26c949f806
The flow of control in the old btree insertion code was rather - backwards; we'd recurse down the btree (in btree_insert_recurse()), and then if we needed to split the keys to be inserted into the parent node would be effectively returned up to btree_insert_recurse(), which would notice there was more work to do and finish the insertion. The main problem with this was that the full logic for btree insertion could only be used by calling btree_insert_recurse; if you'd gotten to a btree leaf some other way and had a key to insert, if it turned out that node needed to be split you were SOL. This inverts the flow of control so btree_insert_node() does _full_ btree insertion, including splitting - and takes a (leaf) btree node to insert into as a parameter. This means we can now _correctly_ handle cache misses - for cache misses, we need to insert a fake "check" key into the btree when we discover we have a cache miss - while we still have the btree locked. Previously, if the btree node was full inserting a cache miss would just fail. Signed-off-by: Kent Overstreet <kmo@daterainc.com>
1236 lines
27 KiB
C
1236 lines
27 KiB
C
/*
|
|
* Code for working with individual keys, and sorted sets of keys with in a
|
|
* btree node
|
|
*
|
|
* Copyright 2012 Google, Inc.
|
|
*/
|
|
|
|
#include "bcache.h"
|
|
#include "btree.h"
|
|
#include "debug.h"
|
|
|
|
#include <linux/random.h>
|
|
#include <linux/prefetch.h>
|
|
|
|
/* Keylists */
|
|
|
|
void bch_keylist_copy(struct keylist *dest, struct keylist *src)
|
|
{
|
|
*dest = *src;
|
|
|
|
if (src->list == src->d) {
|
|
size_t n = (uint64_t *) src->top - src->d;
|
|
dest->top = (struct bkey *) &dest->d[n];
|
|
dest->list = dest->d;
|
|
}
|
|
}
|
|
|
|
int bch_keylist_realloc(struct keylist *l, int nptrs, struct cache_set *c)
|
|
{
|
|
unsigned oldsize = (uint64_t *) l->top - l->list;
|
|
unsigned newsize = oldsize + 2 + nptrs;
|
|
uint64_t *new;
|
|
|
|
/* The journalling code doesn't handle the case where the keys to insert
|
|
* is bigger than an empty write: If we just return -ENOMEM here,
|
|
* bio_insert() and bio_invalidate() will insert the keys created so far
|
|
* and finish the rest when the keylist is empty.
|
|
*/
|
|
if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
|
|
return -ENOMEM;
|
|
|
|
newsize = roundup_pow_of_two(newsize);
|
|
|
|
if (newsize <= KEYLIST_INLINE ||
|
|
roundup_pow_of_two(oldsize) == newsize)
|
|
return 0;
|
|
|
|
new = krealloc(l->list == l->d ? NULL : l->list,
|
|
sizeof(uint64_t) * newsize, GFP_NOIO);
|
|
|
|
if (!new)
|
|
return -ENOMEM;
|
|
|
|
if (l->list == l->d)
|
|
memcpy(new, l->list, sizeof(uint64_t) * KEYLIST_INLINE);
|
|
|
|
l->list = new;
|
|
l->top = (struct bkey *) (&l->list[oldsize]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct bkey *bch_keylist_pop(struct keylist *l)
|
|
{
|
|
struct bkey *k = l->bottom;
|
|
|
|
if (k == l->top)
|
|
return NULL;
|
|
|
|
while (bkey_next(k) != l->top)
|
|
k = bkey_next(k);
|
|
|
|
return l->top = k;
|
|
}
|
|
|
|
void bch_keylist_pop_front(struct keylist *l)
|
|
{
|
|
struct bkey *next = bkey_next(l->bottom);
|
|
size_t bytes = ((void *) l->top) - ((void *) next);
|
|
|
|
memmove(l->bottom,
|
|
next,
|
|
bytes);
|
|
|
|
l->top = ((void *) l->bottom) + bytes;
|
|
}
|
|
|
|
/* Pointer validation */
|
|
|
|
bool __bch_ptr_invalid(struct cache_set *c, int level, const struct bkey *k)
|
|
{
|
|
unsigned i;
|
|
char buf[80];
|
|
|
|
if (level && (!KEY_PTRS(k) || !KEY_SIZE(k) || KEY_DIRTY(k)))
|
|
goto bad;
|
|
|
|
if (!level && KEY_SIZE(k) > KEY_OFFSET(k))
|
|
goto bad;
|
|
|
|
if (!KEY_SIZE(k))
|
|
return true;
|
|
|
|
for (i = 0; i < KEY_PTRS(k); i++)
|
|
if (ptr_available(c, k, i)) {
|
|
struct cache *ca = PTR_CACHE(c, k, i);
|
|
size_t bucket = PTR_BUCKET_NR(c, k, i);
|
|
size_t r = bucket_remainder(c, PTR_OFFSET(k, i));
|
|
|
|
if (KEY_SIZE(k) + r > c->sb.bucket_size ||
|
|
bucket < ca->sb.first_bucket ||
|
|
bucket >= ca->sb.nbuckets)
|
|
goto bad;
|
|
}
|
|
|
|
return false;
|
|
bad:
|
|
bch_bkey_to_text(buf, sizeof(buf), k);
|
|
cache_bug(c, "spotted bad key %s: %s", buf, bch_ptr_status(c, k));
|
|
return true;
|
|
}
|
|
|
|
bool bch_ptr_bad(struct btree *b, const struct bkey *k)
|
|
{
|
|
struct bucket *g;
|
|
unsigned i, stale;
|
|
|
|
if (!bkey_cmp(k, &ZERO_KEY) ||
|
|
!KEY_PTRS(k) ||
|
|
bch_ptr_invalid(b, k))
|
|
return true;
|
|
|
|
if (KEY_PTRS(k) && PTR_DEV(k, 0) == PTR_CHECK_DEV)
|
|
return true;
|
|
|
|
for (i = 0; i < KEY_PTRS(k); i++)
|
|
if (ptr_available(b->c, k, i)) {
|
|
g = PTR_BUCKET(b->c, k, i);
|
|
stale = ptr_stale(b->c, k, i);
|
|
|
|
btree_bug_on(stale > 96, b,
|
|
"key too stale: %i, need_gc %u",
|
|
stale, b->c->need_gc);
|
|
|
|
btree_bug_on(stale && KEY_DIRTY(k) && KEY_SIZE(k),
|
|
b, "stale dirty pointer");
|
|
|
|
if (stale)
|
|
return true;
|
|
|
|
#ifdef CONFIG_BCACHE_EDEBUG
|
|
if (!mutex_trylock(&b->c->bucket_lock))
|
|
continue;
|
|
|
|
if (b->level) {
|
|
if (KEY_DIRTY(k) ||
|
|
g->prio != BTREE_PRIO ||
|
|
(b->c->gc_mark_valid &&
|
|
GC_MARK(g) != GC_MARK_METADATA))
|
|
goto bug;
|
|
|
|
} else {
|
|
if (g->prio == BTREE_PRIO)
|
|
goto bug;
|
|
|
|
if (KEY_DIRTY(k) &&
|
|
b->c->gc_mark_valid &&
|
|
GC_MARK(g) != GC_MARK_DIRTY)
|
|
goto bug;
|
|
}
|
|
mutex_unlock(&b->c->bucket_lock);
|
|
#endif
|
|
}
|
|
|
|
return false;
|
|
#ifdef CONFIG_BCACHE_EDEBUG
|
|
bug:
|
|
mutex_unlock(&b->c->bucket_lock);
|
|
|
|
{
|
|
char buf[80];
|
|
|
|
bch_bkey_to_text(buf, sizeof(buf), k);
|
|
btree_bug(b,
|
|
"inconsistent pointer %s: bucket %zu pin %i prio %i gen %i last_gc %i mark %llu gc_gen %i",
|
|
buf, PTR_BUCKET_NR(b->c, k, i), atomic_read(&g->pin),
|
|
g->prio, g->gen, g->last_gc, GC_MARK(g), g->gc_gen);
|
|
}
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
/* Key/pointer manipulation */
|
|
|
|
void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src,
|
|
unsigned i)
|
|
{
|
|
BUG_ON(i > KEY_PTRS(src));
|
|
|
|
/* Only copy the header, key, and one pointer. */
|
|
memcpy(dest, src, 2 * sizeof(uint64_t));
|
|
dest->ptr[0] = src->ptr[i];
|
|
SET_KEY_PTRS(dest, 1);
|
|
/* We didn't copy the checksum so clear that bit. */
|
|
SET_KEY_CSUM(dest, 0);
|
|
}
|
|
|
|
bool __bch_cut_front(const struct bkey *where, struct bkey *k)
|
|
{
|
|
unsigned i, len = 0;
|
|
|
|
if (bkey_cmp(where, &START_KEY(k)) <= 0)
|
|
return false;
|
|
|
|
if (bkey_cmp(where, k) < 0)
|
|
len = KEY_OFFSET(k) - KEY_OFFSET(where);
|
|
else
|
|
bkey_copy_key(k, where);
|
|
|
|
for (i = 0; i < KEY_PTRS(k); i++)
|
|
SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + KEY_SIZE(k) - len);
|
|
|
|
BUG_ON(len > KEY_SIZE(k));
|
|
SET_KEY_SIZE(k, len);
|
|
return true;
|
|
}
|
|
|
|
bool __bch_cut_back(const struct bkey *where, struct bkey *k)
|
|
{
|
|
unsigned len = 0;
|
|
|
|
if (bkey_cmp(where, k) >= 0)
|
|
return false;
|
|
|
|
BUG_ON(KEY_INODE(where) != KEY_INODE(k));
|
|
|
|
if (bkey_cmp(where, &START_KEY(k)) > 0)
|
|
len = KEY_OFFSET(where) - KEY_START(k);
|
|
|
|
bkey_copy_key(k, where);
|
|
|
|
BUG_ON(len > KEY_SIZE(k));
|
|
SET_KEY_SIZE(k, len);
|
|
return true;
|
|
}
|
|
|
|
static uint64_t merge_chksums(struct bkey *l, struct bkey *r)
|
|
{
|
|
return (l->ptr[KEY_PTRS(l)] + r->ptr[KEY_PTRS(r)]) &
|
|
~((uint64_t)1 << 63);
|
|
}
|
|
|
|
/* Tries to merge l and r: l should be lower than r
|
|
* Returns true if we were able to merge. If we did merge, l will be the merged
|
|
* key, r will be untouched.
|
|
*/
|
|
bool bch_bkey_try_merge(struct btree *b, struct bkey *l, struct bkey *r)
|
|
{
|
|
unsigned i;
|
|
|
|
if (key_merging_disabled(b->c))
|
|
return false;
|
|
|
|
if (KEY_PTRS(l) != KEY_PTRS(r) ||
|
|
KEY_DIRTY(l) != KEY_DIRTY(r) ||
|
|
bkey_cmp(l, &START_KEY(r)))
|
|
return false;
|
|
|
|
for (i = 0; i < KEY_PTRS(l); i++)
|
|
if (l->ptr[i] + PTR(0, KEY_SIZE(l), 0) != r->ptr[i] ||
|
|
PTR_BUCKET_NR(b->c, l, i) != PTR_BUCKET_NR(b->c, r, i))
|
|
return false;
|
|
|
|
/* Keys with no pointers aren't restricted to one bucket and could
|
|
* overflow KEY_SIZE
|
|
*/
|
|
if (KEY_SIZE(l) + KEY_SIZE(r) > USHRT_MAX) {
|
|
SET_KEY_OFFSET(l, KEY_OFFSET(l) + USHRT_MAX - KEY_SIZE(l));
|
|
SET_KEY_SIZE(l, USHRT_MAX);
|
|
|
|
bch_cut_front(l, r);
|
|
return false;
|
|
}
|
|
|
|
if (KEY_CSUM(l)) {
|
|
if (KEY_CSUM(r))
|
|
l->ptr[KEY_PTRS(l)] = merge_chksums(l, r);
|
|
else
|
|
SET_KEY_CSUM(l, 0);
|
|
}
|
|
|
|
SET_KEY_OFFSET(l, KEY_OFFSET(l) + KEY_SIZE(r));
|
|
SET_KEY_SIZE(l, KEY_SIZE(l) + KEY_SIZE(r));
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Binary tree stuff for auxiliary search trees */
|
|
|
|
static unsigned inorder_next(unsigned j, unsigned size)
|
|
{
|
|
if (j * 2 + 1 < size) {
|
|
j = j * 2 + 1;
|
|
|
|
while (j * 2 < size)
|
|
j *= 2;
|
|
} else
|
|
j >>= ffz(j) + 1;
|
|
|
|
return j;
|
|
}
|
|
|
|
static unsigned inorder_prev(unsigned j, unsigned size)
|
|
{
|
|
if (j * 2 < size) {
|
|
j = j * 2;
|
|
|
|
while (j * 2 + 1 < size)
|
|
j = j * 2 + 1;
|
|
} else
|
|
j >>= ffs(j);
|
|
|
|
return j;
|
|
}
|
|
|
|
/* I have no idea why this code works... and I'm the one who wrote it
|
|
*
|
|
* However, I do know what it does:
|
|
* Given a binary tree constructed in an array (i.e. how you normally implement
|
|
* a heap), it converts a node in the tree - referenced by array index - to the
|
|
* index it would have if you did an inorder traversal.
|
|
*
|
|
* Also tested for every j, size up to size somewhere around 6 million.
|
|
*
|
|
* The binary tree starts at array index 1, not 0
|
|
* extra is a function of size:
|
|
* extra = (size - rounddown_pow_of_two(size - 1)) << 1;
|
|
*/
|
|
static unsigned __to_inorder(unsigned j, unsigned size, unsigned extra)
|
|
{
|
|
unsigned b = fls(j);
|
|
unsigned shift = fls(size - 1) - b;
|
|
|
|
j ^= 1U << (b - 1);
|
|
j <<= 1;
|
|
j |= 1;
|
|
j <<= shift;
|
|
|
|
if (j > extra)
|
|
j -= (j - extra) >> 1;
|
|
|
|
return j;
|
|
}
|
|
|
|
static unsigned to_inorder(unsigned j, struct bset_tree *t)
|
|
{
|
|
return __to_inorder(j, t->size, t->extra);
|
|
}
|
|
|
|
static unsigned __inorder_to_tree(unsigned j, unsigned size, unsigned extra)
|
|
{
|
|
unsigned shift;
|
|
|
|
if (j > extra)
|
|
j += j - extra;
|
|
|
|
shift = ffs(j);
|
|
|
|
j >>= shift;
|
|
j |= roundup_pow_of_two(size) >> shift;
|
|
|
|
return j;
|
|
}
|
|
|
|
static unsigned inorder_to_tree(unsigned j, struct bset_tree *t)
|
|
{
|
|
return __inorder_to_tree(j, t->size, t->extra);
|
|
}
|
|
|
|
#if 0
|
|
void inorder_test(void)
|
|
{
|
|
unsigned long done = 0;
|
|
ktime_t start = ktime_get();
|
|
|
|
for (unsigned size = 2;
|
|
size < 65536000;
|
|
size++) {
|
|
unsigned extra = (size - rounddown_pow_of_two(size - 1)) << 1;
|
|
unsigned i = 1, j = rounddown_pow_of_two(size - 1);
|
|
|
|
if (!(size % 4096))
|
|
printk(KERN_NOTICE "loop %u, %llu per us\n", size,
|
|
done / ktime_us_delta(ktime_get(), start));
|
|
|
|
while (1) {
|
|
if (__inorder_to_tree(i, size, extra) != j)
|
|
panic("size %10u j %10u i %10u", size, j, i);
|
|
|
|
if (__to_inorder(j, size, extra) != i)
|
|
panic("size %10u j %10u i %10u", size, j, i);
|
|
|
|
if (j == rounddown_pow_of_two(size) - 1)
|
|
break;
|
|
|
|
BUG_ON(inorder_prev(inorder_next(j, size), size) != j);
|
|
|
|
j = inorder_next(j, size);
|
|
i++;
|
|
}
|
|
|
|
done += size - 1;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Cacheline/offset <-> bkey pointer arithmetic:
|
|
*
|
|
* t->tree is a binary search tree in an array; each node corresponds to a key
|
|
* in one cacheline in t->set (BSET_CACHELINE bytes).
|
|
*
|
|
* This means we don't have to store the full index of the key that a node in
|
|
* the binary tree points to; to_inorder() gives us the cacheline, and then
|
|
* bkey_float->m gives us the offset within that cacheline, in units of 8 bytes.
|
|
*
|
|
* cacheline_to_bkey() and friends abstract out all the pointer arithmetic to
|
|
* make this work.
|
|
*
|
|
* To construct the bfloat for an arbitrary key we need to know what the key
|
|
* immediately preceding it is: we have to check if the two keys differ in the
|
|
* bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size
|
|
* of the previous key so we can walk backwards to it from t->tree[j]'s key.
|
|
*/
|
|
|
|
static struct bkey *cacheline_to_bkey(struct bset_tree *t, unsigned cacheline,
|
|
unsigned offset)
|
|
{
|
|
return ((void *) t->data) + cacheline * BSET_CACHELINE + offset * 8;
|
|
}
|
|
|
|
static unsigned bkey_to_cacheline(struct bset_tree *t, struct bkey *k)
|
|
{
|
|
return ((void *) k - (void *) t->data) / BSET_CACHELINE;
|
|
}
|
|
|
|
static unsigned bkey_to_cacheline_offset(struct bkey *k)
|
|
{
|
|
return ((size_t) k & (BSET_CACHELINE - 1)) / sizeof(uint64_t);
|
|
}
|
|
|
|
static struct bkey *tree_to_bkey(struct bset_tree *t, unsigned j)
|
|
{
|
|
return cacheline_to_bkey(t, to_inorder(j, t), t->tree[j].m);
|
|
}
|
|
|
|
static struct bkey *tree_to_prev_bkey(struct bset_tree *t, unsigned j)
|
|
{
|
|
return (void *) (((uint64_t *) tree_to_bkey(t, j)) - t->prev[j]);
|
|
}
|
|
|
|
/*
|
|
* For the write set - the one we're currently inserting keys into - we don't
|
|
* maintain a full search tree, we just keep a simple lookup table in t->prev.
|
|
*/
|
|
static struct bkey *table_to_bkey(struct bset_tree *t, unsigned cacheline)
|
|
{
|
|
return cacheline_to_bkey(t, cacheline, t->prev[cacheline]);
|
|
}
|
|
|
|
static inline uint64_t shrd128(uint64_t high, uint64_t low, uint8_t shift)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
asm("shrd %[shift],%[high],%[low]"
|
|
: [low] "+Rm" (low)
|
|
: [high] "R" (high),
|
|
[shift] "ci" (shift)
|
|
: "cc");
|
|
#else
|
|
low >>= shift;
|
|
low |= (high << 1) << (63U - shift);
|
|
#endif
|
|
return low;
|
|
}
|
|
|
|
static inline unsigned bfloat_mantissa(const struct bkey *k,
|
|
struct bkey_float *f)
|
|
{
|
|
const uint64_t *p = &k->low - (f->exponent >> 6);
|
|
return shrd128(p[-1], p[0], f->exponent & 63) & BKEY_MANTISSA_MASK;
|
|
}
|
|
|
|
static void make_bfloat(struct bset_tree *t, unsigned j)
|
|
{
|
|
struct bkey_float *f = &t->tree[j];
|
|
struct bkey *m = tree_to_bkey(t, j);
|
|
struct bkey *p = tree_to_prev_bkey(t, j);
|
|
|
|
struct bkey *l = is_power_of_2(j)
|
|
? t->data->start
|
|
: tree_to_prev_bkey(t, j >> ffs(j));
|
|
|
|
struct bkey *r = is_power_of_2(j + 1)
|
|
? node(t->data, t->data->keys - bkey_u64s(&t->end))
|
|
: tree_to_bkey(t, j >> (ffz(j) + 1));
|
|
|
|
BUG_ON(m < l || m > r);
|
|
BUG_ON(bkey_next(p) != m);
|
|
|
|
if (KEY_INODE(l) != KEY_INODE(r))
|
|
f->exponent = fls64(KEY_INODE(r) ^ KEY_INODE(l)) + 64;
|
|
else
|
|
f->exponent = fls64(r->low ^ l->low);
|
|
|
|
f->exponent = max_t(int, f->exponent - BKEY_MANTISSA_BITS, 0);
|
|
|
|
/*
|
|
* Setting f->exponent = 127 flags this node as failed, and causes the
|
|
* lookup code to fall back to comparing against the original key.
|
|
*/
|
|
|
|
if (bfloat_mantissa(m, f) != bfloat_mantissa(p, f))
|
|
f->mantissa = bfloat_mantissa(m, f) - 1;
|
|
else
|
|
f->exponent = 127;
|
|
}
|
|
|
|
static void bset_alloc_tree(struct btree *b, struct bset_tree *t)
|
|
{
|
|
if (t != b->sets) {
|
|
unsigned j = roundup(t[-1].size,
|
|
64 / sizeof(struct bkey_float));
|
|
|
|
t->tree = t[-1].tree + j;
|
|
t->prev = t[-1].prev + j;
|
|
}
|
|
|
|
while (t < b->sets + MAX_BSETS)
|
|
t++->size = 0;
|
|
}
|
|
|
|
static void bset_build_unwritten_tree(struct btree *b)
|
|
{
|
|
struct bset_tree *t = b->sets + b->nsets;
|
|
|
|
bset_alloc_tree(b, t);
|
|
|
|
if (t->tree != b->sets->tree + bset_tree_space(b)) {
|
|
t->prev[0] = bkey_to_cacheline_offset(t->data->start);
|
|
t->size = 1;
|
|
}
|
|
}
|
|
|
|
static void bset_build_written_tree(struct btree *b)
|
|
{
|
|
struct bset_tree *t = b->sets + b->nsets;
|
|
struct bkey *k = t->data->start;
|
|
unsigned j, cacheline = 1;
|
|
|
|
bset_alloc_tree(b, t);
|
|
|
|
t->size = min_t(unsigned,
|
|
bkey_to_cacheline(t, end(t->data)),
|
|
b->sets->tree + bset_tree_space(b) - t->tree);
|
|
|
|
if (t->size < 2) {
|
|
t->size = 0;
|
|
return;
|
|
}
|
|
|
|
t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1;
|
|
|
|
/* First we figure out where the first key in each cacheline is */
|
|
for (j = inorder_next(0, t->size);
|
|
j;
|
|
j = inorder_next(j, t->size)) {
|
|
while (bkey_to_cacheline(t, k) != cacheline)
|
|
k = bkey_next(k);
|
|
|
|
t->prev[j] = bkey_u64s(k);
|
|
k = bkey_next(k);
|
|
cacheline++;
|
|
t->tree[j].m = bkey_to_cacheline_offset(k);
|
|
}
|
|
|
|
while (bkey_next(k) != end(t->data))
|
|
k = bkey_next(k);
|
|
|
|
t->end = *k;
|
|
|
|
/* Then we build the tree */
|
|
for (j = inorder_next(0, t->size);
|
|
j;
|
|
j = inorder_next(j, t->size))
|
|
make_bfloat(t, j);
|
|
}
|
|
|
|
void bch_bset_fix_invalidated_key(struct btree *b, struct bkey *k)
|
|
{
|
|
struct bset_tree *t;
|
|
unsigned inorder, j = 1;
|
|
|
|
for (t = b->sets; t <= &b->sets[b->nsets]; t++)
|
|
if (k < end(t->data))
|
|
goto found_set;
|
|
|
|
BUG();
|
|
found_set:
|
|
if (!t->size || !bset_written(b, t))
|
|
return;
|
|
|
|
inorder = bkey_to_cacheline(t, k);
|
|
|
|
if (k == t->data->start)
|
|
goto fix_left;
|
|
|
|
if (bkey_next(k) == end(t->data)) {
|
|
t->end = *k;
|
|
goto fix_right;
|
|
}
|
|
|
|
j = inorder_to_tree(inorder, t);
|
|
|
|
if (j &&
|
|
j < t->size &&
|
|
k == tree_to_bkey(t, j))
|
|
fix_left: do {
|
|
make_bfloat(t, j);
|
|
j = j * 2;
|
|
} while (j < t->size);
|
|
|
|
j = inorder_to_tree(inorder + 1, t);
|
|
|
|
if (j &&
|
|
j < t->size &&
|
|
k == tree_to_prev_bkey(t, j))
|
|
fix_right: do {
|
|
make_bfloat(t, j);
|
|
j = j * 2 + 1;
|
|
} while (j < t->size);
|
|
}
|
|
|
|
void bch_bset_fix_lookup_table(struct btree *b, struct bkey *k)
|
|
{
|
|
struct bset_tree *t = &b->sets[b->nsets];
|
|
unsigned shift = bkey_u64s(k);
|
|
unsigned j = bkey_to_cacheline(t, k);
|
|
|
|
/* We're getting called from btree_split() or btree_gc, just bail out */
|
|
if (!t->size)
|
|
return;
|
|
|
|
/* k is the key we just inserted; we need to find the entry in the
|
|
* lookup table for the first key that is strictly greater than k:
|
|
* it's either k's cacheline or the next one
|
|
*/
|
|
if (j < t->size &&
|
|
table_to_bkey(t, j) <= k)
|
|
j++;
|
|
|
|
/* Adjust all the lookup table entries, and find a new key for any that
|
|
* have gotten too big
|
|
*/
|
|
for (; j < t->size; j++) {
|
|
t->prev[j] += shift;
|
|
|
|
if (t->prev[j] > 7) {
|
|
k = table_to_bkey(t, j - 1);
|
|
|
|
while (k < cacheline_to_bkey(t, j, 0))
|
|
k = bkey_next(k);
|
|
|
|
t->prev[j] = bkey_to_cacheline_offset(k);
|
|
}
|
|
}
|
|
|
|
if (t->size == b->sets->tree + bset_tree_space(b) - t->tree)
|
|
return;
|
|
|
|
/* Possibly add a new entry to the end of the lookup table */
|
|
|
|
for (k = table_to_bkey(t, t->size - 1);
|
|
k != end(t->data);
|
|
k = bkey_next(k))
|
|
if (t->size == bkey_to_cacheline(t, k)) {
|
|
t->prev[t->size] = bkey_to_cacheline_offset(k);
|
|
t->size++;
|
|
}
|
|
}
|
|
|
|
void bch_bset_init_next(struct btree *b)
|
|
{
|
|
struct bset *i = write_block(b);
|
|
|
|
if (i != b->sets[0].data) {
|
|
b->sets[++b->nsets].data = i;
|
|
i->seq = b->sets[0].data->seq;
|
|
} else
|
|
get_random_bytes(&i->seq, sizeof(uint64_t));
|
|
|
|
i->magic = bset_magic(b->c);
|
|
i->version = 0;
|
|
i->keys = 0;
|
|
|
|
bset_build_unwritten_tree(b);
|
|
}
|
|
|
|
struct bset_search_iter {
|
|
struct bkey *l, *r;
|
|
};
|
|
|
|
static struct bset_search_iter bset_search_write_set(struct btree *b,
|
|
struct bset_tree *t,
|
|
const struct bkey *search)
|
|
{
|
|
unsigned li = 0, ri = t->size;
|
|
|
|
BUG_ON(!b->nsets &&
|
|
t->size < bkey_to_cacheline(t, end(t->data)));
|
|
|
|
while (li + 1 != ri) {
|
|
unsigned m = (li + ri) >> 1;
|
|
|
|
if (bkey_cmp(table_to_bkey(t, m), search) > 0)
|
|
ri = m;
|
|
else
|
|
li = m;
|
|
}
|
|
|
|
return (struct bset_search_iter) {
|
|
table_to_bkey(t, li),
|
|
ri < t->size ? table_to_bkey(t, ri) : end(t->data)
|
|
};
|
|
}
|
|
|
|
static struct bset_search_iter bset_search_tree(struct btree *b,
|
|
struct bset_tree *t,
|
|
const struct bkey *search)
|
|
{
|
|
struct bkey *l, *r;
|
|
struct bkey_float *f;
|
|
unsigned inorder, j, n = 1;
|
|
|
|
do {
|
|
unsigned p = n << 4;
|
|
p &= ((int) (p - t->size)) >> 31;
|
|
|
|
prefetch(&t->tree[p]);
|
|
|
|
j = n;
|
|
f = &t->tree[j];
|
|
|
|
/*
|
|
* n = (f->mantissa > bfloat_mantissa())
|
|
* ? j * 2
|
|
* : j * 2 + 1;
|
|
*
|
|
* We need to subtract 1 from f->mantissa for the sign bit trick
|
|
* to work - that's done in make_bfloat()
|
|
*/
|
|
if (likely(f->exponent != 127))
|
|
n = j * 2 + (((unsigned)
|
|
(f->mantissa -
|
|
bfloat_mantissa(search, f))) >> 31);
|
|
else
|
|
n = (bkey_cmp(tree_to_bkey(t, j), search) > 0)
|
|
? j * 2
|
|
: j * 2 + 1;
|
|
} while (n < t->size);
|
|
|
|
inorder = to_inorder(j, t);
|
|
|
|
/*
|
|
* n would have been the node we recursed to - the low bit tells us if
|
|
* we recursed left or recursed right.
|
|
*/
|
|
if (n & 1) {
|
|
l = cacheline_to_bkey(t, inorder, f->m);
|
|
|
|
if (++inorder != t->size) {
|
|
f = &t->tree[inorder_next(j, t->size)];
|
|
r = cacheline_to_bkey(t, inorder, f->m);
|
|
} else
|
|
r = end(t->data);
|
|
} else {
|
|
r = cacheline_to_bkey(t, inorder, f->m);
|
|
|
|
if (--inorder) {
|
|
f = &t->tree[inorder_prev(j, t->size)];
|
|
l = cacheline_to_bkey(t, inorder, f->m);
|
|
} else
|
|
l = t->data->start;
|
|
}
|
|
|
|
return (struct bset_search_iter) {l, r};
|
|
}
|
|
|
|
struct bkey *__bch_bset_search(struct btree *b, struct bset_tree *t,
|
|
const struct bkey *search)
|
|
{
|
|
struct bset_search_iter i;
|
|
|
|
/*
|
|
* First, we search for a cacheline, then lastly we do a linear search
|
|
* within that cacheline.
|
|
*
|
|
* To search for the cacheline, there's three different possibilities:
|
|
* * The set is too small to have a search tree, so we just do a linear
|
|
* search over the whole set.
|
|
* * The set is the one we're currently inserting into; keeping a full
|
|
* auxiliary search tree up to date would be too expensive, so we
|
|
* use a much simpler lookup table to do a binary search -
|
|
* bset_search_write_set().
|
|
* * Or we use the auxiliary search tree we constructed earlier -
|
|
* bset_search_tree()
|
|
*/
|
|
|
|
if (unlikely(!t->size)) {
|
|
i.l = t->data->start;
|
|
i.r = end(t->data);
|
|
} else if (bset_written(b, t)) {
|
|
/*
|
|
* Each node in the auxiliary search tree covers a certain range
|
|
* of bits, and keys above and below the set it covers might
|
|
* differ outside those bits - so we have to special case the
|
|
* start and end - handle that here:
|
|
*/
|
|
|
|
if (unlikely(bkey_cmp(search, &t->end) >= 0))
|
|
return end(t->data);
|
|
|
|
if (unlikely(bkey_cmp(search, t->data->start) < 0))
|
|
return t->data->start;
|
|
|
|
i = bset_search_tree(b, t, search);
|
|
} else
|
|
i = bset_search_write_set(b, t, search);
|
|
|
|
#ifdef CONFIG_BCACHE_EDEBUG
|
|
BUG_ON(bset_written(b, t) &&
|
|
i.l != t->data->start &&
|
|
bkey_cmp(tree_to_prev_bkey(t,
|
|
inorder_to_tree(bkey_to_cacheline(t, i.l), t)),
|
|
search) > 0);
|
|
|
|
BUG_ON(i.r != end(t->data) &&
|
|
bkey_cmp(i.r, search) <= 0);
|
|
#endif
|
|
|
|
while (likely(i.l != i.r) &&
|
|
bkey_cmp(i.l, search) <= 0)
|
|
i.l = bkey_next(i.l);
|
|
|
|
return i.l;
|
|
}
|
|
|
|
/* Btree iterator */
|
|
|
|
static inline bool btree_iter_cmp(struct btree_iter_set l,
|
|
struct btree_iter_set r)
|
|
{
|
|
int64_t c = bkey_cmp(&START_KEY(l.k), &START_KEY(r.k));
|
|
|
|
return c ? c > 0 : l.k < r.k;
|
|
}
|
|
|
|
static inline bool btree_iter_end(struct btree_iter *iter)
|
|
{
|
|
return !iter->used;
|
|
}
|
|
|
|
void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k,
|
|
struct bkey *end)
|
|
{
|
|
if (k != end)
|
|
BUG_ON(!heap_add(iter,
|
|
((struct btree_iter_set) { k, end }),
|
|
btree_iter_cmp));
|
|
}
|
|
|
|
struct bkey *__bch_btree_iter_init(struct btree *b, struct btree_iter *iter,
|
|
struct bkey *search, struct bset_tree *start)
|
|
{
|
|
struct bkey *ret = NULL;
|
|
iter->size = ARRAY_SIZE(iter->data);
|
|
iter->used = 0;
|
|
|
|
for (; start <= &b->sets[b->nsets]; start++) {
|
|
ret = bch_bset_search(b, start, search);
|
|
bch_btree_iter_push(iter, ret, end(start->data));
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct bkey *bch_btree_iter_next(struct btree_iter *iter)
|
|
{
|
|
struct btree_iter_set unused;
|
|
struct bkey *ret = NULL;
|
|
|
|
if (!btree_iter_end(iter)) {
|
|
ret = iter->data->k;
|
|
iter->data->k = bkey_next(iter->data->k);
|
|
|
|
if (iter->data->k > iter->data->end) {
|
|
WARN_ONCE(1, "bset was corrupt!\n");
|
|
iter->data->k = iter->data->end;
|
|
}
|
|
|
|
if (iter->data->k == iter->data->end)
|
|
heap_pop(iter, unused, btree_iter_cmp);
|
|
else
|
|
heap_sift(iter, 0, btree_iter_cmp);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter,
|
|
struct btree *b, ptr_filter_fn fn)
|
|
{
|
|
struct bkey *ret;
|
|
|
|
do {
|
|
ret = bch_btree_iter_next(iter);
|
|
} while (ret && fn(b, ret));
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct bkey *bch_next_recurse_key(struct btree *b, struct bkey *search)
|
|
{
|
|
struct btree_iter iter;
|
|
|
|
bch_btree_iter_init(b, &iter, search);
|
|
return bch_btree_iter_next_filter(&iter, b, bch_ptr_bad);
|
|
}
|
|
|
|
/* Mergesort */
|
|
|
|
static void sort_key_next(struct btree_iter *iter,
|
|
struct btree_iter_set *i)
|
|
{
|
|
i->k = bkey_next(i->k);
|
|
|
|
if (i->k == i->end)
|
|
*i = iter->data[--iter->used];
|
|
}
|
|
|
|
static void btree_sort_fixup(struct btree_iter *iter)
|
|
{
|
|
while (iter->used > 1) {
|
|
struct btree_iter_set *top = iter->data, *i = top + 1;
|
|
|
|
if (iter->used > 2 &&
|
|
btree_iter_cmp(i[0], i[1]))
|
|
i++;
|
|
|
|
if (bkey_cmp(top->k, &START_KEY(i->k)) <= 0)
|
|
break;
|
|
|
|
if (!KEY_SIZE(i->k)) {
|
|
sort_key_next(iter, i);
|
|
heap_sift(iter, i - top, btree_iter_cmp);
|
|
continue;
|
|
}
|
|
|
|
if (top->k > i->k) {
|
|
if (bkey_cmp(top->k, i->k) >= 0)
|
|
sort_key_next(iter, i);
|
|
else
|
|
bch_cut_front(top->k, i->k);
|
|
|
|
heap_sift(iter, i - top, btree_iter_cmp);
|
|
} else {
|
|
/* can't happen because of comparison func */
|
|
BUG_ON(!bkey_cmp(&START_KEY(top->k), &START_KEY(i->k)));
|
|
bch_cut_back(&START_KEY(i->k), top->k);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void btree_mergesort(struct btree *b, struct bset *out,
|
|
struct btree_iter *iter,
|
|
bool fixup, bool remove_stale)
|
|
{
|
|
struct bkey *k, *last = NULL;
|
|
bool (*bad)(struct btree *, const struct bkey *) = remove_stale
|
|
? bch_ptr_bad
|
|
: bch_ptr_invalid;
|
|
|
|
while (!btree_iter_end(iter)) {
|
|
if (fixup && !b->level)
|
|
btree_sort_fixup(iter);
|
|
|
|
k = bch_btree_iter_next(iter);
|
|
if (bad(b, k))
|
|
continue;
|
|
|
|
if (!last) {
|
|
last = out->start;
|
|
bkey_copy(last, k);
|
|
} else if (b->level ||
|
|
!bch_bkey_try_merge(b, last, k)) {
|
|
last = bkey_next(last);
|
|
bkey_copy(last, k);
|
|
}
|
|
}
|
|
|
|
out->keys = last ? (uint64_t *) bkey_next(last) - out->d : 0;
|
|
|
|
pr_debug("sorted %i keys", out->keys);
|
|
bch_check_key_order(b, out);
|
|
}
|
|
|
|
static void __btree_sort(struct btree *b, struct btree_iter *iter,
|
|
unsigned start, unsigned order, bool fixup)
|
|
{
|
|
uint64_t start_time;
|
|
bool remove_stale = !b->written;
|
|
struct bset *out = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOIO,
|
|
order);
|
|
if (!out) {
|
|
mutex_lock(&b->c->sort_lock);
|
|
out = b->c->sort;
|
|
order = ilog2(bucket_pages(b->c));
|
|
}
|
|
|
|
start_time = local_clock();
|
|
|
|
btree_mergesort(b, out, iter, fixup, remove_stale);
|
|
b->nsets = start;
|
|
|
|
if (!fixup && !start && b->written)
|
|
bch_btree_verify(b, out);
|
|
|
|
if (!start && order == b->page_order) {
|
|
/*
|
|
* Our temporary buffer is the same size as the btree node's
|
|
* buffer, we can just swap buffers instead of doing a big
|
|
* memcpy()
|
|
*/
|
|
|
|
out->magic = bset_magic(b->c);
|
|
out->seq = b->sets[0].data->seq;
|
|
out->version = b->sets[0].data->version;
|
|
swap(out, b->sets[0].data);
|
|
|
|
if (b->c->sort == b->sets[0].data)
|
|
b->c->sort = out;
|
|
} else {
|
|
b->sets[start].data->keys = out->keys;
|
|
memcpy(b->sets[start].data->start, out->start,
|
|
(void *) end(out) - (void *) out->start);
|
|
}
|
|
|
|
if (out == b->c->sort)
|
|
mutex_unlock(&b->c->sort_lock);
|
|
else
|
|
free_pages((unsigned long) out, order);
|
|
|
|
if (b->written)
|
|
bset_build_written_tree(b);
|
|
|
|
if (!start) {
|
|
spin_lock(&b->c->sort_time_lock);
|
|
bch_time_stats_update(&b->c->sort_time, start_time);
|
|
spin_unlock(&b->c->sort_time_lock);
|
|
}
|
|
}
|
|
|
|
void bch_btree_sort_partial(struct btree *b, unsigned start)
|
|
{
|
|
size_t oldsize = 0, order = b->page_order, keys = 0;
|
|
struct btree_iter iter;
|
|
__bch_btree_iter_init(b, &iter, NULL, &b->sets[start]);
|
|
|
|
BUG_ON(b->sets[b->nsets].data == write_block(b) &&
|
|
(b->sets[b->nsets].size || b->nsets));
|
|
|
|
if (b->written)
|
|
oldsize = bch_count_data(b);
|
|
|
|
if (start) {
|
|
unsigned i;
|
|
|
|
for (i = start; i <= b->nsets; i++)
|
|
keys += b->sets[i].data->keys;
|
|
|
|
order = roundup_pow_of_two(__set_bytes(b->sets->data,
|
|
keys)) / PAGE_SIZE;
|
|
if (order)
|
|
order = ilog2(order);
|
|
}
|
|
|
|
__btree_sort(b, &iter, start, order, false);
|
|
|
|
EBUG_ON(b->written && bch_count_data(b) != oldsize);
|
|
}
|
|
|
|
void bch_btree_sort_and_fix_extents(struct btree *b, struct btree_iter *iter)
|
|
{
|
|
BUG_ON(!b->written);
|
|
__btree_sort(b, iter, 0, b->page_order, true);
|
|
}
|
|
|
|
void bch_btree_sort_into(struct btree *b, struct btree *new)
|
|
{
|
|
uint64_t start_time = local_clock();
|
|
|
|
struct btree_iter iter;
|
|
bch_btree_iter_init(b, &iter, NULL);
|
|
|
|
btree_mergesort(b, new->sets->data, &iter, false, true);
|
|
|
|
spin_lock(&b->c->sort_time_lock);
|
|
bch_time_stats_update(&b->c->sort_time, start_time);
|
|
spin_unlock(&b->c->sort_time_lock);
|
|
|
|
bkey_copy_key(&new->key, &b->key);
|
|
new->sets->size = 0;
|
|
}
|
|
|
|
#define SORT_CRIT (4096 / sizeof(uint64_t))
|
|
|
|
void bch_btree_sort_lazy(struct btree *b)
|
|
{
|
|
unsigned crit = SORT_CRIT;
|
|
int i;
|
|
|
|
/* Don't sort if nothing to do */
|
|
if (!b->nsets)
|
|
goto out;
|
|
|
|
/* If not a leaf node, always sort */
|
|
if (b->level) {
|
|
bch_btree_sort(b);
|
|
return;
|
|
}
|
|
|
|
for (i = b->nsets - 1; i >= 0; --i) {
|
|
crit *= b->c->sort_crit_factor;
|
|
|
|
if (b->sets[i].data->keys < crit) {
|
|
bch_btree_sort_partial(b, i);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Sort if we'd overflow */
|
|
if (b->nsets + 1 == MAX_BSETS) {
|
|
bch_btree_sort(b);
|
|
return;
|
|
}
|
|
|
|
out:
|
|
bset_build_written_tree(b);
|
|
}
|
|
|
|
/* Sysfs stuff */
|
|
|
|
struct bset_stats {
|
|
size_t nodes;
|
|
size_t sets_written, sets_unwritten;
|
|
size_t bytes_written, bytes_unwritten;
|
|
size_t floats, failed;
|
|
};
|
|
|
|
static int bch_btree_bset_stats(struct btree *b, struct btree_op *op,
|
|
struct bset_stats *stats)
|
|
{
|
|
struct bkey *k;
|
|
unsigned i;
|
|
|
|
stats->nodes++;
|
|
|
|
for (i = 0; i <= b->nsets; i++) {
|
|
struct bset_tree *t = &b->sets[i];
|
|
size_t bytes = t->data->keys * sizeof(uint64_t);
|
|
size_t j;
|
|
|
|
if (bset_written(b, t)) {
|
|
stats->sets_written++;
|
|
stats->bytes_written += bytes;
|
|
|
|
stats->floats += t->size - 1;
|
|
|
|
for (j = 1; j < t->size; j++)
|
|
if (t->tree[j].exponent == 127)
|
|
stats->failed++;
|
|
} else {
|
|
stats->sets_unwritten++;
|
|
stats->bytes_unwritten += bytes;
|
|
}
|
|
}
|
|
|
|
if (b->level) {
|
|
struct btree_iter iter;
|
|
|
|
for_each_key_filter(b, k, &iter, bch_ptr_bad) {
|
|
int ret = btree(bset_stats, k, b, op, stats);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int bch_bset_print_stats(struct cache_set *c, char *buf)
|
|
{
|
|
struct btree_op op;
|
|
struct bset_stats t;
|
|
int ret;
|
|
|
|
bch_btree_op_init_stack(&op);
|
|
memset(&t, 0, sizeof(struct bset_stats));
|
|
|
|
ret = btree_root(bset_stats, c, &op, &t);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return snprintf(buf, PAGE_SIZE,
|
|
"btree nodes: %zu\n"
|
|
"written sets: %zu\n"
|
|
"unwritten sets: %zu\n"
|
|
"written key bytes: %zu\n"
|
|
"unwritten key bytes: %zu\n"
|
|
"floats: %zu\n"
|
|
"failed: %zu\n",
|
|
t.nodes,
|
|
t.sets_written, t.sets_unwritten,
|
|
t.bytes_written, t.bytes_unwritten,
|
|
t.floats, t.failed);
|
|
}
|