9d5505f1ee
crng_finalize_init() returns instantly if it is called for another pool than primary_crng. The test whether crng_finalize_init() is still required can be moved to the relevant caller in crng_reseed(), and crng_need_final_init can be reset to false if crng_finalize_init() is called with workqueues ready. Then, no previous callsite will call crng_finalize_init() unless it is needed, and we can get rid of the superfluous function parameter. Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net> Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2238 lines
66 KiB
C
2238 lines
66 KiB
C
/*
|
|
* random.c -- A strong random number generator
|
|
*
|
|
* Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
|
|
*
|
|
* Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
|
|
*
|
|
* Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
|
|
* rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, and the entire permission notice in its entirety,
|
|
* including the disclaimer of warranties.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote
|
|
* products derived from this software without specific prior
|
|
* written permission.
|
|
*
|
|
* ALTERNATIVELY, this product may be distributed under the terms of
|
|
* the GNU General Public License, in which case the provisions of the GPL are
|
|
* required INSTEAD OF the above restrictions. (This clause is
|
|
* necessary due to a potential bad interaction between the GPL and
|
|
* the restrictions contained in a BSD-style copyright.)
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
|
|
* WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
|
|
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
|
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
|
* USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
|
|
* DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* (now, with legal B.S. out of the way.....)
|
|
*
|
|
* This routine gathers environmental noise from device drivers, etc.,
|
|
* and returns good random numbers, suitable for cryptographic use.
|
|
* Besides the obvious cryptographic uses, these numbers are also good
|
|
* for seeding TCP sequence numbers, and other places where it is
|
|
* desirable to have numbers which are not only random, but hard to
|
|
* predict by an attacker.
|
|
*
|
|
* Theory of operation
|
|
* ===================
|
|
*
|
|
* Computers are very predictable devices. Hence it is extremely hard
|
|
* to produce truly random numbers on a computer --- as opposed to
|
|
* pseudo-random numbers, which can easily generated by using a
|
|
* algorithm. Unfortunately, it is very easy for attackers to guess
|
|
* the sequence of pseudo-random number generators, and for some
|
|
* applications this is not acceptable. So instead, we must try to
|
|
* gather "environmental noise" from the computer's environment, which
|
|
* must be hard for outside attackers to observe, and use that to
|
|
* generate random numbers. In a Unix environment, this is best done
|
|
* from inside the kernel.
|
|
*
|
|
* Sources of randomness from the environment include inter-keyboard
|
|
* timings, inter-interrupt timings from some interrupts, and other
|
|
* events which are both (a) non-deterministic and (b) hard for an
|
|
* outside observer to measure. Randomness from these sources are
|
|
* added to an "entropy pool", which is mixed using a CRC-like function.
|
|
* This is not cryptographically strong, but it is adequate assuming
|
|
* the randomness is not chosen maliciously, and it is fast enough that
|
|
* the overhead of doing it on every interrupt is very reasonable.
|
|
* As random bytes are mixed into the entropy pool, the routines keep
|
|
* an *estimate* of how many bits of randomness have been stored into
|
|
* the random number generator's internal state.
|
|
*
|
|
* When random bytes are desired, they are obtained by taking the BLAKE2s
|
|
* hash of the contents of the "entropy pool". The BLAKE2s hash avoids
|
|
* exposing the internal state of the entropy pool. It is believed to
|
|
* be computationally infeasible to derive any useful information
|
|
* about the input of BLAKE2s from its output. Even if it is possible to
|
|
* analyze BLAKE2s in some clever way, as long as the amount of data
|
|
* returned from the generator is less than the inherent entropy in
|
|
* the pool, the output data is totally unpredictable. For this
|
|
* reason, the routine decreases its internal estimate of how many
|
|
* bits of "true randomness" are contained in the entropy pool as it
|
|
* outputs random numbers.
|
|
*
|
|
* If this estimate goes to zero, the routine can still generate
|
|
* random numbers; however, an attacker may (at least in theory) be
|
|
* able to infer the future output of the generator from prior
|
|
* outputs. This requires successful cryptanalysis of BLAKE2s, which is
|
|
* not believed to be feasible, but there is a remote possibility.
|
|
* Nonetheless, these numbers should be useful for the vast majority
|
|
* of purposes.
|
|
*
|
|
* Exported interfaces ---- output
|
|
* ===============================
|
|
*
|
|
* There are four exported interfaces; two for use within the kernel,
|
|
* and two for use from userspace.
|
|
*
|
|
* Exported interfaces ---- userspace output
|
|
* -----------------------------------------
|
|
*
|
|
* The userspace interfaces are two character devices /dev/random and
|
|
* /dev/urandom. /dev/random is suitable for use when very high
|
|
* quality randomness is desired (for example, for key generation or
|
|
* one-time pads), as it will only return a maximum of the number of
|
|
* bits of randomness (as estimated by the random number generator)
|
|
* contained in the entropy pool.
|
|
*
|
|
* The /dev/urandom device does not have this limit, and will return
|
|
* as many bytes as are requested. As more and more random bytes are
|
|
* requested without giving time for the entropy pool to recharge,
|
|
* this will result in random numbers that are merely cryptographically
|
|
* strong. For many applications, however, this is acceptable.
|
|
*
|
|
* Exported interfaces ---- kernel output
|
|
* --------------------------------------
|
|
*
|
|
* The primary kernel interface is
|
|
*
|
|
* void get_random_bytes(void *buf, int nbytes);
|
|
*
|
|
* This interface will return the requested number of random bytes,
|
|
* and place it in the requested buffer. This is equivalent to a
|
|
* read from /dev/urandom.
|
|
*
|
|
* For less critical applications, there are the functions:
|
|
*
|
|
* u32 get_random_u32()
|
|
* u64 get_random_u64()
|
|
* unsigned int get_random_int()
|
|
* unsigned long get_random_long()
|
|
*
|
|
* These are produced by a cryptographic RNG seeded from get_random_bytes,
|
|
* and so do not deplete the entropy pool as much. These are recommended
|
|
* for most in-kernel operations *if the result is going to be stored in
|
|
* the kernel*.
|
|
*
|
|
* Specifically, the get_random_int() family do not attempt to do
|
|
* "anti-backtracking". If you capture the state of the kernel (e.g.
|
|
* by snapshotting the VM), you can figure out previous get_random_int()
|
|
* return values. But if the value is stored in the kernel anyway,
|
|
* this is not a problem.
|
|
*
|
|
* It *is* safe to expose get_random_int() output to attackers (e.g. as
|
|
* network cookies); given outputs 1..n, it's not feasible to predict
|
|
* outputs 0 or n+1. The only concern is an attacker who breaks into
|
|
* the kernel later; the get_random_int() engine is not reseeded as
|
|
* often as the get_random_bytes() one.
|
|
*
|
|
* get_random_bytes() is needed for keys that need to stay secret after
|
|
* they are erased from the kernel. For example, any key that will
|
|
* be wrapped and stored encrypted. And session encryption keys: we'd
|
|
* like to know that after the session is closed and the keys erased,
|
|
* the plaintext is unrecoverable to someone who recorded the ciphertext.
|
|
*
|
|
* But for network ports/cookies, stack canaries, PRNG seeds, address
|
|
* space layout randomization, session *authentication* keys, or other
|
|
* applications where the sensitive data is stored in the kernel in
|
|
* plaintext for as long as it's sensitive, the get_random_int() family
|
|
* is just fine.
|
|
*
|
|
* Consider ASLR. We want to keep the address space secret from an
|
|
* outside attacker while the process is running, but once the address
|
|
* space is torn down, it's of no use to an attacker any more. And it's
|
|
* stored in kernel data structures as long as it's alive, so worrying
|
|
* about an attacker's ability to extrapolate it from the get_random_int()
|
|
* CRNG is silly.
|
|
*
|
|
* Even some cryptographic keys are safe to generate with get_random_int().
|
|
* In particular, keys for SipHash are generally fine. Here, knowledge
|
|
* of the key authorizes you to do something to a kernel object (inject
|
|
* packets to a network connection, or flood a hash table), and the
|
|
* key is stored with the object being protected. Once it goes away,
|
|
* we no longer care if anyone knows the key.
|
|
*
|
|
* prandom_u32()
|
|
* -------------
|
|
*
|
|
* For even weaker applications, see the pseudorandom generator
|
|
* prandom_u32(), prandom_max(), and prandom_bytes(). If the random
|
|
* numbers aren't security-critical at all, these are *far* cheaper.
|
|
* Useful for self-tests, random error simulation, randomized backoffs,
|
|
* and any other application where you trust that nobody is trying to
|
|
* maliciously mess with you by guessing the "random" numbers.
|
|
*
|
|
* Exported interfaces ---- input
|
|
* ==============================
|
|
*
|
|
* The current exported interfaces for gathering environmental noise
|
|
* from the devices are:
|
|
*
|
|
* void add_device_randomness(const void *buf, unsigned int size);
|
|
* void add_input_randomness(unsigned int type, unsigned int code,
|
|
* unsigned int value);
|
|
* void add_interrupt_randomness(int irq);
|
|
* void add_disk_randomness(struct gendisk *disk);
|
|
* void add_hwgenerator_randomness(const char *buffer, size_t count,
|
|
* size_t entropy);
|
|
* void add_bootloader_randomness(const void *buf, unsigned int size);
|
|
*
|
|
* add_device_randomness() is for adding data to the random pool that
|
|
* is likely to differ between two devices (or possibly even per boot).
|
|
* This would be things like MAC addresses or serial numbers, or the
|
|
* read-out of the RTC. This does *not* add any actual entropy to the
|
|
* pool, but it initializes the pool to different values for devices
|
|
* that might otherwise be identical and have very little entropy
|
|
* available to them (particularly common in the embedded world).
|
|
*
|
|
* add_input_randomness() uses the input layer interrupt timing, as well as
|
|
* the event type information from the hardware.
|
|
*
|
|
* add_interrupt_randomness() uses the interrupt timing as random
|
|
* inputs to the entropy pool. Using the cycle counters and the irq source
|
|
* as inputs, it feeds the randomness roughly once a second.
|
|
*
|
|
* add_disk_randomness() uses what amounts to the seek time of block
|
|
* layer request events, on a per-disk_devt basis, as input to the
|
|
* entropy pool. Note that high-speed solid state drives with very low
|
|
* seek times do not make for good sources of entropy, as their seek
|
|
* times are usually fairly consistent.
|
|
*
|
|
* All of these routines try to estimate how many bits of randomness a
|
|
* particular randomness source. They do this by keeping track of the
|
|
* first and second order deltas of the event timings.
|
|
*
|
|
* add_hwgenerator_randomness() is for true hardware RNGs, and will credit
|
|
* entropy as specified by the caller. If the entropy pool is full it will
|
|
* block until more entropy is needed.
|
|
*
|
|
* add_bootloader_randomness() is the same as add_hwgenerator_randomness() or
|
|
* add_device_randomness(), depending on whether or not the configuration
|
|
* option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
|
|
*
|
|
* Ensuring unpredictability at system startup
|
|
* ============================================
|
|
*
|
|
* When any operating system starts up, it will go through a sequence
|
|
* of actions that are fairly predictable by an adversary, especially
|
|
* if the start-up does not involve interaction with a human operator.
|
|
* This reduces the actual number of bits of unpredictability in the
|
|
* entropy pool below the value in entropy_count. In order to
|
|
* counteract this effect, it helps to carry information in the
|
|
* entropy pool across shut-downs and start-ups. To do this, put the
|
|
* following lines an appropriate script which is run during the boot
|
|
* sequence:
|
|
*
|
|
* echo "Initializing random number generator..."
|
|
* random_seed=/var/run/random-seed
|
|
* # Carry a random seed from start-up to start-up
|
|
* # Load and then save the whole entropy pool
|
|
* if [ -f $random_seed ]; then
|
|
* cat $random_seed >/dev/urandom
|
|
* else
|
|
* touch $random_seed
|
|
* fi
|
|
* chmod 600 $random_seed
|
|
* dd if=/dev/urandom of=$random_seed count=1 bs=512
|
|
*
|
|
* and the following lines in an appropriate script which is run as
|
|
* the system is shutdown:
|
|
*
|
|
* # Carry a random seed from shut-down to start-up
|
|
* # Save the whole entropy pool
|
|
* echo "Saving random seed..."
|
|
* random_seed=/var/run/random-seed
|
|
* touch $random_seed
|
|
* chmod 600 $random_seed
|
|
* dd if=/dev/urandom of=$random_seed count=1 bs=512
|
|
*
|
|
* For example, on most modern systems using the System V init
|
|
* scripts, such code fragments would be found in
|
|
* /etc/rc.d/init.d/random. On older Linux systems, the correct script
|
|
* location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
|
|
*
|
|
* Effectively, these commands cause the contents of the entropy pool
|
|
* to be saved at shut-down time and reloaded into the entropy pool at
|
|
* start-up. (The 'dd' in the addition to the bootup script is to
|
|
* make sure that /etc/random-seed is different for every start-up,
|
|
* even if the system crashes without executing rc.0.) Even with
|
|
* complete knowledge of the start-up activities, predicting the state
|
|
* of the entropy pool requires knowledge of the previous history of
|
|
* the system.
|
|
*
|
|
* Configuring the /dev/random driver under Linux
|
|
* ==============================================
|
|
*
|
|
* The /dev/random driver under Linux uses minor numbers 8 and 9 of
|
|
* the /dev/mem major number (#1). So if your system does not have
|
|
* /dev/random and /dev/urandom created already, they can be created
|
|
* by using the commands:
|
|
*
|
|
* mknod /dev/random c 1 8
|
|
* mknod /dev/urandom c 1 9
|
|
*
|
|
* Acknowledgements:
|
|
* =================
|
|
*
|
|
* Ideas for constructing this random number generator were derived
|
|
* from Pretty Good Privacy's random number generator, and from private
|
|
* discussions with Phil Karn. Colin Plumb provided a faster random
|
|
* number generator, which speed up the mixing function of the entropy
|
|
* pool, taken from PGPfone. Dale Worley has also contributed many
|
|
* useful ideas and suggestions to improve this driver.
|
|
*
|
|
* Any flaws in the design are solely my responsibility, and should
|
|
* not be attributed to the Phil, Colin, or any of authors of PGP.
|
|
*
|
|
* Further background information on this topic may be obtained from
|
|
* RFC 1750, "Randomness Recommendations for Security", by Donald
|
|
* Eastlake, Steve Crocker, and Jeff Schiller.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/utsname.h>
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/major.h>
|
|
#include <linux/string.h>
|
|
#include <linux/fcntl.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/random.h>
|
|
#include <linux/poll.h>
|
|
#include <linux/init.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/genhd.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/nodemask.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/ratelimit.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/uuid.h>
|
|
#include <crypto/chacha.h>
|
|
#include <crypto/blake2s.h>
|
|
|
|
#include <asm/processor.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/irq_regs.h>
|
|
#include <asm/io.h>
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/random.h>
|
|
|
|
/* #define ADD_INTERRUPT_BENCH */
|
|
|
|
/*
|
|
* If the entropy count falls under this number of bits, then we
|
|
* should wake up processes which are selecting or polling on write
|
|
* access to /dev/random.
|
|
*/
|
|
static int random_write_wakeup_bits = 28 * (1 << 5);
|
|
|
|
/*
|
|
* Originally, we used a primitive polynomial of degree .poolwords
|
|
* over GF(2). The taps for various sizes are defined below. They
|
|
* were chosen to be evenly spaced except for the last tap, which is 1
|
|
* to get the twisting happening as fast as possible.
|
|
*
|
|
* For the purposes of better mixing, we use the CRC-32 polynomial as
|
|
* well to make a (modified) twisted Generalized Feedback Shift
|
|
* Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
|
|
* generators. ACM Transactions on Modeling and Computer Simulation
|
|
* 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
|
|
* GFSR generators II. ACM Transactions on Modeling and Computer
|
|
* Simulation 4:254-266)
|
|
*
|
|
* Thanks to Colin Plumb for suggesting this.
|
|
*
|
|
* The mixing operation is much less sensitive than the output hash,
|
|
* where we use BLAKE2s. All that we want of mixing operation is that
|
|
* it be a good non-cryptographic hash; i.e. it not produce collisions
|
|
* when fed "random" data of the sort we expect to see. As long as
|
|
* the pool state differs for different inputs, we have preserved the
|
|
* input entropy and done a good job. The fact that an intelligent
|
|
* attacker can construct inputs that will produce controlled
|
|
* alterations to the pool's state is not important because we don't
|
|
* consider such inputs to contribute any randomness. The only
|
|
* property we need with respect to them is that the attacker can't
|
|
* increase his/her knowledge of the pool's state. Since all
|
|
* additions are reversible (knowing the final state and the input,
|
|
* you can reconstruct the initial state), if an attacker has any
|
|
* uncertainty about the initial state, he/she can only shuffle that
|
|
* uncertainty about, but never cause any collisions (which would
|
|
* decrease the uncertainty).
|
|
*
|
|
* Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
|
|
* Videau in their paper, "The Linux Pseudorandom Number Generator
|
|
* Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
|
|
* paper, they point out that we are not using a true Twisted GFSR,
|
|
* since Matsumoto & Kurita used a trinomial feedback polynomial (that
|
|
* is, with only three taps, instead of the six that we are using).
|
|
* As a result, the resulting polynomial is neither primitive nor
|
|
* irreducible, and hence does not have a maximal period over
|
|
* GF(2**32). They suggest a slight change to the generator
|
|
* polynomial which improves the resulting TGFSR polynomial to be
|
|
* irreducible, which we have made here.
|
|
*/
|
|
enum poolinfo {
|
|
POOL_WORDS = 128,
|
|
POOL_WORDMASK = POOL_WORDS - 1,
|
|
POOL_BYTES = POOL_WORDS * sizeof(u32),
|
|
POOL_BITS = POOL_BYTES * 8,
|
|
POOL_BITSHIFT = ilog2(POOL_BITS),
|
|
|
|
/* To allow fractional bits to be tracked, the entropy_count field is
|
|
* denominated in units of 1/8th bits. */
|
|
POOL_ENTROPY_SHIFT = 3,
|
|
#define POOL_ENTROPY_BITS() (input_pool.entropy_count >> POOL_ENTROPY_SHIFT)
|
|
POOL_FRACBITS = POOL_BITS << POOL_ENTROPY_SHIFT,
|
|
|
|
/* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
|
|
POOL_TAP1 = 104,
|
|
POOL_TAP2 = 76,
|
|
POOL_TAP3 = 51,
|
|
POOL_TAP4 = 25,
|
|
POOL_TAP5 = 1,
|
|
|
|
EXTRACT_SIZE = BLAKE2S_HASH_SIZE / 2
|
|
};
|
|
|
|
/*
|
|
* Static global variables
|
|
*/
|
|
static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
|
|
static struct fasync_struct *fasync;
|
|
|
|
static DEFINE_SPINLOCK(random_ready_list_lock);
|
|
static LIST_HEAD(random_ready_list);
|
|
|
|
struct crng_state {
|
|
u32 state[16];
|
|
unsigned long init_time;
|
|
spinlock_t lock;
|
|
};
|
|
|
|
static struct crng_state primary_crng = {
|
|
.lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
|
|
.state[0] = CHACHA_CONSTANT_EXPA,
|
|
.state[1] = CHACHA_CONSTANT_ND_3,
|
|
.state[2] = CHACHA_CONSTANT_2_BY,
|
|
.state[3] = CHACHA_CONSTANT_TE_K,
|
|
};
|
|
|
|
/*
|
|
* crng_init = 0 --> Uninitialized
|
|
* 1 --> Initialized
|
|
* 2 --> Initialized from input_pool
|
|
*
|
|
* crng_init is protected by primary_crng->lock, and only increases
|
|
* its value (from 0->1->2).
|
|
*/
|
|
static int crng_init = 0;
|
|
static bool crng_need_final_init = false;
|
|
#define crng_ready() (likely(crng_init > 1))
|
|
static int crng_init_cnt = 0;
|
|
static unsigned long crng_global_init_time = 0;
|
|
#define CRNG_INIT_CNT_THRESH (2 * CHACHA_KEY_SIZE)
|
|
static void _extract_crng(struct crng_state *crng, u8 out[CHACHA_BLOCK_SIZE]);
|
|
static void _crng_backtrack_protect(struct crng_state *crng,
|
|
u8 tmp[CHACHA_BLOCK_SIZE], int used);
|
|
static void process_random_ready_list(void);
|
|
static void _get_random_bytes(void *buf, int nbytes);
|
|
|
|
static struct ratelimit_state unseeded_warning =
|
|
RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
|
|
static struct ratelimit_state urandom_warning =
|
|
RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
|
|
|
|
static int ratelimit_disable __read_mostly;
|
|
|
|
module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
|
|
MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
|
|
|
|
/**********************************************************************
|
|
*
|
|
* OS independent entropy store. Here are the functions which handle
|
|
* storing entropy in an entropy pool.
|
|
*
|
|
**********************************************************************/
|
|
|
|
static u32 input_pool_data[POOL_WORDS] __latent_entropy;
|
|
|
|
static struct {
|
|
spinlock_t lock;
|
|
u16 add_ptr;
|
|
u16 input_rotate;
|
|
int entropy_count;
|
|
} input_pool = {
|
|
.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
|
|
};
|
|
|
|
static ssize_t extract_entropy(void *buf, size_t nbytes, int min);
|
|
static ssize_t _extract_entropy(void *buf, size_t nbytes);
|
|
|
|
static void crng_reseed(struct crng_state *crng, bool use_input_pool);
|
|
|
|
static const u32 twist_table[8] = {
|
|
0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
|
|
0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
|
|
|
|
/*
|
|
* This function adds bytes into the entropy "pool". It does not
|
|
* update the entropy estimate. The caller should call
|
|
* credit_entropy_bits if this is appropriate.
|
|
*
|
|
* The pool is stirred with a primitive polynomial of the appropriate
|
|
* degree, and then twisted. We twist by three bits at a time because
|
|
* it's cheap to do so and helps slightly in the expected case where
|
|
* the entropy is concentrated in the low-order bits.
|
|
*/
|
|
static void _mix_pool_bytes(const void *in, int nbytes)
|
|
{
|
|
unsigned long i;
|
|
int input_rotate;
|
|
const u8 *bytes = in;
|
|
u32 w;
|
|
|
|
input_rotate = input_pool.input_rotate;
|
|
i = input_pool.add_ptr;
|
|
|
|
/* mix one byte at a time to simplify size handling and churn faster */
|
|
while (nbytes--) {
|
|
w = rol32(*bytes++, input_rotate);
|
|
i = (i - 1) & POOL_WORDMASK;
|
|
|
|
/* XOR in the various taps */
|
|
w ^= input_pool_data[i];
|
|
w ^= input_pool_data[(i + POOL_TAP1) & POOL_WORDMASK];
|
|
w ^= input_pool_data[(i + POOL_TAP2) & POOL_WORDMASK];
|
|
w ^= input_pool_data[(i + POOL_TAP3) & POOL_WORDMASK];
|
|
w ^= input_pool_data[(i + POOL_TAP4) & POOL_WORDMASK];
|
|
w ^= input_pool_data[(i + POOL_TAP5) & POOL_WORDMASK];
|
|
|
|
/* Mix the result back in with a twist */
|
|
input_pool_data[i] = (w >> 3) ^ twist_table[w & 7];
|
|
|
|
/*
|
|
* Normally, we add 7 bits of rotation to the pool.
|
|
* At the beginning of the pool, add an extra 7 bits
|
|
* rotation, so that successive passes spread the
|
|
* input bits across the pool evenly.
|
|
*/
|
|
input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
|
|
}
|
|
|
|
input_pool.input_rotate = input_rotate;
|
|
input_pool.add_ptr = i;
|
|
}
|
|
|
|
static void __mix_pool_bytes(const void *in, int nbytes)
|
|
{
|
|
trace_mix_pool_bytes_nolock(nbytes, _RET_IP_);
|
|
_mix_pool_bytes(in, nbytes);
|
|
}
|
|
|
|
static void mix_pool_bytes(const void *in, int nbytes)
|
|
{
|
|
unsigned long flags;
|
|
|
|
trace_mix_pool_bytes(nbytes, _RET_IP_);
|
|
spin_lock_irqsave(&input_pool.lock, flags);
|
|
_mix_pool_bytes(in, nbytes);
|
|
spin_unlock_irqrestore(&input_pool.lock, flags);
|
|
}
|
|
|
|
struct fast_pool {
|
|
u32 pool[4];
|
|
unsigned long last;
|
|
u16 reg_idx;
|
|
u8 count;
|
|
};
|
|
|
|
/*
|
|
* This is a fast mixing routine used by the interrupt randomness
|
|
* collector. It's hardcoded for an 128 bit pool and assumes that any
|
|
* locks that might be needed are taken by the caller.
|
|
*/
|
|
static void fast_mix(struct fast_pool *f)
|
|
{
|
|
u32 a = f->pool[0], b = f->pool[1];
|
|
u32 c = f->pool[2], d = f->pool[3];
|
|
|
|
a += b; c += d;
|
|
b = rol32(b, 6); d = rol32(d, 27);
|
|
d ^= a; b ^= c;
|
|
|
|
a += b; c += d;
|
|
b = rol32(b, 16); d = rol32(d, 14);
|
|
d ^= a; b ^= c;
|
|
|
|
a += b; c += d;
|
|
b = rol32(b, 6); d = rol32(d, 27);
|
|
d ^= a; b ^= c;
|
|
|
|
a += b; c += d;
|
|
b = rol32(b, 16); d = rol32(d, 14);
|
|
d ^= a; b ^= c;
|
|
|
|
f->pool[0] = a; f->pool[1] = b;
|
|
f->pool[2] = c; f->pool[3] = d;
|
|
f->count++;
|
|
}
|
|
|
|
static void process_random_ready_list(void)
|
|
{
|
|
unsigned long flags;
|
|
struct random_ready_callback *rdy, *tmp;
|
|
|
|
spin_lock_irqsave(&random_ready_list_lock, flags);
|
|
list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
|
|
struct module *owner = rdy->owner;
|
|
|
|
list_del_init(&rdy->list);
|
|
rdy->func(rdy);
|
|
module_put(owner);
|
|
}
|
|
spin_unlock_irqrestore(&random_ready_list_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Credit (or debit) the entropy store with n bits of entropy.
|
|
* Use credit_entropy_bits_safe() if the value comes from userspace
|
|
* or otherwise should be checked for extreme values.
|
|
*/
|
|
static void credit_entropy_bits(int nbits)
|
|
{
|
|
int entropy_count, entropy_bits, orig;
|
|
int nfrac = nbits << POOL_ENTROPY_SHIFT;
|
|
|
|
/* Ensure that the multiplication can avoid being 64 bits wide. */
|
|
BUILD_BUG_ON(2 * (POOL_ENTROPY_SHIFT + POOL_BITSHIFT) > 31);
|
|
|
|
if (!nbits)
|
|
return;
|
|
|
|
retry:
|
|
entropy_count = orig = READ_ONCE(input_pool.entropy_count);
|
|
if (nfrac < 0) {
|
|
/* Debit */
|
|
entropy_count += nfrac;
|
|
} else {
|
|
/*
|
|
* Credit: we have to account for the possibility of
|
|
* overwriting already present entropy. Even in the
|
|
* ideal case of pure Shannon entropy, new contributions
|
|
* approach the full value asymptotically:
|
|
*
|
|
* entropy <- entropy + (pool_size - entropy) *
|
|
* (1 - exp(-add_entropy/pool_size))
|
|
*
|
|
* For add_entropy <= pool_size/2 then
|
|
* (1 - exp(-add_entropy/pool_size)) >=
|
|
* (add_entropy/pool_size)*0.7869...
|
|
* so we can approximate the exponential with
|
|
* 3/4*add_entropy/pool_size and still be on the
|
|
* safe side by adding at most pool_size/2 at a time.
|
|
*
|
|
* The use of pool_size-2 in the while statement is to
|
|
* prevent rounding artifacts from making the loop
|
|
* arbitrarily long; this limits the loop to log2(pool_size)*2
|
|
* turns no matter how large nbits is.
|
|
*/
|
|
int pnfrac = nfrac;
|
|
const int s = POOL_BITSHIFT + POOL_ENTROPY_SHIFT + 2;
|
|
/* The +2 corresponds to the /4 in the denominator */
|
|
|
|
do {
|
|
unsigned int anfrac = min(pnfrac, POOL_FRACBITS / 2);
|
|
unsigned int add =
|
|
((POOL_FRACBITS - entropy_count) * anfrac * 3) >> s;
|
|
|
|
entropy_count += add;
|
|
pnfrac -= anfrac;
|
|
} while (unlikely(entropy_count < POOL_FRACBITS - 2 && pnfrac));
|
|
}
|
|
|
|
if (WARN_ON(entropy_count < 0)) {
|
|
pr_warn("negative entropy/overflow: count %d\n", entropy_count);
|
|
entropy_count = 0;
|
|
} else if (entropy_count > POOL_FRACBITS)
|
|
entropy_count = POOL_FRACBITS;
|
|
if (cmpxchg(&input_pool.entropy_count, orig, entropy_count) != orig)
|
|
goto retry;
|
|
|
|
trace_credit_entropy_bits(nbits, entropy_count >> POOL_ENTROPY_SHIFT, _RET_IP_);
|
|
|
|
entropy_bits = entropy_count >> POOL_ENTROPY_SHIFT;
|
|
if (crng_init < 2 && entropy_bits >= 128)
|
|
crng_reseed(&primary_crng, true);
|
|
}
|
|
|
|
static int credit_entropy_bits_safe(int nbits)
|
|
{
|
|
if (nbits < 0)
|
|
return -EINVAL;
|
|
|
|
/* Cap the value to avoid overflows */
|
|
nbits = min(nbits, POOL_BITS);
|
|
|
|
credit_entropy_bits(nbits);
|
|
return 0;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* CRNG using CHACHA20
|
|
*
|
|
*********************************************************************/
|
|
|
|
#define CRNG_RESEED_INTERVAL (300 * HZ)
|
|
|
|
static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
|
|
|
|
/*
|
|
* Hack to deal with crazy userspace progams when they are all trying
|
|
* to access /dev/urandom in parallel. The programs are almost
|
|
* certainly doing something terribly wrong, but we'll work around
|
|
* their brain damage.
|
|
*/
|
|
static struct crng_state **crng_node_pool __read_mostly;
|
|
|
|
static void invalidate_batched_entropy(void);
|
|
static void numa_crng_init(void);
|
|
|
|
static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
|
|
static int __init parse_trust_cpu(char *arg)
|
|
{
|
|
return kstrtobool(arg, &trust_cpu);
|
|
}
|
|
early_param("random.trust_cpu", parse_trust_cpu);
|
|
|
|
static bool crng_init_try_arch(struct crng_state *crng)
|
|
{
|
|
int i;
|
|
bool arch_init = true;
|
|
unsigned long rv;
|
|
|
|
for (i = 4; i < 16; i++) {
|
|
if (!arch_get_random_seed_long(&rv) &&
|
|
!arch_get_random_long(&rv)) {
|
|
rv = random_get_entropy();
|
|
arch_init = false;
|
|
}
|
|
crng->state[i] ^= rv;
|
|
}
|
|
|
|
return arch_init;
|
|
}
|
|
|
|
static bool __init crng_init_try_arch_early(void)
|
|
{
|
|
int i;
|
|
bool arch_init = true;
|
|
unsigned long rv;
|
|
|
|
for (i = 4; i < 16; i++) {
|
|
if (!arch_get_random_seed_long_early(&rv) &&
|
|
!arch_get_random_long_early(&rv)) {
|
|
rv = random_get_entropy();
|
|
arch_init = false;
|
|
}
|
|
primary_crng.state[i] ^= rv;
|
|
}
|
|
|
|
return arch_init;
|
|
}
|
|
|
|
static void crng_initialize_secondary(struct crng_state *crng)
|
|
{
|
|
chacha_init_consts(crng->state);
|
|
_get_random_bytes(&crng->state[4], sizeof(u32) * 12);
|
|
crng_init_try_arch(crng);
|
|
crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
|
|
}
|
|
|
|
static void __init crng_initialize_primary(void)
|
|
{
|
|
_extract_entropy(&primary_crng.state[4], sizeof(u32) * 12);
|
|
if (crng_init_try_arch_early() && trust_cpu && crng_init < 2) {
|
|
invalidate_batched_entropy();
|
|
numa_crng_init();
|
|
crng_init = 2;
|
|
pr_notice("crng init done (trusting CPU's manufacturer)\n");
|
|
}
|
|
primary_crng.init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
|
|
}
|
|
|
|
static void crng_finalize_init(void)
|
|
{
|
|
if (!system_wq) {
|
|
/* We can't call numa_crng_init until we have workqueues,
|
|
* so mark this for processing later. */
|
|
crng_need_final_init = true;
|
|
return;
|
|
}
|
|
|
|
invalidate_batched_entropy();
|
|
numa_crng_init();
|
|
crng_init = 2;
|
|
crng_need_final_init = false;
|
|
process_random_ready_list();
|
|
wake_up_interruptible(&crng_init_wait);
|
|
kill_fasync(&fasync, SIGIO, POLL_IN);
|
|
pr_notice("crng init done\n");
|
|
if (unseeded_warning.missed) {
|
|
pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n",
|
|
unseeded_warning.missed);
|
|
unseeded_warning.missed = 0;
|
|
}
|
|
if (urandom_warning.missed) {
|
|
pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
|
|
urandom_warning.missed);
|
|
urandom_warning.missed = 0;
|
|
}
|
|
}
|
|
|
|
static void do_numa_crng_init(struct work_struct *work)
|
|
{
|
|
int i;
|
|
struct crng_state *crng;
|
|
struct crng_state **pool;
|
|
|
|
pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL | __GFP_NOFAIL);
|
|
for_each_online_node(i) {
|
|
crng = kmalloc_node(sizeof(struct crng_state),
|
|
GFP_KERNEL | __GFP_NOFAIL, i);
|
|
spin_lock_init(&crng->lock);
|
|
crng_initialize_secondary(crng);
|
|
pool[i] = crng;
|
|
}
|
|
/* pairs with READ_ONCE() in select_crng() */
|
|
if (cmpxchg_release(&crng_node_pool, NULL, pool) != NULL) {
|
|
for_each_node(i)
|
|
kfree(pool[i]);
|
|
kfree(pool);
|
|
}
|
|
}
|
|
|
|
static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
|
|
|
|
static void numa_crng_init(void)
|
|
{
|
|
if (IS_ENABLED(CONFIG_NUMA))
|
|
schedule_work(&numa_crng_init_work);
|
|
}
|
|
|
|
static struct crng_state *select_crng(void)
|
|
{
|
|
if (IS_ENABLED(CONFIG_NUMA)) {
|
|
struct crng_state **pool;
|
|
int nid = numa_node_id();
|
|
|
|
/* pairs with cmpxchg_release() in do_numa_crng_init() */
|
|
pool = READ_ONCE(crng_node_pool);
|
|
if (pool && pool[nid])
|
|
return pool[nid];
|
|
}
|
|
|
|
return &primary_crng;
|
|
}
|
|
|
|
/*
|
|
* crng_fast_load() can be called by code in the interrupt service
|
|
* path. So we can't afford to dilly-dally. Returns the number of
|
|
* bytes processed from cp.
|
|
*/
|
|
static size_t crng_fast_load(const u8 *cp, size_t len)
|
|
{
|
|
unsigned long flags;
|
|
u8 *p;
|
|
size_t ret = 0;
|
|
|
|
if (!spin_trylock_irqsave(&primary_crng.lock, flags))
|
|
return 0;
|
|
if (crng_init != 0) {
|
|
spin_unlock_irqrestore(&primary_crng.lock, flags);
|
|
return 0;
|
|
}
|
|
p = (u8 *)&primary_crng.state[4];
|
|
while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
|
|
p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp;
|
|
cp++; crng_init_cnt++; len--; ret++;
|
|
}
|
|
spin_unlock_irqrestore(&primary_crng.lock, flags);
|
|
if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
|
|
invalidate_batched_entropy();
|
|
crng_init = 1;
|
|
pr_notice("fast init done\n");
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* crng_slow_load() is called by add_device_randomness, which has two
|
|
* attributes. (1) We can't trust the buffer passed to it is
|
|
* guaranteed to be unpredictable (so it might not have any entropy at
|
|
* all), and (2) it doesn't have the performance constraints of
|
|
* crng_fast_load().
|
|
*
|
|
* So we do something more comprehensive which is guaranteed to touch
|
|
* all of the primary_crng's state, and which uses a LFSR with a
|
|
* period of 255 as part of the mixing algorithm. Finally, we do
|
|
* *not* advance crng_init_cnt since buffer we may get may be something
|
|
* like a fixed DMI table (for example), which might very well be
|
|
* unique to the machine, but is otherwise unvarying.
|
|
*/
|
|
static int crng_slow_load(const u8 *cp, size_t len)
|
|
{
|
|
unsigned long flags;
|
|
static u8 lfsr = 1;
|
|
u8 tmp;
|
|
unsigned int i, max = CHACHA_KEY_SIZE;
|
|
const u8 *src_buf = cp;
|
|
u8 *dest_buf = (u8 *)&primary_crng.state[4];
|
|
|
|
if (!spin_trylock_irqsave(&primary_crng.lock, flags))
|
|
return 0;
|
|
if (crng_init != 0) {
|
|
spin_unlock_irqrestore(&primary_crng.lock, flags);
|
|
return 0;
|
|
}
|
|
if (len > max)
|
|
max = len;
|
|
|
|
for (i = 0; i < max; i++) {
|
|
tmp = lfsr;
|
|
lfsr >>= 1;
|
|
if (tmp & 1)
|
|
lfsr ^= 0xE1;
|
|
tmp = dest_buf[i % CHACHA_KEY_SIZE];
|
|
dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
|
|
lfsr += (tmp << 3) | (tmp >> 5);
|
|
}
|
|
spin_unlock_irqrestore(&primary_crng.lock, flags);
|
|
return 1;
|
|
}
|
|
|
|
static void crng_reseed(struct crng_state *crng, bool use_input_pool)
|
|
{
|
|
unsigned long flags;
|
|
int i, num;
|
|
union {
|
|
u8 block[CHACHA_BLOCK_SIZE];
|
|
u32 key[8];
|
|
} buf;
|
|
|
|
if (use_input_pool) {
|
|
num = extract_entropy(&buf, 32, 16);
|
|
if (num == 0)
|
|
return;
|
|
} else {
|
|
_extract_crng(&primary_crng, buf.block);
|
|
_crng_backtrack_protect(&primary_crng, buf.block,
|
|
CHACHA_KEY_SIZE);
|
|
}
|
|
spin_lock_irqsave(&crng->lock, flags);
|
|
for (i = 0; i < 8; i++) {
|
|
unsigned long rv;
|
|
if (!arch_get_random_seed_long(&rv) &&
|
|
!arch_get_random_long(&rv))
|
|
rv = random_get_entropy();
|
|
crng->state[i + 4] ^= buf.key[i] ^ rv;
|
|
}
|
|
memzero_explicit(&buf, sizeof(buf));
|
|
WRITE_ONCE(crng->init_time, jiffies);
|
|
spin_unlock_irqrestore(&crng->lock, flags);
|
|
if (crng == &primary_crng && crng_init < 2)
|
|
crng_finalize_init();
|
|
}
|
|
|
|
static void _extract_crng(struct crng_state *crng, u8 out[CHACHA_BLOCK_SIZE])
|
|
{
|
|
unsigned long flags, init_time;
|
|
|
|
if (crng_ready()) {
|
|
init_time = READ_ONCE(crng->init_time);
|
|
if (time_after(READ_ONCE(crng_global_init_time), init_time) ||
|
|
time_after(jiffies, init_time + CRNG_RESEED_INTERVAL))
|
|
crng_reseed(crng, crng == &primary_crng);
|
|
}
|
|
spin_lock_irqsave(&crng->lock, flags);
|
|
chacha20_block(&crng->state[0], out);
|
|
if (crng->state[12] == 0)
|
|
crng->state[13]++;
|
|
spin_unlock_irqrestore(&crng->lock, flags);
|
|
}
|
|
|
|
static void extract_crng(u8 out[CHACHA_BLOCK_SIZE])
|
|
{
|
|
_extract_crng(select_crng(), out);
|
|
}
|
|
|
|
/*
|
|
* Use the leftover bytes from the CRNG block output (if there is
|
|
* enough) to mutate the CRNG key to provide backtracking protection.
|
|
*/
|
|
static void _crng_backtrack_protect(struct crng_state *crng,
|
|
u8 tmp[CHACHA_BLOCK_SIZE], int used)
|
|
{
|
|
unsigned long flags;
|
|
u32 *s, *d;
|
|
int i;
|
|
|
|
used = round_up(used, sizeof(u32));
|
|
if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) {
|
|
extract_crng(tmp);
|
|
used = 0;
|
|
}
|
|
spin_lock_irqsave(&crng->lock, flags);
|
|
s = (u32 *)&tmp[used];
|
|
d = &crng->state[4];
|
|
for (i = 0; i < 8; i++)
|
|
*d++ ^= *s++;
|
|
spin_unlock_irqrestore(&crng->lock, flags);
|
|
}
|
|
|
|
static void crng_backtrack_protect(u8 tmp[CHACHA_BLOCK_SIZE], int used)
|
|
{
|
|
_crng_backtrack_protect(select_crng(), tmp, used);
|
|
}
|
|
|
|
static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
|
|
{
|
|
ssize_t ret = 0, i = CHACHA_BLOCK_SIZE;
|
|
u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
|
|
int large_request = (nbytes > 256);
|
|
|
|
while (nbytes) {
|
|
if (large_request && need_resched()) {
|
|
if (signal_pending(current)) {
|
|
if (ret == 0)
|
|
ret = -ERESTARTSYS;
|
|
break;
|
|
}
|
|
schedule();
|
|
}
|
|
|
|
extract_crng(tmp);
|
|
i = min_t(int, nbytes, CHACHA_BLOCK_SIZE);
|
|
if (copy_to_user(buf, tmp, i)) {
|
|
ret = -EFAULT;
|
|
break;
|
|
}
|
|
|
|
nbytes -= i;
|
|
buf += i;
|
|
ret += i;
|
|
}
|
|
crng_backtrack_protect(tmp, i);
|
|
|
|
/* Wipe data just written to memory */
|
|
memzero_explicit(tmp, sizeof(tmp));
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Entropy input management
|
|
*
|
|
*********************************************************************/
|
|
|
|
/* There is one of these per entropy source */
|
|
struct timer_rand_state {
|
|
cycles_t last_time;
|
|
long last_delta, last_delta2;
|
|
};
|
|
|
|
#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
|
|
|
|
/*
|
|
* Add device- or boot-specific data to the input pool to help
|
|
* initialize it.
|
|
*
|
|
* None of this adds any entropy; it is meant to avoid the problem of
|
|
* the entropy pool having similar initial state across largely
|
|
* identical devices.
|
|
*/
|
|
void add_device_randomness(const void *buf, unsigned int size)
|
|
{
|
|
unsigned long time = random_get_entropy() ^ jiffies;
|
|
unsigned long flags;
|
|
|
|
if (!crng_ready() && size)
|
|
crng_slow_load(buf, size);
|
|
|
|
trace_add_device_randomness(size, _RET_IP_);
|
|
spin_lock_irqsave(&input_pool.lock, flags);
|
|
_mix_pool_bytes(buf, size);
|
|
_mix_pool_bytes(&time, sizeof(time));
|
|
spin_unlock_irqrestore(&input_pool.lock, flags);
|
|
}
|
|
EXPORT_SYMBOL(add_device_randomness);
|
|
|
|
static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
|
|
|
|
/*
|
|
* This function adds entropy to the entropy "pool" by using timing
|
|
* delays. It uses the timer_rand_state structure to make an estimate
|
|
* of how many bits of entropy this call has added to the pool.
|
|
*
|
|
* The number "num" is also added to the pool - it should somehow describe
|
|
* the type of event which just happened. This is currently 0-255 for
|
|
* keyboard scan codes, and 256 upwards for interrupts.
|
|
*
|
|
*/
|
|
static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
|
|
{
|
|
struct {
|
|
long jiffies;
|
|
unsigned int cycles;
|
|
unsigned int num;
|
|
} sample;
|
|
long delta, delta2, delta3;
|
|
|
|
sample.jiffies = jiffies;
|
|
sample.cycles = random_get_entropy();
|
|
sample.num = num;
|
|
mix_pool_bytes(&sample, sizeof(sample));
|
|
|
|
/*
|
|
* Calculate number of bits of randomness we probably added.
|
|
* We take into account the first, second and third-order deltas
|
|
* in order to make our estimate.
|
|
*/
|
|
delta = sample.jiffies - READ_ONCE(state->last_time);
|
|
WRITE_ONCE(state->last_time, sample.jiffies);
|
|
|
|
delta2 = delta - READ_ONCE(state->last_delta);
|
|
WRITE_ONCE(state->last_delta, delta);
|
|
|
|
delta3 = delta2 - READ_ONCE(state->last_delta2);
|
|
WRITE_ONCE(state->last_delta2, delta2);
|
|
|
|
if (delta < 0)
|
|
delta = -delta;
|
|
if (delta2 < 0)
|
|
delta2 = -delta2;
|
|
if (delta3 < 0)
|
|
delta3 = -delta3;
|
|
if (delta > delta2)
|
|
delta = delta2;
|
|
if (delta > delta3)
|
|
delta = delta3;
|
|
|
|
/*
|
|
* delta is now minimum absolute delta.
|
|
* Round down by 1 bit on general principles,
|
|
* and limit entropy estimate to 12 bits.
|
|
*/
|
|
credit_entropy_bits(min_t(int, fls(delta >> 1), 11));
|
|
}
|
|
|
|
void add_input_randomness(unsigned int type, unsigned int code,
|
|
unsigned int value)
|
|
{
|
|
static unsigned char last_value;
|
|
|
|
/* ignore autorepeat and the like */
|
|
if (value == last_value)
|
|
return;
|
|
|
|
last_value = value;
|
|
add_timer_randomness(&input_timer_state,
|
|
(type << 4) ^ code ^ (code >> 4) ^ value);
|
|
trace_add_input_randomness(POOL_ENTROPY_BITS());
|
|
}
|
|
EXPORT_SYMBOL_GPL(add_input_randomness);
|
|
|
|
static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
|
|
|
|
#ifdef ADD_INTERRUPT_BENCH
|
|
static unsigned long avg_cycles, avg_deviation;
|
|
|
|
#define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
|
|
#define FIXED_1_2 (1 << (AVG_SHIFT - 1))
|
|
|
|
static void add_interrupt_bench(cycles_t start)
|
|
{
|
|
long delta = random_get_entropy() - start;
|
|
|
|
/* Use a weighted moving average */
|
|
delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
|
|
avg_cycles += delta;
|
|
/* And average deviation */
|
|
delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
|
|
avg_deviation += delta;
|
|
}
|
|
#else
|
|
#define add_interrupt_bench(x)
|
|
#endif
|
|
|
|
static u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
|
|
{
|
|
u32 *ptr = (u32 *)regs;
|
|
unsigned int idx;
|
|
|
|
if (regs == NULL)
|
|
return 0;
|
|
idx = READ_ONCE(f->reg_idx);
|
|
if (idx >= sizeof(struct pt_regs) / sizeof(u32))
|
|
idx = 0;
|
|
ptr += idx++;
|
|
WRITE_ONCE(f->reg_idx, idx);
|
|
return *ptr;
|
|
}
|
|
|
|
void add_interrupt_randomness(int irq)
|
|
{
|
|
struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
|
|
struct pt_regs *regs = get_irq_regs();
|
|
unsigned long now = jiffies;
|
|
cycles_t cycles = random_get_entropy();
|
|
u32 c_high, j_high;
|
|
u64 ip;
|
|
|
|
if (cycles == 0)
|
|
cycles = get_reg(fast_pool, regs);
|
|
c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
|
|
j_high = (sizeof(now) > 4) ? now >> 32 : 0;
|
|
fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
|
|
fast_pool->pool[1] ^= now ^ c_high;
|
|
ip = regs ? instruction_pointer(regs) : _RET_IP_;
|
|
fast_pool->pool[2] ^= ip;
|
|
fast_pool->pool[3] ^=
|
|
(sizeof(ip) > 4) ? ip >> 32 : get_reg(fast_pool, regs);
|
|
|
|
fast_mix(fast_pool);
|
|
add_interrupt_bench(cycles);
|
|
|
|
if (unlikely(crng_init == 0)) {
|
|
if ((fast_pool->count >= 64) &&
|
|
crng_fast_load((u8 *)fast_pool->pool, sizeof(fast_pool->pool)) > 0) {
|
|
fast_pool->count = 0;
|
|
fast_pool->last = now;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if ((fast_pool->count < 64) && !time_after(now, fast_pool->last + HZ))
|
|
return;
|
|
|
|
if (!spin_trylock(&input_pool.lock))
|
|
return;
|
|
|
|
fast_pool->last = now;
|
|
__mix_pool_bytes(&fast_pool->pool, sizeof(fast_pool->pool));
|
|
spin_unlock(&input_pool.lock);
|
|
|
|
fast_pool->count = 0;
|
|
|
|
/* award one bit for the contents of the fast pool */
|
|
credit_entropy_bits(1);
|
|
}
|
|
EXPORT_SYMBOL_GPL(add_interrupt_randomness);
|
|
|
|
#ifdef CONFIG_BLOCK
|
|
void add_disk_randomness(struct gendisk *disk)
|
|
{
|
|
if (!disk || !disk->random)
|
|
return;
|
|
/* first major is 1, so we get >= 0x200 here */
|
|
add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
|
|
trace_add_disk_randomness(disk_devt(disk), POOL_ENTROPY_BITS());
|
|
}
|
|
EXPORT_SYMBOL_GPL(add_disk_randomness);
|
|
#endif
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Entropy extraction routines
|
|
*
|
|
*********************************************************************/
|
|
|
|
/*
|
|
* This function decides how many bytes to actually take from the
|
|
* given pool, and also debits the entropy count accordingly.
|
|
*/
|
|
static size_t account(size_t nbytes, int min)
|
|
{
|
|
int entropy_count, orig;
|
|
size_t ibytes, nfrac;
|
|
|
|
BUG_ON(input_pool.entropy_count > POOL_FRACBITS);
|
|
|
|
/* Can we pull enough? */
|
|
retry:
|
|
entropy_count = orig = READ_ONCE(input_pool.entropy_count);
|
|
if (WARN_ON(entropy_count < 0)) {
|
|
pr_warn("negative entropy count: count %d\n", entropy_count);
|
|
entropy_count = 0;
|
|
}
|
|
|
|
/* never pull more than available */
|
|
ibytes = min_t(size_t, nbytes, entropy_count >> (POOL_ENTROPY_SHIFT + 3));
|
|
if (ibytes < min)
|
|
ibytes = 0;
|
|
nfrac = ibytes << (POOL_ENTROPY_SHIFT + 3);
|
|
if ((size_t)entropy_count > nfrac)
|
|
entropy_count -= nfrac;
|
|
else
|
|
entropy_count = 0;
|
|
|
|
if (cmpxchg(&input_pool.entropy_count, orig, entropy_count) != orig)
|
|
goto retry;
|
|
|
|
trace_debit_entropy(8 * ibytes);
|
|
if (ibytes && POOL_ENTROPY_BITS() < random_write_wakeup_bits) {
|
|
wake_up_interruptible(&random_write_wait);
|
|
kill_fasync(&fasync, SIGIO, POLL_OUT);
|
|
}
|
|
|
|
return ibytes;
|
|
}
|
|
|
|
/*
|
|
* This function does the actual extraction for extract_entropy.
|
|
*
|
|
* Note: we assume that .poolwords is a multiple of 16 words.
|
|
*/
|
|
static void extract_buf(u8 *out)
|
|
{
|
|
struct blake2s_state state __aligned(__alignof__(unsigned long));
|
|
u8 hash[BLAKE2S_HASH_SIZE];
|
|
unsigned long *salt;
|
|
unsigned long flags;
|
|
|
|
blake2s_init(&state, sizeof(hash));
|
|
|
|
/*
|
|
* If we have an architectural hardware random number
|
|
* generator, use it for BLAKE2's salt & personal fields.
|
|
*/
|
|
for (salt = (unsigned long *)&state.h[4];
|
|
salt < (unsigned long *)&state.h[8]; ++salt) {
|
|
unsigned long v;
|
|
if (!arch_get_random_long(&v))
|
|
break;
|
|
*salt ^= v;
|
|
}
|
|
|
|
/* Generate a hash across the pool */
|
|
spin_lock_irqsave(&input_pool.lock, flags);
|
|
blake2s_update(&state, (const u8 *)input_pool_data, POOL_BYTES);
|
|
blake2s_final(&state, hash); /* final zeros out state */
|
|
|
|
/*
|
|
* We mix the hash back into the pool to prevent backtracking
|
|
* attacks (where the attacker knows the state of the pool
|
|
* plus the current outputs, and attempts to find previous
|
|
* outputs), unless the hash function can be inverted. By
|
|
* mixing at least a hash worth of hash data back, we make
|
|
* brute-forcing the feedback as hard as brute-forcing the
|
|
* hash.
|
|
*/
|
|
__mix_pool_bytes(hash, sizeof(hash));
|
|
spin_unlock_irqrestore(&input_pool.lock, flags);
|
|
|
|
/* Note that EXTRACT_SIZE is half of hash size here, because above
|
|
* we've dumped the full length back into mixer. By reducing the
|
|
* amount that we emit, we retain a level of forward secrecy.
|
|
*/
|
|
memcpy(out, hash, EXTRACT_SIZE);
|
|
memzero_explicit(hash, sizeof(hash));
|
|
}
|
|
|
|
static ssize_t _extract_entropy(void *buf, size_t nbytes)
|
|
{
|
|
ssize_t ret = 0, i;
|
|
u8 tmp[EXTRACT_SIZE];
|
|
|
|
while (nbytes) {
|
|
extract_buf(tmp);
|
|
i = min_t(int, nbytes, EXTRACT_SIZE);
|
|
memcpy(buf, tmp, i);
|
|
nbytes -= i;
|
|
buf += i;
|
|
ret += i;
|
|
}
|
|
|
|
/* Wipe data just returned from memory */
|
|
memzero_explicit(tmp, sizeof(tmp));
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This function extracts randomness from the "entropy pool", and
|
|
* returns it in a buffer.
|
|
*
|
|
* The min parameter specifies the minimum amount we can pull before
|
|
* failing to avoid races that defeat catastrophic reseeding.
|
|
*/
|
|
static ssize_t extract_entropy(void *buf, size_t nbytes, int min)
|
|
{
|
|
trace_extract_entropy(nbytes, POOL_ENTROPY_BITS(), _RET_IP_);
|
|
nbytes = account(nbytes, min);
|
|
return _extract_entropy(buf, nbytes);
|
|
}
|
|
|
|
#define warn_unseeded_randomness(previous) \
|
|
_warn_unseeded_randomness(__func__, (void *)_RET_IP_, (previous))
|
|
|
|
static void _warn_unseeded_randomness(const char *func_name, void *caller, void **previous)
|
|
{
|
|
#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
|
|
const bool print_once = false;
|
|
#else
|
|
static bool print_once __read_mostly;
|
|
#endif
|
|
|
|
if (print_once || crng_ready() ||
|
|
(previous && (caller == READ_ONCE(*previous))))
|
|
return;
|
|
WRITE_ONCE(*previous, caller);
|
|
#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
|
|
print_once = true;
|
|
#endif
|
|
if (__ratelimit(&unseeded_warning))
|
|
printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n",
|
|
func_name, caller, crng_init);
|
|
}
|
|
|
|
/*
|
|
* This function is the exported kernel interface. It returns some
|
|
* number of good random numbers, suitable for key generation, seeding
|
|
* TCP sequence numbers, etc. It does not rely on the hardware random
|
|
* number generator. For random bytes direct from the hardware RNG
|
|
* (when available), use get_random_bytes_arch(). In order to ensure
|
|
* that the randomness provided by this function is okay, the function
|
|
* wait_for_random_bytes() should be called and return 0 at least once
|
|
* at any point prior.
|
|
*/
|
|
static void _get_random_bytes(void *buf, int nbytes)
|
|
{
|
|
u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
|
|
|
|
trace_get_random_bytes(nbytes, _RET_IP_);
|
|
|
|
while (nbytes >= CHACHA_BLOCK_SIZE) {
|
|
extract_crng(buf);
|
|
buf += CHACHA_BLOCK_SIZE;
|
|
nbytes -= CHACHA_BLOCK_SIZE;
|
|
}
|
|
|
|
if (nbytes > 0) {
|
|
extract_crng(tmp);
|
|
memcpy(buf, tmp, nbytes);
|
|
crng_backtrack_protect(tmp, nbytes);
|
|
} else
|
|
crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE);
|
|
memzero_explicit(tmp, sizeof(tmp));
|
|
}
|
|
|
|
void get_random_bytes(void *buf, int nbytes)
|
|
{
|
|
static void *previous;
|
|
|
|
warn_unseeded_randomness(&previous);
|
|
_get_random_bytes(buf, nbytes);
|
|
}
|
|
EXPORT_SYMBOL(get_random_bytes);
|
|
|
|
/*
|
|
* Each time the timer fires, we expect that we got an unpredictable
|
|
* jump in the cycle counter. Even if the timer is running on another
|
|
* CPU, the timer activity will be touching the stack of the CPU that is
|
|
* generating entropy..
|
|
*
|
|
* Note that we don't re-arm the timer in the timer itself - we are
|
|
* happy to be scheduled away, since that just makes the load more
|
|
* complex, but we do not want the timer to keep ticking unless the
|
|
* entropy loop is running.
|
|
*
|
|
* So the re-arming always happens in the entropy loop itself.
|
|
*/
|
|
static void entropy_timer(struct timer_list *t)
|
|
{
|
|
credit_entropy_bits(1);
|
|
}
|
|
|
|
/*
|
|
* If we have an actual cycle counter, see if we can
|
|
* generate enough entropy with timing noise
|
|
*/
|
|
static void try_to_generate_entropy(void)
|
|
{
|
|
struct {
|
|
unsigned long now;
|
|
struct timer_list timer;
|
|
} stack;
|
|
|
|
stack.now = random_get_entropy();
|
|
|
|
/* Slow counter - or none. Don't even bother */
|
|
if (stack.now == random_get_entropy())
|
|
return;
|
|
|
|
timer_setup_on_stack(&stack.timer, entropy_timer, 0);
|
|
while (!crng_ready()) {
|
|
if (!timer_pending(&stack.timer))
|
|
mod_timer(&stack.timer, jiffies + 1);
|
|
mix_pool_bytes(&stack.now, sizeof(stack.now));
|
|
schedule();
|
|
stack.now = random_get_entropy();
|
|
}
|
|
|
|
del_timer_sync(&stack.timer);
|
|
destroy_timer_on_stack(&stack.timer);
|
|
mix_pool_bytes(&stack.now, sizeof(stack.now));
|
|
}
|
|
|
|
/*
|
|
* Wait for the urandom pool to be seeded and thus guaranteed to supply
|
|
* cryptographically secure random numbers. This applies to: the /dev/urandom
|
|
* device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
|
|
* family of functions. Using any of these functions without first calling
|
|
* this function forfeits the guarantee of security.
|
|
*
|
|
* Returns: 0 if the urandom pool has been seeded.
|
|
* -ERESTARTSYS if the function was interrupted by a signal.
|
|
*/
|
|
int wait_for_random_bytes(void)
|
|
{
|
|
if (likely(crng_ready()))
|
|
return 0;
|
|
|
|
do {
|
|
int ret;
|
|
ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
|
|
if (ret)
|
|
return ret > 0 ? 0 : ret;
|
|
|
|
try_to_generate_entropy();
|
|
} while (!crng_ready());
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(wait_for_random_bytes);
|
|
|
|
/*
|
|
* Returns whether or not the urandom pool has been seeded and thus guaranteed
|
|
* to supply cryptographically secure random numbers. This applies to: the
|
|
* /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
|
|
* ,u64,int,long} family of functions.
|
|
*
|
|
* Returns: true if the urandom pool has been seeded.
|
|
* false if the urandom pool has not been seeded.
|
|
*/
|
|
bool rng_is_initialized(void)
|
|
{
|
|
return crng_ready();
|
|
}
|
|
EXPORT_SYMBOL(rng_is_initialized);
|
|
|
|
/*
|
|
* Add a callback function that will be invoked when the nonblocking
|
|
* pool is initialised.
|
|
*
|
|
* returns: 0 if callback is successfully added
|
|
* -EALREADY if pool is already initialised (callback not called)
|
|
* -ENOENT if module for callback is not alive
|
|
*/
|
|
int add_random_ready_callback(struct random_ready_callback *rdy)
|
|
{
|
|
struct module *owner;
|
|
unsigned long flags;
|
|
int err = -EALREADY;
|
|
|
|
if (crng_ready())
|
|
return err;
|
|
|
|
owner = rdy->owner;
|
|
if (!try_module_get(owner))
|
|
return -ENOENT;
|
|
|
|
spin_lock_irqsave(&random_ready_list_lock, flags);
|
|
if (crng_ready())
|
|
goto out;
|
|
|
|
owner = NULL;
|
|
|
|
list_add(&rdy->list, &random_ready_list);
|
|
err = 0;
|
|
|
|
out:
|
|
spin_unlock_irqrestore(&random_ready_list_lock, flags);
|
|
|
|
module_put(owner);
|
|
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL(add_random_ready_callback);
|
|
|
|
/*
|
|
* Delete a previously registered readiness callback function.
|
|
*/
|
|
void del_random_ready_callback(struct random_ready_callback *rdy)
|
|
{
|
|
unsigned long flags;
|
|
struct module *owner = NULL;
|
|
|
|
spin_lock_irqsave(&random_ready_list_lock, flags);
|
|
if (!list_empty(&rdy->list)) {
|
|
list_del_init(&rdy->list);
|
|
owner = rdy->owner;
|
|
}
|
|
spin_unlock_irqrestore(&random_ready_list_lock, flags);
|
|
|
|
module_put(owner);
|
|
}
|
|
EXPORT_SYMBOL(del_random_ready_callback);
|
|
|
|
/*
|
|
* This function will use the architecture-specific hardware random
|
|
* number generator if it is available. The arch-specific hw RNG will
|
|
* almost certainly be faster than what we can do in software, but it
|
|
* is impossible to verify that it is implemented securely (as
|
|
* opposed, to, say, the AES encryption of a sequence number using a
|
|
* key known by the NSA). So it's useful if we need the speed, but
|
|
* only if we're willing to trust the hardware manufacturer not to
|
|
* have put in a back door.
|
|
*
|
|
* Return number of bytes filled in.
|
|
*/
|
|
int __must_check get_random_bytes_arch(void *buf, int nbytes)
|
|
{
|
|
int left = nbytes;
|
|
u8 *p = buf;
|
|
|
|
trace_get_random_bytes_arch(left, _RET_IP_);
|
|
while (left) {
|
|
unsigned long v;
|
|
int chunk = min_t(int, left, sizeof(unsigned long));
|
|
|
|
if (!arch_get_random_long(&v))
|
|
break;
|
|
|
|
memcpy(p, &v, chunk);
|
|
p += chunk;
|
|
left -= chunk;
|
|
}
|
|
|
|
return nbytes - left;
|
|
}
|
|
EXPORT_SYMBOL(get_random_bytes_arch);
|
|
|
|
/*
|
|
* init_std_data - initialize pool with system data
|
|
*
|
|
* This function clears the pool's entropy count and mixes some system
|
|
* data into the pool to prepare it for use. The pool is not cleared
|
|
* as that can only decrease the entropy in the pool.
|
|
*/
|
|
static void __init init_std_data(void)
|
|
{
|
|
int i;
|
|
ktime_t now = ktime_get_real();
|
|
unsigned long rv;
|
|
|
|
mix_pool_bytes(&now, sizeof(now));
|
|
for (i = POOL_BYTES; i > 0; i -= sizeof(rv)) {
|
|
if (!arch_get_random_seed_long(&rv) &&
|
|
!arch_get_random_long(&rv))
|
|
rv = random_get_entropy();
|
|
mix_pool_bytes(&rv, sizeof(rv));
|
|
}
|
|
mix_pool_bytes(utsname(), sizeof(*(utsname())));
|
|
}
|
|
|
|
/*
|
|
* Note that setup_arch() may call add_device_randomness()
|
|
* long before we get here. This allows seeding of the pools
|
|
* with some platform dependent data very early in the boot
|
|
* process. But it limits our options here. We must use
|
|
* statically allocated structures that already have all
|
|
* initializations complete at compile time. We should also
|
|
* take care not to overwrite the precious per platform data
|
|
* we were given.
|
|
*/
|
|
int __init rand_initialize(void)
|
|
{
|
|
init_std_data();
|
|
if (crng_need_final_init)
|
|
crng_finalize_init();
|
|
crng_initialize_primary();
|
|
crng_global_init_time = jiffies;
|
|
if (ratelimit_disable) {
|
|
urandom_warning.interval = 0;
|
|
unseeded_warning.interval = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_BLOCK
|
|
void rand_initialize_disk(struct gendisk *disk)
|
|
{
|
|
struct timer_rand_state *state;
|
|
|
|
/*
|
|
* If kzalloc returns null, we just won't use that entropy
|
|
* source.
|
|
*/
|
|
state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
|
|
if (state) {
|
|
state->last_time = INITIAL_JIFFIES;
|
|
disk->random = state;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static ssize_t urandom_read_nowarn(struct file *file, char __user *buf,
|
|
size_t nbytes, loff_t *ppos)
|
|
{
|
|
int ret;
|
|
|
|
nbytes = min_t(size_t, nbytes, INT_MAX >> (POOL_ENTROPY_SHIFT + 3));
|
|
ret = extract_crng_user(buf, nbytes);
|
|
trace_urandom_read(8 * nbytes, 0, POOL_ENTROPY_BITS());
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t urandom_read(struct file *file, char __user *buf, size_t nbytes,
|
|
loff_t *ppos)
|
|
{
|
|
static int maxwarn = 10;
|
|
|
|
if (!crng_ready() && maxwarn > 0) {
|
|
maxwarn--;
|
|
if (__ratelimit(&urandom_warning))
|
|
pr_notice("%s: uninitialized urandom read (%zd bytes read)\n",
|
|
current->comm, nbytes);
|
|
}
|
|
|
|
return urandom_read_nowarn(file, buf, nbytes, ppos);
|
|
}
|
|
|
|
static ssize_t random_read(struct file *file, char __user *buf, size_t nbytes,
|
|
loff_t *ppos)
|
|
{
|
|
int ret;
|
|
|
|
ret = wait_for_random_bytes();
|
|
if (ret != 0)
|
|
return ret;
|
|
return urandom_read_nowarn(file, buf, nbytes, ppos);
|
|
}
|
|
|
|
static __poll_t random_poll(struct file *file, poll_table *wait)
|
|
{
|
|
__poll_t mask;
|
|
|
|
poll_wait(file, &crng_init_wait, wait);
|
|
poll_wait(file, &random_write_wait, wait);
|
|
mask = 0;
|
|
if (crng_ready())
|
|
mask |= EPOLLIN | EPOLLRDNORM;
|
|
if (POOL_ENTROPY_BITS() < random_write_wakeup_bits)
|
|
mask |= EPOLLOUT | EPOLLWRNORM;
|
|
return mask;
|
|
}
|
|
|
|
static int write_pool(const char __user *buffer, size_t count)
|
|
{
|
|
size_t bytes;
|
|
u32 t, buf[16];
|
|
const char __user *p = buffer;
|
|
|
|
while (count > 0) {
|
|
int b, i = 0;
|
|
|
|
bytes = min(count, sizeof(buf));
|
|
if (copy_from_user(&buf, p, bytes))
|
|
return -EFAULT;
|
|
|
|
for (b = bytes; b > 0; b -= sizeof(u32), i++) {
|
|
if (!arch_get_random_int(&t))
|
|
break;
|
|
buf[i] ^= t;
|
|
}
|
|
|
|
count -= bytes;
|
|
p += bytes;
|
|
|
|
mix_pool_bytes(buf, bytes);
|
|
cond_resched();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t random_write(struct file *file, const char __user *buffer,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
size_t ret;
|
|
|
|
ret = write_pool(buffer, count);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return (ssize_t)count;
|
|
}
|
|
|
|
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
|
|
{
|
|
int size, ent_count;
|
|
int __user *p = (int __user *)arg;
|
|
int retval;
|
|
|
|
switch (cmd) {
|
|
case RNDGETENTCNT:
|
|
/* inherently racy, no point locking */
|
|
ent_count = POOL_ENTROPY_BITS();
|
|
if (put_user(ent_count, p))
|
|
return -EFAULT;
|
|
return 0;
|
|
case RNDADDTOENTCNT:
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
if (get_user(ent_count, p))
|
|
return -EFAULT;
|
|
return credit_entropy_bits_safe(ent_count);
|
|
case RNDADDENTROPY:
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
if (get_user(ent_count, p++))
|
|
return -EFAULT;
|
|
if (ent_count < 0)
|
|
return -EINVAL;
|
|
if (get_user(size, p++))
|
|
return -EFAULT;
|
|
retval = write_pool((const char __user *)p, size);
|
|
if (retval < 0)
|
|
return retval;
|
|
return credit_entropy_bits_safe(ent_count);
|
|
case RNDZAPENTCNT:
|
|
case RNDCLEARPOOL:
|
|
/*
|
|
* Clear the entropy pool counters. We no longer clear
|
|
* the entropy pool, as that's silly.
|
|
*/
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
if (xchg(&input_pool.entropy_count, 0) && random_write_wakeup_bits) {
|
|
wake_up_interruptible(&random_write_wait);
|
|
kill_fasync(&fasync, SIGIO, POLL_OUT);
|
|
}
|
|
return 0;
|
|
case RNDRESEEDCRNG:
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
if (crng_init < 2)
|
|
return -ENODATA;
|
|
crng_reseed(&primary_crng, true);
|
|
WRITE_ONCE(crng_global_init_time, jiffies - 1);
|
|
return 0;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static int random_fasync(int fd, struct file *filp, int on)
|
|
{
|
|
return fasync_helper(fd, filp, on, &fasync);
|
|
}
|
|
|
|
const struct file_operations random_fops = {
|
|
.read = random_read,
|
|
.write = random_write,
|
|
.poll = random_poll,
|
|
.unlocked_ioctl = random_ioctl,
|
|
.compat_ioctl = compat_ptr_ioctl,
|
|
.fasync = random_fasync,
|
|
.llseek = noop_llseek,
|
|
};
|
|
|
|
const struct file_operations urandom_fops = {
|
|
.read = urandom_read,
|
|
.write = random_write,
|
|
.unlocked_ioctl = random_ioctl,
|
|
.compat_ioctl = compat_ptr_ioctl,
|
|
.fasync = random_fasync,
|
|
.llseek = noop_llseek,
|
|
};
|
|
|
|
SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, unsigned int,
|
|
flags)
|
|
{
|
|
int ret;
|
|
|
|
if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Requesting insecure and blocking randomness at the same time makes
|
|
* no sense.
|
|
*/
|
|
if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
|
|
return -EINVAL;
|
|
|
|
if (count > INT_MAX)
|
|
count = INT_MAX;
|
|
|
|
if (!(flags & GRND_INSECURE) && !crng_ready()) {
|
|
if (flags & GRND_NONBLOCK)
|
|
return -EAGAIN;
|
|
ret = wait_for_random_bytes();
|
|
if (unlikely(ret))
|
|
return ret;
|
|
}
|
|
return urandom_read_nowarn(NULL, buf, count, NULL);
|
|
}
|
|
|
|
/********************************************************************
|
|
*
|
|
* Sysctl interface
|
|
*
|
|
********************************************************************/
|
|
|
|
#ifdef CONFIG_SYSCTL
|
|
|
|
#include <linux/sysctl.h>
|
|
|
|
static int min_write_thresh;
|
|
static int max_write_thresh = POOL_BITS;
|
|
static int random_min_urandom_seed = 60;
|
|
static char sysctl_bootid[16];
|
|
|
|
/*
|
|
* This function is used to return both the bootid UUID, and random
|
|
* UUID. The difference is in whether table->data is NULL; if it is,
|
|
* then a new UUID is generated and returned to the user.
|
|
*
|
|
* If the user accesses this via the proc interface, the UUID will be
|
|
* returned as an ASCII string in the standard UUID format; if via the
|
|
* sysctl system call, as 16 bytes of binary data.
|
|
*/
|
|
static int proc_do_uuid(struct ctl_table *table, int write, void *buffer,
|
|
size_t *lenp, loff_t *ppos)
|
|
{
|
|
struct ctl_table fake_table;
|
|
unsigned char buf[64], tmp_uuid[16], *uuid;
|
|
|
|
uuid = table->data;
|
|
if (!uuid) {
|
|
uuid = tmp_uuid;
|
|
generate_random_uuid(uuid);
|
|
} else {
|
|
static DEFINE_SPINLOCK(bootid_spinlock);
|
|
|
|
spin_lock(&bootid_spinlock);
|
|
if (!uuid[8])
|
|
generate_random_uuid(uuid);
|
|
spin_unlock(&bootid_spinlock);
|
|
}
|
|
|
|
sprintf(buf, "%pU", uuid);
|
|
|
|
fake_table.data = buf;
|
|
fake_table.maxlen = sizeof(buf);
|
|
|
|
return proc_dostring(&fake_table, write, buffer, lenp, ppos);
|
|
}
|
|
|
|
/*
|
|
* Return entropy available scaled to integral bits
|
|
*/
|
|
static int proc_do_entropy(struct ctl_table *table, int write, void *buffer,
|
|
size_t *lenp, loff_t *ppos)
|
|
{
|
|
struct ctl_table fake_table;
|
|
int entropy_count;
|
|
|
|
entropy_count = *(int *)table->data >> POOL_ENTROPY_SHIFT;
|
|
|
|
fake_table.data = &entropy_count;
|
|
fake_table.maxlen = sizeof(entropy_count);
|
|
|
|
return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
|
|
}
|
|
|
|
static int sysctl_poolsize = POOL_BITS;
|
|
static struct ctl_table random_table[] = {
|
|
{
|
|
.procname = "poolsize",
|
|
.data = &sysctl_poolsize,
|
|
.maxlen = sizeof(int),
|
|
.mode = 0444,
|
|
.proc_handler = proc_dointvec,
|
|
},
|
|
{
|
|
.procname = "entropy_avail",
|
|
.maxlen = sizeof(int),
|
|
.mode = 0444,
|
|
.proc_handler = proc_do_entropy,
|
|
.data = &input_pool.entropy_count,
|
|
},
|
|
{
|
|
.procname = "write_wakeup_threshold",
|
|
.data = &random_write_wakeup_bits,
|
|
.maxlen = sizeof(int),
|
|
.mode = 0644,
|
|
.proc_handler = proc_dointvec_minmax,
|
|
.extra1 = &min_write_thresh,
|
|
.extra2 = &max_write_thresh,
|
|
},
|
|
{
|
|
.procname = "urandom_min_reseed_secs",
|
|
.data = &random_min_urandom_seed,
|
|
.maxlen = sizeof(int),
|
|
.mode = 0644,
|
|
.proc_handler = proc_dointvec,
|
|
},
|
|
{
|
|
.procname = "boot_id",
|
|
.data = &sysctl_bootid,
|
|
.maxlen = 16,
|
|
.mode = 0444,
|
|
.proc_handler = proc_do_uuid,
|
|
},
|
|
{
|
|
.procname = "uuid",
|
|
.maxlen = 16,
|
|
.mode = 0444,
|
|
.proc_handler = proc_do_uuid,
|
|
},
|
|
#ifdef ADD_INTERRUPT_BENCH
|
|
{
|
|
.procname = "add_interrupt_avg_cycles",
|
|
.data = &avg_cycles,
|
|
.maxlen = sizeof(avg_cycles),
|
|
.mode = 0444,
|
|
.proc_handler = proc_doulongvec_minmax,
|
|
},
|
|
{
|
|
.procname = "add_interrupt_avg_deviation",
|
|
.data = &avg_deviation,
|
|
.maxlen = sizeof(avg_deviation),
|
|
.mode = 0444,
|
|
.proc_handler = proc_doulongvec_minmax,
|
|
},
|
|
#endif
|
|
{ }
|
|
};
|
|
|
|
/*
|
|
* rand_initialize() is called before sysctl_init(),
|
|
* so we cannot call register_sysctl_init() in rand_initialize()
|
|
*/
|
|
static int __init random_sysctls_init(void)
|
|
{
|
|
register_sysctl_init("kernel/random", random_table);
|
|
return 0;
|
|
}
|
|
device_initcall(random_sysctls_init);
|
|
#endif /* CONFIG_SYSCTL */
|
|
|
|
struct batched_entropy {
|
|
union {
|
|
u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)];
|
|
u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)];
|
|
};
|
|
unsigned int position;
|
|
spinlock_t batch_lock;
|
|
};
|
|
|
|
/*
|
|
* Get a random word for internal kernel use only. The quality of the random
|
|
* number is good as /dev/urandom, but there is no backtrack protection, with
|
|
* the goal of being quite fast and not depleting entropy. In order to ensure
|
|
* that the randomness provided by this function is okay, the function
|
|
* wait_for_random_bytes() should be called and return 0 at least once at any
|
|
* point prior.
|
|
*/
|
|
static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
|
|
.batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock),
|
|
};
|
|
|
|
u64 get_random_u64(void)
|
|
{
|
|
u64 ret;
|
|
unsigned long flags;
|
|
struct batched_entropy *batch;
|
|
static void *previous;
|
|
|
|
warn_unseeded_randomness(&previous);
|
|
|
|
batch = raw_cpu_ptr(&batched_entropy_u64);
|
|
spin_lock_irqsave(&batch->batch_lock, flags);
|
|
if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
|
|
extract_crng((u8 *)batch->entropy_u64);
|
|
batch->position = 0;
|
|
}
|
|
ret = batch->entropy_u64[batch->position++];
|
|
spin_unlock_irqrestore(&batch->batch_lock, flags);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(get_random_u64);
|
|
|
|
static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
|
|
.batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock),
|
|
};
|
|
u32 get_random_u32(void)
|
|
{
|
|
u32 ret;
|
|
unsigned long flags;
|
|
struct batched_entropy *batch;
|
|
static void *previous;
|
|
|
|
warn_unseeded_randomness(&previous);
|
|
|
|
batch = raw_cpu_ptr(&batched_entropy_u32);
|
|
spin_lock_irqsave(&batch->batch_lock, flags);
|
|
if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
|
|
extract_crng((u8 *)batch->entropy_u32);
|
|
batch->position = 0;
|
|
}
|
|
ret = batch->entropy_u32[batch->position++];
|
|
spin_unlock_irqrestore(&batch->batch_lock, flags);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(get_random_u32);
|
|
|
|
/* It's important to invalidate all potential batched entropy that might
|
|
* be stored before the crng is initialized, which we can do lazily by
|
|
* simply resetting the counter to zero so that it's re-extracted on the
|
|
* next usage. */
|
|
static void invalidate_batched_entropy(void)
|
|
{
|
|
int cpu;
|
|
unsigned long flags;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
struct batched_entropy *batched_entropy;
|
|
|
|
batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu);
|
|
spin_lock_irqsave(&batched_entropy->batch_lock, flags);
|
|
batched_entropy->position = 0;
|
|
spin_unlock(&batched_entropy->batch_lock);
|
|
|
|
batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu);
|
|
spin_lock(&batched_entropy->batch_lock);
|
|
batched_entropy->position = 0;
|
|
spin_unlock_irqrestore(&batched_entropy->batch_lock, flags);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* randomize_page - Generate a random, page aligned address
|
|
* @start: The smallest acceptable address the caller will take.
|
|
* @range: The size of the area, starting at @start, within which the
|
|
* random address must fall.
|
|
*
|
|
* If @start + @range would overflow, @range is capped.
|
|
*
|
|
* NOTE: Historical use of randomize_range, which this replaces, presumed that
|
|
* @start was already page aligned. We now align it regardless.
|
|
*
|
|
* Return: A page aligned address within [start, start + range). On error,
|
|
* @start is returned.
|
|
*/
|
|
unsigned long randomize_page(unsigned long start, unsigned long range)
|
|
{
|
|
if (!PAGE_ALIGNED(start)) {
|
|
range -= PAGE_ALIGN(start) - start;
|
|
start = PAGE_ALIGN(start);
|
|
}
|
|
|
|
if (start > ULONG_MAX - range)
|
|
range = ULONG_MAX - start;
|
|
|
|
range >>= PAGE_SHIFT;
|
|
|
|
if (range == 0)
|
|
return start;
|
|
|
|
return start + (get_random_long() % range << PAGE_SHIFT);
|
|
}
|
|
|
|
/* Interface for in-kernel drivers of true hardware RNGs.
|
|
* Those devices may produce endless random bits and will be throttled
|
|
* when our pool is full.
|
|
*/
|
|
void add_hwgenerator_randomness(const char *buffer, size_t count,
|
|
size_t entropy)
|
|
{
|
|
if (unlikely(crng_init == 0)) {
|
|
size_t ret = crng_fast_load(buffer, count);
|
|
mix_pool_bytes(buffer, ret);
|
|
count -= ret;
|
|
buffer += ret;
|
|
if (!count || crng_init == 0)
|
|
return;
|
|
}
|
|
|
|
/* Throttle writing if we're above the trickle threshold.
|
|
* We'll be woken up again once below random_write_wakeup_thresh,
|
|
* when the calling thread is about to terminate, or once
|
|
* CRNG_RESEED_INTERVAL has lapsed.
|
|
*/
|
|
wait_event_interruptible_timeout(random_write_wait,
|
|
!system_wq || kthread_should_stop() ||
|
|
POOL_ENTROPY_BITS() <= random_write_wakeup_bits,
|
|
CRNG_RESEED_INTERVAL);
|
|
mix_pool_bytes(buffer, count);
|
|
credit_entropy_bits(entropy);
|
|
}
|
|
EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
|
|
|
|
/* Handle random seed passed by bootloader.
|
|
* If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
|
|
* it would be regarded as device data.
|
|
* The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
|
|
*/
|
|
void add_bootloader_randomness(const void *buf, unsigned int size)
|
|
{
|
|
if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER))
|
|
add_hwgenerator_randomness(buf, size, size * 8);
|
|
else
|
|
add_device_randomness(buf, size);
|
|
}
|
|
EXPORT_SYMBOL_GPL(add_bootloader_randomness);
|