forked from Minki/linux
c886d70286
Dipanjan reported a syzbot splat at close time:
WARNING: CPU: 1 PID: 10818 at net/ipv4/af_inet.c:153
inet_sock_destruct+0x6d0/0x8e0 net/ipv4/af_inet.c:153
Modules linked in: uio_ivshmem(OE) uio(E)
CPU: 1 PID: 10818 Comm: kworker/1:16 Tainted: G OE
5.19.0-rc6-g2eae0556bb9d #2
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
1.13.0-1ubuntu1.1 04/01/2014
Workqueue: events mptcp_worker
RIP: 0010:inet_sock_destruct+0x6d0/0x8e0 net/ipv4/af_inet.c:153
Code: 21 02 00 00 41 8b 9c 24 28 02 00 00 e9 07 ff ff ff e8 34 4d 91
f9 89 ee 4c 89 e7 e8 4a 47 60 ff e9 a6 fc ff ff e8 20 4d 91 f9 <0f> 0b
e9 84 fe ff ff e8 14 4d 91 f9 0f 0b e9 d4 fd ff ff e8 08 4d
RSP: 0018:ffffc9001b35fa78 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 00000000002879d0 RCX: ffff8881326f3b00
RDX: 0000000000000000 RSI: ffff8881326f3b00 RDI: 0000000000000002
RBP: ffff888179662674 R08: ffffffff87e983a0 R09: 0000000000000000
R10: 0000000000000005 R11: 00000000000004ea R12: ffff888179662400
R13: ffff888179662428 R14: 0000000000000001 R15: ffff88817e38e258
FS: 0000000000000000(0000) GS:ffff8881f5f00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000020007bc0 CR3: 0000000179592000 CR4: 0000000000150ee0
Call Trace:
<TASK>
__sk_destruct+0x4f/0x8e0 net/core/sock.c:2067
sk_destruct+0xbd/0xe0 net/core/sock.c:2112
__sk_free+0xef/0x3d0 net/core/sock.c:2123
sk_free+0x78/0xa0 net/core/sock.c:2134
sock_put include/net/sock.h:1927 [inline]
__mptcp_close_ssk+0x50f/0x780 net/mptcp/protocol.c:2351
__mptcp_destroy_sock+0x332/0x760 net/mptcp/protocol.c:2828
mptcp_worker+0x5d2/0xc90 net/mptcp/protocol.c:2586
process_one_work+0x9cc/0x1650 kernel/workqueue.c:2289
worker_thread+0x623/0x1070 kernel/workqueue.c:2436
kthread+0x2e9/0x3a0 kernel/kthread.c:376
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:302
</TASK>
The root cause of the problem is that an mptcp-level (re)transmit can
race with mptcp_close() and the packet scheduler checks the subflow
state before acquiring the socket lock: we can try to (re)transmit on
an already closed ssk.
Fix the issue checking again the subflow socket status under the
subflow socket lock protection. Additionally add the missing check
for the fallback-to-tcp case.
Fixes: d5f49190de
("mptcp: allow picking different xmit subflows")
Reported-by: Dipanjan Das <mail.dipanjan.das@gmail.com>
Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com>
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Signed-off-by: Mat Martineau <mathew.j.martineau@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
3843 lines
96 KiB
C
3843 lines
96 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* Multipath TCP
|
|
*
|
|
* Copyright (c) 2017 - 2019, Intel Corporation.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "MPTCP: " fmt
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/atomic.h>
|
|
#include <net/sock.h>
|
|
#include <net/inet_common.h>
|
|
#include <net/inet_hashtables.h>
|
|
#include <net/protocol.h>
|
|
#include <net/tcp.h>
|
|
#include <net/tcp_states.h>
|
|
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
|
|
#include <net/transp_v6.h>
|
|
#endif
|
|
#include <net/mptcp.h>
|
|
#include <net/xfrm.h>
|
|
#include <asm/ioctls.h>
|
|
#include "protocol.h"
|
|
#include "mib.h"
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/mptcp.h>
|
|
|
|
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
|
|
struct mptcp6_sock {
|
|
struct mptcp_sock msk;
|
|
struct ipv6_pinfo np;
|
|
};
|
|
#endif
|
|
|
|
struct mptcp_skb_cb {
|
|
u64 map_seq;
|
|
u64 end_seq;
|
|
u32 offset;
|
|
u8 has_rxtstamp:1;
|
|
};
|
|
|
|
#define MPTCP_SKB_CB(__skb) ((struct mptcp_skb_cb *)&((__skb)->cb[0]))
|
|
|
|
enum {
|
|
MPTCP_CMSG_TS = BIT(0),
|
|
MPTCP_CMSG_INQ = BIT(1),
|
|
};
|
|
|
|
static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
|
|
|
|
static void __mptcp_destroy_sock(struct sock *sk);
|
|
static void __mptcp_check_send_data_fin(struct sock *sk);
|
|
|
|
DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
|
|
static struct net_device mptcp_napi_dev;
|
|
|
|
/* If msk has an initial subflow socket, and the MP_CAPABLE handshake has not
|
|
* completed yet or has failed, return the subflow socket.
|
|
* Otherwise return NULL.
|
|
*/
|
|
struct socket *__mptcp_nmpc_socket(const struct mptcp_sock *msk)
|
|
{
|
|
if (!msk->subflow || READ_ONCE(msk->can_ack))
|
|
return NULL;
|
|
|
|
return msk->subflow;
|
|
}
|
|
|
|
/* Returns end sequence number of the receiver's advertised window */
|
|
static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
|
|
{
|
|
return READ_ONCE(msk->wnd_end);
|
|
}
|
|
|
|
static bool mptcp_is_tcpsk(struct sock *sk)
|
|
{
|
|
struct socket *sock = sk->sk_socket;
|
|
|
|
if (unlikely(sk->sk_prot == &tcp_prot)) {
|
|
/* we are being invoked after mptcp_accept() has
|
|
* accepted a non-mp-capable flow: sk is a tcp_sk,
|
|
* not an mptcp one.
|
|
*
|
|
* Hand the socket over to tcp so all further socket ops
|
|
* bypass mptcp.
|
|
*/
|
|
sock->ops = &inet_stream_ops;
|
|
return true;
|
|
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
|
|
} else if (unlikely(sk->sk_prot == &tcpv6_prot)) {
|
|
sock->ops = &inet6_stream_ops;
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static int __mptcp_socket_create(struct mptcp_sock *msk)
|
|
{
|
|
struct mptcp_subflow_context *subflow;
|
|
struct sock *sk = (struct sock *)msk;
|
|
struct socket *ssock;
|
|
int err;
|
|
|
|
err = mptcp_subflow_create_socket(sk, &ssock);
|
|
if (err)
|
|
return err;
|
|
|
|
msk->first = ssock->sk;
|
|
msk->subflow = ssock;
|
|
subflow = mptcp_subflow_ctx(ssock->sk);
|
|
list_add(&subflow->node, &msk->conn_list);
|
|
sock_hold(ssock->sk);
|
|
subflow->request_mptcp = 1;
|
|
|
|
/* This is the first subflow, always with id 0 */
|
|
subflow->local_id_valid = 1;
|
|
mptcp_sock_graft(msk->first, sk->sk_socket);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
|
|
{
|
|
sk_drops_add(sk, skb);
|
|
__kfree_skb(skb);
|
|
}
|
|
|
|
static void mptcp_rmem_charge(struct sock *sk, int size)
|
|
{
|
|
mptcp_sk(sk)->rmem_fwd_alloc -= size;
|
|
}
|
|
|
|
static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
|
|
struct sk_buff *from)
|
|
{
|
|
bool fragstolen;
|
|
int delta;
|
|
|
|
if (MPTCP_SKB_CB(from)->offset ||
|
|
!skb_try_coalesce(to, from, &fragstolen, &delta))
|
|
return false;
|
|
|
|
pr_debug("colesced seq %llx into %llx new len %d new end seq %llx",
|
|
MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
|
|
to->len, MPTCP_SKB_CB(from)->end_seq);
|
|
MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
|
|
kfree_skb_partial(from, fragstolen);
|
|
atomic_add(delta, &sk->sk_rmem_alloc);
|
|
mptcp_rmem_charge(sk, delta);
|
|
return true;
|
|
}
|
|
|
|
static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
|
|
struct sk_buff *from)
|
|
{
|
|
if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
|
|
return false;
|
|
|
|
return mptcp_try_coalesce((struct sock *)msk, to, from);
|
|
}
|
|
|
|
static void __mptcp_rmem_reclaim(struct sock *sk, int amount)
|
|
{
|
|
amount >>= PAGE_SHIFT;
|
|
mptcp_sk(sk)->rmem_fwd_alloc -= amount << PAGE_SHIFT;
|
|
__sk_mem_reduce_allocated(sk, amount);
|
|
}
|
|
|
|
static void mptcp_rmem_uncharge(struct sock *sk, int size)
|
|
{
|
|
struct mptcp_sock *msk = mptcp_sk(sk);
|
|
int reclaimable;
|
|
|
|
msk->rmem_fwd_alloc += size;
|
|
reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk);
|
|
|
|
/* see sk_mem_uncharge() for the rationale behind the following schema */
|
|
if (unlikely(reclaimable >= PAGE_SIZE))
|
|
__mptcp_rmem_reclaim(sk, reclaimable);
|
|
}
|
|
|
|
static void mptcp_rfree(struct sk_buff *skb)
|
|
{
|
|
unsigned int len = skb->truesize;
|
|
struct sock *sk = skb->sk;
|
|
|
|
atomic_sub(len, &sk->sk_rmem_alloc);
|
|
mptcp_rmem_uncharge(sk, len);
|
|
}
|
|
|
|
static void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk)
|
|
{
|
|
skb_orphan(skb);
|
|
skb->sk = sk;
|
|
skb->destructor = mptcp_rfree;
|
|
atomic_add(skb->truesize, &sk->sk_rmem_alloc);
|
|
mptcp_rmem_charge(sk, skb->truesize);
|
|
}
|
|
|
|
/* "inspired" by tcp_data_queue_ofo(), main differences:
|
|
* - use mptcp seqs
|
|
* - don't cope with sacks
|
|
*/
|
|
static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
|
|
{
|
|
struct sock *sk = (struct sock *)msk;
|
|
struct rb_node **p, *parent;
|
|
u64 seq, end_seq, max_seq;
|
|
struct sk_buff *skb1;
|
|
|
|
seq = MPTCP_SKB_CB(skb)->map_seq;
|
|
end_seq = MPTCP_SKB_CB(skb)->end_seq;
|
|
max_seq = atomic64_read(&msk->rcv_wnd_sent);
|
|
|
|
pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq,
|
|
RB_EMPTY_ROOT(&msk->out_of_order_queue));
|
|
if (after64(end_seq, max_seq)) {
|
|
/* out of window */
|
|
mptcp_drop(sk, skb);
|
|
pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
|
|
(unsigned long long)end_seq - (unsigned long)max_seq,
|
|
(unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
|
|
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
|
|
return;
|
|
}
|
|
|
|
p = &msk->out_of_order_queue.rb_node;
|
|
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
|
|
if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
|
|
rb_link_node(&skb->rbnode, NULL, p);
|
|
rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
|
|
msk->ooo_last_skb = skb;
|
|
goto end;
|
|
}
|
|
|
|
/* with 2 subflows, adding at end of ooo queue is quite likely
|
|
* Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
|
|
*/
|
|
if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
|
|
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
|
|
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
|
|
return;
|
|
}
|
|
|
|
/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
|
|
if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
|
|
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
|
|
parent = &msk->ooo_last_skb->rbnode;
|
|
p = &parent->rb_right;
|
|
goto insert;
|
|
}
|
|
|
|
/* Find place to insert this segment. Handle overlaps on the way. */
|
|
parent = NULL;
|
|
while (*p) {
|
|
parent = *p;
|
|
skb1 = rb_to_skb(parent);
|
|
if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
|
|
p = &parent->rb_left;
|
|
continue;
|
|
}
|
|
if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
|
|
if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
|
|
/* All the bits are present. Drop. */
|
|
mptcp_drop(sk, skb);
|
|
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
|
|
return;
|
|
}
|
|
if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
|
|
/* partial overlap:
|
|
* | skb |
|
|
* | skb1 |
|
|
* continue traversing
|
|
*/
|
|
} else {
|
|
/* skb's seq == skb1's seq and skb covers skb1.
|
|
* Replace skb1 with skb.
|
|
*/
|
|
rb_replace_node(&skb1->rbnode, &skb->rbnode,
|
|
&msk->out_of_order_queue);
|
|
mptcp_drop(sk, skb1);
|
|
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
|
|
goto merge_right;
|
|
}
|
|
} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
|
|
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
|
|
return;
|
|
}
|
|
p = &parent->rb_right;
|
|
}
|
|
|
|
insert:
|
|
/* Insert segment into RB tree. */
|
|
rb_link_node(&skb->rbnode, parent, p);
|
|
rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
|
|
|
|
merge_right:
|
|
/* Remove other segments covered by skb. */
|
|
while ((skb1 = skb_rb_next(skb)) != NULL) {
|
|
if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
|
|
break;
|
|
rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
|
|
mptcp_drop(sk, skb1);
|
|
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
|
|
}
|
|
/* If there is no skb after us, we are the last_skb ! */
|
|
if (!skb1)
|
|
msk->ooo_last_skb = skb;
|
|
|
|
end:
|
|
skb_condense(skb);
|
|
mptcp_set_owner_r(skb, sk);
|
|
}
|
|
|
|
static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size)
|
|
{
|
|
struct mptcp_sock *msk = mptcp_sk(sk);
|
|
int amt, amount;
|
|
|
|
if (size <= msk->rmem_fwd_alloc)
|
|
return true;
|
|
|
|
size -= msk->rmem_fwd_alloc;
|
|
amt = sk_mem_pages(size);
|
|
amount = amt << PAGE_SHIFT;
|
|
if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV))
|
|
return false;
|
|
|
|
msk->rmem_fwd_alloc += amount;
|
|
return true;
|
|
}
|
|
|
|
static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
|
|
struct sk_buff *skb, unsigned int offset,
|
|
size_t copy_len)
|
|
{
|
|
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
|
|
struct sock *sk = (struct sock *)msk;
|
|
struct sk_buff *tail;
|
|
bool has_rxtstamp;
|
|
|
|
__skb_unlink(skb, &ssk->sk_receive_queue);
|
|
|
|
skb_ext_reset(skb);
|
|
skb_orphan(skb);
|
|
|
|
/* try to fetch required memory from subflow */
|
|
if (!mptcp_rmem_schedule(sk, ssk, skb->truesize))
|
|
goto drop;
|
|
|
|
has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
|
|
|
|
/* the skb map_seq accounts for the skb offset:
|
|
* mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
|
|
* value
|
|
*/
|
|
MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
|
|
MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
|
|
MPTCP_SKB_CB(skb)->offset = offset;
|
|
MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
|
|
|
|
if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
|
|
/* in sequence */
|
|
WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
|
|
tail = skb_peek_tail(&sk->sk_receive_queue);
|
|
if (tail && mptcp_try_coalesce(sk, tail, skb))
|
|
return true;
|
|
|
|
mptcp_set_owner_r(skb, sk);
|
|
__skb_queue_tail(&sk->sk_receive_queue, skb);
|
|
return true;
|
|
} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
|
|
mptcp_data_queue_ofo(msk, skb);
|
|
return false;
|
|
}
|
|
|
|
/* old data, keep it simple and drop the whole pkt, sender
|
|
* will retransmit as needed, if needed.
|
|
*/
|
|
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
|
|
drop:
|
|
mptcp_drop(sk, skb);
|
|
return false;
|
|
}
|
|
|
|
static void mptcp_stop_timer(struct sock *sk)
|
|
{
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
|
|
|
sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
|
|
mptcp_sk(sk)->timer_ival = 0;
|
|
}
|
|
|
|
static void mptcp_close_wake_up(struct sock *sk)
|
|
{
|
|
if (sock_flag(sk, SOCK_DEAD))
|
|
return;
|
|
|
|
sk->sk_state_change(sk);
|
|
if (sk->sk_shutdown == SHUTDOWN_MASK ||
|
|
sk->sk_state == TCP_CLOSE)
|
|
sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
|
|
else
|
|
sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
|
|
}
|
|
|
|
static bool mptcp_pending_data_fin_ack(struct sock *sk)
|
|
{
|
|
struct mptcp_sock *msk = mptcp_sk(sk);
|
|
|
|
return !__mptcp_check_fallback(msk) &&
|
|
((1 << sk->sk_state) &
|
|
(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
|
|
msk->write_seq == READ_ONCE(msk->snd_una);
|
|
}
|
|
|
|
static void mptcp_check_data_fin_ack(struct sock *sk)
|
|
{
|
|
struct mptcp_sock *msk = mptcp_sk(sk);
|
|
|
|
/* Look for an acknowledged DATA_FIN */
|
|
if (mptcp_pending_data_fin_ack(sk)) {
|
|
WRITE_ONCE(msk->snd_data_fin_enable, 0);
|
|
|
|
switch (sk->sk_state) {
|
|
case TCP_FIN_WAIT1:
|
|
inet_sk_state_store(sk, TCP_FIN_WAIT2);
|
|
break;
|
|
case TCP_CLOSING:
|
|
case TCP_LAST_ACK:
|
|
inet_sk_state_store(sk, TCP_CLOSE);
|
|
break;
|
|
}
|
|
|
|
mptcp_close_wake_up(sk);
|
|
}
|
|
}
|
|
|
|
static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
|
|
{
|
|
struct mptcp_sock *msk = mptcp_sk(sk);
|
|
|
|
if (READ_ONCE(msk->rcv_data_fin) &&
|
|
((1 << sk->sk_state) &
|
|
(TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
|
|
u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
|
|
|
|
if (msk->ack_seq == rcv_data_fin_seq) {
|
|
if (seq)
|
|
*seq = rcv_data_fin_seq;
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void mptcp_set_datafin_timeout(const struct sock *sk)
|
|
{
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
|
u32 retransmits;
|
|
|
|
retransmits = min_t(u32, icsk->icsk_retransmits,
|
|
ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
|
|
|
|
mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
|
|
}
|
|
|
|
static void __mptcp_set_timeout(struct sock *sk, long tout)
|
|
{
|
|
mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
|
|
}
|
|
|
|
static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
|
|
{
|
|
const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
|
|
|
|
return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
|
|
inet_csk(ssk)->icsk_timeout - jiffies : 0;
|
|
}
|
|
|
|
static void mptcp_set_timeout(struct sock *sk)
|
|
{
|
|
struct mptcp_subflow_context *subflow;
|
|
long tout = 0;
|
|
|
|
mptcp_for_each_subflow(mptcp_sk(sk), subflow)
|
|
tout = max(tout, mptcp_timeout_from_subflow(subflow));
|
|
__mptcp_set_timeout(sk, tout);
|
|
}
|
|
|
|
static inline bool tcp_can_send_ack(const struct sock *ssk)
|
|
{
|
|
return !((1 << inet_sk_state_load(ssk)) &
|
|
(TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
|
|
}
|
|
|
|
void __mptcp_subflow_send_ack(struct sock *ssk)
|
|
{
|
|
if (tcp_can_send_ack(ssk))
|
|
tcp_send_ack(ssk);
|
|
}
|
|
|
|
static void mptcp_subflow_send_ack(struct sock *ssk)
|
|
{
|
|
bool slow;
|
|
|
|
slow = lock_sock_fast(ssk);
|
|
__mptcp_subflow_send_ack(ssk);
|
|
unlock_sock_fast(ssk, slow);
|
|
}
|
|
|
|
static void mptcp_send_ack(struct mptcp_sock *msk)
|
|
{
|
|
struct mptcp_subflow_context *subflow;
|
|
|
|
mptcp_for_each_subflow(msk, subflow)
|
|
mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
|
|
}
|
|
|
|
static void mptcp_subflow_cleanup_rbuf(struct sock *ssk)
|
|
{
|
|
bool slow;
|
|
|
|
slow = lock_sock_fast(ssk);
|
|
if (tcp_can_send_ack(ssk))
|
|
tcp_cleanup_rbuf(ssk, 1);
|
|
unlock_sock_fast(ssk, slow);
|
|
}
|
|
|
|
static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
|
|
{
|
|
const struct inet_connection_sock *icsk = inet_csk(ssk);
|
|
u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
|
|
const struct tcp_sock *tp = tcp_sk(ssk);
|
|
|
|
return (ack_pending & ICSK_ACK_SCHED) &&
|
|
((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
|
|
READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
|
|
(rx_empty && ack_pending &
|
|
(ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
|
|
}
|
|
|
|
static void mptcp_cleanup_rbuf(struct mptcp_sock *msk)
|
|
{
|
|
int old_space = READ_ONCE(msk->old_wspace);
|
|
struct mptcp_subflow_context *subflow;
|
|
struct sock *sk = (struct sock *)msk;
|
|
int space = __mptcp_space(sk);
|
|
bool cleanup, rx_empty;
|
|
|
|
cleanup = (space > 0) && (space >= (old_space << 1));
|
|
rx_empty = !__mptcp_rmem(sk);
|
|
|
|
mptcp_for_each_subflow(msk, subflow) {
|
|
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
|
|
|
|
if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
|
|
mptcp_subflow_cleanup_rbuf(ssk);
|
|
}
|
|
}
|
|
|
|
static bool mptcp_check_data_fin(struct sock *sk)
|
|
{
|
|
struct mptcp_sock *msk = mptcp_sk(sk);
|
|
u64 rcv_data_fin_seq;
|
|
bool ret = false;
|
|
|
|
if (__mptcp_check_fallback(msk))
|
|
return ret;
|
|
|
|
/* Need to ack a DATA_FIN received from a peer while this side
|
|
* of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
|
|
* msk->rcv_data_fin was set when parsing the incoming options
|
|
* at the subflow level and the msk lock was not held, so this
|
|
* is the first opportunity to act on the DATA_FIN and change
|
|
* the msk state.
|
|
*
|
|
* If we are caught up to the sequence number of the incoming
|
|
* DATA_FIN, send the DATA_ACK now and do state transition. If
|
|
* not caught up, do nothing and let the recv code send DATA_ACK
|
|
* when catching up.
|
|
*/
|
|
|
|
if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
|
|
WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
|
|
WRITE_ONCE(msk->rcv_data_fin, 0);
|
|
|
|
sk->sk_shutdown |= RCV_SHUTDOWN;
|
|
smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
|
|
|
|
switch (sk->sk_state) {
|
|
case TCP_ESTABLISHED:
|
|
inet_sk_state_store(sk, TCP_CLOSE_WAIT);
|
|
break;
|
|
case TCP_FIN_WAIT1:
|
|
inet_sk_state_store(sk, TCP_CLOSING);
|
|
break;
|
|
case TCP_FIN_WAIT2:
|
|
inet_sk_state_store(sk, TCP_CLOSE);
|
|
break;
|
|
default:
|
|
/* Other states not expected */
|
|
WARN_ON_ONCE(1);
|
|
break;
|
|
}
|
|
|
|
ret = true;
|
|
mptcp_send_ack(msk);
|
|
mptcp_close_wake_up(sk);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
|
|
struct sock *ssk,
|
|
unsigned int *bytes)
|
|
{
|
|
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
|
|
struct sock *sk = (struct sock *)msk;
|
|
unsigned int moved = 0;
|
|
bool more_data_avail;
|
|
struct tcp_sock *tp;
|
|
bool done = false;
|
|
int sk_rbuf;
|
|
|
|
sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
|
|
|
|
if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
|
|
int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
|
|
|
|
if (unlikely(ssk_rbuf > sk_rbuf)) {
|
|
WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
|
|
sk_rbuf = ssk_rbuf;
|
|
}
|
|
}
|
|
|
|
pr_debug("msk=%p ssk=%p", msk, ssk);
|
|
tp = tcp_sk(ssk);
|
|
do {
|
|
u32 map_remaining, offset;
|
|
u32 seq = tp->copied_seq;
|
|
struct sk_buff *skb;
|
|
bool fin;
|
|
|
|
/* try to move as much data as available */
|
|
map_remaining = subflow->map_data_len -
|
|
mptcp_subflow_get_map_offset(subflow);
|
|
|
|
skb = skb_peek(&ssk->sk_receive_queue);
|
|
if (!skb) {
|
|
/* if no data is found, a racing workqueue/recvmsg
|
|
* already processed the new data, stop here or we
|
|
* can enter an infinite loop
|
|
*/
|
|
if (!moved)
|
|
done = true;
|
|
break;
|
|
}
|
|
|
|
if (__mptcp_check_fallback(msk)) {
|
|
/* if we are running under the workqueue, TCP could have
|
|
* collapsed skbs between dummy map creation and now
|
|
* be sure to adjust the size
|
|
*/
|
|
map_remaining = skb->len;
|
|
subflow->map_data_len = skb->len;
|
|
}
|
|
|
|
offset = seq - TCP_SKB_CB(skb)->seq;
|
|
fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
|
|
if (fin) {
|
|
done = true;
|
|
seq++;
|
|
}
|
|
|
|
if (offset < skb->len) {
|
|
size_t len = skb->len - offset;
|
|
|
|
if (tp->urg_data)
|
|
done = true;
|
|
|
|
if (__mptcp_move_skb(msk, ssk, skb, offset, len))
|
|
moved += len;
|
|
seq += len;
|
|
|
|
if (WARN_ON_ONCE(map_remaining < len))
|
|
break;
|
|
} else {
|
|
WARN_ON_ONCE(!fin);
|
|
sk_eat_skb(ssk, skb);
|
|
done = true;
|
|
}
|
|
|
|
WRITE_ONCE(tp->copied_seq, seq);
|
|
more_data_avail = mptcp_subflow_data_available(ssk);
|
|
|
|
if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
|
|
done = true;
|
|
break;
|
|
}
|
|
} while (more_data_avail);
|
|
|
|
*bytes += moved;
|
|
return done;
|
|
}
|
|
|
|
static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
|
|
{
|
|
struct sock *sk = (struct sock *)msk;
|
|
struct sk_buff *skb, *tail;
|
|
bool moved = false;
|
|
struct rb_node *p;
|
|
u64 end_seq;
|
|
|
|
p = rb_first(&msk->out_of_order_queue);
|
|
pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
|
|
while (p) {
|
|
skb = rb_to_skb(p);
|
|
if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
|
|
break;
|
|
|
|
p = rb_next(p);
|
|
rb_erase(&skb->rbnode, &msk->out_of_order_queue);
|
|
|
|
if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
|
|
msk->ack_seq))) {
|
|
mptcp_drop(sk, skb);
|
|
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
|
|
continue;
|
|
}
|
|
|
|
end_seq = MPTCP_SKB_CB(skb)->end_seq;
|
|
tail = skb_peek_tail(&sk->sk_receive_queue);
|
|
if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
|
|
int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
|
|
|
|
/* skip overlapping data, if any */
|
|
pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d",
|
|
MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
|
|
delta);
|
|
MPTCP_SKB_CB(skb)->offset += delta;
|
|
MPTCP_SKB_CB(skb)->map_seq += delta;
|
|
__skb_queue_tail(&sk->sk_receive_queue, skb);
|
|
}
|
|
msk->ack_seq = end_seq;
|
|
moved = true;
|
|
}
|
|
return moved;
|
|
}
|
|
|
|
/* In most cases we will be able to lock the mptcp socket. If its already
|
|
* owned, we need to defer to the work queue to avoid ABBA deadlock.
|
|
*/
|
|
static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
|
|
{
|
|
struct sock *sk = (struct sock *)msk;
|
|
unsigned int moved = 0;
|
|
|
|
__mptcp_move_skbs_from_subflow(msk, ssk, &moved);
|
|
__mptcp_ofo_queue(msk);
|
|
if (unlikely(ssk->sk_err)) {
|
|
if (!sock_owned_by_user(sk))
|
|
__mptcp_error_report(sk);
|
|
else
|
|
__set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags);
|
|
}
|
|
|
|
/* If the moves have caught up with the DATA_FIN sequence number
|
|
* it's time to ack the DATA_FIN and change socket state, but
|
|
* this is not a good place to change state. Let the workqueue
|
|
* do it.
|
|
*/
|
|
if (mptcp_pending_data_fin(sk, NULL))
|
|
mptcp_schedule_work(sk);
|
|
return moved > 0;
|
|
}
|
|
|
|
void mptcp_data_ready(struct sock *sk, struct sock *ssk)
|
|
{
|
|
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
|
|
struct mptcp_sock *msk = mptcp_sk(sk);
|
|
int sk_rbuf, ssk_rbuf;
|
|
|
|
/* The peer can send data while we are shutting down this
|
|
* subflow at msk destruction time, but we must avoid enqueuing
|
|
* more data to the msk receive queue
|
|
*/
|
|
if (unlikely(subflow->disposable))
|
|
return;
|
|
|
|
ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
|
|
sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
|
|
if (unlikely(ssk_rbuf > sk_rbuf))
|
|
sk_rbuf = ssk_rbuf;
|
|
|
|
/* over limit? can't append more skbs to msk, Also, no need to wake-up*/
|
|
if (__mptcp_rmem(sk) > sk_rbuf) {
|
|
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
|
|
return;
|
|
}
|
|
|
|
/* Wake-up the reader only for in-sequence data */
|
|
mptcp_data_lock(sk);
|
|
if (move_skbs_to_msk(msk, ssk))
|
|
sk->sk_data_ready(sk);
|
|
|
|
mptcp_data_unlock(sk);
|
|
}
|
|
|
|
static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
|
|
{
|
|
struct sock *sk = (struct sock *)msk;
|
|
|
|
if (sk->sk_state != TCP_ESTABLISHED)
|
|
return false;
|
|
|
|
/* attach to msk socket only after we are sure we will deal with it
|
|
* at close time
|
|
*/
|
|
if (sk->sk_socket && !ssk->sk_socket)
|
|
mptcp_sock_graft(ssk, sk->sk_socket);
|
|
|
|
mptcp_propagate_sndbuf((struct sock *)msk, ssk);
|
|
mptcp_sockopt_sync_locked(msk, ssk);
|
|
return true;
|
|
}
|
|
|
|
static void __mptcp_flush_join_list(struct sock *sk)
|
|
{
|
|
struct mptcp_subflow_context *tmp, *subflow;
|
|
struct mptcp_sock *msk = mptcp_sk(sk);
|
|
|
|
list_for_each_entry_safe(subflow, tmp, &msk->join_list, node) {
|
|
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
|
|
bool slow = lock_sock_fast(ssk);
|
|
|
|
list_move_tail(&subflow->node, &msk->conn_list);
|
|
if (!__mptcp_finish_join(msk, ssk))
|
|
mptcp_subflow_reset(ssk);
|
|
unlock_sock_fast(ssk, slow);
|
|
}
|
|
}
|
|
|
|
static bool mptcp_timer_pending(struct sock *sk)
|
|
{
|
|
return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
|
|
}
|
|
|
|
static void mptcp_reset_timer(struct sock *sk)
|
|
{
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
|
unsigned long tout;
|
|
|
|
/* prevent rescheduling on close */
|
|
if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
|
|
return;
|
|
|
|
tout = mptcp_sk(sk)->timer_ival;
|
|
sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
|
|
}
|
|
|
|
bool mptcp_schedule_work(struct sock *sk)
|
|
{
|
|
if (inet_sk_state_load(sk) != TCP_CLOSE &&
|
|
schedule_work(&mptcp_sk(sk)->work)) {
|
|
/* each subflow already holds a reference to the sk, and the
|
|
* workqueue is invoked by a subflow, so sk can't go away here.
|
|
*/
|
|
sock_hold(sk);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void mptcp_subflow_eof(struct sock *sk)
|
|
{
|
|
if (!test_and_set_bit(MPTCP_WORK_EOF, &mptcp_sk(sk)->flags))
|
|
mptcp_schedule_work(sk);
|
|
}
|
|
|
|
static void mptcp_check_for_eof(struct mptcp_sock *msk)
|
|
{
|
|
struct mptcp_subflow_context *subflow;
|
|
struct sock *sk = (struct sock *)msk;
|
|
int receivers = 0;
|
|
|
|
mptcp_for_each_subflow(msk, subflow)
|
|
receivers += !subflow->rx_eof;
|
|
if (receivers)
|
|
return;
|
|
|
|
if (!(sk->sk_shutdown & RCV_SHUTDOWN)) {
|
|
/* hopefully temporary hack: propagate shutdown status
|
|
* to msk, when all subflows agree on it
|
|
*/
|
|
sk->sk_shutdown |= RCV_SHUTDOWN;
|
|
|
|
smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
|
|
sk->sk_data_ready(sk);
|
|
}
|
|
|
|
switch (sk->sk_state) {
|
|
case TCP_ESTABLISHED:
|
|
inet_sk_state_store(sk, TCP_CLOSE_WAIT);
|
|
break;
|
|
case TCP_FIN_WAIT1:
|
|
inet_sk_state_store(sk, TCP_CLOSING);
|
|
break;
|
|
case TCP_FIN_WAIT2:
|
|
inet_sk_state_store(sk, TCP_CLOSE);
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
mptcp_close_wake_up(sk);
|
|
}
|
|
|
|
static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
|
|
{
|
|
struct mptcp_subflow_context *subflow;
|
|
struct sock *sk = (struct sock *)msk;
|
|
|
|
sock_owned_by_me(sk);
|
|
|
|
mptcp_for_each_subflow(msk, subflow) {
|
|
if (READ_ONCE(subflow->data_avail))
|
|
return mptcp_subflow_tcp_sock(subflow);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static bool mptcp_skb_can_collapse_to(u64 write_seq,
|
|
const struct sk_buff *skb,
|
|
const struct mptcp_ext *mpext)
|
|
{
|
|
if (!tcp_skb_can_collapse_to(skb))
|
|
return false;
|
|
|
|
/* can collapse only if MPTCP level sequence is in order and this
|
|
* mapping has not been xmitted yet
|
|
*/
|
|
return mpext && mpext->data_seq + mpext->data_len == write_seq &&
|
|
!mpext->frozen;
|
|
}
|
|
|
|
/* we can append data to the given data frag if:
|
|
* - there is space available in the backing page_frag
|
|
* - the data frag tail matches the current page_frag free offset
|
|
* - the data frag end sequence number matches the current write seq
|
|
*/
|
|
static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
|
|
const struct page_frag *pfrag,
|
|
const struct mptcp_data_frag *df)
|
|
{
|
|
return df && pfrag->page == df->page &&
|
|
pfrag->size - pfrag->offset > 0 &&
|
|
pfrag->offset == (df->offset + df->data_len) &&
|
|
df->data_seq + df->data_len == msk->write_seq;
|
|
}
|
|
|
|
static void dfrag_uncharge(struct sock *sk, int len)
|
|
{
|
|
sk_mem_uncharge(sk, len);
|
|
sk_wmem_queued_add(sk, -len);
|
|
}
|
|
|
|
static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
|
|
{
|
|
int len = dfrag->data_len + dfrag->overhead;
|
|
|
|
list_del(&dfrag->list);
|
|
dfrag_uncharge(sk, len);
|
|
put_page(dfrag->page);
|
|
}
|
|
|
|
static void __mptcp_clean_una(struct sock *sk)
|
|
{
|
|
struct mptcp_sock *msk = mptcp_sk(sk);
|
|
struct mptcp_data_frag *dtmp, *dfrag;
|
|
u64 snd_una;
|
|
|
|
/* on fallback we just need to ignore snd_una, as this is really
|
|
* plain TCP
|
|
*/
|
|
if (__mptcp_check_fallback(msk))
|
|
msk->snd_una = READ_ONCE(msk->snd_nxt);
|
|
|
|
snd_una = msk->snd_una;
|
|
list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
|
|
if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
|
|
break;
|
|
|
|
if (unlikely(dfrag == msk->first_pending)) {
|
|
/* in recovery mode can see ack after the current snd head */
|
|
if (WARN_ON_ONCE(!msk->recovery))
|
|
break;
|
|
|
|
WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
|
|
}
|
|
|
|
dfrag_clear(sk, dfrag);
|
|
}
|
|
|
|
dfrag = mptcp_rtx_head(sk);
|
|
if (dfrag && after64(snd_una, dfrag->data_seq)) {
|
|
u64 delta = snd_una - dfrag->data_seq;
|
|
|
|
/* prevent wrap around in recovery mode */
|
|
if (unlikely(delta > dfrag->already_sent)) {
|
|
if (WARN_ON_ONCE(!msk->recovery))
|
|
goto out;
|
|
if (WARN_ON_ONCE(delta > dfrag->data_len))
|
|
goto out;
|
|
dfrag->already_sent += delta - dfrag->already_sent;
|
|
}
|
|
|
|
dfrag->data_seq += delta;
|
|
dfrag->offset += delta;
|
|
dfrag->data_len -= delta;
|
|
dfrag->already_sent -= delta;
|
|
|
|
dfrag_uncharge(sk, delta);
|
|
}
|
|
|
|
/* all retransmitted data acked, recovery completed */
|
|
if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
|
|
msk->recovery = false;
|
|
|
|
out:
|
|
if (snd_una == READ_ONCE(msk->snd_nxt) &&
|
|
snd_una == READ_ONCE(msk->write_seq)) {
|
|
if (mptcp_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
|
|
mptcp_stop_timer(sk);
|
|
} else {
|
|
mptcp_reset_timer(sk);
|
|
}
|
|
}
|
|
|
|
static void __mptcp_clean_una_wakeup(struct sock *sk)
|
|
{
|
|
lockdep_assert_held_once(&sk->sk_lock.slock);
|
|
|
|
__mptcp_clean_una(sk);
|
|
mptcp_write_space(sk);
|
|
}
|
|
|
|
static void mptcp_clean_una_wakeup(struct sock *sk)
|
|
{
|
|
mptcp_data_lock(sk);
|
|
__mptcp_clean_una_wakeup(sk);
|
|
mptcp_data_unlock(sk);
|
|
}
|
|
|
|
static void mptcp_enter_memory_pressure(struct sock *sk)
|
|
{
|
|
struct mptcp_subflow_context *subflow;
|
|
struct mptcp_sock *msk = mptcp_sk(sk);
|
|
bool first = true;
|
|
|
|
sk_stream_moderate_sndbuf(sk);
|
|
mptcp_for_each_subflow(msk, subflow) {
|
|
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
|
|
|
|
if (first)
|
|
tcp_enter_memory_pressure(ssk);
|
|
sk_stream_moderate_sndbuf(ssk);
|
|
first = false;
|
|
}
|
|
}
|
|
|
|
/* ensure we get enough memory for the frag hdr, beyond some minimal amount of
|
|
* data
|
|
*/
|
|
static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
|
|
{
|
|
if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
|
|
pfrag, sk->sk_allocation)))
|
|
return true;
|
|
|
|
mptcp_enter_memory_pressure(sk);
|
|
return false;
|
|
}
|
|
|
|
static struct mptcp_data_frag *
|
|
mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
|
|
int orig_offset)
|
|
{
|
|
int offset = ALIGN(orig_offset, sizeof(long));
|
|
struct mptcp_data_frag *dfrag;
|
|
|
|
dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
|
|
dfrag->data_len = 0;
|
|
dfrag->data_seq = msk->write_seq;
|
|
dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
|
|
dfrag->offset = offset + sizeof(struct mptcp_data_frag);
|
|
dfrag->already_sent = 0;
|
|
dfrag->page = pfrag->page;
|
|
|
|
return dfrag;
|
|
}
|
|
|
|
struct mptcp_sendmsg_info {
|
|
int mss_now;
|
|
int size_goal;
|
|
u16 limit;
|
|
u16 sent;
|
|
unsigned int flags;
|
|
bool data_lock_held;
|
|
};
|
|
|
|
static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
|
|
u64 data_seq, int avail_size)
|
|
{
|
|
u64 window_end = mptcp_wnd_end(msk);
|
|
u64 mptcp_snd_wnd;
|
|
|
|
if (__mptcp_check_fallback(msk))
|
|
return avail_size;
|
|
|
|
mptcp_snd_wnd = window_end - data_seq;
|
|
avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
|
|
|
|
if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
|
|
tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
|
|
MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
|
|
}
|
|
|
|
return avail_size;
|
|
}
|
|
|
|
static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
|
|
{
|
|
struct skb_ext *mpext = __skb_ext_alloc(gfp);
|
|
|
|
if (!mpext)
|
|
return false;
|
|
__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
|
|
return true;
|
|
}
|
|
|
|
static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
|
|
{
|
|
struct sk_buff *skb;
|
|
|
|
skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
|
|
if (likely(skb)) {
|
|
if (likely(__mptcp_add_ext(skb, gfp))) {
|
|
skb_reserve(skb, MAX_TCP_HEADER);
|
|
skb->ip_summed = CHECKSUM_PARTIAL;
|
|
INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
|
|
return skb;
|
|
}
|
|
__kfree_skb(skb);
|
|
} else {
|
|
mptcp_enter_memory_pressure(sk);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
|
|
{
|
|
struct sk_buff *skb;
|
|
|
|
skb = __mptcp_do_alloc_tx_skb(sk, gfp);
|
|
if (!skb)
|
|
return NULL;
|
|
|
|
if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
|
|
tcp_skb_entail(ssk, skb);
|
|
return skb;
|
|
}
|
|
tcp_skb_tsorted_anchor_cleanup(skb);
|
|
kfree_skb(skb);
|
|
return NULL;
|
|
}
|
|
|
|
static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
|
|
{
|
|
gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
|
|
|
|
return __mptcp_alloc_tx_skb(sk, ssk, gfp);
|
|
}
|
|
|
|
/* note: this always recompute the csum on the whole skb, even
|
|
* if we just appended a single frag. More status info needed
|
|
*/
|
|
static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
|
|
{
|
|
struct mptcp_ext *mpext = mptcp_get_ext(skb);
|
|
__wsum csum = ~csum_unfold(mpext->csum);
|
|
int offset = skb->len - added;
|
|
|
|
mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
|
|
}
|
|
|
|
static void mptcp_update_infinite_map(struct mptcp_sock *msk,
|
|
struct sock *ssk,
|
|
struct mptcp_ext *mpext)
|
|
{
|
|
if (!mpext)
|
|
return;
|
|
|
|
mpext->infinite_map = 1;
|
|
mpext->data_len = 0;
|
|
|
|
MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX);
|
|
mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
|
|
pr_fallback(msk);
|
|
mptcp_do_fallback(ssk);
|
|
}
|
|
|
|
static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
|
|
struct mptcp_data_frag *dfrag,
|
|
struct mptcp_sendmsg_info *info)
|
|
{
|
|
u64 data_seq = dfrag->data_seq + info->sent;
|
|
int offset = dfrag->offset + info->sent;
|
|
struct mptcp_sock *msk = mptcp_sk(sk);
|
|
bool zero_window_probe = false;
|
|
struct mptcp_ext *mpext = NULL;
|
|
bool can_coalesce = false;
|
|
bool reuse_skb = true;
|
|
struct sk_buff *skb;
|
|
size_t copy;
|
|
int i;
|
|
|
|
pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u",
|
|
msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
|
|
|
|
if (WARN_ON_ONCE(info->sent > info->limit ||
|
|
info->limit > dfrag->data_len))
|
|
return 0;
|
|
|
|
if (unlikely(!__tcp_can_send(ssk)))
|
|
return -EAGAIN;
|
|
|
|
/* compute send limit */
|
|
info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
|
|
copy = info->size_goal;
|
|
|
|
skb = tcp_write_queue_tail(ssk);
|
|
if (skb && copy > skb->len) {
|
|
/* Limit the write to the size available in the
|
|
* current skb, if any, so that we create at most a new skb.
|
|
* Explicitly tells TCP internals to avoid collapsing on later
|
|
* queue management operation, to avoid breaking the ext <->
|
|
* SSN association set here
|
|
*/
|
|
mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
|
|
if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
|
|
TCP_SKB_CB(skb)->eor = 1;
|
|
goto alloc_skb;
|
|
}
|
|
|
|
i = skb_shinfo(skb)->nr_frags;
|
|
can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
|
|
if (!can_coalesce && i >= sysctl_max_skb_frags) {
|
|
tcp_mark_push(tcp_sk(ssk), skb);
|
|
goto alloc_skb;
|
|
}
|
|
|
|
copy -= skb->len;
|
|
} else {
|
|
alloc_skb:
|
|
skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
|
|
if (!skb)
|
|
return -ENOMEM;
|
|
|
|
i = skb_shinfo(skb)->nr_frags;
|
|
reuse_skb = false;
|
|
mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
|
|
}
|
|
|
|
/* Zero window and all data acked? Probe. */
|
|
copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
|
|
if (copy == 0) {
|
|
u64 snd_una = READ_ONCE(msk->snd_una);
|
|
|
|
if (snd_una != msk->snd_nxt) {
|
|
tcp_remove_empty_skb(ssk);
|
|
return 0;
|
|
}
|
|
|
|
zero_window_probe = true;
|
|
data_seq = snd_una - 1;
|
|
copy = 1;
|
|
|
|
/* all mptcp-level data is acked, no skbs should be present into the
|
|
* ssk write queue
|
|
*/
|
|
WARN_ON_ONCE(reuse_skb);
|
|
}
|
|
|
|
copy = min_t(size_t, copy, info->limit - info->sent);
|
|
if (!sk_wmem_schedule(ssk, copy)) {
|
|
tcp_remove_empty_skb(ssk);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (can_coalesce) {
|
|
skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
|
|
} else {
|
|
get_page(dfrag->page);
|
|
skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
|
|
}
|
|
|
|
skb->len += copy;
|
|
skb->data_len += copy;
|
|
skb->truesize += copy;
|
|
sk_wmem_queued_add(ssk, copy);
|
|
sk_mem_charge(ssk, copy);
|
|
WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
|
|
TCP_SKB_CB(skb)->end_seq += copy;
|
|
tcp_skb_pcount_set(skb, 0);
|
|
|
|
/* on skb reuse we just need to update the DSS len */
|
|
if (reuse_skb) {
|
|
TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
|
|
mpext->data_len += copy;
|
|
WARN_ON_ONCE(zero_window_probe);
|
|
goto out;
|
|
}
|
|
|
|
memset(mpext, 0, sizeof(*mpext));
|
|
mpext->data_seq = data_seq;
|
|
mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
|
|
mpext->data_len = copy;
|
|
mpext->use_map = 1;
|
|
mpext->dsn64 = 1;
|
|
|
|
pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d",
|
|
mpext->data_seq, mpext->subflow_seq, mpext->data_len,
|
|
mpext->dsn64);
|
|
|
|
if (zero_window_probe) {
|
|
mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
|
|
mpext->frozen = 1;
|
|
if (READ_ONCE(msk->csum_enabled))
|
|
mptcp_update_data_checksum(skb, copy);
|
|
tcp_push_pending_frames(ssk);
|
|
return 0;
|
|
}
|
|
out:
|
|
if (READ_ONCE(msk->csum_enabled))
|
|
mptcp_update_data_checksum(skb, copy);
|
|
if (mptcp_subflow_ctx(ssk)->send_infinite_map)
|
|
mptcp_update_infinite_map(msk, ssk, mpext);
|
|
trace_mptcp_sendmsg_frag(mpext);
|
|
mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
|
|
return copy;
|
|
}
|
|
|
|
#define MPTCP_SEND_BURST_SIZE ((1 << 16) - \
|
|
sizeof(struct tcphdr) - \
|
|
MAX_TCP_OPTION_SPACE - \
|
|
sizeof(struct ipv6hdr) - \
|
|
sizeof(struct frag_hdr))
|
|
|
|
struct subflow_send_info {
|
|
struct sock *ssk;
|
|
u64 linger_time;
|
|
};
|
|
|
|
void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
|
|
{
|
|
if (!subflow->stale)
|
|
return;
|
|
|
|
subflow->stale = 0;
|
|
MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
|
|
}
|
|
|
|
bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
|
|
{
|
|
if (unlikely(subflow->stale)) {
|
|
u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
|
|
|
|
if (subflow->stale_rcv_tstamp == rcv_tstamp)
|
|
return false;
|
|
|
|
mptcp_subflow_set_active(subflow);
|
|
}
|
|
return __mptcp_subflow_active(subflow);
|
|
}
|
|
|
|
#define SSK_MODE_ACTIVE 0
|
|
#define SSK_MODE_BACKUP 1
|
|
#define SSK_MODE_MAX 2
|
|
|
|
/* implement the mptcp packet scheduler;
|
|
* returns the subflow that will transmit the next DSS
|
|
* additionally updates the rtx timeout
|
|
*/
|
|
static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
|
|
{
|
|
struct subflow_send_info send_info[SSK_MODE_MAX];
|
|
struct mptcp_subflow_context *subflow;
|
|
struct sock *sk = (struct sock *)msk;
|
|
u32 pace, burst, wmem;
|
|
int i, nr_active = 0;
|
|
struct sock *ssk;
|
|
u64 linger_time;
|
|
long tout = 0;
|
|
|
|
sock_owned_by_me(sk);
|
|
|
|
if (__mptcp_check_fallback(msk)) {
|
|
if (!msk->first)
|
|
return NULL;
|
|
return __tcp_can_send(msk->first) &&
|
|
sk_stream_memory_free(msk->first) ? msk->first : NULL;
|
|
}
|
|
|
|
/* re-use last subflow, if the burst allow that */
|
|
if (msk->last_snd && msk->snd_burst > 0 &&
|
|
sk_stream_memory_free(msk->last_snd) &&
|
|
mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd))) {
|
|
mptcp_set_timeout(sk);
|
|
return msk->last_snd;
|
|
}
|
|
|
|
/* pick the subflow with the lower wmem/wspace ratio */
|
|
for (i = 0; i < SSK_MODE_MAX; ++i) {
|
|
send_info[i].ssk = NULL;
|
|
send_info[i].linger_time = -1;
|
|
}
|
|
|
|
mptcp_for_each_subflow(msk, subflow) {
|
|
trace_mptcp_subflow_get_send(subflow);
|
|
ssk = mptcp_subflow_tcp_sock(subflow);
|
|
if (!mptcp_subflow_active(subflow))
|
|
continue;
|
|
|
|
tout = max(tout, mptcp_timeout_from_subflow(subflow));
|
|
nr_active += !subflow->backup;
|
|
pace = subflow->avg_pacing_rate;
|
|
if (unlikely(!pace)) {
|
|
/* init pacing rate from socket */
|
|
subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
|
|
pace = subflow->avg_pacing_rate;
|
|
if (!pace)
|
|
continue;
|
|
}
|
|
|
|
linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
|
|
if (linger_time < send_info[subflow->backup].linger_time) {
|
|
send_info[subflow->backup].ssk = ssk;
|
|
send_info[subflow->backup].linger_time = linger_time;
|
|
}
|
|
}
|
|
__mptcp_set_timeout(sk, tout);
|
|
|
|
/* pick the best backup if no other subflow is active */
|
|
if (!nr_active)
|
|
send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
|
|
|
|
/* According to the blest algorithm, to avoid HoL blocking for the
|
|
* faster flow, we need to:
|
|
* - estimate the faster flow linger time
|
|
* - use the above to estimate the amount of byte transferred
|
|
* by the faster flow
|
|
* - check that the amount of queued data is greter than the above,
|
|
* otherwise do not use the picked, slower, subflow
|
|
* We select the subflow with the shorter estimated time to flush
|
|
* the queued mem, which basically ensure the above. We just need
|
|
* to check that subflow has a non empty cwin.
|
|
*/
|
|
ssk = send_info[SSK_MODE_ACTIVE].ssk;
|
|
if (!ssk || !sk_stream_memory_free(ssk))
|
|
return NULL;
|
|
|
|
burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
|
|
wmem = READ_ONCE(ssk->sk_wmem_queued);
|
|
if (!burst) {
|
|
msk->last_snd = NULL;
|
|
return ssk;
|
|
}
|
|
|
|
subflow = mptcp_subflow_ctx(ssk);
|
|
subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
|
|
READ_ONCE(ssk->sk_pacing_rate) * burst,
|
|
burst + wmem);
|
|
msk->last_snd = ssk;
|
|
msk->snd_burst = burst;
|
|
return ssk;
|
|
}
|
|
|
|
static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
|
|
{
|
|
tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
|
|
release_sock(ssk);
|
|
}
|
|
|
|
static void mptcp_update_post_push(struct mptcp_sock *msk,
|
|
struct mptcp_data_frag *dfrag,
|
|
u32 sent)
|
|
{
|
|
u64 snd_nxt_new = dfrag->data_seq;
|
|
|
|
dfrag->already_sent += sent;
|
|
|
|
msk->snd_burst -= sent;
|
|
|
|
snd_nxt_new += dfrag->already_sent;
|
|
|
|
/* snd_nxt_new can be smaller than snd_nxt in case mptcp
|
|
* is recovering after a failover. In that event, this re-sends
|
|
* old segments.
|
|
*
|
|
* Thus compute snd_nxt_new candidate based on
|
|
* the dfrag->data_seq that was sent and the data
|
|
* that has been handed to the subflow for transmission
|
|
* and skip update in case it was old dfrag.
|
|
*/
|
|
if (likely(after64(snd_nxt_new, msk->snd_nxt)))
|
|
msk->snd_nxt = snd_nxt_new;
|
|
}
|
|
|
|
void mptcp_check_and_set_pending(struct sock *sk)
|
|
{
|
|
if (mptcp_send_head(sk))
|
|
mptcp_sk(sk)->push_pending |= BIT(MPTCP_PUSH_PENDING);
|
|
}
|
|
|
|
void __mptcp_push_pending(struct sock *sk, unsigned int flags)
|
|
{
|
|
struct sock *prev_ssk = NULL, *ssk = NULL;
|
|
struct mptcp_sock *msk = mptcp_sk(sk);
|
|
struct mptcp_sendmsg_info info = {
|
|
.flags = flags,
|
|
};
|
|
struct mptcp_data_frag *dfrag;
|
|
int len, copied = 0;
|
|
|
|
while ((dfrag = mptcp_send_head(sk))) {
|
|
info.sent = dfrag->already_sent;
|
|
info.limit = dfrag->data_len;
|
|
len = dfrag->data_len - dfrag->already_sent;
|
|
while (len > 0) {
|
|
int ret = 0;
|
|
|
|
prev_ssk = ssk;
|
|
ssk = mptcp_subflow_get_send(msk);
|
|
|
|
/* First check. If the ssk has changed since
|
|
* the last round, release prev_ssk
|
|
*/
|
|
if (ssk != prev_ssk && prev_ssk)
|
|
mptcp_push_release(prev_ssk, &info);
|
|
if (!ssk)
|
|
goto out;
|
|
|
|
/* Need to lock the new subflow only if different
|
|
* from the previous one, otherwise we are still
|
|
* helding the relevant lock
|
|
*/
|
|
if (ssk != prev_ssk)
|
|
lock_sock(ssk);
|
|
|
|
ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
|
|
if (ret <= 0) {
|
|
if (ret == -EAGAIN)
|
|
continue;
|
|
mptcp_push_release(ssk, &info);
|
|
goto out;
|
|
}
|
|
|
|
info.sent += ret;
|
|
copied += ret;
|
|
len -= ret;
|
|
|
|
mptcp_update_post_push(msk, dfrag, ret);
|
|
}
|
|
WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
|
|
}
|
|
|
|
/* at this point we held the socket lock for the last subflow we used */
|
|
if (ssk)
|
|
mptcp_push_release(ssk, &info);
|
|
|
|
out:
|
|
/* ensure the rtx timer is running */
|
|
if (!mptcp_timer_pending(sk))
|
|
mptcp_reset_timer(sk);
|
|
if (copied)
|
|
__mptcp_check_send_data_fin(sk);
|
|
}
|
|
|
|
static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk)
|
|
{
|
|
struct mptcp_sock *msk = mptcp_sk(sk);
|
|
struct mptcp_sendmsg_info info = {
|
|
.data_lock_held = true,
|
|
};
|
|
struct mptcp_data_frag *dfrag;
|
|
struct sock *xmit_ssk;
|
|
int len, copied = 0;
|
|
bool first = true;
|
|
|
|
info.flags = 0;
|
|
while ((dfrag = mptcp_send_head(sk))) {
|
|
info.sent = dfrag->already_sent;
|
|
info.limit = dfrag->data_len;
|
|
len = dfrag->data_len - dfrag->already_sent;
|
|
while (len > 0) {
|
|
int ret = 0;
|
|
|
|
/* the caller already invoked the packet scheduler,
|
|
* check for a different subflow usage only after
|
|
* spooling the first chunk of data
|
|
*/
|
|
xmit_ssk = first ? ssk : mptcp_subflow_get_send(mptcp_sk(sk));
|
|
if (!xmit_ssk)
|
|
goto out;
|
|
if (xmit_ssk != ssk) {
|
|
mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk),
|
|
MPTCP_DELEGATE_SEND);
|
|
goto out;
|
|
}
|
|
|
|
ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
|
|
if (ret <= 0)
|
|
goto out;
|
|
|
|
info.sent += ret;
|
|
copied += ret;
|
|
len -= ret;
|
|
first = false;
|
|
|
|
mptcp_update_post_push(msk, dfrag, ret);
|
|
}
|
|
WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
|
|
}
|
|
|
|
out:
|
|
/* __mptcp_alloc_tx_skb could have released some wmem and we are
|
|
* not going to flush it via release_sock()
|
|
*/
|
|
if (copied) {
|
|
tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
|
|
info.size_goal);
|
|
if (!mptcp_timer_pending(sk))
|
|
mptcp_reset_timer(sk);
|
|
|
|
if (msk->snd_data_fin_enable &&
|
|
msk->snd_nxt + 1 == msk->write_seq)
|
|
mptcp_schedule_work(sk);
|
|
}
|
|
}
|
|
|
|
static void mptcp_set_nospace(struct sock *sk)
|
|
{
|
|
/* enable autotune */
|
|
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
|
|
|
|
/* will be cleared on avail space */
|
|
set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags);
|
|
}
|
|
|
|
static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
|
|
{
|
|
struct mptcp_sock *msk = mptcp_sk(sk);
|
|
struct page_frag *pfrag;
|
|
size_t copied = 0;
|
|
int ret = 0;
|
|
long timeo;
|
|
|
|
/* we don't support FASTOPEN yet */
|
|
if (msg->msg_flags & MSG_FASTOPEN)
|
|
return -EOPNOTSUPP;
|
|
|
|
/* silently ignore everything else */
|
|
msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL;
|
|
|
|
lock_sock(sk);
|
|
|
|
timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
|
|
|
|
if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
|
|
ret = sk_stream_wait_connect(sk, &timeo);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
pfrag = sk_page_frag(sk);
|
|
|
|
while (msg_data_left(msg)) {
|
|
int total_ts, frag_truesize = 0;
|
|
struct mptcp_data_frag *dfrag;
|
|
bool dfrag_collapsed;
|
|
size_t psize, offset;
|
|
|
|
if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) {
|
|
ret = -EPIPE;
|
|
goto out;
|
|
}
|
|
|
|
/* reuse tail pfrag, if possible, or carve a new one from the
|
|
* page allocator
|
|
*/
|
|
dfrag = mptcp_pending_tail(sk);
|
|
dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
|
|
if (!dfrag_collapsed) {
|
|
if (!sk_stream_memory_free(sk))
|
|
goto wait_for_memory;
|
|
|
|
if (!mptcp_page_frag_refill(sk, pfrag))
|
|
goto wait_for_memory;
|
|
|
|
dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
|
|
frag_truesize = dfrag->overhead;
|
|
}
|
|
|
|
/* we do not bound vs wspace, to allow a single packet.
|
|
* memory accounting will prevent execessive memory usage
|
|
* anyway
|
|
*/
|
|
offset = dfrag->offset + dfrag->data_len;
|
|
psize = pfrag->size - offset;
|
|
psize = min_t(size_t, psize, msg_data_left(msg));
|
|
total_ts = psize + frag_truesize;
|
|
|
|
if (!sk_wmem_schedule(sk, total_ts))
|
|
goto wait_for_memory;
|
|
|
|
if (copy_page_from_iter(dfrag->page, offset, psize,
|
|
&msg->msg_iter) != psize) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
/* data successfully copied into the write queue */
|
|
sk->sk_forward_alloc -= total_ts;
|
|
copied += psize;
|
|
dfrag->data_len += psize;
|
|
frag_truesize += psize;
|
|
pfrag->offset += frag_truesize;
|
|
WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
|
|
|
|
/* charge data on mptcp pending queue to the msk socket
|
|
* Note: we charge such data both to sk and ssk
|
|
*/
|
|
sk_wmem_queued_add(sk, frag_truesize);
|
|
if (!dfrag_collapsed) {
|
|
get_page(dfrag->page);
|
|
list_add_tail(&dfrag->list, &msk->rtx_queue);
|
|
if (!msk->first_pending)
|
|
WRITE_ONCE(msk->first_pending, dfrag);
|
|
}
|
|
pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk,
|
|
dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
|
|
!dfrag_collapsed);
|
|
|
|
continue;
|
|
|
|
wait_for_memory:
|
|
mptcp_set_nospace(sk);
|
|
__mptcp_push_pending(sk, msg->msg_flags);
|
|
ret = sk_stream_wait_memory(sk, &timeo);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
if (copied)
|
|
__mptcp_push_pending(sk, msg->msg_flags);
|
|
|
|
out:
|
|
release_sock(sk);
|
|
return copied ? : ret;
|
|
}
|
|
|
|
static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
|
|
struct msghdr *msg,
|
|
size_t len, int flags,
|
|
struct scm_timestamping_internal *tss,
|
|
int *cmsg_flags)
|
|
{
|
|
struct sk_buff *skb, *tmp;
|
|
int copied = 0;
|
|
|
|
skb_queue_walk_safe(&msk->receive_queue, skb, tmp) {
|
|
u32 offset = MPTCP_SKB_CB(skb)->offset;
|
|
u32 data_len = skb->len - offset;
|
|
u32 count = min_t(size_t, len - copied, data_len);
|
|
int err;
|
|
|
|
if (!(flags & MSG_TRUNC)) {
|
|
err = skb_copy_datagram_msg(skb, offset, msg, count);
|
|
if (unlikely(err < 0)) {
|
|
if (!copied)
|
|
return err;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
|
|
tcp_update_recv_tstamps(skb, tss);
|
|
*cmsg_flags |= MPTCP_CMSG_TS;
|
|
}
|
|
|
|
copied += count;
|
|
|
|
if (count < data_len) {
|
|
if (!(flags & MSG_PEEK)) {
|
|
MPTCP_SKB_CB(skb)->offset += count;
|
|
MPTCP_SKB_CB(skb)->map_seq += count;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (!(flags & MSG_PEEK)) {
|
|
/* we will bulk release the skb memory later */
|
|
skb->destructor = NULL;
|
|
WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize);
|
|
__skb_unlink(skb, &msk->receive_queue);
|
|
__kfree_skb(skb);
|
|
}
|
|
|
|
if (copied >= len)
|
|
break;
|
|
}
|
|
|
|
return copied;
|
|
}
|
|
|
|
/* receive buffer autotuning. See tcp_rcv_space_adjust for more information.
|
|
*
|
|
* Only difference: Use highest rtt estimate of the subflows in use.
|
|
*/
|
|
static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
|
|
{
|
|
struct mptcp_subflow_context *subflow;
|
|
struct sock *sk = (struct sock *)msk;
|
|
u32 time, advmss = 1;
|
|
u64 rtt_us, mstamp;
|
|
|
|
sock_owned_by_me(sk);
|
|
|
|
if (copied <= 0)
|
|
return;
|
|
|
|
msk->rcvq_space.copied += copied;
|
|
|
|
mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
|
|
time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
|
|
|
|
rtt_us = msk->rcvq_space.rtt_us;
|
|
if (rtt_us && time < (rtt_us >> 3))
|
|
return;
|
|
|
|
rtt_us = 0;
|
|
mptcp_for_each_subflow(msk, subflow) {
|
|
const struct tcp_sock *tp;
|
|
u64 sf_rtt_us;
|
|
u32 sf_advmss;
|
|
|
|
tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
|
|
|
|
sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
|
|
sf_advmss = READ_ONCE(tp->advmss);
|
|
|
|
rtt_us = max(sf_rtt_us, rtt_us);
|
|
advmss = max(sf_advmss, advmss);
|
|
}
|
|
|
|
msk->rcvq_space.rtt_us = rtt_us;
|
|
if (time < (rtt_us >> 3) || rtt_us == 0)
|
|
return;
|
|
|
|
if (msk->rcvq_space.copied <= msk->rcvq_space.space)
|
|
goto new_measure;
|
|
|
|
if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
|
|
!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
|
|
int rcvmem, rcvbuf;
|
|
u64 rcvwin, grow;
|
|
|
|
rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
|
|
|
|
grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
|
|
|
|
do_div(grow, msk->rcvq_space.space);
|
|
rcvwin += (grow << 1);
|
|
|
|
rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER);
|
|
while (tcp_win_from_space(sk, rcvmem) < advmss)
|
|
rcvmem += 128;
|
|
|
|
do_div(rcvwin, advmss);
|
|
rcvbuf = min_t(u64, rcvwin * rcvmem,
|
|
READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
|
|
|
|
if (rcvbuf > sk->sk_rcvbuf) {
|
|
u32 window_clamp;
|
|
|
|
window_clamp = tcp_win_from_space(sk, rcvbuf);
|
|
WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
|
|
|
|
/* Make subflows follow along. If we do not do this, we
|
|
* get drops at subflow level if skbs can't be moved to
|
|
* the mptcp rx queue fast enough (announced rcv_win can
|
|
* exceed ssk->sk_rcvbuf).
|
|
*/
|
|
mptcp_for_each_subflow(msk, subflow) {
|
|
struct sock *ssk;
|
|
bool slow;
|
|
|
|
ssk = mptcp_subflow_tcp_sock(subflow);
|
|
slow = lock_sock_fast(ssk);
|
|
WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
|
|
tcp_sk(ssk)->window_clamp = window_clamp;
|
|
tcp_cleanup_rbuf(ssk, 1);
|
|
unlock_sock_fast(ssk, slow);
|
|
}
|
|
}
|
|
}
|
|
|
|
msk->rcvq_space.space = msk->rcvq_space.copied;
|
|
new_measure:
|
|
msk->rcvq_space.copied = 0;
|
|
msk->rcvq_space.time = mstamp;
|
|
}
|
|
|
|
static void __mptcp_update_rmem(struct sock *sk)
|
|
{
|
|
struct mptcp_sock *msk = mptcp_sk(sk);
|
|
|
|
if (!msk->rmem_released)
|
|
return;
|
|
|
|
atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
|
|
mptcp_rmem_uncharge(sk, msk->rmem_released);
|
|
WRITE_ONCE(msk->rmem_released, 0);
|
|
}
|
|
|
|
static void __mptcp_splice_receive_queue(struct sock *sk)
|
|
{
|
|
struct mptcp_sock *msk = mptcp_sk(sk);
|
|
|
|
skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
|
|
}
|
|
|
|
static bool __mptcp_move_skbs(struct mptcp_sock *msk)
|
|
{
|
|
struct sock *sk = (struct sock *)msk;
|
|
unsigned int moved = 0;
|
|
bool ret, done;
|
|
|
|
do {
|
|
struct sock *ssk = mptcp_subflow_recv_lookup(msk);
|
|
bool slowpath;
|
|
|
|
/* we can have data pending in the subflows only if the msk
|
|
* receive buffer was full at subflow_data_ready() time,
|
|
* that is an unlikely slow path.
|
|
*/
|
|
if (likely(!ssk))
|
|
break;
|
|
|
|
slowpath = lock_sock_fast(ssk);
|
|
mptcp_data_lock(sk);
|
|
__mptcp_update_rmem(sk);
|
|
done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
|
|
mptcp_data_unlock(sk);
|
|
|
|
if (unlikely(ssk->sk_err))
|
|
__mptcp_error_report(sk);
|
|
unlock_sock_fast(ssk, slowpath);
|
|
} while (!done);
|
|
|
|
/* acquire the data lock only if some input data is pending */
|
|
ret = moved > 0;
|
|
if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
|
|
!skb_queue_empty_lockless(&sk->sk_receive_queue)) {
|
|
mptcp_data_lock(sk);
|
|
__mptcp_update_rmem(sk);
|
|
ret |= __mptcp_ofo_queue(msk);
|
|
__mptcp_splice_receive_queue(sk);
|
|
mptcp_data_unlock(sk);
|
|
}
|
|
if (ret)
|
|
mptcp_check_data_fin((struct sock *)msk);
|
|
return !skb_queue_empty(&msk->receive_queue);
|
|
}
|
|
|
|
static unsigned int mptcp_inq_hint(const struct sock *sk)
|
|
{
|
|
const struct mptcp_sock *msk = mptcp_sk(sk);
|
|
const struct sk_buff *skb;
|
|
|
|
skb = skb_peek(&msk->receive_queue);
|
|
if (skb) {
|
|
u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
|
|
|
|
if (hint_val >= INT_MAX)
|
|
return INT_MAX;
|
|
|
|
return (unsigned int)hint_val;
|
|
}
|
|
|
|
if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
|
|
int flags, int *addr_len)
|
|
{
|
|
struct mptcp_sock *msk = mptcp_sk(sk);
|
|
struct scm_timestamping_internal tss;
|
|
int copied = 0, cmsg_flags = 0;
|
|
int target;
|
|
long timeo;
|
|
|
|
/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
|
|
if (unlikely(flags & MSG_ERRQUEUE))
|
|
return inet_recv_error(sk, msg, len, addr_len);
|
|
|
|
lock_sock(sk);
|
|
if (unlikely(sk->sk_state == TCP_LISTEN)) {
|
|
copied = -ENOTCONN;
|
|
goto out_err;
|
|
}
|
|
|
|
timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
|
|
|
|
len = min_t(size_t, len, INT_MAX);
|
|
target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
|
|
|
|
if (unlikely(msk->recvmsg_inq))
|
|
cmsg_flags = MPTCP_CMSG_INQ;
|
|
|
|
while (copied < len) {
|
|
int bytes_read;
|
|
|
|
bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags);
|
|
if (unlikely(bytes_read < 0)) {
|
|
if (!copied)
|
|
copied = bytes_read;
|
|
goto out_err;
|
|
}
|
|
|
|
copied += bytes_read;
|
|
|
|
/* be sure to advertise window change */
|
|
mptcp_cleanup_rbuf(msk);
|
|
|
|
if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
|
|
continue;
|
|
|
|
/* only the master socket status is relevant here. The exit
|
|
* conditions mirror closely tcp_recvmsg()
|
|
*/
|
|
if (copied >= target)
|
|
break;
|
|
|
|
if (copied) {
|
|
if (sk->sk_err ||
|
|
sk->sk_state == TCP_CLOSE ||
|
|
(sk->sk_shutdown & RCV_SHUTDOWN) ||
|
|
!timeo ||
|
|
signal_pending(current))
|
|
break;
|
|
} else {
|
|
if (sk->sk_err) {
|
|
copied = sock_error(sk);
|
|
break;
|
|
}
|
|
|
|
if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
|
|
mptcp_check_for_eof(msk);
|
|
|
|
if (sk->sk_shutdown & RCV_SHUTDOWN) {
|
|
/* race breaker: the shutdown could be after the
|
|
* previous receive queue check
|
|
*/
|
|
if (__mptcp_move_skbs(msk))
|
|
continue;
|
|
break;
|
|
}
|
|
|
|
if (sk->sk_state == TCP_CLOSE) {
|
|
copied = -ENOTCONN;
|
|
break;
|
|
}
|
|
|
|
if (!timeo) {
|
|
copied = -EAGAIN;
|
|
break;
|
|
}
|
|
|
|
if (signal_pending(current)) {
|
|
copied = sock_intr_errno(timeo);
|
|
break;
|
|
}
|
|
}
|
|
|
|
pr_debug("block timeout %ld", timeo);
|
|
sk_wait_data(sk, &timeo, NULL);
|
|
}
|
|
|
|
out_err:
|
|
if (cmsg_flags && copied >= 0) {
|
|
if (cmsg_flags & MPTCP_CMSG_TS)
|
|
tcp_recv_timestamp(msg, sk, &tss);
|
|
|
|
if (cmsg_flags & MPTCP_CMSG_INQ) {
|
|
unsigned int inq = mptcp_inq_hint(sk);
|
|
|
|
put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
|
|
}
|
|
}
|
|
|
|
pr_debug("msk=%p rx queue empty=%d:%d copied=%d",
|
|
msk, skb_queue_empty_lockless(&sk->sk_receive_queue),
|
|
skb_queue_empty(&msk->receive_queue), copied);
|
|
if (!(flags & MSG_PEEK))
|
|
mptcp_rcv_space_adjust(msk, copied);
|
|
|
|
release_sock(sk);
|
|
return copied;
|
|
}
|
|
|
|
static void mptcp_retransmit_timer(struct timer_list *t)
|
|
{
|
|
struct inet_connection_sock *icsk = from_timer(icsk, t,
|
|
icsk_retransmit_timer);
|
|
struct sock *sk = &icsk->icsk_inet.sk;
|
|
struct mptcp_sock *msk = mptcp_sk(sk);
|
|
|
|
bh_lock_sock(sk);
|
|
if (!sock_owned_by_user(sk)) {
|
|
/* we need a process context to retransmit */
|
|
if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
|
|
mptcp_schedule_work(sk);
|
|
} else {
|
|
/* delegate our work to tcp_release_cb() */
|
|
__set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
|
|
}
|
|
bh_unlock_sock(sk);
|
|
sock_put(sk);
|
|
}
|
|
|
|
static void mptcp_timeout_timer(struct timer_list *t)
|
|
{
|
|
struct sock *sk = from_timer(sk, t, sk_timer);
|
|
|
|
mptcp_schedule_work(sk);
|
|
sock_put(sk);
|
|
}
|
|
|
|
/* Find an idle subflow. Return NULL if there is unacked data at tcp
|
|
* level.
|
|
*
|
|
* A backup subflow is returned only if that is the only kind available.
|
|
*/
|
|
static struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
|
|
{
|
|
struct sock *backup = NULL, *pick = NULL;
|
|
struct mptcp_subflow_context *subflow;
|
|
int min_stale_count = INT_MAX;
|
|
|
|
sock_owned_by_me((const struct sock *)msk);
|
|
|
|
if (__mptcp_check_fallback(msk))
|
|
return NULL;
|
|
|
|
mptcp_for_each_subflow(msk, subflow) {
|
|
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
|
|
|
|
if (!__mptcp_subflow_active(subflow))
|
|
continue;
|
|
|
|
/* still data outstanding at TCP level? skip this */
|
|
if (!tcp_rtx_and_write_queues_empty(ssk)) {
|
|
mptcp_pm_subflow_chk_stale(msk, ssk);
|
|
min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
|
|
continue;
|
|
}
|
|
|
|
if (subflow->backup) {
|
|
if (!backup)
|
|
backup = ssk;
|
|
continue;
|
|
}
|
|
|
|
if (!pick)
|
|
pick = ssk;
|
|
}
|
|
|
|
if (pick)
|
|
return pick;
|
|
|
|
/* use backup only if there are no progresses anywhere */
|
|
return min_stale_count > 1 ? backup : NULL;
|
|
}
|
|
|
|
static void mptcp_dispose_initial_subflow(struct mptcp_sock *msk)
|
|
{
|
|
if (msk->subflow) {
|
|
iput(SOCK_INODE(msk->subflow));
|
|
msk->subflow = NULL;
|
|
}
|
|
}
|
|
|
|
bool __mptcp_retransmit_pending_data(struct sock *sk)
|
|
{
|
|
struct mptcp_data_frag *cur, *rtx_head;
|
|
struct mptcp_sock *msk = mptcp_sk(sk);
|
|
|
|
if (__mptcp_check_fallback(mptcp_sk(sk)))
|
|
return false;
|
|
|
|
if (tcp_rtx_and_write_queues_empty(sk))
|
|
return false;
|
|
|
|
/* the closing socket has some data untransmitted and/or unacked:
|
|
* some data in the mptcp rtx queue has not really xmitted yet.
|
|
* keep it simple and re-inject the whole mptcp level rtx queue
|
|
*/
|
|
mptcp_data_lock(sk);
|
|
__mptcp_clean_una_wakeup(sk);
|
|
rtx_head = mptcp_rtx_head(sk);
|
|
if (!rtx_head) {
|
|
mptcp_data_unlock(sk);
|
|
return false;
|
|
}
|
|
|
|
msk->recovery_snd_nxt = msk->snd_nxt;
|
|
msk->recovery = true;
|
|
mptcp_data_unlock(sk);
|
|
|
|
msk->first_pending = rtx_head;
|
|
msk->snd_burst = 0;
|
|
|
|
/* be sure to clear the "sent status" on all re-injected fragments */
|
|
list_for_each_entry(cur, &msk->rtx_queue, list) {
|
|
if (!cur->already_sent)
|
|
break;
|
|
cur->already_sent = 0;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* flags for __mptcp_close_ssk() */
|
|
#define MPTCP_CF_PUSH BIT(1)
|
|
#define MPTCP_CF_FASTCLOSE BIT(2)
|
|
|
|
/* subflow sockets can be either outgoing (connect) or incoming
|
|
* (accept).
|
|
*
|
|
* Outgoing subflows use in-kernel sockets.
|
|
* Incoming subflows do not have their own 'struct socket' allocated,
|
|
* so we need to use tcp_close() after detaching them from the mptcp
|
|
* parent socket.
|
|
*/
|
|
static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
|
|
struct mptcp_subflow_context *subflow,
|
|
unsigned int flags)
|
|
{
|
|
struct mptcp_sock *msk = mptcp_sk(sk);
|
|
bool need_push, dispose_it;
|
|
|
|
dispose_it = !msk->subflow || ssk != msk->subflow->sk;
|
|
if (dispose_it)
|
|
list_del(&subflow->node);
|
|
|
|
lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
|
|
|
|
if (flags & MPTCP_CF_FASTCLOSE)
|
|
subflow->send_fastclose = 1;
|
|
|
|
need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
|
|
if (!dispose_it) {
|
|
tcp_disconnect(ssk, 0);
|
|
msk->subflow->state = SS_UNCONNECTED;
|
|
mptcp_subflow_ctx_reset(subflow);
|
|
release_sock(ssk);
|
|
|
|
goto out;
|
|
}
|
|
|
|
/* if we are invoked by the msk cleanup code, the subflow is
|
|
* already orphaned
|
|
*/
|
|
if (ssk->sk_socket)
|
|
sock_orphan(ssk);
|
|
|
|
subflow->disposable = 1;
|
|
|
|
/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
|
|
* the ssk has been already destroyed, we just need to release the
|
|
* reference owned by msk;
|
|
*/
|
|
if (!inet_csk(ssk)->icsk_ulp_ops) {
|
|
kfree_rcu(subflow, rcu);
|
|
} else {
|
|
/* otherwise tcp will dispose of the ssk and subflow ctx */
|
|
if (ssk->sk_state == TCP_LISTEN) {
|
|
tcp_set_state(ssk, TCP_CLOSE);
|
|
mptcp_subflow_queue_clean(ssk);
|
|
inet_csk_listen_stop(ssk);
|
|
}
|
|
__tcp_close(ssk, 0);
|
|
|
|
/* close acquired an extra ref */
|
|
__sock_put(ssk);
|
|
}
|
|
release_sock(ssk);
|
|
|
|
sock_put(ssk);
|
|
|
|
if (ssk == msk->first)
|
|
msk->first = NULL;
|
|
|
|
out:
|
|
if (ssk == msk->last_snd)
|
|
msk->last_snd = NULL;
|
|
|
|
if (need_push)
|
|
__mptcp_push_pending(sk, 0);
|
|
}
|
|
|
|
void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
|
|
struct mptcp_subflow_context *subflow)
|
|
{
|
|
if (sk->sk_state == TCP_ESTABLISHED)
|
|
mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
|
|
|
|
/* subflow aborted before reaching the fully_established status
|
|
* attempt the creation of the next subflow
|
|
*/
|
|
mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow);
|
|
|
|
__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
|
|
}
|
|
|
|
static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void __mptcp_close_subflow(struct mptcp_sock *msk)
|
|
{
|
|
struct mptcp_subflow_context *subflow, *tmp;
|
|
|
|
might_sleep();
|
|
|
|
list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) {
|
|
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
|
|
|
|
if (inet_sk_state_load(ssk) != TCP_CLOSE)
|
|
continue;
|
|
|
|
/* 'subflow_data_ready' will re-sched once rx queue is empty */
|
|
if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
|
|
continue;
|
|
|
|
mptcp_close_ssk((struct sock *)msk, ssk, subflow);
|
|
}
|
|
}
|
|
|
|
static bool mptcp_check_close_timeout(const struct sock *sk)
|
|
{
|
|
s32 delta = tcp_jiffies32 - inet_csk(sk)->icsk_mtup.probe_timestamp;
|
|
struct mptcp_subflow_context *subflow;
|
|
|
|
if (delta >= TCP_TIMEWAIT_LEN)
|
|
return true;
|
|
|
|
/* if all subflows are in closed status don't bother with additional
|
|
* timeout
|
|
*/
|
|
mptcp_for_each_subflow(mptcp_sk(sk), subflow) {
|
|
if (inet_sk_state_load(mptcp_subflow_tcp_sock(subflow)) !=
|
|
TCP_CLOSE)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void mptcp_check_fastclose(struct mptcp_sock *msk)
|
|
{
|
|
struct mptcp_subflow_context *subflow, *tmp;
|
|
struct sock *sk = &msk->sk.icsk_inet.sk;
|
|
|
|
if (likely(!READ_ONCE(msk->rcv_fastclose)))
|
|
return;
|
|
|
|
mptcp_token_destroy(msk);
|
|
|
|
list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) {
|
|
struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
|
|
bool slow;
|
|
|
|
slow = lock_sock_fast(tcp_sk);
|
|
if (tcp_sk->sk_state != TCP_CLOSE) {
|
|
tcp_send_active_reset(tcp_sk, GFP_ATOMIC);
|
|
tcp_set_state(tcp_sk, TCP_CLOSE);
|
|
}
|
|
unlock_sock_fast(tcp_sk, slow);
|
|
}
|
|
|
|
inet_sk_state_store(sk, TCP_CLOSE);
|
|
sk->sk_shutdown = SHUTDOWN_MASK;
|
|
smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
|
|
set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
|
|
|
|
mptcp_close_wake_up(sk);
|
|
}
|
|
|
|
static void __mptcp_retrans(struct sock *sk)
|
|
{
|
|
struct mptcp_sock *msk = mptcp_sk(sk);
|
|
struct mptcp_sendmsg_info info = {};
|
|
struct mptcp_data_frag *dfrag;
|
|
size_t copied = 0;
|
|
struct sock *ssk;
|
|
int ret;
|
|
|
|
mptcp_clean_una_wakeup(sk);
|
|
|
|
/* first check ssk: need to kick "stale" logic */
|
|
ssk = mptcp_subflow_get_retrans(msk);
|
|
dfrag = mptcp_rtx_head(sk);
|
|
if (!dfrag) {
|
|
if (mptcp_data_fin_enabled(msk)) {
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
|
|
|
icsk->icsk_retransmits++;
|
|
mptcp_set_datafin_timeout(sk);
|
|
mptcp_send_ack(msk);
|
|
|
|
goto reset_timer;
|
|
}
|
|
|
|
if (!mptcp_send_head(sk))
|
|
return;
|
|
|
|
goto reset_timer;
|
|
}
|
|
|
|
if (!ssk)
|
|
goto reset_timer;
|
|
|
|
lock_sock(ssk);
|
|
|
|
/* limit retransmission to the bytes already sent on some subflows */
|
|
info.sent = 0;
|
|
info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : dfrag->already_sent;
|
|
while (info.sent < info.limit) {
|
|
ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
|
|
if (ret <= 0)
|
|
break;
|
|
|
|
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
|
|
copied += ret;
|
|
info.sent += ret;
|
|
}
|
|
if (copied) {
|
|
dfrag->already_sent = max(dfrag->already_sent, info.sent);
|
|
tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
|
|
info.size_goal);
|
|
WRITE_ONCE(msk->allow_infinite_fallback, false);
|
|
}
|
|
|
|
release_sock(ssk);
|
|
|
|
reset_timer:
|
|
mptcp_check_and_set_pending(sk);
|
|
|
|
if (!mptcp_timer_pending(sk))
|
|
mptcp_reset_timer(sk);
|
|
}
|
|
|
|
/* schedule the timeout timer for the relevant event: either close timeout
|
|
* or mp_fail timeout. The close timeout takes precedence on the mp_fail one
|
|
*/
|
|
void mptcp_reset_timeout(struct mptcp_sock *msk, unsigned long fail_tout)
|
|
{
|
|
struct sock *sk = (struct sock *)msk;
|
|
unsigned long timeout, close_timeout;
|
|
|
|
if (!fail_tout && !sock_flag(sk, SOCK_DEAD))
|
|
return;
|
|
|
|
close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies + TCP_TIMEWAIT_LEN;
|
|
|
|
/* the close timeout takes precedence on the fail one, and here at least one of
|
|
* them is active
|
|
*/
|
|
timeout = sock_flag(sk, SOCK_DEAD) ? close_timeout : fail_tout;
|
|
|
|
sk_reset_timer(sk, &sk->sk_timer, timeout);
|
|
}
|
|
|
|
static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
|
|
{
|
|
struct sock *ssk = msk->first;
|
|
bool slow;
|
|
|
|
if (!ssk)
|
|
return;
|
|
|
|
pr_debug("MP_FAIL doesn't respond, reset the subflow");
|
|
|
|
slow = lock_sock_fast(ssk);
|
|
mptcp_subflow_reset(ssk);
|
|
WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
|
|
unlock_sock_fast(ssk, slow);
|
|
|
|
mptcp_reset_timeout(msk, 0);
|
|
}
|
|
|
|
static void mptcp_worker(struct work_struct *work)
|
|
{
|
|
struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
|
|
struct sock *sk = &msk->sk.icsk_inet.sk;
|
|
unsigned long fail_tout;
|
|
int state;
|
|
|
|
lock_sock(sk);
|
|
state = sk->sk_state;
|
|
if (unlikely(state == TCP_CLOSE))
|
|
goto unlock;
|
|
|
|
mptcp_check_data_fin_ack(sk);
|
|
|
|
mptcp_check_fastclose(msk);
|
|
|
|
mptcp_pm_nl_work(msk);
|
|
|
|
if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
|
|
mptcp_check_for_eof(msk);
|
|
|
|
__mptcp_check_send_data_fin(sk);
|
|
mptcp_check_data_fin(sk);
|
|
|
|
/* There is no point in keeping around an orphaned sk timedout or
|
|
* closed, but we need the msk around to reply to incoming DATA_FIN,
|
|
* even if it is orphaned and in FIN_WAIT2 state
|
|
*/
|
|
if (sock_flag(sk, SOCK_DEAD) &&
|
|
(mptcp_check_close_timeout(sk) || sk->sk_state == TCP_CLOSE)) {
|
|
inet_sk_state_store(sk, TCP_CLOSE);
|
|
__mptcp_destroy_sock(sk);
|
|
goto unlock;
|
|
}
|
|
|
|
if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
|
|
__mptcp_close_subflow(msk);
|
|
|
|
if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
|
|
__mptcp_retrans(sk);
|
|
|
|
fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
|
|
if (fail_tout && time_after(jiffies, fail_tout))
|
|
mptcp_mp_fail_no_response(msk);
|
|
|
|
unlock:
|
|
release_sock(sk);
|
|
sock_put(sk);
|
|
}
|
|
|
|
static int __mptcp_init_sock(struct sock *sk)
|
|
{
|
|
struct mptcp_sock *msk = mptcp_sk(sk);
|
|
|
|
INIT_LIST_HEAD(&msk->conn_list);
|
|
INIT_LIST_HEAD(&msk->join_list);
|
|
INIT_LIST_HEAD(&msk->rtx_queue);
|
|
INIT_WORK(&msk->work, mptcp_worker);
|
|
__skb_queue_head_init(&msk->receive_queue);
|
|
msk->out_of_order_queue = RB_ROOT;
|
|
msk->first_pending = NULL;
|
|
msk->rmem_fwd_alloc = 0;
|
|
WRITE_ONCE(msk->rmem_released, 0);
|
|
msk->timer_ival = TCP_RTO_MIN;
|
|
|
|
msk->first = NULL;
|
|
inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
|
|
WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
|
|
WRITE_ONCE(msk->allow_infinite_fallback, true);
|
|
msk->recovery = false;
|
|
|
|
mptcp_pm_data_init(msk);
|
|
|
|
/* re-use the csk retrans timer for MPTCP-level retrans */
|
|
timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
|
|
timer_setup(&sk->sk_timer, mptcp_timeout_timer, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void mptcp_ca_reset(struct sock *sk)
|
|
{
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
|
|
|
tcp_assign_congestion_control(sk);
|
|
strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name);
|
|
|
|
/* no need to keep a reference to the ops, the name will suffice */
|
|
tcp_cleanup_congestion_control(sk);
|
|
icsk->icsk_ca_ops = NULL;
|
|
}
|
|
|
|
static int mptcp_init_sock(struct sock *sk)
|
|
{
|
|
struct net *net = sock_net(sk);
|
|
int ret;
|
|
|
|
ret = __mptcp_init_sock(sk);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!mptcp_is_enabled(net))
|
|
return -ENOPROTOOPT;
|
|
|
|
if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
|
|
return -ENOMEM;
|
|
|
|
ret = __mptcp_socket_create(mptcp_sk(sk));
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
|
|
* propagate the correct value
|
|
*/
|
|
mptcp_ca_reset(sk);
|
|
|
|
sk_sockets_allocated_inc(sk);
|
|
sk->sk_rcvbuf = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]);
|
|
sk->sk_sndbuf = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __mptcp_clear_xmit(struct sock *sk)
|
|
{
|
|
struct mptcp_sock *msk = mptcp_sk(sk);
|
|
struct mptcp_data_frag *dtmp, *dfrag;
|
|
|
|
WRITE_ONCE(msk->first_pending, NULL);
|
|
list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
|
|
dfrag_clear(sk, dfrag);
|
|
}
|
|
|
|
static void mptcp_cancel_work(struct sock *sk)
|
|
{
|
|
struct mptcp_sock *msk = mptcp_sk(sk);
|
|
|
|
if (cancel_work_sync(&msk->work))
|
|
__sock_put(sk);
|
|
}
|
|
|
|
void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
|
|
{
|
|
lock_sock(ssk);
|
|
|
|
switch (ssk->sk_state) {
|
|
case TCP_LISTEN:
|
|
if (!(how & RCV_SHUTDOWN))
|
|
break;
|
|
fallthrough;
|
|
case TCP_SYN_SENT:
|
|
tcp_disconnect(ssk, O_NONBLOCK);
|
|
break;
|
|
default:
|
|
if (__mptcp_check_fallback(mptcp_sk(sk))) {
|
|
pr_debug("Fallback");
|
|
ssk->sk_shutdown |= how;
|
|
tcp_shutdown(ssk, how);
|
|
} else {
|
|
pr_debug("Sending DATA_FIN on subflow %p", ssk);
|
|
tcp_send_ack(ssk);
|
|
if (!mptcp_timer_pending(sk))
|
|
mptcp_reset_timer(sk);
|
|
}
|
|
break;
|
|
}
|
|
|
|
release_sock(ssk);
|
|
}
|
|
|
|
static const unsigned char new_state[16] = {
|
|
/* current state: new state: action: */
|
|
[0 /* (Invalid) */] = TCP_CLOSE,
|
|
[TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
|
|
[TCP_SYN_SENT] = TCP_CLOSE,
|
|
[TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
|
|
[TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
|
|
[TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
|
|
[TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */
|
|
[TCP_CLOSE] = TCP_CLOSE,
|
|
[TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
|
|
[TCP_LAST_ACK] = TCP_LAST_ACK,
|
|
[TCP_LISTEN] = TCP_CLOSE,
|
|
[TCP_CLOSING] = TCP_CLOSING,
|
|
[TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
|
|
};
|
|
|
|
static int mptcp_close_state(struct sock *sk)
|
|
{
|
|
int next = (int)new_state[sk->sk_state];
|
|
int ns = next & TCP_STATE_MASK;
|
|
|
|
inet_sk_state_store(sk, ns);
|
|
|
|
return next & TCP_ACTION_FIN;
|
|
}
|
|
|
|
static void __mptcp_check_send_data_fin(struct sock *sk)
|
|
{
|
|
struct mptcp_subflow_context *subflow;
|
|
struct mptcp_sock *msk = mptcp_sk(sk);
|
|
|
|
pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu",
|
|
msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
|
|
msk->snd_nxt, msk->write_seq);
|
|
|
|
/* we still need to enqueue subflows or not really shutting down,
|
|
* skip this
|
|
*/
|
|
if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
|
|
mptcp_send_head(sk))
|
|
return;
|
|
|
|
WRITE_ONCE(msk->snd_nxt, msk->write_seq);
|
|
|
|
/* fallback socket will not get data_fin/ack, can move to the next
|
|
* state now
|
|
*/
|
|
if (__mptcp_check_fallback(msk)) {
|
|
WRITE_ONCE(msk->snd_una, msk->write_seq);
|
|
if ((1 << sk->sk_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) {
|
|
inet_sk_state_store(sk, TCP_CLOSE);
|
|
mptcp_close_wake_up(sk);
|
|
} else if (sk->sk_state == TCP_FIN_WAIT1) {
|
|
inet_sk_state_store(sk, TCP_FIN_WAIT2);
|
|
}
|
|
}
|
|
|
|
mptcp_for_each_subflow(msk, subflow) {
|
|
struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
|
|
|
|
mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
|
|
}
|
|
}
|
|
|
|
static void __mptcp_wr_shutdown(struct sock *sk)
|
|
{
|
|
struct mptcp_sock *msk = mptcp_sk(sk);
|
|
|
|
pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d",
|
|
msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
|
|
!!mptcp_send_head(sk));
|
|
|
|
/* will be ignored by fallback sockets */
|
|
WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
|
|
WRITE_ONCE(msk->snd_data_fin_enable, 1);
|
|
|
|
__mptcp_check_send_data_fin(sk);
|
|
}
|
|
|
|
static void __mptcp_destroy_sock(struct sock *sk)
|
|
{
|
|
struct mptcp_sock *msk = mptcp_sk(sk);
|
|
|
|
pr_debug("msk=%p", msk);
|
|
|
|
might_sleep();
|
|
|
|
mptcp_stop_timer(sk);
|
|
sk_stop_timer(sk, &sk->sk_timer);
|
|
msk->pm.status = 0;
|
|
|
|
sk->sk_prot->destroy(sk);
|
|
|
|
WARN_ON_ONCE(msk->rmem_fwd_alloc);
|
|
WARN_ON_ONCE(msk->rmem_released);
|
|
sk_stream_kill_queues(sk);
|
|
xfrm_sk_free_policy(sk);
|
|
|
|
sk_refcnt_debug_release(sk);
|
|
sock_put(sk);
|
|
}
|
|
|
|
static void mptcp_close(struct sock *sk, long timeout)
|
|
{
|
|
struct mptcp_subflow_context *subflow;
|
|
struct mptcp_sock *msk = mptcp_sk(sk);
|
|
bool do_cancel_work = false;
|
|
|
|
lock_sock(sk);
|
|
sk->sk_shutdown = SHUTDOWN_MASK;
|
|
|
|
if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
|
|
inet_sk_state_store(sk, TCP_CLOSE);
|
|
goto cleanup;
|
|
}
|
|
|
|
if (mptcp_close_state(sk))
|
|
__mptcp_wr_shutdown(sk);
|
|
|
|
sk_stream_wait_close(sk, timeout);
|
|
|
|
cleanup:
|
|
/* orphan all the subflows */
|
|
inet_csk(sk)->icsk_mtup.probe_timestamp = tcp_jiffies32;
|
|
mptcp_for_each_subflow(msk, subflow) {
|
|
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
|
|
bool slow = lock_sock_fast_nested(ssk);
|
|
|
|
/* since the close timeout takes precedence on the fail one,
|
|
* cancel the latter
|
|
*/
|
|
if (ssk == msk->first)
|
|
subflow->fail_tout = 0;
|
|
|
|
sock_orphan(ssk);
|
|
unlock_sock_fast(ssk, slow);
|
|
}
|
|
sock_orphan(sk);
|
|
|
|
sock_hold(sk);
|
|
pr_debug("msk=%p state=%d", sk, sk->sk_state);
|
|
if (mptcp_sk(sk)->token)
|
|
mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
|
|
|
|
if (sk->sk_state == TCP_CLOSE) {
|
|
__mptcp_destroy_sock(sk);
|
|
do_cancel_work = true;
|
|
} else {
|
|
mptcp_reset_timeout(msk, 0);
|
|
}
|
|
release_sock(sk);
|
|
if (do_cancel_work)
|
|
mptcp_cancel_work(sk);
|
|
|
|
sock_put(sk);
|
|
}
|
|
|
|
static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
|
|
{
|
|
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
|
|
const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
|
|
struct ipv6_pinfo *msk6 = inet6_sk(msk);
|
|
|
|
msk->sk_v6_daddr = ssk->sk_v6_daddr;
|
|
msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
|
|
|
|
if (msk6 && ssk6) {
|
|
msk6->saddr = ssk6->saddr;
|
|
msk6->flow_label = ssk6->flow_label;
|
|
}
|
|
#endif
|
|
|
|
inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
|
|
inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
|
|
inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
|
|
inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
|
|
inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
|
|
inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
|
|
}
|
|
|
|
static int mptcp_disconnect(struct sock *sk, int flags)
|
|
{
|
|
struct mptcp_sock *msk = mptcp_sk(sk);
|
|
|
|
inet_sk_state_store(sk, TCP_CLOSE);
|
|
|
|
mptcp_stop_timer(sk);
|
|
sk_stop_timer(sk, &sk->sk_timer);
|
|
|
|
if (mptcp_sk(sk)->token)
|
|
mptcp_event(MPTCP_EVENT_CLOSED, mptcp_sk(sk), NULL, GFP_KERNEL);
|
|
|
|
/* msk->subflow is still intact, the following will not free the first
|
|
* subflow
|
|
*/
|
|
mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
|
|
msk->last_snd = NULL;
|
|
WRITE_ONCE(msk->flags, 0);
|
|
msk->cb_flags = 0;
|
|
msk->push_pending = 0;
|
|
msk->recovery = false;
|
|
msk->can_ack = false;
|
|
msk->fully_established = false;
|
|
msk->rcv_data_fin = false;
|
|
msk->snd_data_fin_enable = false;
|
|
msk->rcv_fastclose = false;
|
|
msk->use_64bit_ack = false;
|
|
WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
|
|
mptcp_pm_data_reset(msk);
|
|
mptcp_ca_reset(sk);
|
|
|
|
sk->sk_shutdown = 0;
|
|
sk_error_report(sk);
|
|
return 0;
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
|
|
static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
|
|
{
|
|
unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
|
|
|
|
return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
|
|
}
|
|
#endif
|
|
|
|
struct sock *mptcp_sk_clone(const struct sock *sk,
|
|
const struct mptcp_options_received *mp_opt,
|
|
struct request_sock *req)
|
|
{
|
|
struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
|
|
struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
|
|
struct mptcp_sock *msk;
|
|
u64 ack_seq;
|
|
|
|
if (!nsk)
|
|
return NULL;
|
|
|
|
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
|
|
if (nsk->sk_family == AF_INET6)
|
|
inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
|
|
#endif
|
|
|
|
__mptcp_init_sock(nsk);
|
|
|
|
msk = mptcp_sk(nsk);
|
|
msk->local_key = subflow_req->local_key;
|
|
msk->token = subflow_req->token;
|
|
msk->subflow = NULL;
|
|
WRITE_ONCE(msk->fully_established, false);
|
|
if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
|
|
WRITE_ONCE(msk->csum_enabled, true);
|
|
|
|
msk->write_seq = subflow_req->idsn + 1;
|
|
msk->snd_nxt = msk->write_seq;
|
|
msk->snd_una = msk->write_seq;
|
|
msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd;
|
|
msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
|
|
|
|
if (mp_opt->suboptions & OPTIONS_MPTCP_MPC) {
|
|
msk->can_ack = true;
|
|
msk->remote_key = mp_opt->sndr_key;
|
|
mptcp_crypto_key_sha(msk->remote_key, NULL, &ack_seq);
|
|
ack_seq++;
|
|
WRITE_ONCE(msk->ack_seq, ack_seq);
|
|
atomic64_set(&msk->rcv_wnd_sent, ack_seq);
|
|
}
|
|
|
|
sock_reset_flag(nsk, SOCK_RCU_FREE);
|
|
/* will be fully established after successful MPC subflow creation */
|
|
inet_sk_state_store(nsk, TCP_SYN_RECV);
|
|
|
|
security_inet_csk_clone(nsk, req);
|
|
bh_unlock_sock(nsk);
|
|
|
|
/* keep a single reference */
|
|
__sock_put(nsk);
|
|
return nsk;
|
|
}
|
|
|
|
void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
|
|
{
|
|
const struct tcp_sock *tp = tcp_sk(ssk);
|
|
|
|
msk->rcvq_space.copied = 0;
|
|
msk->rcvq_space.rtt_us = 0;
|
|
|
|
msk->rcvq_space.time = tp->tcp_mstamp;
|
|
|
|
/* initial rcv_space offering made to peer */
|
|
msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
|
|
TCP_INIT_CWND * tp->advmss);
|
|
if (msk->rcvq_space.space == 0)
|
|
msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
|
|
|
|
WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
|
|
}
|
|
|
|
static struct sock *mptcp_accept(struct sock *sk, int flags, int *err,
|
|
bool kern)
|
|
{
|
|
struct mptcp_sock *msk = mptcp_sk(sk);
|
|
struct socket *listener;
|
|
struct sock *newsk;
|
|
|
|
listener = __mptcp_nmpc_socket(msk);
|
|
if (WARN_ON_ONCE(!listener)) {
|
|
*err = -EINVAL;
|
|
return NULL;
|
|
}
|
|
|
|
pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk));
|
|
newsk = inet_csk_accept(listener->sk, flags, err, kern);
|
|
if (!newsk)
|
|
return NULL;
|
|
|
|
pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk));
|
|
if (sk_is_mptcp(newsk)) {
|
|
struct mptcp_subflow_context *subflow;
|
|
struct sock *new_mptcp_sock;
|
|
|
|
subflow = mptcp_subflow_ctx(newsk);
|
|
new_mptcp_sock = subflow->conn;
|
|
|
|
/* is_mptcp should be false if subflow->conn is missing, see
|
|
* subflow_syn_recv_sock()
|
|
*/
|
|
if (WARN_ON_ONCE(!new_mptcp_sock)) {
|
|
tcp_sk(newsk)->is_mptcp = 0;
|
|
goto out;
|
|
}
|
|
|
|
/* acquire the 2nd reference for the owning socket */
|
|
sock_hold(new_mptcp_sock);
|
|
newsk = new_mptcp_sock;
|
|
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
|
|
} else {
|
|
MPTCP_INC_STATS(sock_net(sk),
|
|
MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK);
|
|
}
|
|
|
|
out:
|
|
newsk->sk_kern_sock = kern;
|
|
return newsk;
|
|
}
|
|
|
|
void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
|
|
{
|
|
struct mptcp_subflow_context *subflow, *tmp;
|
|
struct sock *sk = (struct sock *)msk;
|
|
|
|
__mptcp_clear_xmit(sk);
|
|
|
|
/* join list will be eventually flushed (with rst) at sock lock release time */
|
|
list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node)
|
|
__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
|
|
|
|
/* move to sk_receive_queue, sk_stream_kill_queues will purge it */
|
|
mptcp_data_lock(sk);
|
|
skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
|
|
__skb_queue_purge(&sk->sk_receive_queue);
|
|
skb_rbtree_purge(&msk->out_of_order_queue);
|
|
mptcp_data_unlock(sk);
|
|
|
|
/* move all the rx fwd alloc into the sk_mem_reclaim_final in
|
|
* inet_sock_destruct() will dispose it
|
|
*/
|
|
sk->sk_forward_alloc += msk->rmem_fwd_alloc;
|
|
msk->rmem_fwd_alloc = 0;
|
|
mptcp_token_destroy(msk);
|
|
mptcp_pm_free_anno_list(msk);
|
|
mptcp_free_local_addr_list(msk);
|
|
}
|
|
|
|
static void mptcp_destroy(struct sock *sk)
|
|
{
|
|
struct mptcp_sock *msk = mptcp_sk(sk);
|
|
|
|
/* clears msk->subflow, allowing the following to close
|
|
* even the initial subflow
|
|
*/
|
|
mptcp_dispose_initial_subflow(msk);
|
|
mptcp_destroy_common(msk, 0);
|
|
sk_sockets_allocated_dec(sk);
|
|
}
|
|
|
|
void __mptcp_data_acked(struct sock *sk)
|
|
{
|
|
if (!sock_owned_by_user(sk))
|
|
__mptcp_clean_una(sk);
|
|
else
|
|
__set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
|
|
|
|
if (mptcp_pending_data_fin_ack(sk))
|
|
mptcp_schedule_work(sk);
|
|
}
|
|
|
|
void __mptcp_check_push(struct sock *sk, struct sock *ssk)
|
|
{
|
|
if (!mptcp_send_head(sk))
|
|
return;
|
|
|
|
if (!sock_owned_by_user(sk)) {
|
|
struct sock *xmit_ssk = mptcp_subflow_get_send(mptcp_sk(sk));
|
|
|
|
if (xmit_ssk == ssk)
|
|
__mptcp_subflow_push_pending(sk, ssk);
|
|
else if (xmit_ssk)
|
|
mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk), MPTCP_DELEGATE_SEND);
|
|
} else {
|
|
__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
|
|
}
|
|
}
|
|
|
|
#define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
|
|
BIT(MPTCP_RETRANSMIT) | \
|
|
BIT(MPTCP_FLUSH_JOIN_LIST))
|
|
|
|
/* processes deferred events and flush wmem */
|
|
static void mptcp_release_cb(struct sock *sk)
|
|
__must_hold(&sk->sk_lock.slock)
|
|
{
|
|
struct mptcp_sock *msk = mptcp_sk(sk);
|
|
|
|
for (;;) {
|
|
unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED) |
|
|
msk->push_pending;
|
|
if (!flags)
|
|
break;
|
|
|
|
/* the following actions acquire the subflow socket lock
|
|
*
|
|
* 1) can't be invoked in atomic scope
|
|
* 2) must avoid ABBA deadlock with msk socket spinlock: the RX
|
|
* datapath acquires the msk socket spinlock while helding
|
|
* the subflow socket lock
|
|
*/
|
|
msk->push_pending = 0;
|
|
msk->cb_flags &= ~flags;
|
|
spin_unlock_bh(&sk->sk_lock.slock);
|
|
if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
|
|
__mptcp_flush_join_list(sk);
|
|
if (flags & BIT(MPTCP_PUSH_PENDING))
|
|
__mptcp_push_pending(sk, 0);
|
|
if (flags & BIT(MPTCP_RETRANSMIT))
|
|
__mptcp_retrans(sk);
|
|
|
|
cond_resched();
|
|
spin_lock_bh(&sk->sk_lock.slock);
|
|
}
|
|
|
|
if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
|
|
__mptcp_clean_una_wakeup(sk);
|
|
if (unlikely(&msk->cb_flags)) {
|
|
/* be sure to set the current sk state before tacking actions
|
|
* depending on sk_state, that is processing MPTCP_ERROR_REPORT
|
|
*/
|
|
if (__test_and_clear_bit(MPTCP_CONNECTED, &msk->cb_flags))
|
|
__mptcp_set_connected(sk);
|
|
if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
|
|
__mptcp_error_report(sk);
|
|
if (__test_and_clear_bit(MPTCP_RESET_SCHEDULER, &msk->cb_flags))
|
|
msk->last_snd = NULL;
|
|
}
|
|
|
|
__mptcp_update_rmem(sk);
|
|
}
|
|
|
|
/* MP_JOIN client subflow must wait for 4th ack before sending any data:
|
|
* TCP can't schedule delack timer before the subflow is fully established.
|
|
* MPTCP uses the delack timer to do 3rd ack retransmissions
|
|
*/
|
|
static void schedule_3rdack_retransmission(struct sock *ssk)
|
|
{
|
|
struct inet_connection_sock *icsk = inet_csk(ssk);
|
|
struct tcp_sock *tp = tcp_sk(ssk);
|
|
unsigned long timeout;
|
|
|
|
if (mptcp_subflow_ctx(ssk)->fully_established)
|
|
return;
|
|
|
|
/* reschedule with a timeout above RTT, as we must look only for drop */
|
|
if (tp->srtt_us)
|
|
timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
|
|
else
|
|
timeout = TCP_TIMEOUT_INIT;
|
|
timeout += jiffies;
|
|
|
|
WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
|
|
icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
|
|
icsk->icsk_ack.timeout = timeout;
|
|
sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
|
|
}
|
|
|
|
void mptcp_subflow_process_delegated(struct sock *ssk)
|
|
{
|
|
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
|
|
struct sock *sk = subflow->conn;
|
|
|
|
if (test_bit(MPTCP_DELEGATE_SEND, &subflow->delegated_status)) {
|
|
mptcp_data_lock(sk);
|
|
if (!sock_owned_by_user(sk))
|
|
__mptcp_subflow_push_pending(sk, ssk);
|
|
else
|
|
__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
|
|
mptcp_data_unlock(sk);
|
|
mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_SEND);
|
|
}
|
|
if (test_bit(MPTCP_DELEGATE_ACK, &subflow->delegated_status)) {
|
|
schedule_3rdack_retransmission(ssk);
|
|
mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_ACK);
|
|
}
|
|
}
|
|
|
|
static int mptcp_hash(struct sock *sk)
|
|
{
|
|
/* should never be called,
|
|
* we hash the TCP subflows not the master socket
|
|
*/
|
|
WARN_ON_ONCE(1);
|
|
return 0;
|
|
}
|
|
|
|
static void mptcp_unhash(struct sock *sk)
|
|
{
|
|
/* called from sk_common_release(), but nothing to do here */
|
|
}
|
|
|
|
static int mptcp_get_port(struct sock *sk, unsigned short snum)
|
|
{
|
|
struct mptcp_sock *msk = mptcp_sk(sk);
|
|
struct socket *ssock;
|
|
|
|
ssock = __mptcp_nmpc_socket(msk);
|
|
pr_debug("msk=%p, subflow=%p", msk, ssock);
|
|
if (WARN_ON_ONCE(!ssock))
|
|
return -EINVAL;
|
|
|
|
return inet_csk_get_port(ssock->sk, snum);
|
|
}
|
|
|
|
void mptcp_finish_connect(struct sock *ssk)
|
|
{
|
|
struct mptcp_subflow_context *subflow;
|
|
struct mptcp_sock *msk;
|
|
struct sock *sk;
|
|
u64 ack_seq;
|
|
|
|
subflow = mptcp_subflow_ctx(ssk);
|
|
sk = subflow->conn;
|
|
msk = mptcp_sk(sk);
|
|
|
|
pr_debug("msk=%p, token=%u", sk, subflow->token);
|
|
|
|
mptcp_crypto_key_sha(subflow->remote_key, NULL, &ack_seq);
|
|
ack_seq++;
|
|
subflow->map_seq = ack_seq;
|
|
subflow->map_subflow_seq = 1;
|
|
|
|
/* the socket is not connected yet, no msk/subflow ops can access/race
|
|
* accessing the field below
|
|
*/
|
|
WRITE_ONCE(msk->remote_key, subflow->remote_key);
|
|
WRITE_ONCE(msk->local_key, subflow->local_key);
|
|
WRITE_ONCE(msk->write_seq, subflow->idsn + 1);
|
|
WRITE_ONCE(msk->snd_nxt, msk->write_seq);
|
|
WRITE_ONCE(msk->ack_seq, ack_seq);
|
|
WRITE_ONCE(msk->can_ack, 1);
|
|
WRITE_ONCE(msk->snd_una, msk->write_seq);
|
|
atomic64_set(&msk->rcv_wnd_sent, ack_seq);
|
|
|
|
mptcp_pm_new_connection(msk, ssk, 0);
|
|
|
|
mptcp_rcv_space_init(msk, ssk);
|
|
}
|
|
|
|
void mptcp_sock_graft(struct sock *sk, struct socket *parent)
|
|
{
|
|
write_lock_bh(&sk->sk_callback_lock);
|
|
rcu_assign_pointer(sk->sk_wq, &parent->wq);
|
|
sk_set_socket(sk, parent);
|
|
sk->sk_uid = SOCK_INODE(parent)->i_uid;
|
|
write_unlock_bh(&sk->sk_callback_lock);
|
|
}
|
|
|
|
bool mptcp_finish_join(struct sock *ssk)
|
|
{
|
|
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
|
|
struct mptcp_sock *msk = mptcp_sk(subflow->conn);
|
|
struct sock *parent = (void *)msk;
|
|
bool ret = true;
|
|
|
|
pr_debug("msk=%p, subflow=%p", msk, subflow);
|
|
|
|
/* mptcp socket already closing? */
|
|
if (!mptcp_is_fully_established(parent)) {
|
|
subflow->reset_reason = MPTCP_RST_EMPTCP;
|
|
return false;
|
|
}
|
|
|
|
if (!list_empty(&subflow->node))
|
|
goto out;
|
|
|
|
if (!mptcp_pm_allow_new_subflow(msk))
|
|
goto err_prohibited;
|
|
|
|
/* active connections are already on conn_list.
|
|
* If we can't acquire msk socket lock here, let the release callback
|
|
* handle it
|
|
*/
|
|
mptcp_data_lock(parent);
|
|
if (!sock_owned_by_user(parent)) {
|
|
ret = __mptcp_finish_join(msk, ssk);
|
|
if (ret) {
|
|
sock_hold(ssk);
|
|
list_add_tail(&subflow->node, &msk->conn_list);
|
|
}
|
|
} else {
|
|
sock_hold(ssk);
|
|
list_add_tail(&subflow->node, &msk->join_list);
|
|
__set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
|
|
}
|
|
mptcp_data_unlock(parent);
|
|
|
|
if (!ret) {
|
|
err_prohibited:
|
|
subflow->reset_reason = MPTCP_RST_EPROHIBIT;
|
|
return false;
|
|
}
|
|
|
|
subflow->map_seq = READ_ONCE(msk->ack_seq);
|
|
WRITE_ONCE(msk->allow_infinite_fallback, false);
|
|
|
|
out:
|
|
mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
|
|
return true;
|
|
}
|
|
|
|
static void mptcp_shutdown(struct sock *sk, int how)
|
|
{
|
|
pr_debug("sk=%p, how=%d", sk, how);
|
|
|
|
if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
|
|
__mptcp_wr_shutdown(sk);
|
|
}
|
|
|
|
static int mptcp_forward_alloc_get(const struct sock *sk)
|
|
{
|
|
return sk->sk_forward_alloc + mptcp_sk(sk)->rmem_fwd_alloc;
|
|
}
|
|
|
|
static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
|
|
{
|
|
const struct sock *sk = (void *)msk;
|
|
u64 delta;
|
|
|
|
if (sk->sk_state == TCP_LISTEN)
|
|
return -EINVAL;
|
|
|
|
if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
|
|
return 0;
|
|
|
|
delta = msk->write_seq - v;
|
|
if (__mptcp_check_fallback(msk) && msk->first) {
|
|
struct tcp_sock *tp = tcp_sk(msk->first);
|
|
|
|
/* the first subflow is disconnected after close - see
|
|
* __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
|
|
* so ignore that status, too.
|
|
*/
|
|
if (!((1 << msk->first->sk_state) &
|
|
(TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
|
|
delta += READ_ONCE(tp->write_seq) - tp->snd_una;
|
|
}
|
|
if (delta > INT_MAX)
|
|
delta = INT_MAX;
|
|
|
|
return (int)delta;
|
|
}
|
|
|
|
static int mptcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
|
|
{
|
|
struct mptcp_sock *msk = mptcp_sk(sk);
|
|
bool slow;
|
|
int answ;
|
|
|
|
switch (cmd) {
|
|
case SIOCINQ:
|
|
if (sk->sk_state == TCP_LISTEN)
|
|
return -EINVAL;
|
|
|
|
lock_sock(sk);
|
|
__mptcp_move_skbs(msk);
|
|
answ = mptcp_inq_hint(sk);
|
|
release_sock(sk);
|
|
break;
|
|
case SIOCOUTQ:
|
|
slow = lock_sock_fast(sk);
|
|
answ = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
|
|
unlock_sock_fast(sk, slow);
|
|
break;
|
|
case SIOCOUTQNSD:
|
|
slow = lock_sock_fast(sk);
|
|
answ = mptcp_ioctl_outq(msk, msk->snd_nxt);
|
|
unlock_sock_fast(sk, slow);
|
|
break;
|
|
default:
|
|
return -ENOIOCTLCMD;
|
|
}
|
|
|
|
return put_user(answ, (int __user *)arg);
|
|
}
|
|
|
|
static struct proto mptcp_prot = {
|
|
.name = "MPTCP",
|
|
.owner = THIS_MODULE,
|
|
.init = mptcp_init_sock,
|
|
.disconnect = mptcp_disconnect,
|
|
.close = mptcp_close,
|
|
.accept = mptcp_accept,
|
|
.setsockopt = mptcp_setsockopt,
|
|
.getsockopt = mptcp_getsockopt,
|
|
.shutdown = mptcp_shutdown,
|
|
.destroy = mptcp_destroy,
|
|
.sendmsg = mptcp_sendmsg,
|
|
.ioctl = mptcp_ioctl,
|
|
.recvmsg = mptcp_recvmsg,
|
|
.release_cb = mptcp_release_cb,
|
|
.hash = mptcp_hash,
|
|
.unhash = mptcp_unhash,
|
|
.get_port = mptcp_get_port,
|
|
.forward_alloc_get = mptcp_forward_alloc_get,
|
|
.sockets_allocated = &mptcp_sockets_allocated,
|
|
|
|
.memory_allocated = &tcp_memory_allocated,
|
|
.per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc,
|
|
|
|
.memory_pressure = &tcp_memory_pressure,
|
|
.sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem),
|
|
.sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem),
|
|
.sysctl_mem = sysctl_tcp_mem,
|
|
.obj_size = sizeof(struct mptcp_sock),
|
|
.slab_flags = SLAB_TYPESAFE_BY_RCU,
|
|
.no_autobind = true,
|
|
};
|
|
|
|
static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
|
|
{
|
|
struct mptcp_sock *msk = mptcp_sk(sock->sk);
|
|
struct socket *ssock;
|
|
int err;
|
|
|
|
lock_sock(sock->sk);
|
|
ssock = __mptcp_nmpc_socket(msk);
|
|
if (!ssock) {
|
|
err = -EINVAL;
|
|
goto unlock;
|
|
}
|
|
|
|
err = ssock->ops->bind(ssock, uaddr, addr_len);
|
|
if (!err)
|
|
mptcp_copy_inaddrs(sock->sk, ssock->sk);
|
|
|
|
unlock:
|
|
release_sock(sock->sk);
|
|
return err;
|
|
}
|
|
|
|
static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
|
|
struct mptcp_subflow_context *subflow)
|
|
{
|
|
subflow->request_mptcp = 0;
|
|
__mptcp_do_fallback(msk);
|
|
}
|
|
|
|
static int mptcp_stream_connect(struct socket *sock, struct sockaddr *uaddr,
|
|
int addr_len, int flags)
|
|
{
|
|
struct mptcp_sock *msk = mptcp_sk(sock->sk);
|
|
struct mptcp_subflow_context *subflow;
|
|
struct socket *ssock;
|
|
int err = -EINVAL;
|
|
|
|
lock_sock(sock->sk);
|
|
if (uaddr) {
|
|
if (addr_len < sizeof(uaddr->sa_family))
|
|
goto unlock;
|
|
|
|
if (uaddr->sa_family == AF_UNSPEC) {
|
|
err = mptcp_disconnect(sock->sk, flags);
|
|
sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED;
|
|
goto unlock;
|
|
}
|
|
}
|
|
|
|
if (sock->state != SS_UNCONNECTED && msk->subflow) {
|
|
/* pending connection or invalid state, let existing subflow
|
|
* cope with that
|
|
*/
|
|
ssock = msk->subflow;
|
|
goto do_connect;
|
|
}
|
|
|
|
ssock = __mptcp_nmpc_socket(msk);
|
|
if (!ssock)
|
|
goto unlock;
|
|
|
|
mptcp_token_destroy(msk);
|
|
inet_sk_state_store(sock->sk, TCP_SYN_SENT);
|
|
subflow = mptcp_subflow_ctx(ssock->sk);
|
|
#ifdef CONFIG_TCP_MD5SIG
|
|
/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
|
|
* TCP option space.
|
|
*/
|
|
if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info))
|
|
mptcp_subflow_early_fallback(msk, subflow);
|
|
#endif
|
|
if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk)) {
|
|
MPTCP_INC_STATS(sock_net(ssock->sk), MPTCP_MIB_TOKENFALLBACKINIT);
|
|
mptcp_subflow_early_fallback(msk, subflow);
|
|
}
|
|
if (likely(!__mptcp_check_fallback(msk)))
|
|
MPTCP_INC_STATS(sock_net(sock->sk), MPTCP_MIB_MPCAPABLEACTIVE);
|
|
|
|
do_connect:
|
|
err = ssock->ops->connect(ssock, uaddr, addr_len, flags);
|
|
sock->state = ssock->state;
|
|
|
|
/* on successful connect, the msk state will be moved to established by
|
|
* subflow_finish_connect()
|
|
*/
|
|
if (!err || err == -EINPROGRESS)
|
|
mptcp_copy_inaddrs(sock->sk, ssock->sk);
|
|
else
|
|
inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
|
|
|
|
unlock:
|
|
release_sock(sock->sk);
|
|
return err;
|
|
}
|
|
|
|
static int mptcp_listen(struct socket *sock, int backlog)
|
|
{
|
|
struct mptcp_sock *msk = mptcp_sk(sock->sk);
|
|
struct socket *ssock;
|
|
int err;
|
|
|
|
pr_debug("msk=%p", msk);
|
|
|
|
lock_sock(sock->sk);
|
|
ssock = __mptcp_nmpc_socket(msk);
|
|
if (!ssock) {
|
|
err = -EINVAL;
|
|
goto unlock;
|
|
}
|
|
|
|
mptcp_token_destroy(msk);
|
|
inet_sk_state_store(sock->sk, TCP_LISTEN);
|
|
sock_set_flag(sock->sk, SOCK_RCU_FREE);
|
|
|
|
err = ssock->ops->listen(ssock, backlog);
|
|
inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
|
|
if (!err)
|
|
mptcp_copy_inaddrs(sock->sk, ssock->sk);
|
|
|
|
unlock:
|
|
release_sock(sock->sk);
|
|
return err;
|
|
}
|
|
|
|
static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
|
|
int flags, bool kern)
|
|
{
|
|
struct mptcp_sock *msk = mptcp_sk(sock->sk);
|
|
struct socket *ssock;
|
|
int err;
|
|
|
|
pr_debug("msk=%p", msk);
|
|
|
|
ssock = __mptcp_nmpc_socket(msk);
|
|
if (!ssock)
|
|
return -EINVAL;
|
|
|
|
err = ssock->ops->accept(sock, newsock, flags, kern);
|
|
if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) {
|
|
struct mptcp_sock *msk = mptcp_sk(newsock->sk);
|
|
struct mptcp_subflow_context *subflow;
|
|
struct sock *newsk = newsock->sk;
|
|
|
|
lock_sock(newsk);
|
|
|
|
/* PM/worker can now acquire the first subflow socket
|
|
* lock without racing with listener queue cleanup,
|
|
* we can notify it, if needed.
|
|
*
|
|
* Even if remote has reset the initial subflow by now
|
|
* the refcnt is still at least one.
|
|
*/
|
|
subflow = mptcp_subflow_ctx(msk->first);
|
|
list_add(&subflow->node, &msk->conn_list);
|
|
sock_hold(msk->first);
|
|
if (mptcp_is_fully_established(newsk))
|
|
mptcp_pm_fully_established(msk, msk->first, GFP_KERNEL);
|
|
|
|
mptcp_copy_inaddrs(newsk, msk->first);
|
|
mptcp_rcv_space_init(msk, msk->first);
|
|
mptcp_propagate_sndbuf(newsk, msk->first);
|
|
|
|
/* set ssk->sk_socket of accept()ed flows to mptcp socket.
|
|
* This is needed so NOSPACE flag can be set from tcp stack.
|
|
*/
|
|
mptcp_for_each_subflow(msk, subflow) {
|
|
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
|
|
|
|
if (!ssk->sk_socket)
|
|
mptcp_sock_graft(ssk, newsock);
|
|
}
|
|
release_sock(newsk);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static __poll_t mptcp_check_readable(struct mptcp_sock *msk)
|
|
{
|
|
/* Concurrent splices from sk_receive_queue into receive_queue will
|
|
* always show at least one non-empty queue when checked in this order.
|
|
*/
|
|
if (skb_queue_empty_lockless(&((struct sock *)msk)->sk_receive_queue) &&
|
|
skb_queue_empty_lockless(&msk->receive_queue))
|
|
return 0;
|
|
|
|
return EPOLLIN | EPOLLRDNORM;
|
|
}
|
|
|
|
static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
|
|
{
|
|
struct sock *sk = (struct sock *)msk;
|
|
|
|
if (unlikely(sk->sk_shutdown & SEND_SHUTDOWN))
|
|
return EPOLLOUT | EPOLLWRNORM;
|
|
|
|
if (sk_stream_is_writeable(sk))
|
|
return EPOLLOUT | EPOLLWRNORM;
|
|
|
|
mptcp_set_nospace(sk);
|
|
smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */
|
|
if (sk_stream_is_writeable(sk))
|
|
return EPOLLOUT | EPOLLWRNORM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __poll_t mptcp_poll(struct file *file, struct socket *sock,
|
|
struct poll_table_struct *wait)
|
|
{
|
|
struct sock *sk = sock->sk;
|
|
struct mptcp_sock *msk;
|
|
__poll_t mask = 0;
|
|
int state;
|
|
|
|
msk = mptcp_sk(sk);
|
|
sock_poll_wait(file, sock, wait);
|
|
|
|
state = inet_sk_state_load(sk);
|
|
pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags);
|
|
if (state == TCP_LISTEN) {
|
|
if (WARN_ON_ONCE(!msk->subflow || !msk->subflow->sk))
|
|
return 0;
|
|
|
|
return inet_csk_listen_poll(msk->subflow->sk);
|
|
}
|
|
|
|
if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
|
|
mask |= mptcp_check_readable(msk);
|
|
mask |= mptcp_check_writeable(msk);
|
|
}
|
|
if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
|
|
mask |= EPOLLHUP;
|
|
if (sk->sk_shutdown & RCV_SHUTDOWN)
|
|
mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
|
|
|
|
/* This barrier is coupled with smp_wmb() in tcp_reset() */
|
|
smp_rmb();
|
|
if (sk->sk_err)
|
|
mask |= EPOLLERR;
|
|
|
|
return mask;
|
|
}
|
|
|
|
static const struct proto_ops mptcp_stream_ops = {
|
|
.family = PF_INET,
|
|
.owner = THIS_MODULE,
|
|
.release = inet_release,
|
|
.bind = mptcp_bind,
|
|
.connect = mptcp_stream_connect,
|
|
.socketpair = sock_no_socketpair,
|
|
.accept = mptcp_stream_accept,
|
|
.getname = inet_getname,
|
|
.poll = mptcp_poll,
|
|
.ioctl = inet_ioctl,
|
|
.gettstamp = sock_gettstamp,
|
|
.listen = mptcp_listen,
|
|
.shutdown = inet_shutdown,
|
|
.setsockopt = sock_common_setsockopt,
|
|
.getsockopt = sock_common_getsockopt,
|
|
.sendmsg = inet_sendmsg,
|
|
.recvmsg = inet_recvmsg,
|
|
.mmap = sock_no_mmap,
|
|
.sendpage = inet_sendpage,
|
|
};
|
|
|
|
static struct inet_protosw mptcp_protosw = {
|
|
.type = SOCK_STREAM,
|
|
.protocol = IPPROTO_MPTCP,
|
|
.prot = &mptcp_prot,
|
|
.ops = &mptcp_stream_ops,
|
|
.flags = INET_PROTOSW_ICSK,
|
|
};
|
|
|
|
static int mptcp_napi_poll(struct napi_struct *napi, int budget)
|
|
{
|
|
struct mptcp_delegated_action *delegated;
|
|
struct mptcp_subflow_context *subflow;
|
|
int work_done = 0;
|
|
|
|
delegated = container_of(napi, struct mptcp_delegated_action, napi);
|
|
while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
|
|
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
|
|
|
|
bh_lock_sock_nested(ssk);
|
|
if (!sock_owned_by_user(ssk) &&
|
|
mptcp_subflow_has_delegated_action(subflow))
|
|
mptcp_subflow_process_delegated(ssk);
|
|
/* ... elsewhere tcp_release_cb_override already processed
|
|
* the action or will do at next release_sock().
|
|
* In both case must dequeue the subflow here - on the same
|
|
* CPU that scheduled it.
|
|
*/
|
|
bh_unlock_sock(ssk);
|
|
sock_put(ssk);
|
|
|
|
if (++work_done == budget)
|
|
return budget;
|
|
}
|
|
|
|
/* always provide a 0 'work_done' argument, so that napi_complete_done
|
|
* will not try accessing the NULL napi->dev ptr
|
|
*/
|
|
napi_complete_done(napi, 0);
|
|
return work_done;
|
|
}
|
|
|
|
void __init mptcp_proto_init(void)
|
|
{
|
|
struct mptcp_delegated_action *delegated;
|
|
int cpu;
|
|
|
|
mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
|
|
|
|
if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
|
|
panic("Failed to allocate MPTCP pcpu counter\n");
|
|
|
|
init_dummy_netdev(&mptcp_napi_dev);
|
|
for_each_possible_cpu(cpu) {
|
|
delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
|
|
INIT_LIST_HEAD(&delegated->head);
|
|
netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi,
|
|
mptcp_napi_poll);
|
|
napi_enable(&delegated->napi);
|
|
}
|
|
|
|
mptcp_subflow_init();
|
|
mptcp_pm_init();
|
|
mptcp_token_init();
|
|
|
|
if (proto_register(&mptcp_prot, 1) != 0)
|
|
panic("Failed to register MPTCP proto.\n");
|
|
|
|
inet_register_protosw(&mptcp_protosw);
|
|
|
|
BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
|
|
static const struct proto_ops mptcp_v6_stream_ops = {
|
|
.family = PF_INET6,
|
|
.owner = THIS_MODULE,
|
|
.release = inet6_release,
|
|
.bind = mptcp_bind,
|
|
.connect = mptcp_stream_connect,
|
|
.socketpair = sock_no_socketpair,
|
|
.accept = mptcp_stream_accept,
|
|
.getname = inet6_getname,
|
|
.poll = mptcp_poll,
|
|
.ioctl = inet6_ioctl,
|
|
.gettstamp = sock_gettstamp,
|
|
.listen = mptcp_listen,
|
|
.shutdown = inet_shutdown,
|
|
.setsockopt = sock_common_setsockopt,
|
|
.getsockopt = sock_common_getsockopt,
|
|
.sendmsg = inet6_sendmsg,
|
|
.recvmsg = inet6_recvmsg,
|
|
.mmap = sock_no_mmap,
|
|
.sendpage = inet_sendpage,
|
|
#ifdef CONFIG_COMPAT
|
|
.compat_ioctl = inet6_compat_ioctl,
|
|
#endif
|
|
};
|
|
|
|
static struct proto mptcp_v6_prot;
|
|
|
|
static void mptcp_v6_destroy(struct sock *sk)
|
|
{
|
|
mptcp_destroy(sk);
|
|
inet6_destroy_sock(sk);
|
|
}
|
|
|
|
static struct inet_protosw mptcp_v6_protosw = {
|
|
.type = SOCK_STREAM,
|
|
.protocol = IPPROTO_MPTCP,
|
|
.prot = &mptcp_v6_prot,
|
|
.ops = &mptcp_v6_stream_ops,
|
|
.flags = INET_PROTOSW_ICSK,
|
|
};
|
|
|
|
int __init mptcp_proto_v6_init(void)
|
|
{
|
|
int err;
|
|
|
|
mptcp_v6_prot = mptcp_prot;
|
|
strcpy(mptcp_v6_prot.name, "MPTCPv6");
|
|
mptcp_v6_prot.slab = NULL;
|
|
mptcp_v6_prot.destroy = mptcp_v6_destroy;
|
|
mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
|
|
|
|
err = proto_register(&mptcp_v6_prot, 1);
|
|
if (err)
|
|
return err;
|
|
|
|
err = inet6_register_protosw(&mptcp_v6_protosw);
|
|
if (err)
|
|
proto_unregister(&mptcp_v6_prot);
|
|
|
|
return err;
|
|
}
|
|
#endif
|