linux/drivers/media/rc/rc-main.c
David Härdeman 99b0f3c96c [media] rc-core: remove generic scancode filter
The generic scancode filtering has questionable value and makes it
impossible to determine from userspace if there is an actual
scancode hw filter present or not.

So revert the generic parts.

Based on a patch from James Hogan <james.hogan@imgtec.com>, but this
version also makes sure that only the valid sysfs files are created
in the first place.

Signed-off-by: David Härdeman <david@hardeman.nu>
Acked-by: James Hogan <james.hogan@imgtec.com>
Signed-off-by: Mauro Carvalho Chehab <m.chehab@samsung.com>
2014-04-06 11:30:29 -03:00

1488 lines
39 KiB
C

/* rc-main.c - Remote Controller core module
*
* Copyright (C) 2009-2010 by Mauro Carvalho Chehab
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <media/rc-core.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <linux/input.h>
#include <linux/leds.h>
#include <linux/slab.h>
#include <linux/device.h>
#include <linux/module.h>
#include "rc-core-priv.h"
/* Bitmap to store allocated device numbers from 0 to IRRCV_NUM_DEVICES - 1 */
#define IRRCV_NUM_DEVICES 256
static DECLARE_BITMAP(ir_core_dev_number, IRRCV_NUM_DEVICES);
/* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
#define IR_TAB_MIN_SIZE 256
#define IR_TAB_MAX_SIZE 8192
/* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
#define IR_KEYPRESS_TIMEOUT 250
/* Used to keep track of known keymaps */
static LIST_HEAD(rc_map_list);
static DEFINE_SPINLOCK(rc_map_lock);
static struct led_trigger *led_feedback;
static struct rc_map_list *seek_rc_map(const char *name)
{
struct rc_map_list *map = NULL;
spin_lock(&rc_map_lock);
list_for_each_entry(map, &rc_map_list, list) {
if (!strcmp(name, map->map.name)) {
spin_unlock(&rc_map_lock);
return map;
}
}
spin_unlock(&rc_map_lock);
return NULL;
}
struct rc_map *rc_map_get(const char *name)
{
struct rc_map_list *map;
map = seek_rc_map(name);
#ifdef MODULE
if (!map) {
int rc = request_module("%s", name);
if (rc < 0) {
printk(KERN_ERR "Couldn't load IR keymap %s\n", name);
return NULL;
}
msleep(20); /* Give some time for IR to register */
map = seek_rc_map(name);
}
#endif
if (!map) {
printk(KERN_ERR "IR keymap %s not found\n", name);
return NULL;
}
printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
return &map->map;
}
EXPORT_SYMBOL_GPL(rc_map_get);
int rc_map_register(struct rc_map_list *map)
{
spin_lock(&rc_map_lock);
list_add_tail(&map->list, &rc_map_list);
spin_unlock(&rc_map_lock);
return 0;
}
EXPORT_SYMBOL_GPL(rc_map_register);
void rc_map_unregister(struct rc_map_list *map)
{
spin_lock(&rc_map_lock);
list_del(&map->list);
spin_unlock(&rc_map_lock);
}
EXPORT_SYMBOL_GPL(rc_map_unregister);
static struct rc_map_table empty[] = {
{ 0x2a, KEY_COFFEE },
};
static struct rc_map_list empty_map = {
.map = {
.scan = empty,
.size = ARRAY_SIZE(empty),
.rc_type = RC_TYPE_UNKNOWN, /* Legacy IR type */
.name = RC_MAP_EMPTY,
}
};
/**
* ir_create_table() - initializes a scancode table
* @rc_map: the rc_map to initialize
* @name: name to assign to the table
* @rc_type: ir type to assign to the new table
* @size: initial size of the table
* @return: zero on success or a negative error code
*
* This routine will initialize the rc_map and will allocate
* memory to hold at least the specified number of elements.
*/
static int ir_create_table(struct rc_map *rc_map,
const char *name, u64 rc_type, size_t size)
{
rc_map->name = name;
rc_map->rc_type = rc_type;
rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
if (!rc_map->scan)
return -ENOMEM;
IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
rc_map->size, rc_map->alloc);
return 0;
}
/**
* ir_free_table() - frees memory allocated by a scancode table
* @rc_map: the table whose mappings need to be freed
*
* This routine will free memory alloctaed for key mappings used by given
* scancode table.
*/
static void ir_free_table(struct rc_map *rc_map)
{
rc_map->size = 0;
kfree(rc_map->scan);
rc_map->scan = NULL;
}
/**
* ir_resize_table() - resizes a scancode table if necessary
* @rc_map: the rc_map to resize
* @gfp_flags: gfp flags to use when allocating memory
* @return: zero on success or a negative error code
*
* This routine will shrink the rc_map if it has lots of
* unused entries and grow it if it is full.
*/
static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
{
unsigned int oldalloc = rc_map->alloc;
unsigned int newalloc = oldalloc;
struct rc_map_table *oldscan = rc_map->scan;
struct rc_map_table *newscan;
if (rc_map->size == rc_map->len) {
/* All entries in use -> grow keytable */
if (rc_map->alloc >= IR_TAB_MAX_SIZE)
return -ENOMEM;
newalloc *= 2;
IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
}
if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
/* Less than 1/3 of entries in use -> shrink keytable */
newalloc /= 2;
IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
}
if (newalloc == oldalloc)
return 0;
newscan = kmalloc(newalloc, gfp_flags);
if (!newscan) {
IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
return -ENOMEM;
}
memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
rc_map->scan = newscan;
rc_map->alloc = newalloc;
rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
kfree(oldscan);
return 0;
}
/**
* ir_update_mapping() - set a keycode in the scancode->keycode table
* @dev: the struct rc_dev device descriptor
* @rc_map: scancode table to be adjusted
* @index: index of the mapping that needs to be updated
* @keycode: the desired keycode
* @return: previous keycode assigned to the mapping
*
* This routine is used to update scancode->keycode mapping at given
* position.
*/
static unsigned int ir_update_mapping(struct rc_dev *dev,
struct rc_map *rc_map,
unsigned int index,
unsigned int new_keycode)
{
int old_keycode = rc_map->scan[index].keycode;
int i;
/* Did the user wish to remove the mapping? */
if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
index, rc_map->scan[index].scancode);
rc_map->len--;
memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
(rc_map->len - index) * sizeof(struct rc_map_table));
} else {
IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
index,
old_keycode == KEY_RESERVED ? "New" : "Replacing",
rc_map->scan[index].scancode, new_keycode);
rc_map->scan[index].keycode = new_keycode;
__set_bit(new_keycode, dev->input_dev->keybit);
}
if (old_keycode != KEY_RESERVED) {
/* A previous mapping was updated... */
__clear_bit(old_keycode, dev->input_dev->keybit);
/* ... but another scancode might use the same keycode */
for (i = 0; i < rc_map->len; i++) {
if (rc_map->scan[i].keycode == old_keycode) {
__set_bit(old_keycode, dev->input_dev->keybit);
break;
}
}
/* Possibly shrink the keytable, failure is not a problem */
ir_resize_table(rc_map, GFP_ATOMIC);
}
return old_keycode;
}
/**
* ir_establish_scancode() - set a keycode in the scancode->keycode table
* @dev: the struct rc_dev device descriptor
* @rc_map: scancode table to be searched
* @scancode: the desired scancode
* @resize: controls whether we allowed to resize the table to
* accommodate not yet present scancodes
* @return: index of the mapping containing scancode in question
* or -1U in case of failure.
*
* This routine is used to locate given scancode in rc_map.
* If scancode is not yet present the routine will allocate a new slot
* for it.
*/
static unsigned int ir_establish_scancode(struct rc_dev *dev,
struct rc_map *rc_map,
unsigned int scancode,
bool resize)
{
unsigned int i;
/*
* Unfortunately, some hardware-based IR decoders don't provide
* all bits for the complete IR code. In general, they provide only
* the command part of the IR code. Yet, as it is possible to replace
* the provided IR with another one, it is needed to allow loading
* IR tables from other remotes. So, we support specifying a mask to
* indicate the valid bits of the scancodes.
*/
if (dev->scanmask)
scancode &= dev->scanmask;
/* First check if we already have a mapping for this ir command */
for (i = 0; i < rc_map->len; i++) {
if (rc_map->scan[i].scancode == scancode)
return i;
/* Keytable is sorted from lowest to highest scancode */
if (rc_map->scan[i].scancode >= scancode)
break;
}
/* No previous mapping found, we might need to grow the table */
if (rc_map->size == rc_map->len) {
if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
return -1U;
}
/* i is the proper index to insert our new keycode */
if (i < rc_map->len)
memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
(rc_map->len - i) * sizeof(struct rc_map_table));
rc_map->scan[i].scancode = scancode;
rc_map->scan[i].keycode = KEY_RESERVED;
rc_map->len++;
return i;
}
/**
* ir_setkeycode() - set a keycode in the scancode->keycode table
* @idev: the struct input_dev device descriptor
* @scancode: the desired scancode
* @keycode: result
* @return: -EINVAL if the keycode could not be inserted, otherwise zero.
*
* This routine is used to handle evdev EVIOCSKEY ioctl.
*/
static int ir_setkeycode(struct input_dev *idev,
const struct input_keymap_entry *ke,
unsigned int *old_keycode)
{
struct rc_dev *rdev = input_get_drvdata(idev);
struct rc_map *rc_map = &rdev->rc_map;
unsigned int index;
unsigned int scancode;
int retval = 0;
unsigned long flags;
spin_lock_irqsave(&rc_map->lock, flags);
if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
index = ke->index;
if (index >= rc_map->len) {
retval = -EINVAL;
goto out;
}
} else {
retval = input_scancode_to_scalar(ke, &scancode);
if (retval)
goto out;
index = ir_establish_scancode(rdev, rc_map, scancode, true);
if (index >= rc_map->len) {
retval = -ENOMEM;
goto out;
}
}
*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
out:
spin_unlock_irqrestore(&rc_map->lock, flags);
return retval;
}
/**
* ir_setkeytable() - sets several entries in the scancode->keycode table
* @dev: the struct rc_dev device descriptor
* @to: the struct rc_map to copy entries to
* @from: the struct rc_map to copy entries from
* @return: -ENOMEM if all keycodes could not be inserted, otherwise zero.
*
* This routine is used to handle table initialization.
*/
static int ir_setkeytable(struct rc_dev *dev,
const struct rc_map *from)
{
struct rc_map *rc_map = &dev->rc_map;
unsigned int i, index;
int rc;
rc = ir_create_table(rc_map, from->name,
from->rc_type, from->size);
if (rc)
return rc;
IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
rc_map->size, rc_map->alloc);
for (i = 0; i < from->size; i++) {
index = ir_establish_scancode(dev, rc_map,
from->scan[i].scancode, false);
if (index >= rc_map->len) {
rc = -ENOMEM;
break;
}
ir_update_mapping(dev, rc_map, index,
from->scan[i].keycode);
}
if (rc)
ir_free_table(rc_map);
return rc;
}
/**
* ir_lookup_by_scancode() - locate mapping by scancode
* @rc_map: the struct rc_map to search
* @scancode: scancode to look for in the table
* @return: index in the table, -1U if not found
*
* This routine performs binary search in RC keykeymap table for
* given scancode.
*/
static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
unsigned int scancode)
{
int start = 0;
int end = rc_map->len - 1;
int mid;
while (start <= end) {
mid = (start + end) / 2;
if (rc_map->scan[mid].scancode < scancode)
start = mid + 1;
else if (rc_map->scan[mid].scancode > scancode)
end = mid - 1;
else
return mid;
}
return -1U;
}
/**
* ir_getkeycode() - get a keycode from the scancode->keycode table
* @idev: the struct input_dev device descriptor
* @scancode: the desired scancode
* @keycode: used to return the keycode, if found, or KEY_RESERVED
* @return: always returns zero.
*
* This routine is used to handle evdev EVIOCGKEY ioctl.
*/
static int ir_getkeycode(struct input_dev *idev,
struct input_keymap_entry *ke)
{
struct rc_dev *rdev = input_get_drvdata(idev);
struct rc_map *rc_map = &rdev->rc_map;
struct rc_map_table *entry;
unsigned long flags;
unsigned int index;
unsigned int scancode;
int retval;
spin_lock_irqsave(&rc_map->lock, flags);
if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
index = ke->index;
} else {
retval = input_scancode_to_scalar(ke, &scancode);
if (retval)
goto out;
index = ir_lookup_by_scancode(rc_map, scancode);
}
if (index < rc_map->len) {
entry = &rc_map->scan[index];
ke->index = index;
ke->keycode = entry->keycode;
ke->len = sizeof(entry->scancode);
memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
/*
* We do not really know the valid range of scancodes
* so let's respond with KEY_RESERVED to anything we
* do not have mapping for [yet].
*/
ke->index = index;
ke->keycode = KEY_RESERVED;
} else {
retval = -EINVAL;
goto out;
}
retval = 0;
out:
spin_unlock_irqrestore(&rc_map->lock, flags);
return retval;
}
/**
* rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
* @dev: the struct rc_dev descriptor of the device
* @scancode: the scancode to look for
* @return: the corresponding keycode, or KEY_RESERVED
*
* This routine is used by drivers which need to convert a scancode to a
* keycode. Normally it should not be used since drivers should have no
* interest in keycodes.
*/
u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
{
struct rc_map *rc_map = &dev->rc_map;
unsigned int keycode;
unsigned int index;
unsigned long flags;
spin_lock_irqsave(&rc_map->lock, flags);
index = ir_lookup_by_scancode(rc_map, scancode);
keycode = index < rc_map->len ?
rc_map->scan[index].keycode : KEY_RESERVED;
spin_unlock_irqrestore(&rc_map->lock, flags);
if (keycode != KEY_RESERVED)
IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
dev->input_name, scancode, keycode);
return keycode;
}
EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
/**
* ir_do_keyup() - internal function to signal the release of a keypress
* @dev: the struct rc_dev descriptor of the device
* @sync: whether or not to call input_sync
*
* This function is used internally to release a keypress, it must be
* called with keylock held.
*/
static void ir_do_keyup(struct rc_dev *dev, bool sync)
{
if (!dev->keypressed)
return;
IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
input_report_key(dev->input_dev, dev->last_keycode, 0);
led_trigger_event(led_feedback, LED_OFF);
if (sync)
input_sync(dev->input_dev);
dev->keypressed = false;
}
/**
* rc_keyup() - signals the release of a keypress
* @dev: the struct rc_dev descriptor of the device
*
* This routine is used to signal that a key has been released on the
* remote control.
*/
void rc_keyup(struct rc_dev *dev)
{
unsigned long flags;
spin_lock_irqsave(&dev->keylock, flags);
ir_do_keyup(dev, true);
spin_unlock_irqrestore(&dev->keylock, flags);
}
EXPORT_SYMBOL_GPL(rc_keyup);
/**
* ir_timer_keyup() - generates a keyup event after a timeout
* @cookie: a pointer to the struct rc_dev for the device
*
* This routine will generate a keyup event some time after a keydown event
* is generated when no further activity has been detected.
*/
static void ir_timer_keyup(unsigned long cookie)
{
struct rc_dev *dev = (struct rc_dev *)cookie;
unsigned long flags;
/*
* ir->keyup_jiffies is used to prevent a race condition if a
* hardware interrupt occurs at this point and the keyup timer
* event is moved further into the future as a result.
*
* The timer will then be reactivated and this function called
* again in the future. We need to exit gracefully in that case
* to allow the input subsystem to do its auto-repeat magic or
* a keyup event might follow immediately after the keydown.
*/
spin_lock_irqsave(&dev->keylock, flags);
if (time_is_before_eq_jiffies(dev->keyup_jiffies))
ir_do_keyup(dev, true);
spin_unlock_irqrestore(&dev->keylock, flags);
}
/**
* rc_repeat() - signals that a key is still pressed
* @dev: the struct rc_dev descriptor of the device
*
* This routine is used by IR decoders when a repeat message which does
* not include the necessary bits to reproduce the scancode has been
* received.
*/
void rc_repeat(struct rc_dev *dev)
{
unsigned long flags;
spin_lock_irqsave(&dev->keylock, flags);
input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
input_sync(dev->input_dev);
if (!dev->keypressed)
goto out;
dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
out:
spin_unlock_irqrestore(&dev->keylock, flags);
}
EXPORT_SYMBOL_GPL(rc_repeat);
/**
* ir_do_keydown() - internal function to process a keypress
* @dev: the struct rc_dev descriptor of the device
* @scancode: the scancode of the keypress
* @keycode: the keycode of the keypress
* @toggle: the toggle value of the keypress
*
* This function is used internally to register a keypress, it must be
* called with keylock held.
*/
static void ir_do_keydown(struct rc_dev *dev, int scancode,
u32 keycode, u8 toggle)
{
bool new_event = (!dev->keypressed ||
dev->last_scancode != scancode ||
dev->last_toggle != toggle);
if (new_event && dev->keypressed)
ir_do_keyup(dev, false);
input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
if (new_event && keycode != KEY_RESERVED) {
/* Register a keypress */
dev->keypressed = true;
dev->last_scancode = scancode;
dev->last_toggle = toggle;
dev->last_keycode = keycode;
IR_dprintk(1, "%s: key down event, "
"key 0x%04x, scancode 0x%04x\n",
dev->input_name, keycode, scancode);
input_report_key(dev->input_dev, keycode, 1);
led_trigger_event(led_feedback, LED_FULL);
}
input_sync(dev->input_dev);
}
/**
* rc_keydown() - generates input event for a key press
* @dev: the struct rc_dev descriptor of the device
* @scancode: the scancode that we're seeking
* @toggle: the toggle value (protocol dependent, if the protocol doesn't
* support toggle values, this should be set to zero)
*
* This routine is used to signal that a key has been pressed on the
* remote control.
*/
void rc_keydown(struct rc_dev *dev, int scancode, u8 toggle)
{
unsigned long flags;
u32 keycode = rc_g_keycode_from_table(dev, scancode);
spin_lock_irqsave(&dev->keylock, flags);
ir_do_keydown(dev, scancode, keycode, toggle);
if (dev->keypressed) {
dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
}
spin_unlock_irqrestore(&dev->keylock, flags);
}
EXPORT_SYMBOL_GPL(rc_keydown);
/**
* rc_keydown_notimeout() - generates input event for a key press without
* an automatic keyup event at a later time
* @dev: the struct rc_dev descriptor of the device
* @scancode: the scancode that we're seeking
* @toggle: the toggle value (protocol dependent, if the protocol doesn't
* support toggle values, this should be set to zero)
*
* This routine is used to signal that a key has been pressed on the
* remote control. The driver must manually call rc_keyup() at a later stage.
*/
void rc_keydown_notimeout(struct rc_dev *dev, int scancode, u8 toggle)
{
unsigned long flags;
u32 keycode = rc_g_keycode_from_table(dev, scancode);
spin_lock_irqsave(&dev->keylock, flags);
ir_do_keydown(dev, scancode, keycode, toggle);
spin_unlock_irqrestore(&dev->keylock, flags);
}
EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
int rc_open(struct rc_dev *rdev)
{
int rval = 0;
if (!rdev)
return -EINVAL;
mutex_lock(&rdev->lock);
if (!rdev->users++ && rdev->open != NULL)
rval = rdev->open(rdev);
if (rval)
rdev->users--;
mutex_unlock(&rdev->lock);
return rval;
}
EXPORT_SYMBOL_GPL(rc_open);
static int ir_open(struct input_dev *idev)
{
struct rc_dev *rdev = input_get_drvdata(idev);
return rc_open(rdev);
}
void rc_close(struct rc_dev *rdev)
{
if (rdev) {
mutex_lock(&rdev->lock);
if (!--rdev->users && rdev->close != NULL)
rdev->close(rdev);
mutex_unlock(&rdev->lock);
}
}
EXPORT_SYMBOL_GPL(rc_close);
static void ir_close(struct input_dev *idev)
{
struct rc_dev *rdev = input_get_drvdata(idev);
rc_close(rdev);
}
/* class for /sys/class/rc */
static char *rc_devnode(struct device *dev, umode_t *mode)
{
return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
}
static struct class rc_class = {
.name = "rc",
.devnode = rc_devnode,
};
/*
* These are the protocol textual descriptions that are
* used by the sysfs protocols file. Note that the order
* of the entries is relevant.
*/
static struct {
u64 type;
char *name;
} proto_names[] = {
{ RC_BIT_NONE, "none" },
{ RC_BIT_OTHER, "other" },
{ RC_BIT_UNKNOWN, "unknown" },
{ RC_BIT_RC5 |
RC_BIT_RC5X, "rc-5" },
{ RC_BIT_NEC, "nec" },
{ RC_BIT_RC6_0 |
RC_BIT_RC6_6A_20 |
RC_BIT_RC6_6A_24 |
RC_BIT_RC6_6A_32 |
RC_BIT_RC6_MCE, "rc-6" },
{ RC_BIT_JVC, "jvc" },
{ RC_BIT_SONY12 |
RC_BIT_SONY15 |
RC_BIT_SONY20, "sony" },
{ RC_BIT_RC5_SZ, "rc-5-sz" },
{ RC_BIT_SANYO, "sanyo" },
{ RC_BIT_SHARP, "sharp" },
{ RC_BIT_MCE_KBD, "mce_kbd" },
{ RC_BIT_LIRC, "lirc" },
};
/**
* struct rc_filter_attribute - Device attribute relating to a filter type.
* @attr: Device attribute.
* @type: Filter type.
* @mask: false for filter value, true for filter mask.
*/
struct rc_filter_attribute {
struct device_attribute attr;
enum rc_filter_type type;
bool mask;
};
#define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
#define RC_PROTO_ATTR(_name, _mode, _show, _store, _type) \
struct rc_filter_attribute dev_attr_##_name = { \
.attr = __ATTR(_name, _mode, _show, _store), \
.type = (_type), \
}
#define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask) \
struct rc_filter_attribute dev_attr_##_name = { \
.attr = __ATTR(_name, _mode, _show, _store), \
.type = (_type), \
.mask = (_mask), \
}
/**
* show_protocols() - shows the current/wakeup IR protocol(s)
* @device: the device descriptor
* @mattr: the device attribute struct (unused)
* @buf: a pointer to the output buffer
*
* This routine is a callback routine for input read the IR protocol type(s).
* it is trigged by reading /sys/class/rc/rc?/[wakeup_]protocols.
* It returns the protocol names of supported protocols.
* Enabled protocols are printed in brackets.
*
* dev->lock is taken to guard against races between device
* registration, store_protocols and show_protocols.
*/
static ssize_t show_protocols(struct device *device,
struct device_attribute *mattr, char *buf)
{
struct rc_dev *dev = to_rc_dev(device);
struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
u64 allowed, enabled;
char *tmp = buf;
int i;
/* Device is being removed */
if (!dev)
return -EINVAL;
mutex_lock(&dev->lock);
enabled = dev->enabled_protocols[fattr->type];
if (dev->driver_type == RC_DRIVER_SCANCODE ||
fattr->type == RC_FILTER_WAKEUP)
allowed = dev->allowed_protocols[fattr->type];
else if (dev->raw)
allowed = ir_raw_get_allowed_protocols();
else {
mutex_unlock(&dev->lock);
return -ENODEV;
}
IR_dprintk(1, "allowed - 0x%llx, enabled - 0x%llx\n",
(long long)allowed,
(long long)enabled);
for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
if (allowed & enabled & proto_names[i].type)
tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
else if (allowed & proto_names[i].type)
tmp += sprintf(tmp, "%s ", proto_names[i].name);
if (allowed & proto_names[i].type)
allowed &= ~proto_names[i].type;
}
if (tmp != buf)
tmp--;
*tmp = '\n';
mutex_unlock(&dev->lock);
return tmp + 1 - buf;
}
/**
* store_protocols() - changes the current/wakeup IR protocol(s)
* @device: the device descriptor
* @mattr: the device attribute struct (unused)
* @buf: a pointer to the input buffer
* @len: length of the input buffer
*
* This routine is for changing the IR protocol type.
* It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
* Writing "+proto" will add a protocol to the list of enabled protocols.
* Writing "-proto" will remove a protocol from the list of enabled protocols.
* Writing "proto" will enable only "proto".
* Writing "none" will disable all protocols.
* Returns -EINVAL if an invalid protocol combination or unknown protocol name
* is used, otherwise @len.
*
* dev->lock is taken to guard against races between device
* registration, store_protocols and show_protocols.
*/
static ssize_t store_protocols(struct device *device,
struct device_attribute *mattr,
const char *data,
size_t len)
{
struct rc_dev *dev = to_rc_dev(device);
struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
bool enable, disable;
const char *tmp;
u64 old_type, type;
u64 mask;
int rc, i, count = 0;
ssize_t ret;
int (*change_protocol)(struct rc_dev *dev, u64 *rc_type);
int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
struct rc_scancode_filter local_filter, *filter;
/* Device is being removed */
if (!dev)
return -EINVAL;
mutex_lock(&dev->lock);
if (dev->driver_type != RC_DRIVER_SCANCODE && !dev->raw) {
IR_dprintk(1, "Protocol switching not supported\n");
ret = -EINVAL;
goto out;
}
old_type = dev->enabled_protocols[fattr->type];
type = old_type;
while ((tmp = strsep((char **) &data, " \n")) != NULL) {
if (!*tmp)
break;
if (*tmp == '+') {
enable = true;
disable = false;
tmp++;
} else if (*tmp == '-') {
enable = false;
disable = true;
tmp++;
} else {
enable = false;
disable = false;
}
for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
if (!strcasecmp(tmp, proto_names[i].name)) {
mask = proto_names[i].type;
break;
}
}
if (i == ARRAY_SIZE(proto_names)) {
IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
ret = -EINVAL;
goto out;
}
count++;
if (enable)
type |= mask;
else if (disable)
type &= ~mask;
else
type = mask;
}
if (!count) {
IR_dprintk(1, "Protocol not specified\n");
ret = -EINVAL;
goto out;
}
change_protocol = (fattr->type == RC_FILTER_NORMAL)
? dev->change_protocol : dev->change_wakeup_protocol;
if (change_protocol) {
rc = change_protocol(dev, &type);
if (rc < 0) {
IR_dprintk(1, "Error setting protocols to 0x%llx\n",
(long long)type);
ret = -EINVAL;
goto out;
}
}
dev->enabled_protocols[fattr->type] = type;
IR_dprintk(1, "Current protocol(s): 0x%llx\n",
(long long)type);
/*
* If the protocol is changed the filter needs updating.
* Try setting the same filter with the new protocol (if any).
* Fall back to clearing the filter.
*/
filter = &dev->scancode_filters[fattr->type];
set_filter = (fattr->type == RC_FILTER_NORMAL)
? dev->s_filter : dev->s_wakeup_filter;
if (set_filter && old_type != type && filter->mask) {
local_filter = *filter;
if (!type) {
/* no protocol => clear filter */
ret = -1;
} else {
/* hardware filtering => try setting, otherwise clear */
ret = set_filter(dev, &local_filter);
}
if (ret < 0) {
/* clear the filter */
local_filter.data = 0;
local_filter.mask = 0;
set_filter(dev, &local_filter);
}
/* commit the new filter */
*filter = local_filter;
}
ret = len;
out:
mutex_unlock(&dev->lock);
return ret;
}
/**
* show_filter() - shows the current scancode filter value or mask
* @device: the device descriptor
* @attr: the device attribute struct
* @buf: a pointer to the output buffer
*
* This routine is a callback routine to read a scancode filter value or mask.
* It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
* It prints the current scancode filter value or mask of the appropriate filter
* type in hexadecimal into @buf and returns the size of the buffer.
*
* Bits of the filter value corresponding to set bits in the filter mask are
* compared against input scancodes and non-matching scancodes are discarded.
*
* dev->lock is taken to guard against races between device registration,
* store_filter and show_filter.
*/
static ssize_t show_filter(struct device *device,
struct device_attribute *attr,
char *buf)
{
struct rc_dev *dev = to_rc_dev(device);
struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
u32 val;
/* Device is being removed */
if (!dev)
return -EINVAL;
mutex_lock(&dev->lock);
if ((fattr->type == RC_FILTER_NORMAL && !dev->s_filter) ||
(fattr->type == RC_FILTER_WAKEUP && !dev->s_wakeup_filter))
val = 0;
else if (fattr->mask)
val = dev->scancode_filters[fattr->type].mask;
else
val = dev->scancode_filters[fattr->type].data;
mutex_unlock(&dev->lock);
return sprintf(buf, "%#x\n", val);
}
/**
* store_filter() - changes the scancode filter value
* @device: the device descriptor
* @attr: the device attribute struct
* @buf: a pointer to the input buffer
* @len: length of the input buffer
*
* This routine is for changing a scancode filter value or mask.
* It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
* Returns -EINVAL if an invalid filter value for the current protocol was
* specified or if scancode filtering is not supported by the driver, otherwise
* returns @len.
*
* Bits of the filter value corresponding to set bits in the filter mask are
* compared against input scancodes and non-matching scancodes are discarded.
*
* dev->lock is taken to guard against races between device registration,
* store_filter and show_filter.
*/
static ssize_t store_filter(struct device *device,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct rc_dev *dev = to_rc_dev(device);
struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
struct rc_scancode_filter local_filter, *filter;
int ret;
unsigned long val;
int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
/* Device is being removed */
if (!dev)
return -EINVAL;
ret = kstrtoul(buf, 0, &val);
if (ret < 0)
return ret;
/* Can the scancode filter be set? */
set_filter = (fattr->type == RC_FILTER_NORMAL) ? dev->s_filter :
dev->s_wakeup_filter;
if (!set_filter)
return -EINVAL;
mutex_lock(&dev->lock);
/* Tell the driver about the new filter */
filter = &dev->scancode_filters[fattr->type];
local_filter = *filter;
if (fattr->mask)
local_filter.mask = val;
else
local_filter.data = val;
if (!dev->enabled_protocols[fattr->type] && local_filter.mask) {
/* refuse to set a filter unless a protocol is enabled */
ret = -EINVAL;
goto unlock;
}
ret = set_filter(dev, &local_filter);
if (ret < 0)
goto unlock;
/* Success, commit the new filter */
*filter = local_filter;
unlock:
mutex_unlock(&dev->lock);
return (ret < 0) ? ret : count;
}
static void rc_dev_release(struct device *device)
{
}
#define ADD_HOTPLUG_VAR(fmt, val...) \
do { \
int err = add_uevent_var(env, fmt, val); \
if (err) \
return err; \
} while (0)
static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
{
struct rc_dev *dev = to_rc_dev(device);
if (!dev || !dev->input_dev)
return -ENODEV;
if (dev->rc_map.name)
ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
if (dev->driver_name)
ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
return 0;
}
/*
* Static device attribute struct with the sysfs attributes for IR's
*/
static RC_PROTO_ATTR(protocols, S_IRUGO | S_IWUSR,
show_protocols, store_protocols, RC_FILTER_NORMAL);
static RC_PROTO_ATTR(wakeup_protocols, S_IRUGO | S_IWUSR,
show_protocols, store_protocols, RC_FILTER_WAKEUP);
static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
show_filter, store_filter, RC_FILTER_NORMAL, false);
static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
show_filter, store_filter, RC_FILTER_NORMAL, true);
static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
show_filter, store_filter, RC_FILTER_WAKEUP, false);
static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
show_filter, store_filter, RC_FILTER_WAKEUP, true);
static struct attribute *rc_dev_protocol_attrs[] = {
&dev_attr_protocols.attr.attr,
NULL,
};
static struct attribute_group rc_dev_protocol_attr_grp = {
.attrs = rc_dev_protocol_attrs,
};
static struct attribute *rc_dev_wakeup_protocol_attrs[] = {
&dev_attr_wakeup_protocols.attr.attr,
NULL,
};
static struct attribute_group rc_dev_wakeup_protocol_attr_grp = {
.attrs = rc_dev_wakeup_protocol_attrs,
};
static struct attribute *rc_dev_filter_attrs[] = {
&dev_attr_filter.attr.attr,
&dev_attr_filter_mask.attr.attr,
NULL,
};
static struct attribute_group rc_dev_filter_attr_grp = {
.attrs = rc_dev_filter_attrs,
};
static struct attribute *rc_dev_wakeup_filter_attrs[] = {
&dev_attr_wakeup_filter.attr.attr,
&dev_attr_wakeup_filter_mask.attr.attr,
NULL,
};
static struct attribute_group rc_dev_wakeup_filter_attr_grp = {
.attrs = rc_dev_wakeup_filter_attrs,
};
static struct device_type rc_dev_type = {
.release = rc_dev_release,
.uevent = rc_dev_uevent,
};
struct rc_dev *rc_allocate_device(void)
{
struct rc_dev *dev;
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (!dev)
return NULL;
dev->input_dev = input_allocate_device();
if (!dev->input_dev) {
kfree(dev);
return NULL;
}
dev->input_dev->getkeycode = ir_getkeycode;
dev->input_dev->setkeycode = ir_setkeycode;
input_set_drvdata(dev->input_dev, dev);
spin_lock_init(&dev->rc_map.lock);
spin_lock_init(&dev->keylock);
mutex_init(&dev->lock);
setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev);
dev->dev.type = &rc_dev_type;
dev->dev.class = &rc_class;
device_initialize(&dev->dev);
__module_get(THIS_MODULE);
return dev;
}
EXPORT_SYMBOL_GPL(rc_allocate_device);
void rc_free_device(struct rc_dev *dev)
{
if (!dev)
return;
if (dev->input_dev)
input_free_device(dev->input_dev);
put_device(&dev->dev);
kfree(dev);
module_put(THIS_MODULE);
}
EXPORT_SYMBOL_GPL(rc_free_device);
int rc_register_device(struct rc_dev *dev)
{
static bool raw_init = false; /* raw decoders loaded? */
struct rc_map *rc_map;
const char *path;
int rc, devno, attr = 0;
if (!dev || !dev->map_name)
return -EINVAL;
rc_map = rc_map_get(dev->map_name);
if (!rc_map)
rc_map = rc_map_get(RC_MAP_EMPTY);
if (!rc_map || !rc_map->scan || rc_map->size == 0)
return -EINVAL;
set_bit(EV_KEY, dev->input_dev->evbit);
set_bit(EV_REP, dev->input_dev->evbit);
set_bit(EV_MSC, dev->input_dev->evbit);
set_bit(MSC_SCAN, dev->input_dev->mscbit);
if (dev->open)
dev->input_dev->open = ir_open;
if (dev->close)
dev->input_dev->close = ir_close;
do {
devno = find_first_zero_bit(ir_core_dev_number,
IRRCV_NUM_DEVICES);
/* No free device slots */
if (devno >= IRRCV_NUM_DEVICES)
return -ENOMEM;
} while (test_and_set_bit(devno, ir_core_dev_number));
dev->dev.groups = dev->sysfs_groups;
dev->sysfs_groups[attr++] = &rc_dev_protocol_attr_grp;
if (dev->s_filter)
dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
if (dev->s_wakeup_filter)
dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
if (dev->change_wakeup_protocol)
dev->sysfs_groups[attr++] = &rc_dev_wakeup_protocol_attr_grp;
dev->sysfs_groups[attr++] = NULL;
/*
* Take the lock here, as the device sysfs node will appear
* when device_add() is called, which may trigger an ir-keytable udev
* rule, which will in turn call show_protocols and access
* dev->enabled_protocols before it has been initialized.
*/
mutex_lock(&dev->lock);
dev->devno = devno;
dev_set_name(&dev->dev, "rc%ld", dev->devno);
dev_set_drvdata(&dev->dev, dev);
rc = device_add(&dev->dev);
if (rc)
goto out_unlock;
rc = ir_setkeytable(dev, rc_map);
if (rc)
goto out_dev;
dev->input_dev->dev.parent = &dev->dev;
memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
dev->input_dev->phys = dev->input_phys;
dev->input_dev->name = dev->input_name;
/* input_register_device can call ir_open, so unlock mutex here */
mutex_unlock(&dev->lock);
rc = input_register_device(dev->input_dev);
mutex_lock(&dev->lock);
if (rc)
goto out_table;
/*
* Default delay of 250ms is too short for some protocols, especially
* since the timeout is currently set to 250ms. Increase it to 500ms,
* to avoid wrong repetition of the keycodes. Note that this must be
* set after the call to input_register_device().
*/
dev->input_dev->rep[REP_DELAY] = 500;
/*
* As a repeat event on protocols like RC-5 and NEC take as long as
* 110/114ms, using 33ms as a repeat period is not the right thing
* to do.
*/
dev->input_dev->rep[REP_PERIOD] = 125;
path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
printk(KERN_INFO "%s: %s as %s\n",
dev_name(&dev->dev),
dev->input_name ? dev->input_name : "Unspecified device",
path ? path : "N/A");
kfree(path);
if (dev->driver_type == RC_DRIVER_IR_RAW) {
/* Load raw decoders, if they aren't already */
if (!raw_init) {
IR_dprintk(1, "Loading raw decoders\n");
ir_raw_init();
raw_init = true;
}
rc = ir_raw_event_register(dev);
if (rc < 0)
goto out_input;
}
if (dev->change_protocol) {
u64 rc_type = (1 << rc_map->rc_type);
rc = dev->change_protocol(dev, &rc_type);
if (rc < 0)
goto out_raw;
dev->enabled_protocols[RC_FILTER_NORMAL] = rc_type;
}
mutex_unlock(&dev->lock);
IR_dprintk(1, "Registered rc%ld (driver: %s, remote: %s, mode %s)\n",
dev->devno,
dev->driver_name ? dev->driver_name : "unknown",
rc_map->name ? rc_map->name : "unknown",
dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked");
return 0;
out_raw:
if (dev->driver_type == RC_DRIVER_IR_RAW)
ir_raw_event_unregister(dev);
out_input:
input_unregister_device(dev->input_dev);
dev->input_dev = NULL;
out_table:
ir_free_table(&dev->rc_map);
out_dev:
device_del(&dev->dev);
out_unlock:
mutex_unlock(&dev->lock);
clear_bit(dev->devno, ir_core_dev_number);
return rc;
}
EXPORT_SYMBOL_GPL(rc_register_device);
void rc_unregister_device(struct rc_dev *dev)
{
if (!dev)
return;
del_timer_sync(&dev->timer_keyup);
clear_bit(dev->devno, ir_core_dev_number);
if (dev->driver_type == RC_DRIVER_IR_RAW)
ir_raw_event_unregister(dev);
/* Freeing the table should also call the stop callback */
ir_free_table(&dev->rc_map);
IR_dprintk(1, "Freed keycode table\n");
input_unregister_device(dev->input_dev);
dev->input_dev = NULL;
device_del(&dev->dev);
rc_free_device(dev);
}
EXPORT_SYMBOL_GPL(rc_unregister_device);
/*
* Init/exit code for the module. Basically, creates/removes /sys/class/rc
*/
static int __init rc_core_init(void)
{
int rc = class_register(&rc_class);
if (rc) {
printk(KERN_ERR "rc_core: unable to register rc class\n");
return rc;
}
led_trigger_register_simple("rc-feedback", &led_feedback);
rc_map_register(&empty_map);
return 0;
}
static void __exit rc_core_exit(void)
{
class_unregister(&rc_class);
led_trigger_unregister_simple(led_feedback);
rc_map_unregister(&empty_map);
}
subsys_initcall(rc_core_init);
module_exit(rc_core_exit);
int rc_core_debug; /* ir_debug level (0,1,2) */
EXPORT_SYMBOL_GPL(rc_core_debug);
module_param_named(debug, rc_core_debug, int, 0644);
MODULE_AUTHOR("Mauro Carvalho Chehab");
MODULE_LICENSE("GPL");