 lines
14 KiB
C

/*
* Resource Director Technology(RDT)
* - Cache Allocation code.
*
* Copyright (C) 2016 Intel Corporation
*
* Authors:
* Fenghua Yu <fenghua.yu@intel.com>
* Tony Luck <tony.luck@intel.com>
* Vikas Shivappa <vikas.shivappa@intel.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* More information about RDT be found in the Intel (R) x86 Architecture
* Software Developer Manual June 2016, volume 3, section 17.17.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/cacheinfo.h>
#include <linux/cpuhotplug.h>
#include <asm/intel-family.h>
#include <asm/intel_rdt.h>
#define MAX_MBA_BW 100u
#define MBA_IS_LINEAR 0x4
/* Mutex to protect rdtgroup access. */
DEFINE_MUTEX(rdtgroup_mutex);
DEFINE_PER_CPU_READ_MOSTLY(int, cpu_closid);
/*
* Used to store the max resource name width and max resource data width
* to display the schemata in a tabular format
*/
int max_name_width, max_data_width;
static void
mba_wrmsr(struct rdt_domain *d, struct msr_param *m, struct rdt_resource *r);
static void
cat_wrmsr(struct rdt_domain *d, struct msr_param *m, struct rdt_resource *r);
#define domain_init(id) LIST_HEAD_INIT(rdt_resources_all[id].domains)
struct rdt_resource rdt_resources_all[] = {
{
.name = "L3",
.domains = domain_init(RDT_RESOURCE_L3),
.msr_base = IA32_L3_CBM_BASE,
.msr_update = cat_wrmsr,
.cache_level = 3,
.cache = {
.min_cbm_bits = 1,
.cbm_idx_mult = 1,
.cbm_idx_offset = 0,
},
.parse_ctrlval = parse_cbm,
.format_str = "%d=%0*x",
},
{
.name = "L3DATA",
.domains = domain_init(RDT_RESOURCE_L3DATA),
.msr_base = IA32_L3_CBM_BASE,
.msr_update = cat_wrmsr,
.cache_level = 3,
.cache = {
.min_cbm_bits = 1,
.cbm_idx_mult = 2,
.cbm_idx_offset = 0,
},
.parse_ctrlval = parse_cbm,
.format_str = "%d=%0*x",
},
{
.name = "L3CODE",
.domains = domain_init(RDT_RESOURCE_L3CODE),
.msr_base = IA32_L3_CBM_BASE,
.msr_update = cat_wrmsr,
.cache_level = 3,
.cache = {
.min_cbm_bits = 1,
.cbm_idx_mult = 2,
.cbm_idx_offset = 1,
},
.parse_ctrlval = parse_cbm,
.format_str = "%d=%0*x",
},
{
.name = "L2",
.domains = domain_init(RDT_RESOURCE_L2),
.msr_base = IA32_L2_CBM_BASE,
.msr_update = cat_wrmsr,
.cache_level = 2,
.cache = {
.min_cbm_bits = 1,
.cbm_idx_mult = 1,
.cbm_idx_offset = 0,
},
.parse_ctrlval = parse_cbm,
.format_str = "%d=%0*x",
},
{
.name = "MB",
.domains = domain_init(RDT_RESOURCE_MBA),
.msr_base = IA32_MBA_THRTL_BASE,
.msr_update = mba_wrmsr,
.cache_level = 3,
.parse_ctrlval = parse_bw,
.format_str = "%d=%*d",
},
};
static unsigned int cbm_idx(struct rdt_resource *r, unsigned int closid)
{
return closid * r->cache.cbm_idx_mult + r->cache.cbm_idx_offset;
}
/*
* cache_alloc_hsw_probe() - Have to probe for Intel haswell server CPUs
* as they do not have CPUID enumeration support for Cache allocation.
* The check for Vendor/Family/Model is not enough to guarantee that
* the MSRs won't #GP fault because only the following SKUs support
* CAT:
* Intel(R) Xeon(R) CPU E5-2658 v3 @ 2.20GHz
* Intel(R) Xeon(R) CPU E5-2648L v3 @ 1.80GHz
* Intel(R) Xeon(R) CPU E5-2628L v3 @ 2.00GHz
* Intel(R) Xeon(R) CPU E5-2618L v3 @ 2.30GHz
* Intel(R) Xeon(R) CPU E5-2608L v3 @ 2.00GHz
* Intel(R) Xeon(R) CPU E5-2658A v3 @ 2.20GHz
*
* Probe by trying to write the first of the L3 cach mask registers
* and checking that the bits stick. Max CLOSids is always 4 and max cbm length
* is always 20 on hsw server parts. The minimum cache bitmask length
* allowed for HSW server is always 2 bits. Hardcode all of them.
*/
static inline bool cache_alloc_hsw_probe(void)
{
if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
boot_cpu_data.x86 == 6 &&
boot_cpu_data.x86_model == INTEL_FAM6_HASWELL_X) {
struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3];
u32 l, h, max_cbm = BIT_MASK(20) - 1;
if (wrmsr_safe(IA32_L3_CBM_BASE, max_cbm, 0))
return false;
rdmsr(IA32_L3_CBM_BASE, l, h);
/* If all the bits were set in MSR, return success */
if (l != max_cbm)
return false;
r->num_closid = 4;
r->default_ctrl = max_cbm;
r->cache.cbm_len = 20;
r->cache.min_cbm_bits = 2;
r->capable = true;
r->enabled = true;
return true;
}
return false;
}
/*
* rdt_get_mb_table() - get a mapping of bandwidth(b/w) percentage values
* exposed to user interface and the h/w understandable delay values.
*
* The non-linear delay values have the granularity of power of two
* and also the h/w does not guarantee a curve for configured delay
* values vs. actual b/w enforced.
* Hence we need a mapping that is pre calibrated so the user can
* express the memory b/w as a percentage value.
*/
static inline bool rdt_get_mb_table(struct rdt_resource *r)
{
/*
* There are no Intel SKUs as of now to support non-linear delay.
*/
pr_info("MBA b/w map not implemented for cpu:%d, model:%d",
boot_cpu_data.x86, boot_cpu_data.x86_model);
return false;
}
static bool rdt_get_mem_config(struct rdt_resource *r)
{
union cpuid_0x10_3_eax eax;
union cpuid_0x10_x_edx edx;
u32 ebx, ecx;
cpuid_count(0x00000010, 3, &eax.full, &ebx, &ecx, &edx.full);
r->num_closid = edx.split.cos_max + 1;
r->membw.max_delay = eax.split.max_delay + 1;
r->default_ctrl = MAX_MBA_BW;
if (ecx & MBA_IS_LINEAR) {
r->membw.delay_linear = true;
r->membw.min_bw = MAX_MBA_BW - r->membw.max_delay;
r->membw.bw_gran = MAX_MBA_BW - r->membw.max_delay;
} else {
if (!rdt_get_mb_table(r))
return false;
}
r->data_width = 3;
rdt_get_mba_infofile(r);
r->capable = true;
r->enabled = true;
return true;
}
static void rdt_get_cache_config(int idx, struct rdt_resource *r)
{
union cpuid_0x10_1_eax eax;
union cpuid_0x10_x_edx edx;
u32 ebx, ecx;
cpuid_count(0x00000010, idx, &eax.full, &ebx, &ecx, &edx.full);
r->num_closid = edx.split.cos_max + 1;
r->cache.cbm_len = eax.split.cbm_len + 1;
r->default_ctrl = BIT_MASK(eax.split.cbm_len + 1) - 1;
r->data_width = (r->cache.cbm_len + 3) / 4;
rdt_get_cache_infofile(r);
r->capable = true;
r->enabled = true;
}
static void rdt_get_cdp_l3_config(int type)
{
struct rdt_resource *r_l3 = &rdt_resources_all[RDT_RESOURCE_L3];
struct rdt_resource *r = &rdt_resources_all[type];
r->num_closid = r_l3->num_closid / 2;
r->cache.cbm_len = r_l3->cache.cbm_len;
r->default_ctrl = r_l3->default_ctrl;
r->data_width = (r->cache.cbm_len + 3) / 4;
r->capable = true;
/*
* By default, CDP is disabled. CDP can be enabled by mount parameter
* "cdp" during resctrl file system mount time.
*/
r->enabled = false;
}
static int get_cache_id(int cpu, int level)
{
struct cpu_cacheinfo *ci = get_cpu_cacheinfo(cpu);
int i;
for (i = 0; i < ci->num_leaves; i++) {
if (ci->info_list[i].level == level)
return ci->info_list[i].id;
}
return -1;
}
/*
* Map the memory b/w percentage value to delay values
* that can be written to QOS_MSRs.
* There are currently no SKUs which support non linear delay values.
*/
static u32 delay_bw_map(unsigned long bw, struct rdt_resource *r)
{
if (r->membw.delay_linear)
return MAX_MBA_BW - bw;
pr_warn_once("Non Linear delay-bw map not supported but queried\n");
return r->default_ctrl;
}
static void
mba_wrmsr(struct rdt_domain *d, struct msr_param *m, struct rdt_resource *r)
{
unsigned int i;
/* Write the delay values for mba. */
for (i = m->low; i < m->high; i++)
wrmsrl(r->msr_base + i, delay_bw_map(d->ctrl_val[i], r));
}
static void
cat_wrmsr(struct rdt_domain *d, struct msr_param *m, struct rdt_resource *r)
{
unsigned int i;
for (i = m->low; i < m->high; i++)
wrmsrl(r->msr_base + cbm_idx(r, i), d->ctrl_val[i]);
}
void rdt_ctrl_update(void *arg)
{
struct msr_param *m = arg;
struct rdt_resource *r = m->res;
int cpu = smp_processor_id();
struct rdt_domain *d;
list_for_each_entry(d, &r->domains, list) {
/* Find the domain that contains this CPU */
if (cpumask_test_cpu(cpu, &d->cpu_mask)) {
r->msr_update(d, m, r);
return;
}
}
pr_warn_once("cpu %d not found in any domain for resource %s\n",
cpu, r->name);
}
/*
* rdt_find_domain - Find a domain in a resource that matches input resource id
*
* Search resource r's domain list to find the resource id. If the resource
* id is found in a domain, return the domain. Otherwise, if requested by
* caller, return the first domain whose id is bigger than the input id.
* The domain list is sorted by id in ascending order.
*/
static struct rdt_domain *rdt_find_domain(struct rdt_resource *r, int id,
struct list_head **pos)
{
struct rdt_domain *d;
struct list_head *l;
if (id < 0)
return ERR_PTR(id);
list_for_each(l, &r->domains) {
d = list_entry(l, struct rdt_domain, list);
/* When id is found, return its domain. */
if (id == d->id)
return d;
/* Stop searching when finding id's position in sorted list. */
if (id < d->id)
break;
}
if (pos)
*pos = l;
return NULL;
}
static int domain_setup_ctrlval(struct rdt_resource *r, struct rdt_domain *d)
{
struct msr_param m;
u32 *dc;
int i;
dc = kmalloc_array(r->num_closid, sizeof(*d->ctrl_val), GFP_KERNEL);
if (!dc)
return -ENOMEM;
d->ctrl_val = dc;
/*
* Initialize the Control MSRs to having no control.
* For Cache Allocation: Set all bits in cbm
* For Memory Allocation: Set b/w requested to 100
*/
for (i = 0; i < r->num_closid; i++, dc++)
*dc = r->default_ctrl;
m.low = 0;
m.high = r->num_closid;
r->msr_update(d, &m, r);
return 0;
}
/*
* domain_add_cpu - Add a cpu to a resource's domain list.
*
* If an existing domain in the resource r's domain list matches the cpu's
* resource id, add the cpu in the domain.
*
* Otherwise, a new domain is allocated and inserted into the right position
* in the domain list sorted by id in ascending order.
*
* The order in the domain list is visible to users when we print entries
* in the schemata file and schemata input is validated to have the same order
* as this list.
*/
static void domain_add_cpu(int cpu, struct rdt_resource *r)
{
int id = get_cache_id(cpu, r->cache_level);
struct list_head *add_pos = NULL;
struct rdt_domain *d;
d = rdt_find_domain(r, id, &add_pos);
if (IS_ERR(d)) {
pr_warn("Could't find cache id for cpu %d\n", cpu);
return;
}
if (d) {
cpumask_set_cpu(cpu, &d->cpu_mask);
return;
}
d = kzalloc_node(sizeof(*d), GFP_KERNEL, cpu_to_node(cpu));
if (!d)
return;
d->id = id;
if (domain_setup_ctrlval(r, d)) {
kfree(d);
return;
}
cpumask_set_cpu(cpu, &d->cpu_mask);
list_add_tail(&d->list, add_pos);
}
static void domain_remove_cpu(int cpu, struct rdt_resource *r)
{
int id = get_cache_id(cpu, r->cache_level);
struct rdt_domain *d;
d = rdt_find_domain(r, id, NULL);
if (IS_ERR_OR_NULL(d)) {
pr_warn("Could't find cache id for cpu %d\n", cpu);
return;
}
cpumask_clear_cpu(cpu, &d->cpu_mask);
if (cpumask_empty(&d->cpu_mask)) {
kfree(d->ctrl_val);
list_del(&d->list);
kfree(d);
}
}
static void clear_closid(int cpu)
{
struct intel_pqr_state *state = this_cpu_ptr(&pqr_state);
per_cpu(cpu_closid, cpu) = 0;
state->closid = 0;
wrmsr(MSR_IA32_PQR_ASSOC, state->rmid, 0);
}
static int intel_rdt_online_cpu(unsigned int cpu)
{
struct rdt_resource *r;
mutex_lock(&rdtgroup_mutex);
for_each_capable_rdt_resource(r)
domain_add_cpu(cpu, r);
/* The cpu is set in default rdtgroup after online. */
cpumask_set_cpu(cpu, &rdtgroup_default.cpu_mask);
clear_closid(cpu);
mutex_unlock(&rdtgroup_mutex);
return 0;
}
static int intel_rdt_offline_cpu(unsigned int cpu)
{
struct rdtgroup *rdtgrp;
struct rdt_resource *r;
mutex_lock(&rdtgroup_mutex);
for_each_capable_rdt_resource(r)
domain_remove_cpu(cpu, r);
list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
if (cpumask_test_and_clear_cpu(cpu, &rdtgrp->cpu_mask))
break;
}
clear_closid(cpu);
mutex_unlock(&rdtgroup_mutex);
return 0;
}
/*
* Choose a width for the resource name and resource data based on the
* resource that has widest name and cbm.
*/
static __init void rdt_init_padding(void)
{
struct rdt_resource *r;
int cl;
for_each_capable_rdt_resource(r) {
cl = strlen(r->name);
if (cl > max_name_width)
max_name_width = cl;
if (r->data_width > max_data_width)
max_data_width = r->data_width;
}
}
static __init bool get_rdt_resources(void)
{
bool ret = false;
if (cache_alloc_hsw_probe())
return true;
if (!boot_cpu_has(X86_FEATURE_RDT_A))
return false;
if (boot_cpu_has(X86_FEATURE_CAT_L3)) {
rdt_get_cache_config(1, &rdt_resources_all[RDT_RESOURCE_L3]);
if (boot_cpu_has(X86_FEATURE_CDP_L3)) {
rdt_get_cdp_l3_config(RDT_RESOURCE_L3DATA);
rdt_get_cdp_l3_config(RDT_RESOURCE_L3CODE);
}
ret = true;
}
if (boot_cpu_has(X86_FEATURE_CAT_L2)) {
/* CPUID 0x10.2 fields are same format at 0x10.1 */
rdt_get_cache_config(2, &rdt_resources_all[RDT_RESOURCE_L2]);
ret = true;
}
if (boot_cpu_has(X86_FEATURE_MBA)) {
if (rdt_get_mem_config(&rdt_resources_all[RDT_RESOURCE_MBA]))
ret = true;
}
return ret;
}
static int __init intel_rdt_late_init(void)
{
struct rdt_resource *r;
int state, ret;
if (!get_rdt_resources())
return -ENODEV;
rdt_init_padding();
state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
"x86/rdt/cat:online:",
intel_rdt_online_cpu, intel_rdt_offline_cpu);
if (state < 0)
return state;
ret = rdtgroup_init();
if (ret) {
cpuhp_remove_state(state);
return ret;
}
for_each_capable_rdt_resource(r)
pr_info("Intel RDT %s allocation detected\n", r->name);
return 0;
}
late_initcall(intel_rdt_late_init);