linux/drivers/media/platform/s5p-mfc/s5p_mfc_ctrl.c
Marek Szyprowski 255d831dc9 [media] s5p-mfc: Replace mem_dev_* entries with an array
Internal MFC driver device structure contains two pointers to devices used
for DMA memory allocation: mem_dev_l and mem_dev_r. Replace them with the
mem_dev[] array and use defines for accessing particular banks. This will
help to simplify code in the next patches.

Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Javier Martinez Canillas <javier@osg.samsung.com>
Tested-by: Javier Martinez Canillas <javier@osg.samsung.com>
Acked-by: Andrzej Hajda <a.hajda@samsung.com>
Tested-by: Smitha T Murthy <smitha.t@samsung.com>
Signed-off-by: Sylwester Nawrocki <s.nawrocki@samsung.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>
2017-04-05 15:47:31 -03:00

512 lines
13 KiB
C

/*
* linux/drivers/media/platform/s5p-mfc/s5p_mfc_ctrl.c
*
* Copyright (c) 2010 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/firmware.h>
#include <linux/jiffies.h>
#include <linux/sched.h>
#include "s5p_mfc_cmd.h"
#include "s5p_mfc_common.h"
#include "s5p_mfc_debug.h"
#include "s5p_mfc_intr.h"
#include "s5p_mfc_opr.h"
#include "s5p_mfc_pm.h"
#include "s5p_mfc_ctrl.h"
/* Allocate memory for firmware */
int s5p_mfc_alloc_firmware(struct s5p_mfc_dev *dev)
{
void *bank2_virt;
dma_addr_t bank2_dma_addr;
unsigned int align_size = 1 << MFC_BASE_ALIGN_ORDER;
dev->fw_size = dev->variant->buf_size->fw;
if (dev->fw_virt_addr) {
mfc_err("Attempting to allocate firmware when it seems that it is already loaded\n");
return -ENOMEM;
}
dev->fw_virt_addr = dma_alloc_coherent(dev->mem_dev[BANK1_CTX],
dev->fw_size, &dev->bank1, GFP_KERNEL);
if (!dev->fw_virt_addr) {
mfc_err("Allocating bitprocessor buffer failed\n");
return -ENOMEM;
}
if (HAS_PORTNUM(dev) && IS_TWOPORT(dev)) {
bank2_virt = dma_alloc_coherent(dev->mem_dev[BANK2_CTX],
align_size, &bank2_dma_addr, GFP_KERNEL);
if (!bank2_virt) {
mfc_err("Allocating bank2 base failed\n");
dma_free_coherent(dev->mem_dev[BANK1_CTX], dev->fw_size,
dev->fw_virt_addr, dev->bank1);
dev->fw_virt_addr = NULL;
return -ENOMEM;
}
/* Valid buffers passed to MFC encoder with LAST_FRAME command
* should not have address of bank2 - MFC will treat it as a null frame.
* To avoid such situation we set bank2 address below the pool address.
*/
dev->bank2 = bank2_dma_addr - align_size;
dma_free_coherent(dev->mem_dev[BANK2_CTX], align_size,
bank2_virt, bank2_dma_addr);
} else {
/* In this case bank2 can point to the same address as bank1.
* Firmware will always occupy the beginning of this area so it is
* impossible having a video frame buffer with zero address. */
dev->bank2 = dev->bank1;
}
return 0;
}
/* Load firmware */
int s5p_mfc_load_firmware(struct s5p_mfc_dev *dev)
{
struct firmware *fw_blob;
int i, err = -EINVAL;
/* Firmare has to be present as a separate file or compiled
* into kernel. */
mfc_debug_enter();
for (i = MFC_FW_MAX_VERSIONS - 1; i >= 0; i--) {
if (!dev->variant->fw_name[i])
continue;
err = request_firmware((const struct firmware **)&fw_blob,
dev->variant->fw_name[i], dev->v4l2_dev.dev);
if (!err) {
dev->fw_ver = (enum s5p_mfc_fw_ver) i;
break;
}
}
if (err != 0) {
mfc_err("Firmware is not present in the /lib/firmware directory nor compiled in kernel\n");
return -EINVAL;
}
if (fw_blob->size > dev->fw_size) {
mfc_err("MFC firmware is too big to be loaded\n");
release_firmware(fw_blob);
return -ENOMEM;
}
if (!dev->fw_virt_addr) {
mfc_err("MFC firmware is not allocated\n");
release_firmware(fw_blob);
return -EINVAL;
}
memcpy(dev->fw_virt_addr, fw_blob->data, fw_blob->size);
wmb();
release_firmware(fw_blob);
mfc_debug_leave();
return 0;
}
/* Release firmware memory */
int s5p_mfc_release_firmware(struct s5p_mfc_dev *dev)
{
/* Before calling this function one has to make sure
* that MFC is no longer processing */
if (!dev->fw_virt_addr)
return -EINVAL;
dma_free_coherent(dev->mem_dev[BANK1_CTX], dev->fw_size,
dev->fw_virt_addr, dev->bank1);
dev->fw_virt_addr = NULL;
return 0;
}
static int s5p_mfc_bus_reset(struct s5p_mfc_dev *dev)
{
unsigned int status;
unsigned long timeout;
/* Reset */
mfc_write(dev, 0x1, S5P_FIMV_MFC_BUS_RESET_CTRL);
timeout = jiffies + msecs_to_jiffies(MFC_BW_TIMEOUT);
/* Check bus status */
do {
if (time_after(jiffies, timeout)) {
mfc_err("Timeout while resetting MFC.\n");
return -EIO;
}
status = mfc_read(dev, S5P_FIMV_MFC_BUS_RESET_CTRL);
} while ((status & 0x2) == 0);
return 0;
}
/* Reset the device */
int s5p_mfc_reset(struct s5p_mfc_dev *dev)
{
unsigned int mc_status;
unsigned long timeout;
int i;
mfc_debug_enter();
if (IS_MFCV6_PLUS(dev)) {
/* Zero Initialization of MFC registers */
mfc_write(dev, 0, S5P_FIMV_RISC2HOST_CMD_V6);
mfc_write(dev, 0, S5P_FIMV_HOST2RISC_CMD_V6);
mfc_write(dev, 0, S5P_FIMV_FW_VERSION_V6);
for (i = 0; i < S5P_FIMV_REG_CLEAR_COUNT_V6; i++)
mfc_write(dev, 0, S5P_FIMV_REG_CLEAR_BEGIN_V6 + (i*4));
/* check bus reset control before reset */
if (dev->risc_on)
if (s5p_mfc_bus_reset(dev))
return -EIO;
/* Reset
* set RISC_ON to 0 during power_on & wake_up.
* V6 needs RISC_ON set to 0 during reset also.
*/
if ((!dev->risc_on) || (!IS_MFCV7_PLUS(dev)))
mfc_write(dev, 0, S5P_FIMV_RISC_ON_V6);
mfc_write(dev, 0x1FFF, S5P_FIMV_MFC_RESET_V6);
mfc_write(dev, 0, S5P_FIMV_MFC_RESET_V6);
} else {
/* Stop procedure */
/* reset RISC */
mfc_write(dev, 0x3f6, S5P_FIMV_SW_RESET);
/* All reset except for MC */
mfc_write(dev, 0x3e2, S5P_FIMV_SW_RESET);
mdelay(10);
timeout = jiffies + msecs_to_jiffies(MFC_BW_TIMEOUT);
/* Check MC status */
do {
if (time_after(jiffies, timeout)) {
mfc_err("Timeout while resetting MFC\n");
return -EIO;
}
mc_status = mfc_read(dev, S5P_FIMV_MC_STATUS);
} while (mc_status & 0x3);
mfc_write(dev, 0x0, S5P_FIMV_SW_RESET);
mfc_write(dev, 0x3fe, S5P_FIMV_SW_RESET);
}
mfc_debug_leave();
return 0;
}
static inline void s5p_mfc_init_memctrl(struct s5p_mfc_dev *dev)
{
if (IS_MFCV6_PLUS(dev)) {
mfc_write(dev, dev->bank1, S5P_FIMV_RISC_BASE_ADDRESS_V6);
mfc_debug(2, "Base Address : %pad\n", &dev->bank1);
} else {
mfc_write(dev, dev->bank1, S5P_FIMV_MC_DRAMBASE_ADR_A);
mfc_write(dev, dev->bank2, S5P_FIMV_MC_DRAMBASE_ADR_B);
mfc_debug(2, "Bank1: %pad, Bank2: %pad\n",
&dev->bank1, &dev->bank2);
}
}
static inline void s5p_mfc_clear_cmds(struct s5p_mfc_dev *dev)
{
if (IS_MFCV6_PLUS(dev)) {
/* Zero initialization should be done before RESET.
* Nothing to do here. */
} else {
mfc_write(dev, 0xffffffff, S5P_FIMV_SI_CH0_INST_ID);
mfc_write(dev, 0xffffffff, S5P_FIMV_SI_CH1_INST_ID);
mfc_write(dev, 0, S5P_FIMV_RISC2HOST_CMD);
mfc_write(dev, 0, S5P_FIMV_HOST2RISC_CMD);
}
}
/* Initialize hardware */
int s5p_mfc_init_hw(struct s5p_mfc_dev *dev)
{
unsigned int ver;
int ret;
mfc_debug_enter();
if (!dev->fw_virt_addr) {
mfc_err("Firmware memory is not allocated.\n");
return -EINVAL;
}
/* 0. MFC reset */
mfc_debug(2, "MFC reset..\n");
s5p_mfc_clock_on();
dev->risc_on = 0;
ret = s5p_mfc_reset(dev);
if (ret) {
mfc_err("Failed to reset MFC - timeout\n");
return ret;
}
mfc_debug(2, "Done MFC reset..\n");
/* 1. Set DRAM base Addr */
s5p_mfc_init_memctrl(dev);
/* 2. Initialize registers of channel I/F */
s5p_mfc_clear_cmds(dev);
/* 3. Release reset signal to the RISC */
s5p_mfc_clean_dev_int_flags(dev);
if (IS_MFCV6_PLUS(dev)) {
dev->risc_on = 1;
mfc_write(dev, 0x1, S5P_FIMV_RISC_ON_V6);
}
else
mfc_write(dev, 0x3ff, S5P_FIMV_SW_RESET);
mfc_debug(2, "Will now wait for completion of firmware transfer\n");
if (s5p_mfc_wait_for_done_dev(dev, S5P_MFC_R2H_CMD_FW_STATUS_RET)) {
mfc_err("Failed to load firmware\n");
s5p_mfc_reset(dev);
s5p_mfc_clock_off();
return -EIO;
}
s5p_mfc_clean_dev_int_flags(dev);
/* 4. Initialize firmware */
ret = s5p_mfc_hw_call(dev->mfc_cmds, sys_init_cmd, dev);
if (ret) {
mfc_err("Failed to send command to MFC - timeout\n");
s5p_mfc_reset(dev);
s5p_mfc_clock_off();
return ret;
}
mfc_debug(2, "Ok, now will wait for completion of hardware init\n");
if (s5p_mfc_wait_for_done_dev(dev, S5P_MFC_R2H_CMD_SYS_INIT_RET)) {
mfc_err("Failed to init hardware\n");
s5p_mfc_reset(dev);
s5p_mfc_clock_off();
return -EIO;
}
dev->int_cond = 0;
if (dev->int_err != 0 || dev->int_type !=
S5P_MFC_R2H_CMD_SYS_INIT_RET) {
/* Failure. */
mfc_err("Failed to init firmware - error: %d int: %d\n",
dev->int_err, dev->int_type);
s5p_mfc_reset(dev);
s5p_mfc_clock_off();
return -EIO;
}
if (IS_MFCV6_PLUS(dev))
ver = mfc_read(dev, S5P_FIMV_FW_VERSION_V6);
else
ver = mfc_read(dev, S5P_FIMV_FW_VERSION);
mfc_debug(2, "MFC F/W version : %02xyy, %02xmm, %02xdd\n",
(ver >> 16) & 0xFF, (ver >> 8) & 0xFF, ver & 0xFF);
s5p_mfc_clock_off();
mfc_debug_leave();
return 0;
}
/* Deinitialize hardware */
void s5p_mfc_deinit_hw(struct s5p_mfc_dev *dev)
{
s5p_mfc_clock_on();
s5p_mfc_reset(dev);
s5p_mfc_hw_call(dev->mfc_ops, release_dev_context_buffer, dev);
s5p_mfc_clock_off();
}
int s5p_mfc_sleep(struct s5p_mfc_dev *dev)
{
int ret;
mfc_debug_enter();
s5p_mfc_clock_on();
s5p_mfc_clean_dev_int_flags(dev);
ret = s5p_mfc_hw_call(dev->mfc_cmds, sleep_cmd, dev);
if (ret) {
mfc_err("Failed to send command to MFC - timeout\n");
return ret;
}
if (s5p_mfc_wait_for_done_dev(dev, S5P_MFC_R2H_CMD_SLEEP_RET)) {
mfc_err("Failed to sleep\n");
return -EIO;
}
s5p_mfc_clock_off();
dev->int_cond = 0;
if (dev->int_err != 0 || dev->int_type !=
S5P_MFC_R2H_CMD_SLEEP_RET) {
/* Failure. */
mfc_err("Failed to sleep - error: %d int: %d\n", dev->int_err,
dev->int_type);
return -EIO;
}
mfc_debug_leave();
return ret;
}
static int s5p_mfc_v8_wait_wakeup(struct s5p_mfc_dev *dev)
{
int ret;
/* Release reset signal to the RISC */
dev->risc_on = 1;
mfc_write(dev, 0x1, S5P_FIMV_RISC_ON_V6);
if (s5p_mfc_wait_for_done_dev(dev, S5P_MFC_R2H_CMD_FW_STATUS_RET)) {
mfc_err("Failed to reset MFCV8\n");
return -EIO;
}
mfc_debug(2, "Write command to wakeup MFCV8\n");
ret = s5p_mfc_hw_call(dev->mfc_cmds, wakeup_cmd, dev);
if (ret) {
mfc_err("Failed to send command to MFCV8 - timeout\n");
return ret;
}
if (s5p_mfc_wait_for_done_dev(dev, S5P_MFC_R2H_CMD_WAKEUP_RET)) {
mfc_err("Failed to wakeup MFC\n");
return -EIO;
}
return ret;
}
static int s5p_mfc_wait_wakeup(struct s5p_mfc_dev *dev)
{
int ret;
/* Send MFC wakeup command */
ret = s5p_mfc_hw_call(dev->mfc_cmds, wakeup_cmd, dev);
if (ret) {
mfc_err("Failed to send command to MFC - timeout\n");
return ret;
}
/* Release reset signal to the RISC */
if (IS_MFCV6_PLUS(dev)) {
dev->risc_on = 1;
mfc_write(dev, 0x1, S5P_FIMV_RISC_ON_V6);
} else {
mfc_write(dev, 0x3ff, S5P_FIMV_SW_RESET);
}
if (s5p_mfc_wait_for_done_dev(dev, S5P_MFC_R2H_CMD_WAKEUP_RET)) {
mfc_err("Failed to wakeup MFC\n");
return -EIO;
}
return ret;
}
int s5p_mfc_wakeup(struct s5p_mfc_dev *dev)
{
int ret;
mfc_debug_enter();
/* 0. MFC reset */
mfc_debug(2, "MFC reset..\n");
s5p_mfc_clock_on();
dev->risc_on = 0;
ret = s5p_mfc_reset(dev);
if (ret) {
mfc_err("Failed to reset MFC - timeout\n");
s5p_mfc_clock_off();
return ret;
}
mfc_debug(2, "Done MFC reset..\n");
/* 1. Set DRAM base Addr */
s5p_mfc_init_memctrl(dev);
/* 2. Initialize registers of channel I/F */
s5p_mfc_clear_cmds(dev);
s5p_mfc_clean_dev_int_flags(dev);
/* 3. Send MFC wakeup command and wait for completion*/
if (IS_MFCV8(dev))
ret = s5p_mfc_v8_wait_wakeup(dev);
else
ret = s5p_mfc_wait_wakeup(dev);
s5p_mfc_clock_off();
if (ret)
return ret;
dev->int_cond = 0;
if (dev->int_err != 0 || dev->int_type !=
S5P_MFC_R2H_CMD_WAKEUP_RET) {
/* Failure. */
mfc_err("Failed to wakeup - error: %d int: %d\n", dev->int_err,
dev->int_type);
return -EIO;
}
mfc_debug_leave();
return 0;
}
int s5p_mfc_open_mfc_inst(struct s5p_mfc_dev *dev, struct s5p_mfc_ctx *ctx)
{
int ret = 0;
ret = s5p_mfc_hw_call(dev->mfc_ops, alloc_instance_buffer, ctx);
if (ret) {
mfc_err("Failed allocating instance buffer\n");
goto err;
}
if (ctx->type == MFCINST_DECODER) {
ret = s5p_mfc_hw_call(dev->mfc_ops,
alloc_dec_temp_buffers, ctx);
if (ret) {
mfc_err("Failed allocating temporary buffers\n");
goto err_free_inst_buf;
}
}
set_work_bit_irqsave(ctx);
s5p_mfc_hw_call(dev->mfc_ops, try_run, dev);
if (s5p_mfc_wait_for_done_ctx(ctx,
S5P_MFC_R2H_CMD_OPEN_INSTANCE_RET, 0)) {
/* Error or timeout */
mfc_err("Error getting instance from hardware\n");
ret = -EIO;
goto err_free_desc_buf;
}
mfc_debug(2, "Got instance number: %d\n", ctx->inst_no);
return ret;
err_free_desc_buf:
if (ctx->type == MFCINST_DECODER)
s5p_mfc_hw_call(dev->mfc_ops, release_dec_desc_buffer, ctx);
err_free_inst_buf:
s5p_mfc_hw_call(dev->mfc_ops, release_instance_buffer, ctx);
err:
return ret;
}
void s5p_mfc_close_mfc_inst(struct s5p_mfc_dev *dev, struct s5p_mfc_ctx *ctx)
{
ctx->state = MFCINST_RETURN_INST;
set_work_bit_irqsave(ctx);
s5p_mfc_hw_call(dev->mfc_ops, try_run, dev);
/* Wait until instance is returned or timeout occurred */
if (s5p_mfc_wait_for_done_ctx(ctx,
S5P_MFC_R2H_CMD_CLOSE_INSTANCE_RET, 0))
mfc_err("Err returning instance\n");
/* Free resources */
s5p_mfc_hw_call(dev->mfc_ops, release_codec_buffers, ctx);
s5p_mfc_hw_call(dev->mfc_ops, release_instance_buffer, ctx);
if (ctx->type == MFCINST_DECODER)
s5p_mfc_hw_call(dev->mfc_ops, release_dec_desc_buffer, ctx);
ctx->inst_no = MFC_NO_INSTANCE_SET;
ctx->state = MFCINST_FREE;
}