linux/drivers/media/platform/coda/coda-common.c
Philipp Zabel 1403bc4c0f media: coda: fix capture TRY_FMT for YUYV with non-MB-aligned widths
Since bytesperline always fulfills VDOA width requirements, detile the
whole buffer instead of limiting to visible width. This stops TRY_FMT
from returning -EINVAL for YUYV capture buffers that are not a multiple
of 16 wide.

An alternative would be to always round up width to stride, as we report
the valid image rectange via G_SELECTION (V4L2_SEL_TGT_COMPOSE_DEFAULT),
but that would require all applications to handle the compose default
rectangle properly.

Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de>
Signed-off-by: Hans Verkuil <hans.verkuil@cisco.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>
2017-12-18 14:59:04 -05:00

2692 lines
71 KiB
C

/*
* Coda multi-standard codec IP
*
* Copyright (C) 2012 Vista Silicon S.L.
* Javier Martin, <javier.martin@vista-silicon.com>
* Xavier Duret
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/clk.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/firmware.h>
#include <linux/gcd.h>
#include <linux/genalloc.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/kfifo.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include <linux/videodev2.h>
#include <linux/of.h>
#include <linux/platform_data/media/coda.h>
#include <linux/reset.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-device.h>
#include <media/v4l2-event.h>
#include <media/v4l2-ioctl.h>
#include <media/v4l2-mem2mem.h>
#include <media/videobuf2-v4l2.h>
#include <media/videobuf2-dma-contig.h>
#include <media/videobuf2-vmalloc.h>
#include "coda.h"
#include "imx-vdoa.h"
#define CODA_NAME "coda"
#define CODADX6_MAX_INSTANCES 4
#define CODA_MAX_FORMATS 4
#define CODA_ISRAM_SIZE (2048 * 2)
#define MIN_W 176
#define MIN_H 144
#define S_ALIGN 1 /* multiple of 2 */
#define W_ALIGN 1 /* multiple of 2 */
#define H_ALIGN 1 /* multiple of 2 */
#define fh_to_ctx(__fh) container_of(__fh, struct coda_ctx, fh)
int coda_debug;
module_param(coda_debug, int, 0644);
MODULE_PARM_DESC(coda_debug, "Debug level (0-2)");
static int disable_tiling;
module_param(disable_tiling, int, 0644);
MODULE_PARM_DESC(disable_tiling, "Disable tiled frame buffers");
static int disable_vdoa;
module_param(disable_vdoa, int, 0644);
MODULE_PARM_DESC(disable_vdoa, "Disable Video Data Order Adapter tiled to raster-scan conversion");
static int enable_bwb = 0;
module_param(enable_bwb, int, 0644);
MODULE_PARM_DESC(enable_bwb, "Enable BWB unit for decoding, may crash on certain streams");
void coda_write(struct coda_dev *dev, u32 data, u32 reg)
{
v4l2_dbg(2, coda_debug, &dev->v4l2_dev,
"%s: data=0x%x, reg=0x%x\n", __func__, data, reg);
writel(data, dev->regs_base + reg);
}
unsigned int coda_read(struct coda_dev *dev, u32 reg)
{
u32 data;
data = readl(dev->regs_base + reg);
v4l2_dbg(2, coda_debug, &dev->v4l2_dev,
"%s: data=0x%x, reg=0x%x\n", __func__, data, reg);
return data;
}
void coda_write_base(struct coda_ctx *ctx, struct coda_q_data *q_data,
struct vb2_v4l2_buffer *buf, unsigned int reg_y)
{
u32 base_y = vb2_dma_contig_plane_dma_addr(&buf->vb2_buf, 0);
u32 base_cb, base_cr;
switch (q_data->fourcc) {
case V4L2_PIX_FMT_YUYV:
/* Fallthrough: IN -H264-> CODA -NV12 MB-> VDOA -YUYV-> OUT */
case V4L2_PIX_FMT_NV12:
case V4L2_PIX_FMT_YUV420:
default:
base_cb = base_y + q_data->bytesperline * q_data->height;
base_cr = base_cb + q_data->bytesperline * q_data->height / 4;
break;
case V4L2_PIX_FMT_YVU420:
/* Switch Cb and Cr for YVU420 format */
base_cr = base_y + q_data->bytesperline * q_data->height;
base_cb = base_cr + q_data->bytesperline * q_data->height / 4;
break;
case V4L2_PIX_FMT_YUV422P:
base_cb = base_y + q_data->bytesperline * q_data->height;
base_cr = base_cb + q_data->bytesperline * q_data->height / 2;
}
coda_write(ctx->dev, base_y, reg_y);
coda_write(ctx->dev, base_cb, reg_y + 4);
coda_write(ctx->dev, base_cr, reg_y + 8);
}
#define CODA_CODEC(mode, src_fourcc, dst_fourcc, max_w, max_h) \
{ mode, src_fourcc, dst_fourcc, max_w, max_h }
/*
* Arrays of codecs supported by each given version of Coda:
* i.MX27 -> codadx6
* i.MX5x -> coda7
* i.MX6 -> coda960
* Use V4L2_PIX_FMT_YUV420 as placeholder for all supported YUV 4:2:0 variants
*/
static const struct coda_codec codadx6_codecs[] = {
CODA_CODEC(CODADX6_MODE_ENCODE_H264, V4L2_PIX_FMT_YUV420, V4L2_PIX_FMT_H264, 720, 576),
CODA_CODEC(CODADX6_MODE_ENCODE_MP4, V4L2_PIX_FMT_YUV420, V4L2_PIX_FMT_MPEG4, 720, 576),
};
static const struct coda_codec coda7_codecs[] = {
CODA_CODEC(CODA7_MODE_ENCODE_H264, V4L2_PIX_FMT_YUV420, V4L2_PIX_FMT_H264, 1280, 720),
CODA_CODEC(CODA7_MODE_ENCODE_MP4, V4L2_PIX_FMT_YUV420, V4L2_PIX_FMT_MPEG4, 1280, 720),
CODA_CODEC(CODA7_MODE_ENCODE_MJPG, V4L2_PIX_FMT_YUV420, V4L2_PIX_FMT_JPEG, 8192, 8192),
CODA_CODEC(CODA7_MODE_DECODE_H264, V4L2_PIX_FMT_H264, V4L2_PIX_FMT_YUV420, 1920, 1088),
CODA_CODEC(CODA7_MODE_DECODE_MP2, V4L2_PIX_FMT_MPEG2, V4L2_PIX_FMT_YUV420, 1920, 1088),
CODA_CODEC(CODA7_MODE_DECODE_MP4, V4L2_PIX_FMT_MPEG4, V4L2_PIX_FMT_YUV420, 1920, 1088),
CODA_CODEC(CODA7_MODE_DECODE_MJPG, V4L2_PIX_FMT_JPEG, V4L2_PIX_FMT_YUV420, 8192, 8192),
};
static const struct coda_codec coda9_codecs[] = {
CODA_CODEC(CODA9_MODE_ENCODE_H264, V4L2_PIX_FMT_YUV420, V4L2_PIX_FMT_H264, 1920, 1088),
CODA_CODEC(CODA9_MODE_ENCODE_MP4, V4L2_PIX_FMT_YUV420, V4L2_PIX_FMT_MPEG4, 1920, 1088),
CODA_CODEC(CODA9_MODE_DECODE_H264, V4L2_PIX_FMT_H264, V4L2_PIX_FMT_YUV420, 1920, 1088),
CODA_CODEC(CODA9_MODE_DECODE_MP2, V4L2_PIX_FMT_MPEG2, V4L2_PIX_FMT_YUV420, 1920, 1088),
CODA_CODEC(CODA9_MODE_DECODE_MP4, V4L2_PIX_FMT_MPEG4, V4L2_PIX_FMT_YUV420, 1920, 1088),
};
struct coda_video_device {
const char *name;
enum coda_inst_type type;
const struct coda_context_ops *ops;
bool direct;
u32 src_formats[CODA_MAX_FORMATS];
u32 dst_formats[CODA_MAX_FORMATS];
};
static const struct coda_video_device coda_bit_encoder = {
.name = "coda-encoder",
.type = CODA_INST_ENCODER,
.ops = &coda_bit_encode_ops,
.src_formats = {
V4L2_PIX_FMT_NV12,
V4L2_PIX_FMT_YUV420,
V4L2_PIX_FMT_YVU420,
},
.dst_formats = {
V4L2_PIX_FMT_H264,
V4L2_PIX_FMT_MPEG4,
},
};
static const struct coda_video_device coda_bit_jpeg_encoder = {
.name = "coda-jpeg-encoder",
.type = CODA_INST_ENCODER,
.ops = &coda_bit_encode_ops,
.src_formats = {
V4L2_PIX_FMT_NV12,
V4L2_PIX_FMT_YUV420,
V4L2_PIX_FMT_YVU420,
V4L2_PIX_FMT_YUV422P,
},
.dst_formats = {
V4L2_PIX_FMT_JPEG,
},
};
static const struct coda_video_device coda_bit_decoder = {
.name = "coda-decoder",
.type = CODA_INST_DECODER,
.ops = &coda_bit_decode_ops,
.src_formats = {
V4L2_PIX_FMT_H264,
V4L2_PIX_FMT_MPEG2,
V4L2_PIX_FMT_MPEG4,
},
.dst_formats = {
V4L2_PIX_FMT_NV12,
V4L2_PIX_FMT_YUV420,
V4L2_PIX_FMT_YVU420,
/*
* If V4L2_PIX_FMT_YUYV should be default,
* set_default_params() must be adjusted.
*/
V4L2_PIX_FMT_YUYV,
},
};
static const struct coda_video_device coda_bit_jpeg_decoder = {
.name = "coda-jpeg-decoder",
.type = CODA_INST_DECODER,
.ops = &coda_bit_decode_ops,
.src_formats = {
V4L2_PIX_FMT_JPEG,
},
.dst_formats = {
V4L2_PIX_FMT_NV12,
V4L2_PIX_FMT_YUV420,
V4L2_PIX_FMT_YVU420,
V4L2_PIX_FMT_YUV422P,
},
};
static const struct coda_video_device *codadx6_video_devices[] = {
&coda_bit_encoder,
};
static const struct coda_video_device *coda7_video_devices[] = {
&coda_bit_jpeg_encoder,
&coda_bit_jpeg_decoder,
&coda_bit_encoder,
&coda_bit_decoder,
};
static const struct coda_video_device *coda9_video_devices[] = {
&coda_bit_encoder,
&coda_bit_decoder,
};
/*
* Normalize all supported YUV 4:2:0 formats to the value used in the codec
* tables.
*/
static u32 coda_format_normalize_yuv(u32 fourcc)
{
switch (fourcc) {
case V4L2_PIX_FMT_NV12:
case V4L2_PIX_FMT_YUV420:
case V4L2_PIX_FMT_YVU420:
case V4L2_PIX_FMT_YUV422P:
case V4L2_PIX_FMT_YUYV:
return V4L2_PIX_FMT_YUV420;
default:
return fourcc;
}
}
static const struct coda_codec *coda_find_codec(struct coda_dev *dev,
int src_fourcc, int dst_fourcc)
{
const struct coda_codec *codecs = dev->devtype->codecs;
int num_codecs = dev->devtype->num_codecs;
int k;
src_fourcc = coda_format_normalize_yuv(src_fourcc);
dst_fourcc = coda_format_normalize_yuv(dst_fourcc);
if (src_fourcc == dst_fourcc)
return NULL;
for (k = 0; k < num_codecs; k++) {
if (codecs[k].src_fourcc == src_fourcc &&
codecs[k].dst_fourcc == dst_fourcc)
break;
}
if (k == num_codecs)
return NULL;
return &codecs[k];
}
static void coda_get_max_dimensions(struct coda_dev *dev,
const struct coda_codec *codec,
int *max_w, int *max_h)
{
const struct coda_codec *codecs = dev->devtype->codecs;
int num_codecs = dev->devtype->num_codecs;
unsigned int w, h;
int k;
if (codec) {
w = codec->max_w;
h = codec->max_h;
} else {
for (k = 0, w = 0, h = 0; k < num_codecs; k++) {
w = max(w, codecs[k].max_w);
h = max(h, codecs[k].max_h);
}
}
if (max_w)
*max_w = w;
if (max_h)
*max_h = h;
}
static const struct coda_video_device *to_coda_video_device(struct video_device
*vdev)
{
struct coda_dev *dev = video_get_drvdata(vdev);
unsigned int i = vdev - dev->vfd;
if (i >= dev->devtype->num_vdevs)
return NULL;
return dev->devtype->vdevs[i];
}
const char *coda_product_name(int product)
{
static char buf[9];
switch (product) {
case CODA_DX6:
return "CodaDx6";
case CODA_7541:
return "CODA7541";
case CODA_960:
return "CODA960";
default:
snprintf(buf, sizeof(buf), "(0x%04x)", product);
return buf;
}
}
static struct vdoa_data *coda_get_vdoa_data(void)
{
struct device_node *vdoa_node;
struct platform_device *vdoa_pdev;
struct vdoa_data *vdoa_data = NULL;
vdoa_node = of_find_compatible_node(NULL, NULL, "fsl,imx6q-vdoa");
if (!vdoa_node)
return NULL;
vdoa_pdev = of_find_device_by_node(vdoa_node);
if (!vdoa_pdev)
goto out;
vdoa_data = platform_get_drvdata(vdoa_pdev);
if (!vdoa_data)
vdoa_data = ERR_PTR(-EPROBE_DEFER);
out:
if (vdoa_node)
of_node_put(vdoa_node);
return vdoa_data;
}
/*
* V4L2 ioctl() operations.
*/
static int coda_querycap(struct file *file, void *priv,
struct v4l2_capability *cap)
{
struct coda_ctx *ctx = fh_to_ctx(priv);
strlcpy(cap->driver, CODA_NAME, sizeof(cap->driver));
strlcpy(cap->card, coda_product_name(ctx->dev->devtype->product),
sizeof(cap->card));
strlcpy(cap->bus_info, "platform:" CODA_NAME, sizeof(cap->bus_info));
cap->device_caps = V4L2_CAP_VIDEO_M2M | V4L2_CAP_STREAMING;
cap->capabilities = cap->device_caps | V4L2_CAP_DEVICE_CAPS;
return 0;
}
static int coda_enum_fmt(struct file *file, void *priv,
struct v4l2_fmtdesc *f)
{
struct video_device *vdev = video_devdata(file);
const struct coda_video_device *cvd = to_coda_video_device(vdev);
struct coda_ctx *ctx = fh_to_ctx(priv);
const u32 *formats;
if (f->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
formats = cvd->src_formats;
else if (f->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
formats = cvd->dst_formats;
else
return -EINVAL;
if (f->index >= CODA_MAX_FORMATS || formats[f->index] == 0)
return -EINVAL;
/* Skip YUYV if the vdoa is not available */
if (!ctx->vdoa && f->type == V4L2_BUF_TYPE_VIDEO_CAPTURE &&
formats[f->index] == V4L2_PIX_FMT_YUYV)
return -EINVAL;
f->pixelformat = formats[f->index];
return 0;
}
static int coda_g_fmt(struct file *file, void *priv,
struct v4l2_format *f)
{
struct coda_q_data *q_data;
struct coda_ctx *ctx = fh_to_ctx(priv);
q_data = get_q_data(ctx, f->type);
if (!q_data)
return -EINVAL;
f->fmt.pix.field = V4L2_FIELD_NONE;
f->fmt.pix.pixelformat = q_data->fourcc;
f->fmt.pix.width = q_data->width;
f->fmt.pix.height = q_data->height;
f->fmt.pix.bytesperline = q_data->bytesperline;
f->fmt.pix.sizeimage = q_data->sizeimage;
f->fmt.pix.colorspace = ctx->colorspace;
f->fmt.pix.xfer_func = ctx->xfer_func;
f->fmt.pix.ycbcr_enc = ctx->ycbcr_enc;
f->fmt.pix.quantization = ctx->quantization;
return 0;
}
static int coda_try_pixelformat(struct coda_ctx *ctx, struct v4l2_format *f)
{
struct coda_q_data *q_data;
const u32 *formats;
int i;
if (f->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
formats = ctx->cvd->src_formats;
else if (f->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
formats = ctx->cvd->dst_formats;
else
return -EINVAL;
for (i = 0; i < CODA_MAX_FORMATS; i++) {
/* Skip YUYV if the vdoa is not available */
if (!ctx->vdoa && f->type == V4L2_BUF_TYPE_VIDEO_CAPTURE &&
formats[i] == V4L2_PIX_FMT_YUYV)
continue;
if (formats[i] == f->fmt.pix.pixelformat) {
f->fmt.pix.pixelformat = formats[i];
return 0;
}
}
/* Fall back to currently set pixelformat */
q_data = get_q_data(ctx, f->type);
f->fmt.pix.pixelformat = q_data->fourcc;
return 0;
}
static int coda_try_fmt_vdoa(struct coda_ctx *ctx, struct v4l2_format *f,
bool *use_vdoa)
{
int err;
if (f->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
if (!use_vdoa)
return -EINVAL;
if (!ctx->vdoa) {
*use_vdoa = false;
return 0;
}
err = vdoa_context_configure(NULL, round_up(f->fmt.pix.width, 16),
f->fmt.pix.height, f->fmt.pix.pixelformat);
if (err) {
*use_vdoa = false;
return 0;
}
*use_vdoa = true;
return 0;
}
static unsigned int coda_estimate_sizeimage(struct coda_ctx *ctx, u32 sizeimage,
u32 width, u32 height)
{
/*
* This is a rough estimate for sensible compressed buffer
* sizes (between 1 and 16 bits per pixel). This could be
* improved by better format specific worst case estimates.
*/
return round_up(clamp(sizeimage, width * height / 8,
width * height * 2), PAGE_SIZE);
}
static int coda_try_fmt(struct coda_ctx *ctx, const struct coda_codec *codec,
struct v4l2_format *f)
{
struct coda_dev *dev = ctx->dev;
unsigned int max_w, max_h;
enum v4l2_field field;
field = f->fmt.pix.field;
if (field == V4L2_FIELD_ANY)
field = V4L2_FIELD_NONE;
else if (V4L2_FIELD_NONE != field)
return -EINVAL;
/* V4L2 specification suggests the driver corrects the format struct
* if any of the dimensions is unsupported */
f->fmt.pix.field = field;
coda_get_max_dimensions(dev, codec, &max_w, &max_h);
v4l_bound_align_image(&f->fmt.pix.width, MIN_W, max_w, W_ALIGN,
&f->fmt.pix.height, MIN_H, max_h, H_ALIGN,
S_ALIGN);
switch (f->fmt.pix.pixelformat) {
case V4L2_PIX_FMT_NV12:
case V4L2_PIX_FMT_YUV420:
case V4L2_PIX_FMT_YVU420:
/*
* Frame stride must be at least multiple of 8,
* but multiple of 16 for h.264 or JPEG 4:2:x
*/
f->fmt.pix.bytesperline = round_up(f->fmt.pix.width, 16);
f->fmt.pix.sizeimage = f->fmt.pix.bytesperline *
f->fmt.pix.height * 3 / 2;
break;
case V4L2_PIX_FMT_YUYV:
f->fmt.pix.bytesperline = round_up(f->fmt.pix.width, 16) * 2;
f->fmt.pix.sizeimage = f->fmt.pix.bytesperline *
f->fmt.pix.height;
break;
case V4L2_PIX_FMT_YUV422P:
f->fmt.pix.bytesperline = round_up(f->fmt.pix.width, 16);
f->fmt.pix.sizeimage = f->fmt.pix.bytesperline *
f->fmt.pix.height * 2;
break;
case V4L2_PIX_FMT_JPEG:
f->fmt.pix.colorspace = V4L2_COLORSPACE_JPEG;
/* fallthrough */
case V4L2_PIX_FMT_H264:
case V4L2_PIX_FMT_MPEG4:
case V4L2_PIX_FMT_MPEG2:
f->fmt.pix.bytesperline = 0;
f->fmt.pix.sizeimage = coda_estimate_sizeimage(ctx,
f->fmt.pix.sizeimage,
f->fmt.pix.width,
f->fmt.pix.height);
break;
default:
BUG();
}
return 0;
}
static int coda_try_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct coda_ctx *ctx = fh_to_ctx(priv);
const struct coda_q_data *q_data_src;
const struct coda_codec *codec;
struct vb2_queue *src_vq;
int ret;
bool use_vdoa;
ret = coda_try_pixelformat(ctx, f);
if (ret < 0)
return ret;
q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT);
/*
* If the source format is already fixed, only allow the same output
* resolution
*/
src_vq = v4l2_m2m_get_vq(ctx->fh.m2m_ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT);
if (vb2_is_streaming(src_vq)) {
f->fmt.pix.width = q_data_src->width;
f->fmt.pix.height = q_data_src->height;
}
f->fmt.pix.colorspace = ctx->colorspace;
f->fmt.pix.xfer_func = ctx->xfer_func;
f->fmt.pix.ycbcr_enc = ctx->ycbcr_enc;
f->fmt.pix.quantization = ctx->quantization;
q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT);
codec = coda_find_codec(ctx->dev, q_data_src->fourcc,
f->fmt.pix.pixelformat);
if (!codec)
return -EINVAL;
ret = coda_try_fmt(ctx, codec, f);
if (ret < 0)
return ret;
/* The h.264 decoder only returns complete 16x16 macroblocks */
if (codec && codec->src_fourcc == V4L2_PIX_FMT_H264) {
f->fmt.pix.height = round_up(f->fmt.pix.height, 16);
f->fmt.pix.bytesperline = round_up(f->fmt.pix.width, 16);
f->fmt.pix.sizeimage = f->fmt.pix.bytesperline *
f->fmt.pix.height * 3 / 2;
ret = coda_try_fmt_vdoa(ctx, f, &use_vdoa);
if (ret < 0)
return ret;
if (f->fmt.pix.pixelformat == V4L2_PIX_FMT_YUYV) {
if (!use_vdoa)
return -EINVAL;
f->fmt.pix.bytesperline = round_up(f->fmt.pix.width, 16) * 2;
f->fmt.pix.sizeimage = f->fmt.pix.bytesperline *
f->fmt.pix.height;
}
}
return 0;
}
static void coda_set_default_colorspace(struct v4l2_pix_format *fmt)
{
enum v4l2_colorspace colorspace;
if (fmt->pixelformat == V4L2_PIX_FMT_JPEG)
colorspace = V4L2_COLORSPACE_JPEG;
else if (fmt->width <= 720 && fmt->height <= 576)
colorspace = V4L2_COLORSPACE_SMPTE170M;
else
colorspace = V4L2_COLORSPACE_REC709;
fmt->colorspace = colorspace;
fmt->xfer_func = V4L2_XFER_FUNC_DEFAULT;
fmt->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT;
fmt->quantization = V4L2_QUANTIZATION_DEFAULT;
}
static int coda_try_fmt_vid_out(struct file *file, void *priv,
struct v4l2_format *f)
{
struct coda_ctx *ctx = fh_to_ctx(priv);
struct coda_dev *dev = ctx->dev;
const struct coda_q_data *q_data_dst;
const struct coda_codec *codec;
int ret;
ret = coda_try_pixelformat(ctx, f);
if (ret < 0)
return ret;
if (f->fmt.pix.colorspace == V4L2_COLORSPACE_DEFAULT)
coda_set_default_colorspace(&f->fmt.pix);
q_data_dst = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE);
codec = coda_find_codec(dev, f->fmt.pix.pixelformat, q_data_dst->fourcc);
return coda_try_fmt(ctx, codec, f);
}
static int coda_s_fmt(struct coda_ctx *ctx, struct v4l2_format *f,
struct v4l2_rect *r)
{
struct coda_q_data *q_data;
struct vb2_queue *vq;
vq = v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type);
if (!vq)
return -EINVAL;
q_data = get_q_data(ctx, f->type);
if (!q_data)
return -EINVAL;
if (vb2_is_busy(vq)) {
v4l2_err(&ctx->dev->v4l2_dev, "%s queue busy\n", __func__);
return -EBUSY;
}
q_data->fourcc = f->fmt.pix.pixelformat;
q_data->width = f->fmt.pix.width;
q_data->height = f->fmt.pix.height;
q_data->bytesperline = f->fmt.pix.bytesperline;
q_data->sizeimage = f->fmt.pix.sizeimage;
if (r) {
q_data->rect = *r;
} else {
q_data->rect.left = 0;
q_data->rect.top = 0;
q_data->rect.width = f->fmt.pix.width;
q_data->rect.height = f->fmt.pix.height;
}
switch (f->fmt.pix.pixelformat) {
case V4L2_PIX_FMT_YUYV:
ctx->tiled_map_type = GDI_TILED_FRAME_MB_RASTER_MAP;
break;
case V4L2_PIX_FMT_NV12:
if (!disable_tiling) {
ctx->tiled_map_type = GDI_TILED_FRAME_MB_RASTER_MAP;
break;
}
/* else fall through */
case V4L2_PIX_FMT_YUV420:
case V4L2_PIX_FMT_YVU420:
ctx->tiled_map_type = GDI_LINEAR_FRAME_MAP;
break;
default:
break;
}
if (ctx->tiled_map_type == GDI_TILED_FRAME_MB_RASTER_MAP &&
!coda_try_fmt_vdoa(ctx, f, &ctx->use_vdoa) &&
ctx->use_vdoa)
vdoa_context_configure(ctx->vdoa,
round_up(f->fmt.pix.width, 16),
f->fmt.pix.height,
f->fmt.pix.pixelformat);
else
ctx->use_vdoa = false;
v4l2_dbg(1, coda_debug, &ctx->dev->v4l2_dev,
"Setting format for type %d, wxh: %dx%d, fmt: %4.4s %c\n",
f->type, q_data->width, q_data->height,
(char *)&q_data->fourcc,
(ctx->tiled_map_type == GDI_LINEAR_FRAME_MAP) ? 'L' : 'T');
return 0;
}
static int coda_s_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct coda_ctx *ctx = fh_to_ctx(priv);
struct coda_q_data *q_data_src;
struct v4l2_rect r;
int ret;
ret = coda_try_fmt_vid_cap(file, priv, f);
if (ret)
return ret;
q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT);
r.left = 0;
r.top = 0;
r.width = q_data_src->width;
r.height = q_data_src->height;
return coda_s_fmt(ctx, f, &r);
}
static int coda_s_fmt_vid_out(struct file *file, void *priv,
struct v4l2_format *f)
{
struct coda_ctx *ctx = fh_to_ctx(priv);
struct coda_q_data *q_data_src;
struct v4l2_format f_cap;
struct v4l2_rect r;
int ret;
ret = coda_try_fmt_vid_out(file, priv, f);
if (ret)
return ret;
ret = coda_s_fmt(ctx, f, NULL);
if (ret)
return ret;
ctx->colorspace = f->fmt.pix.colorspace;
ctx->xfer_func = f->fmt.pix.xfer_func;
ctx->ycbcr_enc = f->fmt.pix.ycbcr_enc;
ctx->quantization = f->fmt.pix.quantization;
memset(&f_cap, 0, sizeof(f_cap));
f_cap.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
coda_g_fmt(file, priv, &f_cap);
f_cap.fmt.pix.width = f->fmt.pix.width;
f_cap.fmt.pix.height = f->fmt.pix.height;
ret = coda_try_fmt_vid_cap(file, priv, &f_cap);
if (ret)
return ret;
q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT);
r.left = 0;
r.top = 0;
r.width = q_data_src->width;
r.height = q_data_src->height;
return coda_s_fmt(ctx, &f_cap, &r);
}
static int coda_reqbufs(struct file *file, void *priv,
struct v4l2_requestbuffers *rb)
{
struct coda_ctx *ctx = fh_to_ctx(priv);
int ret;
ret = v4l2_m2m_reqbufs(file, ctx->fh.m2m_ctx, rb);
if (ret)
return ret;
/*
* Allow to allocate instance specific per-context buffers, such as
* bitstream ringbuffer, slice buffer, work buffer, etc. if needed.
*/
if (rb->type == V4L2_BUF_TYPE_VIDEO_OUTPUT && ctx->ops->reqbufs)
return ctx->ops->reqbufs(ctx, rb);
return 0;
}
static int coda_qbuf(struct file *file, void *priv,
struct v4l2_buffer *buf)
{
struct coda_ctx *ctx = fh_to_ctx(priv);
return v4l2_m2m_qbuf(file, ctx->fh.m2m_ctx, buf);
}
static bool coda_buf_is_end_of_stream(struct coda_ctx *ctx,
struct vb2_v4l2_buffer *buf)
{
return ((ctx->bit_stream_param & CODA_BIT_STREAM_END_FLAG) &&
(buf->sequence == (ctx->qsequence - 1)));
}
void coda_m2m_buf_done(struct coda_ctx *ctx, struct vb2_v4l2_buffer *buf,
enum vb2_buffer_state state)
{
const struct v4l2_event eos_event = {
.type = V4L2_EVENT_EOS
};
if (coda_buf_is_end_of_stream(ctx, buf)) {
buf->flags |= V4L2_BUF_FLAG_LAST;
v4l2_event_queue_fh(&ctx->fh, &eos_event);
}
v4l2_m2m_buf_done(buf, state);
}
static int coda_g_selection(struct file *file, void *fh,
struct v4l2_selection *s)
{
struct coda_ctx *ctx = fh_to_ctx(fh);
struct coda_q_data *q_data;
struct v4l2_rect r, *rsel;
q_data = get_q_data(ctx, s->type);
if (!q_data)
return -EINVAL;
r.left = 0;
r.top = 0;
r.width = q_data->width;
r.height = q_data->height;
rsel = &q_data->rect;
switch (s->target) {
case V4L2_SEL_TGT_CROP_DEFAULT:
case V4L2_SEL_TGT_CROP_BOUNDS:
rsel = &r;
/* fallthrough */
case V4L2_SEL_TGT_CROP:
if (s->type != V4L2_BUF_TYPE_VIDEO_OUTPUT)
return -EINVAL;
break;
case V4L2_SEL_TGT_COMPOSE_BOUNDS:
case V4L2_SEL_TGT_COMPOSE_PADDED:
rsel = &r;
/* fallthrough */
case V4L2_SEL_TGT_COMPOSE:
case V4L2_SEL_TGT_COMPOSE_DEFAULT:
if (s->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
break;
default:
return -EINVAL;
}
s->r = *rsel;
return 0;
}
static int coda_try_encoder_cmd(struct file *file, void *fh,
struct v4l2_encoder_cmd *ec)
{
if (ec->cmd != V4L2_ENC_CMD_STOP)
return -EINVAL;
if (ec->flags & V4L2_ENC_CMD_STOP_AT_GOP_END)
return -EINVAL;
return 0;
}
static int coda_encoder_cmd(struct file *file, void *fh,
struct v4l2_encoder_cmd *ec)
{
struct coda_ctx *ctx = fh_to_ctx(fh);
struct vb2_queue *dst_vq;
int ret;
ret = coda_try_encoder_cmd(file, fh, ec);
if (ret < 0)
return ret;
/* Ignore encoder stop command silently in decoder context */
if (ctx->inst_type != CODA_INST_ENCODER)
return 0;
/* Set the stream-end flag on this context */
ctx->bit_stream_param |= CODA_BIT_STREAM_END_FLAG;
/* If there is no buffer in flight, wake up */
if (!ctx->streamon_out || ctx->qsequence == ctx->osequence) {
dst_vq = v4l2_m2m_get_vq(ctx->fh.m2m_ctx,
V4L2_BUF_TYPE_VIDEO_CAPTURE);
dst_vq->last_buffer_dequeued = true;
wake_up(&dst_vq->done_wq);
}
return 0;
}
static int coda_try_decoder_cmd(struct file *file, void *fh,
struct v4l2_decoder_cmd *dc)
{
if (dc->cmd != V4L2_DEC_CMD_STOP)
return -EINVAL;
if (dc->flags & V4L2_DEC_CMD_STOP_TO_BLACK)
return -EINVAL;
if (!(dc->flags & V4L2_DEC_CMD_STOP_IMMEDIATELY) && (dc->stop.pts != 0))
return -EINVAL;
return 0;
}
static int coda_decoder_cmd(struct file *file, void *fh,
struct v4l2_decoder_cmd *dc)
{
struct coda_ctx *ctx = fh_to_ctx(fh);
int ret;
ret = coda_try_decoder_cmd(file, fh, dc);
if (ret < 0)
return ret;
/* Ignore decoder stop command silently in encoder context */
if (ctx->inst_type != CODA_INST_DECODER)
return 0;
/* Set the stream-end flag on this context */
coda_bit_stream_end_flag(ctx);
ctx->hold = false;
v4l2_m2m_try_schedule(ctx->fh.m2m_ctx);
return 0;
}
static int coda_g_parm(struct file *file, void *fh, struct v4l2_streamparm *a)
{
struct coda_ctx *ctx = fh_to_ctx(fh);
struct v4l2_fract *tpf;
if (a->type != V4L2_BUF_TYPE_VIDEO_OUTPUT)
return -EINVAL;
a->parm.output.capability = V4L2_CAP_TIMEPERFRAME;
tpf = &a->parm.output.timeperframe;
tpf->denominator = ctx->params.framerate & CODA_FRATE_RES_MASK;
tpf->numerator = 1 + (ctx->params.framerate >>
CODA_FRATE_DIV_OFFSET);
return 0;
}
/*
* Approximate timeperframe v4l2_fract with values that can be written
* into the 16-bit CODA_FRATE_DIV and CODA_FRATE_RES fields.
*/
static void coda_approximate_timeperframe(struct v4l2_fract *timeperframe)
{
struct v4l2_fract s = *timeperframe;
struct v4l2_fract f0;
struct v4l2_fract f1 = { 1, 0 };
struct v4l2_fract f2 = { 0, 1 };
unsigned int i, div, s_denominator;
/* Lower bound is 1/65535 */
if (s.numerator == 0 || s.denominator / s.numerator > 65535) {
timeperframe->numerator = 1;
timeperframe->denominator = 65535;
return;
}
/* Upper bound is 65536/1, map everything above to infinity */
if (s.denominator == 0 || s.numerator / s.denominator > 65536) {
timeperframe->numerator = 1;
timeperframe->denominator = 0;
return;
}
/* Reduce fraction to lowest terms */
div = gcd(s.numerator, s.denominator);
if (div > 1) {
s.numerator /= div;
s.denominator /= div;
}
if (s.numerator <= 65536 && s.denominator < 65536) {
*timeperframe = s;
return;
}
/* Find successive convergents from continued fraction expansion */
while (f2.numerator <= 65536 && f2.denominator < 65536) {
f0 = f1;
f1 = f2;
/* Stop when f2 exactly equals timeperframe */
if (s.numerator == 0)
break;
i = s.denominator / s.numerator;
f2.numerator = f0.numerator + i * f1.numerator;
f2.denominator = f0.denominator + i * f2.denominator;
s_denominator = s.numerator;
s.numerator = s.denominator % s.numerator;
s.denominator = s_denominator;
}
*timeperframe = f1;
}
static uint32_t coda_timeperframe_to_frate(struct v4l2_fract *timeperframe)
{
return ((timeperframe->numerator - 1) << CODA_FRATE_DIV_OFFSET) |
timeperframe->denominator;
}
static int coda_s_parm(struct file *file, void *fh, struct v4l2_streamparm *a)
{
struct coda_ctx *ctx = fh_to_ctx(fh);
struct v4l2_fract *tpf;
if (a->type != V4L2_BUF_TYPE_VIDEO_OUTPUT)
return -EINVAL;
tpf = &a->parm.output.timeperframe;
coda_approximate_timeperframe(tpf);
ctx->params.framerate = coda_timeperframe_to_frate(tpf);
return 0;
}
static int coda_subscribe_event(struct v4l2_fh *fh,
const struct v4l2_event_subscription *sub)
{
switch (sub->type) {
case V4L2_EVENT_EOS:
return v4l2_event_subscribe(fh, sub, 0, NULL);
default:
return v4l2_ctrl_subscribe_event(fh, sub);
}
}
static const struct v4l2_ioctl_ops coda_ioctl_ops = {
.vidioc_querycap = coda_querycap,
.vidioc_enum_fmt_vid_cap = coda_enum_fmt,
.vidioc_g_fmt_vid_cap = coda_g_fmt,
.vidioc_try_fmt_vid_cap = coda_try_fmt_vid_cap,
.vidioc_s_fmt_vid_cap = coda_s_fmt_vid_cap,
.vidioc_enum_fmt_vid_out = coda_enum_fmt,
.vidioc_g_fmt_vid_out = coda_g_fmt,
.vidioc_try_fmt_vid_out = coda_try_fmt_vid_out,
.vidioc_s_fmt_vid_out = coda_s_fmt_vid_out,
.vidioc_reqbufs = coda_reqbufs,
.vidioc_querybuf = v4l2_m2m_ioctl_querybuf,
.vidioc_qbuf = coda_qbuf,
.vidioc_expbuf = v4l2_m2m_ioctl_expbuf,
.vidioc_dqbuf = v4l2_m2m_ioctl_dqbuf,
.vidioc_create_bufs = v4l2_m2m_ioctl_create_bufs,
.vidioc_prepare_buf = v4l2_m2m_ioctl_prepare_buf,
.vidioc_streamon = v4l2_m2m_ioctl_streamon,
.vidioc_streamoff = v4l2_m2m_ioctl_streamoff,
.vidioc_g_selection = coda_g_selection,
.vidioc_try_encoder_cmd = coda_try_encoder_cmd,
.vidioc_encoder_cmd = coda_encoder_cmd,
.vidioc_try_decoder_cmd = coda_try_decoder_cmd,
.vidioc_decoder_cmd = coda_decoder_cmd,
.vidioc_g_parm = coda_g_parm,
.vidioc_s_parm = coda_s_parm,
.vidioc_subscribe_event = coda_subscribe_event,
.vidioc_unsubscribe_event = v4l2_event_unsubscribe,
};
/*
* Mem-to-mem operations.
*/
static void coda_device_run(void *m2m_priv)
{
struct coda_ctx *ctx = m2m_priv;
struct coda_dev *dev = ctx->dev;
queue_work(dev->workqueue, &ctx->pic_run_work);
}
static void coda_pic_run_work(struct work_struct *work)
{
struct coda_ctx *ctx = container_of(work, struct coda_ctx, pic_run_work);
struct coda_dev *dev = ctx->dev;
int ret;
mutex_lock(&ctx->buffer_mutex);
mutex_lock(&dev->coda_mutex);
ret = ctx->ops->prepare_run(ctx);
if (ret < 0 && ctx->inst_type == CODA_INST_DECODER) {
mutex_unlock(&dev->coda_mutex);
mutex_unlock(&ctx->buffer_mutex);
/* job_finish scheduled by prepare_decode */
return;
}
if (!wait_for_completion_timeout(&ctx->completion,
msecs_to_jiffies(1000))) {
dev_err(&dev->plat_dev->dev, "CODA PIC_RUN timeout\n");
ctx->hold = true;
coda_hw_reset(ctx);
if (ctx->ops->run_timeout)
ctx->ops->run_timeout(ctx);
} else if (!ctx->aborting) {
ctx->ops->finish_run(ctx);
}
if ((ctx->aborting || (!ctx->streamon_cap && !ctx->streamon_out)) &&
ctx->ops->seq_end_work)
queue_work(dev->workqueue, &ctx->seq_end_work);
mutex_unlock(&dev->coda_mutex);
mutex_unlock(&ctx->buffer_mutex);
v4l2_m2m_job_finish(ctx->dev->m2m_dev, ctx->fh.m2m_ctx);
}
static int coda_job_ready(void *m2m_priv)
{
struct coda_ctx *ctx = m2m_priv;
int src_bufs = v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx);
/*
* For both 'P' and 'key' frame cases 1 picture
* and 1 frame are needed. In the decoder case,
* the compressed frame can be in the bitstream.
*/
if (!src_bufs && ctx->inst_type != CODA_INST_DECODER) {
v4l2_dbg(1, coda_debug, &ctx->dev->v4l2_dev,
"not ready: not enough video buffers.\n");
return 0;
}
if (!v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx)) {
v4l2_dbg(1, coda_debug, &ctx->dev->v4l2_dev,
"not ready: not enough video capture buffers.\n");
return 0;
}
if (ctx->inst_type == CODA_INST_DECODER && ctx->use_bit) {
bool stream_end = ctx->bit_stream_param &
CODA_BIT_STREAM_END_FLAG;
int num_metas = ctx->num_metas;
unsigned int count;
count = hweight32(ctx->frm_dis_flg);
if (ctx->use_vdoa && count >= (ctx->num_internal_frames - 1)) {
v4l2_dbg(1, coda_debug, &ctx->dev->v4l2_dev,
"%d: not ready: all internal buffers in use: %d/%d (0x%x)",
ctx->idx, count, ctx->num_internal_frames,
ctx->frm_dis_flg);
return 0;
}
if (ctx->hold && !src_bufs) {
v4l2_dbg(1, coda_debug, &ctx->dev->v4l2_dev,
"%d: not ready: on hold for more buffers.\n",
ctx->idx);
return 0;
}
if (!stream_end && (num_metas + src_bufs) < 2) {
v4l2_dbg(1, coda_debug, &ctx->dev->v4l2_dev,
"%d: not ready: need 2 buffers available (%d, %d)\n",
ctx->idx, num_metas, src_bufs);
return 0;
}
if (!src_bufs && !stream_end &&
(coda_get_bitstream_payload(ctx) < 512)) {
v4l2_dbg(1, coda_debug, &ctx->dev->v4l2_dev,
"%d: not ready: not enough bitstream data (%d).\n",
ctx->idx, coda_get_bitstream_payload(ctx));
return 0;
}
}
if (ctx->aborting) {
v4l2_dbg(1, coda_debug, &ctx->dev->v4l2_dev,
"not ready: aborting\n");
return 0;
}
v4l2_dbg(1, coda_debug, &ctx->dev->v4l2_dev,
"job ready\n");
return 1;
}
static void coda_job_abort(void *priv)
{
struct coda_ctx *ctx = priv;
ctx->aborting = 1;
v4l2_dbg(1, coda_debug, &ctx->dev->v4l2_dev,
"Aborting task\n");
}
static void coda_lock(void *m2m_priv)
{
struct coda_ctx *ctx = m2m_priv;
struct coda_dev *pcdev = ctx->dev;
mutex_lock(&pcdev->dev_mutex);
}
static void coda_unlock(void *m2m_priv)
{
struct coda_ctx *ctx = m2m_priv;
struct coda_dev *pcdev = ctx->dev;
mutex_unlock(&pcdev->dev_mutex);
}
static const struct v4l2_m2m_ops coda_m2m_ops = {
.device_run = coda_device_run,
.job_ready = coda_job_ready,
.job_abort = coda_job_abort,
.lock = coda_lock,
.unlock = coda_unlock,
};
static void set_default_params(struct coda_ctx *ctx)
{
unsigned int max_w, max_h, usize, csize;
ctx->codec = coda_find_codec(ctx->dev, ctx->cvd->src_formats[0],
ctx->cvd->dst_formats[0]);
max_w = min(ctx->codec->max_w, 1920U);
max_h = min(ctx->codec->max_h, 1088U);
usize = max_w * max_h * 3 / 2;
csize = coda_estimate_sizeimage(ctx, usize, max_w, max_h);
ctx->params.codec_mode = ctx->codec->mode;
if (ctx->cvd->src_formats[0] == V4L2_PIX_FMT_JPEG)
ctx->colorspace = V4L2_COLORSPACE_JPEG;
else
ctx->colorspace = V4L2_COLORSPACE_REC709;
ctx->xfer_func = V4L2_XFER_FUNC_DEFAULT;
ctx->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT;
ctx->quantization = V4L2_QUANTIZATION_DEFAULT;
ctx->params.framerate = 30;
/* Default formats for output and input queues */
ctx->q_data[V4L2_M2M_SRC].fourcc = ctx->cvd->src_formats[0];
ctx->q_data[V4L2_M2M_DST].fourcc = ctx->cvd->dst_formats[0];
ctx->q_data[V4L2_M2M_SRC].width = max_w;
ctx->q_data[V4L2_M2M_SRC].height = max_h;
ctx->q_data[V4L2_M2M_DST].width = max_w;
ctx->q_data[V4L2_M2M_DST].height = max_h;
if (ctx->codec->src_fourcc == V4L2_PIX_FMT_YUV420) {
ctx->q_data[V4L2_M2M_SRC].bytesperline = max_w;
ctx->q_data[V4L2_M2M_SRC].sizeimage = usize;
ctx->q_data[V4L2_M2M_DST].bytesperline = 0;
ctx->q_data[V4L2_M2M_DST].sizeimage = csize;
} else {
ctx->q_data[V4L2_M2M_SRC].bytesperline = 0;
ctx->q_data[V4L2_M2M_SRC].sizeimage = csize;
ctx->q_data[V4L2_M2M_DST].bytesperline = max_w;
ctx->q_data[V4L2_M2M_DST].sizeimage = usize;
}
ctx->q_data[V4L2_M2M_SRC].rect.width = max_w;
ctx->q_data[V4L2_M2M_SRC].rect.height = max_h;
ctx->q_data[V4L2_M2M_DST].rect.width = max_w;
ctx->q_data[V4L2_M2M_DST].rect.height = max_h;
/*
* Since the RBC2AXI logic only supports a single chroma plane,
* macroblock tiling only works for to NV12 pixel format.
*/
ctx->tiled_map_type = GDI_LINEAR_FRAME_MAP;
}
/*
* Queue operations
*/
static int coda_queue_setup(struct vb2_queue *vq,
unsigned int *nbuffers, unsigned int *nplanes,
unsigned int sizes[], struct device *alloc_devs[])
{
struct coda_ctx *ctx = vb2_get_drv_priv(vq);
struct coda_q_data *q_data;
unsigned int size;
q_data = get_q_data(ctx, vq->type);
size = q_data->sizeimage;
*nplanes = 1;
sizes[0] = size;
v4l2_dbg(1, coda_debug, &ctx->dev->v4l2_dev,
"get %d buffer(s) of size %d each.\n", *nbuffers, size);
return 0;
}
static int coda_buf_prepare(struct vb2_buffer *vb)
{
struct coda_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
struct coda_q_data *q_data;
q_data = get_q_data(ctx, vb->vb2_queue->type);
if (vb2_plane_size(vb, 0) < q_data->sizeimage) {
v4l2_warn(&ctx->dev->v4l2_dev,
"%s data will not fit into plane (%lu < %lu)\n",
__func__, vb2_plane_size(vb, 0),
(long)q_data->sizeimage);
return -EINVAL;
}
return 0;
}
static void coda_buf_queue(struct vb2_buffer *vb)
{
struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
struct coda_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
struct vb2_queue *vq = vb->vb2_queue;
struct coda_q_data *q_data;
q_data = get_q_data(ctx, vb->vb2_queue->type);
/*
* In the decoder case, immediately try to copy the buffer into the
* bitstream ringbuffer and mark it as ready to be dequeued.
*/
if (ctx->bitstream.size && vq->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) {
/*
* For backwards compatibility, queuing an empty buffer marks
* the stream end
*/
if (vb2_get_plane_payload(vb, 0) == 0)
coda_bit_stream_end_flag(ctx);
if (q_data->fourcc == V4L2_PIX_FMT_H264) {
/*
* Unless already done, try to obtain profile_idc and
* level_idc from the SPS header. This allows to decide
* whether to enable reordering during sequence
* initialization.
*/
if (!ctx->params.h264_profile_idc)
coda_sps_parse_profile(ctx, vb);
}
mutex_lock(&ctx->bitstream_mutex);
v4l2_m2m_buf_queue(ctx->fh.m2m_ctx, vbuf);
if (vb2_is_streaming(vb->vb2_queue))
/* This set buf->sequence = ctx->qsequence++ */
coda_fill_bitstream(ctx, NULL);
mutex_unlock(&ctx->bitstream_mutex);
} else {
if (ctx->inst_type == CODA_INST_ENCODER &&
vq->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
vbuf->sequence = ctx->qsequence++;
v4l2_m2m_buf_queue(ctx->fh.m2m_ctx, vbuf);
}
}
int coda_alloc_aux_buf(struct coda_dev *dev, struct coda_aux_buf *buf,
size_t size, const char *name, struct dentry *parent)
{
buf->vaddr = dma_alloc_coherent(&dev->plat_dev->dev, size, &buf->paddr,
GFP_KERNEL);
if (!buf->vaddr) {
v4l2_err(&dev->v4l2_dev,
"Failed to allocate %s buffer of size %zu\n",
name, size);
return -ENOMEM;
}
buf->size = size;
if (name && parent) {
buf->blob.data = buf->vaddr;
buf->blob.size = size;
buf->dentry = debugfs_create_blob(name, 0644, parent,
&buf->blob);
if (!buf->dentry)
dev_warn(&dev->plat_dev->dev,
"failed to create debugfs entry %s\n", name);
}
return 0;
}
void coda_free_aux_buf(struct coda_dev *dev,
struct coda_aux_buf *buf)
{
if (buf->vaddr) {
dma_free_coherent(&dev->plat_dev->dev, buf->size,
buf->vaddr, buf->paddr);
buf->vaddr = NULL;
buf->size = 0;
debugfs_remove(buf->dentry);
buf->dentry = NULL;
}
}
static int coda_start_streaming(struct vb2_queue *q, unsigned int count)
{
struct coda_ctx *ctx = vb2_get_drv_priv(q);
struct v4l2_device *v4l2_dev = &ctx->dev->v4l2_dev;
struct coda_q_data *q_data_src, *q_data_dst;
struct v4l2_m2m_buffer *m2m_buf, *tmp;
struct vb2_v4l2_buffer *buf;
struct list_head list;
int ret = 0;
if (count < 1)
return -EINVAL;
INIT_LIST_HEAD(&list);
q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT);
if (q->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) {
if (ctx->inst_type == CODA_INST_DECODER && ctx->use_bit) {
/* copy the buffers that were queued before streamon */
mutex_lock(&ctx->bitstream_mutex);
coda_fill_bitstream(ctx, &list);
mutex_unlock(&ctx->bitstream_mutex);
if (coda_get_bitstream_payload(ctx) < 512) {
ret = -EINVAL;
goto err;
}
}
ctx->streamon_out = 1;
} else {
ctx->streamon_cap = 1;
}
/* Don't start the coda unless both queues are on */
if (!(ctx->streamon_out && ctx->streamon_cap))
goto out;
q_data_dst = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE);
if ((q_data_src->width != q_data_dst->width &&
round_up(q_data_src->width, 16) != q_data_dst->width) ||
(q_data_src->height != q_data_dst->height &&
round_up(q_data_src->height, 16) != q_data_dst->height)) {
v4l2_err(v4l2_dev, "can't convert %dx%d to %dx%d\n",
q_data_src->width, q_data_src->height,
q_data_dst->width, q_data_dst->height);
ret = -EINVAL;
goto err;
}
/* Allow BIT decoder device_run with no new buffers queued */
if (ctx->inst_type == CODA_INST_DECODER && ctx->use_bit)
v4l2_m2m_set_src_buffered(ctx->fh.m2m_ctx, true);
ctx->gopcounter = ctx->params.gop_size - 1;
ctx->codec = coda_find_codec(ctx->dev, q_data_src->fourcc,
q_data_dst->fourcc);
if (!ctx->codec) {
v4l2_err(v4l2_dev, "couldn't tell instance type.\n");
ret = -EINVAL;
goto err;
}
if (q_data_dst->fourcc == V4L2_PIX_FMT_JPEG)
ctx->params.gop_size = 1;
ctx->gopcounter = ctx->params.gop_size - 1;
ret = ctx->ops->start_streaming(ctx);
if (ctx->inst_type == CODA_INST_DECODER) {
if (ret == -EAGAIN)
goto out;
}
if (ret < 0)
goto err;
out:
if (q->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) {
list_for_each_entry_safe(m2m_buf, tmp, &list, list) {
list_del(&m2m_buf->list);
v4l2_m2m_buf_done(&m2m_buf->vb, VB2_BUF_STATE_DONE);
}
}
return 0;
err:
if (q->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) {
list_for_each_entry_safe(m2m_buf, tmp, &list, list) {
list_del(&m2m_buf->list);
v4l2_m2m_buf_done(&m2m_buf->vb, VB2_BUF_STATE_QUEUED);
}
while ((buf = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx)))
v4l2_m2m_buf_done(buf, VB2_BUF_STATE_QUEUED);
} else {
while ((buf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx)))
v4l2_m2m_buf_done(buf, VB2_BUF_STATE_QUEUED);
}
return ret;
}
static void coda_stop_streaming(struct vb2_queue *q)
{
struct coda_ctx *ctx = vb2_get_drv_priv(q);
struct coda_dev *dev = ctx->dev;
struct vb2_v4l2_buffer *buf;
unsigned long flags;
bool stop;
stop = ctx->streamon_out && ctx->streamon_cap;
if (q->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) {
v4l2_dbg(1, coda_debug, &dev->v4l2_dev,
"%s: output\n", __func__);
ctx->streamon_out = 0;
coda_bit_stream_end_flag(ctx);
ctx->qsequence = 0;
while ((buf = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx)))
v4l2_m2m_buf_done(buf, VB2_BUF_STATE_ERROR);
} else {
v4l2_dbg(1, coda_debug, &dev->v4l2_dev,
"%s: capture\n", __func__);
ctx->streamon_cap = 0;
ctx->osequence = 0;
ctx->sequence_offset = 0;
while ((buf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx)))
v4l2_m2m_buf_done(buf, VB2_BUF_STATE_ERROR);
}
if (stop) {
struct coda_buffer_meta *meta;
if (ctx->ops->seq_end_work) {
queue_work(dev->workqueue, &ctx->seq_end_work);
flush_work(&ctx->seq_end_work);
}
spin_lock_irqsave(&ctx->buffer_meta_lock, flags);
while (!list_empty(&ctx->buffer_meta_list)) {
meta = list_first_entry(&ctx->buffer_meta_list,
struct coda_buffer_meta, list);
list_del(&meta->list);
kfree(meta);
}
ctx->num_metas = 0;
spin_unlock_irqrestore(&ctx->buffer_meta_lock, flags);
kfifo_init(&ctx->bitstream_fifo,
ctx->bitstream.vaddr, ctx->bitstream.size);
ctx->runcounter = 0;
ctx->aborting = 0;
}
if (!ctx->streamon_out && !ctx->streamon_cap)
ctx->bit_stream_param &= ~CODA_BIT_STREAM_END_FLAG;
}
static const struct vb2_ops coda_qops = {
.queue_setup = coda_queue_setup,
.buf_prepare = coda_buf_prepare,
.buf_queue = coda_buf_queue,
.start_streaming = coda_start_streaming,
.stop_streaming = coda_stop_streaming,
.wait_prepare = vb2_ops_wait_prepare,
.wait_finish = vb2_ops_wait_finish,
};
static int coda_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct coda_ctx *ctx =
container_of(ctrl->handler, struct coda_ctx, ctrls);
v4l2_dbg(1, coda_debug, &ctx->dev->v4l2_dev,
"s_ctrl: id = %d, val = %d\n", ctrl->id, ctrl->val);
switch (ctrl->id) {
case V4L2_CID_HFLIP:
if (ctrl->val)
ctx->params.rot_mode |= CODA_MIR_HOR;
else
ctx->params.rot_mode &= ~CODA_MIR_HOR;
break;
case V4L2_CID_VFLIP:
if (ctrl->val)
ctx->params.rot_mode |= CODA_MIR_VER;
else
ctx->params.rot_mode &= ~CODA_MIR_VER;
break;
case V4L2_CID_MPEG_VIDEO_BITRATE:
ctx->params.bitrate = ctrl->val / 1000;
break;
case V4L2_CID_MPEG_VIDEO_GOP_SIZE:
ctx->params.gop_size = ctrl->val;
break;
case V4L2_CID_MPEG_VIDEO_H264_I_FRAME_QP:
ctx->params.h264_intra_qp = ctrl->val;
break;
case V4L2_CID_MPEG_VIDEO_H264_P_FRAME_QP:
ctx->params.h264_inter_qp = ctrl->val;
break;
case V4L2_CID_MPEG_VIDEO_H264_MIN_QP:
ctx->params.h264_min_qp = ctrl->val;
break;
case V4L2_CID_MPEG_VIDEO_H264_MAX_QP:
ctx->params.h264_max_qp = ctrl->val;
break;
case V4L2_CID_MPEG_VIDEO_H264_LOOP_FILTER_ALPHA:
ctx->params.h264_deblk_alpha = ctrl->val;
break;
case V4L2_CID_MPEG_VIDEO_H264_LOOP_FILTER_BETA:
ctx->params.h264_deblk_beta = ctrl->val;
break;
case V4L2_CID_MPEG_VIDEO_H264_LOOP_FILTER_MODE:
ctx->params.h264_deblk_enabled = (ctrl->val ==
V4L2_MPEG_VIDEO_H264_LOOP_FILTER_MODE_ENABLED);
break;
case V4L2_CID_MPEG_VIDEO_H264_PROFILE:
/* TODO: switch between baseline and constrained baseline */
ctx->params.h264_profile_idc = 66;
break;
case V4L2_CID_MPEG_VIDEO_H264_LEVEL:
/* nothing to do, this is set by the encoder */
break;
case V4L2_CID_MPEG_VIDEO_MPEG4_I_FRAME_QP:
ctx->params.mpeg4_intra_qp = ctrl->val;
break;
case V4L2_CID_MPEG_VIDEO_MPEG4_P_FRAME_QP:
ctx->params.mpeg4_inter_qp = ctrl->val;
break;
case V4L2_CID_MPEG_VIDEO_MPEG4_PROFILE:
case V4L2_CID_MPEG_VIDEO_MPEG4_LEVEL:
/* nothing to do, these are fixed */
break;
case V4L2_CID_MPEG_VIDEO_MULTI_SLICE_MODE:
ctx->params.slice_mode = ctrl->val;
break;
case V4L2_CID_MPEG_VIDEO_MULTI_SLICE_MAX_MB:
ctx->params.slice_max_mb = ctrl->val;
break;
case V4L2_CID_MPEG_VIDEO_MULTI_SLICE_MAX_BYTES:
ctx->params.slice_max_bits = ctrl->val * 8;
break;
case V4L2_CID_MPEG_VIDEO_HEADER_MODE:
break;
case V4L2_CID_MPEG_VIDEO_CYCLIC_INTRA_REFRESH_MB:
ctx->params.intra_refresh = ctrl->val;
break;
case V4L2_CID_MPEG_VIDEO_FORCE_KEY_FRAME:
ctx->params.force_ipicture = true;
break;
case V4L2_CID_JPEG_COMPRESSION_QUALITY:
coda_set_jpeg_compression_quality(ctx, ctrl->val);
break;
case V4L2_CID_JPEG_RESTART_INTERVAL:
ctx->params.jpeg_restart_interval = ctrl->val;
break;
case V4L2_CID_MPEG_VIDEO_VBV_DELAY:
ctx->params.vbv_delay = ctrl->val;
break;
case V4L2_CID_MPEG_VIDEO_VBV_SIZE:
ctx->params.vbv_size = min(ctrl->val * 8192, 0x7fffffff);
break;
default:
v4l2_dbg(1, coda_debug, &ctx->dev->v4l2_dev,
"Invalid control, id=%d, val=%d\n",
ctrl->id, ctrl->val);
return -EINVAL;
}
return 0;
}
static const struct v4l2_ctrl_ops coda_ctrl_ops = {
.s_ctrl = coda_s_ctrl,
};
static void coda_encode_ctrls(struct coda_ctx *ctx)
{
int max_gop_size = (ctx->dev->devtype->product == CODA_DX6) ? 60 : 99;
v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_BITRATE, 0, 32767000, 1000, 0);
v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_GOP_SIZE, 0, max_gop_size, 1, 16);
v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_H264_I_FRAME_QP, 0, 51, 1, 25);
v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_H264_P_FRAME_QP, 0, 51, 1, 25);
if (ctx->dev->devtype->product != CODA_960) {
v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_H264_MIN_QP, 0, 51, 1, 12);
}
v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_H264_MAX_QP, 0, 51, 1, 51);
v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_H264_LOOP_FILTER_ALPHA, 0, 15, 1, 0);
v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_H264_LOOP_FILTER_BETA, 0, 15, 1, 0);
v4l2_ctrl_new_std_menu(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_H264_LOOP_FILTER_MODE,
V4L2_MPEG_VIDEO_H264_LOOP_FILTER_MODE_DISABLED, 0x0,
V4L2_MPEG_VIDEO_H264_LOOP_FILTER_MODE_ENABLED);
v4l2_ctrl_new_std_menu(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_H264_PROFILE,
V4L2_MPEG_VIDEO_H264_PROFILE_BASELINE, 0x0,
V4L2_MPEG_VIDEO_H264_PROFILE_BASELINE);
if (ctx->dev->devtype->product == CODA_7541) {
v4l2_ctrl_new_std_menu(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_H264_LEVEL,
V4L2_MPEG_VIDEO_H264_LEVEL_3_1,
~((1 << V4L2_MPEG_VIDEO_H264_LEVEL_2_0) |
(1 << V4L2_MPEG_VIDEO_H264_LEVEL_3_0) |
(1 << V4L2_MPEG_VIDEO_H264_LEVEL_3_1)),
V4L2_MPEG_VIDEO_H264_LEVEL_3_1);
}
if (ctx->dev->devtype->product == CODA_960) {
v4l2_ctrl_new_std_menu(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_H264_LEVEL,
V4L2_MPEG_VIDEO_H264_LEVEL_4_0,
~((1 << V4L2_MPEG_VIDEO_H264_LEVEL_2_0) |
(1 << V4L2_MPEG_VIDEO_H264_LEVEL_3_0) |
(1 << V4L2_MPEG_VIDEO_H264_LEVEL_3_1) |
(1 << V4L2_MPEG_VIDEO_H264_LEVEL_3_2) |
(1 << V4L2_MPEG_VIDEO_H264_LEVEL_4_0)),
V4L2_MPEG_VIDEO_H264_LEVEL_4_0);
}
v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_MPEG4_I_FRAME_QP, 1, 31, 1, 2);
v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_MPEG4_P_FRAME_QP, 1, 31, 1, 2);
v4l2_ctrl_new_std_menu(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_MPEG4_PROFILE,
V4L2_MPEG_VIDEO_MPEG4_PROFILE_SIMPLE, 0x0,
V4L2_MPEG_VIDEO_MPEG4_PROFILE_SIMPLE);
if (ctx->dev->devtype->product == CODA_7541 ||
ctx->dev->devtype->product == CODA_960) {
v4l2_ctrl_new_std_menu(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_MPEG4_LEVEL,
V4L2_MPEG_VIDEO_MPEG4_LEVEL_5,
~(1 << V4L2_MPEG_VIDEO_MPEG4_LEVEL_5),
V4L2_MPEG_VIDEO_MPEG4_LEVEL_5);
}
v4l2_ctrl_new_std_menu(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_MULTI_SLICE_MODE,
V4L2_MPEG_VIDEO_MULTI_SICE_MODE_MAX_BYTES, 0x0,
V4L2_MPEG_VIDEO_MULTI_SLICE_MODE_SINGLE);
v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_MULTI_SLICE_MAX_MB, 1, 0x3fffffff, 1, 1);
v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_MULTI_SLICE_MAX_BYTES, 1, 0x3fffffff, 1,
500);
v4l2_ctrl_new_std_menu(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_HEADER_MODE,
V4L2_MPEG_VIDEO_HEADER_MODE_JOINED_WITH_1ST_FRAME,
(1 << V4L2_MPEG_VIDEO_HEADER_MODE_SEPARATE),
V4L2_MPEG_VIDEO_HEADER_MODE_JOINED_WITH_1ST_FRAME);
v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_CYCLIC_INTRA_REFRESH_MB, 0,
1920 * 1088 / 256, 1, 0);
v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_VBV_DELAY, 0, 0x7fff, 1, 0);
/*
* The maximum VBV size value is 0x7fffffff bits,
* one bit less than 262144 KiB
*/
v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_MPEG_VIDEO_VBV_SIZE, 0, 262144, 1, 0);
}
static void coda_jpeg_encode_ctrls(struct coda_ctx *ctx)
{
v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_JPEG_COMPRESSION_QUALITY, 5, 100, 1, 50);
v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_JPEG_RESTART_INTERVAL, 0, 100, 1, 0);
}
static int coda_ctrls_setup(struct coda_ctx *ctx)
{
v4l2_ctrl_handler_init(&ctx->ctrls, 2);
v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_HFLIP, 0, 1, 1, 0);
v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops,
V4L2_CID_VFLIP, 0, 1, 1, 0);
if (ctx->inst_type == CODA_INST_ENCODER) {
if (ctx->cvd->dst_formats[0] == V4L2_PIX_FMT_JPEG)
coda_jpeg_encode_ctrls(ctx);
else
coda_encode_ctrls(ctx);
}
if (ctx->ctrls.error) {
v4l2_err(&ctx->dev->v4l2_dev,
"control initialization error (%d)",
ctx->ctrls.error);
return -EINVAL;
}
return v4l2_ctrl_handler_setup(&ctx->ctrls);
}
static int coda_queue_init(struct coda_ctx *ctx, struct vb2_queue *vq)
{
vq->drv_priv = ctx;
vq->ops = &coda_qops;
vq->buf_struct_size = sizeof(struct v4l2_m2m_buffer);
vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
vq->lock = &ctx->dev->dev_mutex;
/* One way to indicate end-of-stream for coda is to set the
* bytesused == 0. However by default videobuf2 handles bytesused
* equal to 0 as a special case and changes its value to the size
* of the buffer. Set the allow_zero_bytesused flag, so
* that videobuf2 will keep the value of bytesused intact.
*/
vq->allow_zero_bytesused = 1;
/*
* We might be fine with no buffers on some of the queues, but that
* would need to be reflected in job_ready(). Currently we expect all
* queues to have at least one buffer queued.
*/
vq->min_buffers_needed = 1;
vq->dev = &ctx->dev->plat_dev->dev;
return vb2_queue_init(vq);
}
int coda_encoder_queue_init(void *priv, struct vb2_queue *src_vq,
struct vb2_queue *dst_vq)
{
int ret;
src_vq->type = V4L2_BUF_TYPE_VIDEO_OUTPUT;
src_vq->io_modes = VB2_DMABUF | VB2_MMAP;
src_vq->mem_ops = &vb2_dma_contig_memops;
ret = coda_queue_init(priv, src_vq);
if (ret)
return ret;
dst_vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
dst_vq->io_modes = VB2_DMABUF | VB2_MMAP;
dst_vq->mem_ops = &vb2_dma_contig_memops;
return coda_queue_init(priv, dst_vq);
}
int coda_decoder_queue_init(void *priv, struct vb2_queue *src_vq,
struct vb2_queue *dst_vq)
{
int ret;
src_vq->type = V4L2_BUF_TYPE_VIDEO_OUTPUT;
src_vq->io_modes = VB2_DMABUF | VB2_MMAP | VB2_USERPTR;
src_vq->mem_ops = &vb2_vmalloc_memops;
ret = coda_queue_init(priv, src_vq);
if (ret)
return ret;
dst_vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
dst_vq->io_modes = VB2_DMABUF | VB2_MMAP;
dst_vq->mem_ops = &vb2_dma_contig_memops;
return coda_queue_init(priv, dst_vq);
}
static int coda_next_free_instance(struct coda_dev *dev)
{
int idx = ffz(dev->instance_mask);
if ((idx < 0) ||
(dev->devtype->product == CODA_DX6 && idx > CODADX6_MAX_INSTANCES))
return -EBUSY;
return idx;
}
/*
* File operations
*/
static int coda_open(struct file *file)
{
struct video_device *vdev = video_devdata(file);
struct coda_dev *dev = video_get_drvdata(vdev);
struct coda_ctx *ctx = NULL;
char *name;
int ret;
int idx;
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
idx = coda_next_free_instance(dev);
if (idx < 0) {
ret = idx;
goto err_coda_max;
}
set_bit(idx, &dev->instance_mask);
name = kasprintf(GFP_KERNEL, "context%d", idx);
if (!name) {
ret = -ENOMEM;
goto err_coda_name_init;
}
ctx->debugfs_entry = debugfs_create_dir(name, dev->debugfs_root);
kfree(name);
ctx->cvd = to_coda_video_device(vdev);
ctx->inst_type = ctx->cvd->type;
ctx->ops = ctx->cvd->ops;
ctx->use_bit = !ctx->cvd->direct;
init_completion(&ctx->completion);
INIT_WORK(&ctx->pic_run_work, coda_pic_run_work);
if (ctx->ops->seq_end_work)
INIT_WORK(&ctx->seq_end_work, ctx->ops->seq_end_work);
v4l2_fh_init(&ctx->fh, video_devdata(file));
file->private_data = &ctx->fh;
v4l2_fh_add(&ctx->fh);
ctx->dev = dev;
ctx->idx = idx;
switch (dev->devtype->product) {
case CODA_960:
/*
* Enabling the BWB when decoding can hang the firmware with
* certain streams. The issue was tracked as ENGR00293425 by
* Freescale. As a workaround, disable BWB for all decoders.
* The enable_bwb module parameter allows to override this.
*/
if (enable_bwb || ctx->inst_type == CODA_INST_ENCODER)
ctx->frame_mem_ctrl = CODA9_FRAME_ENABLE_BWB;
/* fallthrough */
case CODA_7541:
ctx->reg_idx = 0;
break;
default:
ctx->reg_idx = idx;
}
if (ctx->dev->vdoa && !disable_vdoa) {
ctx->vdoa = vdoa_context_create(dev->vdoa);
if (!ctx->vdoa)
v4l2_warn(&dev->v4l2_dev,
"Failed to create vdoa context: not using vdoa");
}
ctx->use_vdoa = false;
/* Power up and upload firmware if necessary */
ret = pm_runtime_get_sync(&dev->plat_dev->dev);
if (ret < 0) {
v4l2_err(&dev->v4l2_dev, "failed to power up: %d\n", ret);
goto err_pm_get;
}
ret = clk_prepare_enable(dev->clk_per);
if (ret)
goto err_clk_per;
ret = clk_prepare_enable(dev->clk_ahb);
if (ret)
goto err_clk_ahb;
set_default_params(ctx);
ctx->fh.m2m_ctx = v4l2_m2m_ctx_init(dev->m2m_dev, ctx,
ctx->ops->queue_init);
if (IS_ERR(ctx->fh.m2m_ctx)) {
ret = PTR_ERR(ctx->fh.m2m_ctx);
v4l2_err(&dev->v4l2_dev, "%s return error (%d)\n",
__func__, ret);
goto err_ctx_init;
}
ret = coda_ctrls_setup(ctx);
if (ret) {
v4l2_err(&dev->v4l2_dev, "failed to setup coda controls\n");
goto err_ctrls_setup;
}
ctx->fh.ctrl_handler = &ctx->ctrls;
mutex_init(&ctx->bitstream_mutex);
mutex_init(&ctx->buffer_mutex);
INIT_LIST_HEAD(&ctx->buffer_meta_list);
spin_lock_init(&ctx->buffer_meta_lock);
coda_lock(ctx);
list_add(&ctx->list, &dev->instances);
coda_unlock(ctx);
v4l2_dbg(1, coda_debug, &dev->v4l2_dev, "Created instance %d (%p)\n",
ctx->idx, ctx);
return 0;
err_ctrls_setup:
v4l2_m2m_ctx_release(ctx->fh.m2m_ctx);
err_ctx_init:
clk_disable_unprepare(dev->clk_ahb);
err_clk_ahb:
clk_disable_unprepare(dev->clk_per);
err_clk_per:
pm_runtime_put_sync(&dev->plat_dev->dev);
err_pm_get:
v4l2_fh_del(&ctx->fh);
v4l2_fh_exit(&ctx->fh);
clear_bit(ctx->idx, &dev->instance_mask);
err_coda_name_init:
err_coda_max:
kfree(ctx);
return ret;
}
static int coda_release(struct file *file)
{
struct coda_dev *dev = video_drvdata(file);
struct coda_ctx *ctx = fh_to_ctx(file->private_data);
v4l2_dbg(1, coda_debug, &dev->v4l2_dev, "Releasing instance %p\n",
ctx);
if (ctx->inst_type == CODA_INST_DECODER && ctx->use_bit)
coda_bit_stream_end_flag(ctx);
/* If this instance is running, call .job_abort and wait for it to end */
v4l2_m2m_ctx_release(ctx->fh.m2m_ctx);
if (ctx->vdoa)
vdoa_context_destroy(ctx->vdoa);
/* In case the instance was not running, we still need to call SEQ_END */
if (ctx->ops->seq_end_work) {
queue_work(dev->workqueue, &ctx->seq_end_work);
flush_work(&ctx->seq_end_work);
}
coda_lock(ctx);
list_del(&ctx->list);
coda_unlock(ctx);
if (ctx->dev->devtype->product == CODA_DX6)
coda_free_aux_buf(dev, &ctx->workbuf);
v4l2_ctrl_handler_free(&ctx->ctrls);
clk_disable_unprepare(dev->clk_ahb);
clk_disable_unprepare(dev->clk_per);
pm_runtime_put_sync(&dev->plat_dev->dev);
v4l2_fh_del(&ctx->fh);
v4l2_fh_exit(&ctx->fh);
clear_bit(ctx->idx, &dev->instance_mask);
if (ctx->ops->release)
ctx->ops->release(ctx);
debugfs_remove_recursive(ctx->debugfs_entry);
kfree(ctx);
return 0;
}
static const struct v4l2_file_operations coda_fops = {
.owner = THIS_MODULE,
.open = coda_open,
.release = coda_release,
.poll = v4l2_m2m_fop_poll,
.unlocked_ioctl = video_ioctl2,
.mmap = v4l2_m2m_fop_mmap,
};
static int coda_hw_init(struct coda_dev *dev)
{
u32 data;
u16 *p;
int i, ret;
ret = clk_prepare_enable(dev->clk_per);
if (ret)
goto err_clk_per;
ret = clk_prepare_enable(dev->clk_ahb);
if (ret)
goto err_clk_ahb;
reset_control_reset(dev->rstc);
/*
* Copy the first CODA_ISRAM_SIZE in the internal SRAM.
* The 16-bit chars in the code buffer are in memory access
* order, re-sort them to CODA order for register download.
* Data in this SRAM survives a reboot.
*/
p = (u16 *)dev->codebuf.vaddr;
if (dev->devtype->product == CODA_DX6) {
for (i = 0; i < (CODA_ISRAM_SIZE / 2); i++) {
data = CODA_DOWN_ADDRESS_SET(i) |
CODA_DOWN_DATA_SET(p[i ^ 1]);
coda_write(dev, data, CODA_REG_BIT_CODE_DOWN);
}
} else {
for (i = 0; i < (CODA_ISRAM_SIZE / 2); i++) {
data = CODA_DOWN_ADDRESS_SET(i) |
CODA_DOWN_DATA_SET(p[round_down(i, 4) +
3 - (i % 4)]);
coda_write(dev, data, CODA_REG_BIT_CODE_DOWN);
}
}
/* Clear registers */
for (i = 0; i < 64; i++)
coda_write(dev, 0, CODA_REG_BIT_CODE_BUF_ADDR + i * 4);
/* Tell the BIT where to find everything it needs */
if (dev->devtype->product == CODA_960 ||
dev->devtype->product == CODA_7541) {
coda_write(dev, dev->tempbuf.paddr,
CODA_REG_BIT_TEMP_BUF_ADDR);
coda_write(dev, 0, CODA_REG_BIT_BIT_STREAM_PARAM);
} else {
coda_write(dev, dev->workbuf.paddr,
CODA_REG_BIT_WORK_BUF_ADDR);
}
coda_write(dev, dev->codebuf.paddr,
CODA_REG_BIT_CODE_BUF_ADDR);
coda_write(dev, 0, CODA_REG_BIT_CODE_RUN);
/* Set default values */
switch (dev->devtype->product) {
case CODA_DX6:
coda_write(dev, CODADX6_STREAM_BUF_PIC_FLUSH,
CODA_REG_BIT_STREAM_CTRL);
break;
default:
coda_write(dev, CODA7_STREAM_BUF_PIC_FLUSH,
CODA_REG_BIT_STREAM_CTRL);
}
if (dev->devtype->product == CODA_960)
coda_write(dev, CODA9_FRAME_ENABLE_BWB,
CODA_REG_BIT_FRAME_MEM_CTRL);
else
coda_write(dev, 0, CODA_REG_BIT_FRAME_MEM_CTRL);
if (dev->devtype->product != CODA_DX6)
coda_write(dev, 0, CODA7_REG_BIT_AXI_SRAM_USE);
coda_write(dev, CODA_INT_INTERRUPT_ENABLE,
CODA_REG_BIT_INT_ENABLE);
/* Reset VPU and start processor */
data = coda_read(dev, CODA_REG_BIT_CODE_RESET);
data |= CODA_REG_RESET_ENABLE;
coda_write(dev, data, CODA_REG_BIT_CODE_RESET);
udelay(10);
data &= ~CODA_REG_RESET_ENABLE;
coda_write(dev, data, CODA_REG_BIT_CODE_RESET);
coda_write(dev, CODA_REG_RUN_ENABLE, CODA_REG_BIT_CODE_RUN);
clk_disable_unprepare(dev->clk_ahb);
clk_disable_unprepare(dev->clk_per);
return 0;
err_clk_ahb:
clk_disable_unprepare(dev->clk_per);
err_clk_per:
return ret;
}
static int coda_register_device(struct coda_dev *dev, int i)
{
struct video_device *vfd = &dev->vfd[i];
if (i >= dev->devtype->num_vdevs)
return -EINVAL;
strlcpy(vfd->name, dev->devtype->vdevs[i]->name, sizeof(vfd->name));
vfd->fops = &coda_fops;
vfd->ioctl_ops = &coda_ioctl_ops;
vfd->release = video_device_release_empty,
vfd->lock = &dev->dev_mutex;
vfd->v4l2_dev = &dev->v4l2_dev;
vfd->vfl_dir = VFL_DIR_M2M;
video_set_drvdata(vfd, dev);
/* Not applicable, use the selection API instead */
v4l2_disable_ioctl(vfd, VIDIOC_CROPCAP);
v4l2_disable_ioctl(vfd, VIDIOC_G_CROP);
v4l2_disable_ioctl(vfd, VIDIOC_S_CROP);
return video_register_device(vfd, VFL_TYPE_GRABBER, 0);
}
static void coda_copy_firmware(struct coda_dev *dev, const u8 * const buf,
size_t size)
{
u32 *src = (u32 *)buf;
/* Check if the firmware has a 16-byte Freescale header, skip it */
if (buf[0] == 'M' && buf[1] == 'X')
src += 4;
/*
* Check whether the firmware is in native order or pre-reordered for
* memory access. The first instruction opcode always is 0xe40e.
*/
if (__le16_to_cpup((__le16 *)src) == 0xe40e) {
u32 *dst = dev->codebuf.vaddr;
int i;
/* Firmware in native order, reorder while copying */
if (dev->devtype->product == CODA_DX6) {
for (i = 0; i < (size - 16) / 4; i++)
dst[i] = (src[i] << 16) | (src[i] >> 16);
} else {
for (i = 0; i < (size - 16) / 4; i += 2) {
dst[i] = (src[i + 1] << 16) | (src[i + 1] >> 16);
dst[i + 1] = (src[i] << 16) | (src[i] >> 16);
}
}
} else {
/* Copy the already reordered firmware image */
memcpy(dev->codebuf.vaddr, src, size);
}
}
static void coda_fw_callback(const struct firmware *fw, void *context);
static int coda_firmware_request(struct coda_dev *dev)
{
char *fw;
if (dev->firmware >= ARRAY_SIZE(dev->devtype->firmware))
return -EINVAL;
fw = dev->devtype->firmware[dev->firmware];
dev_dbg(&dev->plat_dev->dev, "requesting firmware '%s' for %s\n", fw,
coda_product_name(dev->devtype->product));
return request_firmware_nowait(THIS_MODULE, true, fw,
&dev->plat_dev->dev, GFP_KERNEL, dev,
coda_fw_callback);
}
static void coda_fw_callback(const struct firmware *fw, void *context)
{
struct coda_dev *dev = context;
struct platform_device *pdev = dev->plat_dev;
int i, ret;
if (!fw) {
dev->firmware++;
ret = coda_firmware_request(dev);
if (ret < 0) {
v4l2_err(&dev->v4l2_dev, "firmware request failed\n");
goto put_pm;
}
return;
}
if (dev->firmware > 0) {
/*
* Since we can't suppress warnings for failed asynchronous
* firmware requests, report that the fallback firmware was
* found.
*/
dev_info(&pdev->dev, "Using fallback firmware %s\n",
dev->devtype->firmware[dev->firmware]);
}
/* allocate auxiliary per-device code buffer for the BIT processor */
ret = coda_alloc_aux_buf(dev, &dev->codebuf, fw->size, "codebuf",
dev->debugfs_root);
if (ret < 0)
goto put_pm;
coda_copy_firmware(dev, fw->data, fw->size);
release_firmware(fw);
ret = coda_hw_init(dev);
if (ret < 0) {
v4l2_err(&dev->v4l2_dev, "HW initialization failed\n");
goto put_pm;
}
ret = coda_check_firmware(dev);
if (ret < 0)
goto put_pm;
dev->m2m_dev = v4l2_m2m_init(&coda_m2m_ops);
if (IS_ERR(dev->m2m_dev)) {
v4l2_err(&dev->v4l2_dev, "Failed to init mem2mem device\n");
goto put_pm;
}
for (i = 0; i < dev->devtype->num_vdevs; i++) {
ret = coda_register_device(dev, i);
if (ret) {
v4l2_err(&dev->v4l2_dev,
"Failed to register %s video device: %d\n",
dev->devtype->vdevs[i]->name, ret);
goto rel_vfd;
}
}
v4l2_info(&dev->v4l2_dev, "codec registered as /dev/video[%d-%d]\n",
dev->vfd[0].num, dev->vfd[i - 1].num);
pm_runtime_put_sync(&pdev->dev);
return;
rel_vfd:
while (--i >= 0)
video_unregister_device(&dev->vfd[i]);
v4l2_m2m_release(dev->m2m_dev);
put_pm:
pm_runtime_put_sync(&pdev->dev);
}
enum coda_platform {
CODA_IMX27,
CODA_IMX53,
CODA_IMX6Q,
CODA_IMX6DL,
};
static const struct coda_devtype coda_devdata[] = {
[CODA_IMX27] = {
.firmware = {
"vpu_fw_imx27_TO2.bin",
"vpu/vpu_fw_imx27_TO2.bin",
"v4l-codadx6-imx27.bin"
},
.product = CODA_DX6,
.codecs = codadx6_codecs,
.num_codecs = ARRAY_SIZE(codadx6_codecs),
.vdevs = codadx6_video_devices,
.num_vdevs = ARRAY_SIZE(codadx6_video_devices),
.workbuf_size = 288 * 1024 + FMO_SLICE_SAVE_BUF_SIZE * 8 * 1024,
.iram_size = 0xb000,
},
[CODA_IMX53] = {
.firmware = {
"vpu_fw_imx53.bin",
"vpu/vpu_fw_imx53.bin",
"v4l-coda7541-imx53.bin"
},
.product = CODA_7541,
.codecs = coda7_codecs,
.num_codecs = ARRAY_SIZE(coda7_codecs),
.vdevs = coda7_video_devices,
.num_vdevs = ARRAY_SIZE(coda7_video_devices),
.workbuf_size = 128 * 1024,
.tempbuf_size = 304 * 1024,
.iram_size = 0x14000,
},
[CODA_IMX6Q] = {
.firmware = {
"vpu_fw_imx6q.bin",
"vpu/vpu_fw_imx6q.bin",
"v4l-coda960-imx6q.bin"
},
.product = CODA_960,
.codecs = coda9_codecs,
.num_codecs = ARRAY_SIZE(coda9_codecs),
.vdevs = coda9_video_devices,
.num_vdevs = ARRAY_SIZE(coda9_video_devices),
.workbuf_size = 80 * 1024,
.tempbuf_size = 204 * 1024,
.iram_size = 0x21000,
},
[CODA_IMX6DL] = {
.firmware = {
"vpu_fw_imx6d.bin",
"vpu/vpu_fw_imx6d.bin",
"v4l-coda960-imx6dl.bin"
},
.product = CODA_960,
.codecs = coda9_codecs,
.num_codecs = ARRAY_SIZE(coda9_codecs),
.vdevs = coda9_video_devices,
.num_vdevs = ARRAY_SIZE(coda9_video_devices),
.workbuf_size = 80 * 1024,
.tempbuf_size = 204 * 1024,
.iram_size = 0x1f000, /* leave 4k for suspend code */
},
};
static const struct platform_device_id coda_platform_ids[] = {
{ .name = "coda-imx27", .driver_data = CODA_IMX27 },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(platform, coda_platform_ids);
#ifdef CONFIG_OF
static const struct of_device_id coda_dt_ids[] = {
{ .compatible = "fsl,imx27-vpu", .data = &coda_devdata[CODA_IMX27] },
{ .compatible = "fsl,imx53-vpu", .data = &coda_devdata[CODA_IMX53] },
{ .compatible = "fsl,imx6q-vpu", .data = &coda_devdata[CODA_IMX6Q] },
{ .compatible = "fsl,imx6dl-vpu", .data = &coda_devdata[CODA_IMX6DL] },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, coda_dt_ids);
#endif
static int coda_probe(struct platform_device *pdev)
{
const struct of_device_id *of_id =
of_match_device(of_match_ptr(coda_dt_ids), &pdev->dev);
const struct platform_device_id *pdev_id;
struct coda_platform_data *pdata = pdev->dev.platform_data;
struct device_node *np = pdev->dev.of_node;
struct gen_pool *pool;
struct coda_dev *dev;
struct resource *res;
int ret, irq;
dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
if (!dev)
return -ENOMEM;
pdev_id = of_id ? of_id->data : platform_get_device_id(pdev);
if (of_id)
dev->devtype = of_id->data;
else if (pdev_id)
dev->devtype = &coda_devdata[pdev_id->driver_data];
else
return -EINVAL;
spin_lock_init(&dev->irqlock);
INIT_LIST_HEAD(&dev->instances);
dev->plat_dev = pdev;
dev->clk_per = devm_clk_get(&pdev->dev, "per");
if (IS_ERR(dev->clk_per)) {
dev_err(&pdev->dev, "Could not get per clock\n");
return PTR_ERR(dev->clk_per);
}
dev->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
if (IS_ERR(dev->clk_ahb)) {
dev_err(&pdev->dev, "Could not get ahb clock\n");
return PTR_ERR(dev->clk_ahb);
}
/* Get memory for physical registers */
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
dev->regs_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(dev->regs_base))
return PTR_ERR(dev->regs_base);
/* IRQ */
irq = platform_get_irq_byname(pdev, "bit");
if (irq < 0)
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(&pdev->dev, "failed to get irq resource\n");
return irq;
}
ret = devm_request_threaded_irq(&pdev->dev, irq, NULL, coda_irq_handler,
IRQF_ONESHOT, dev_name(&pdev->dev), dev);
if (ret < 0) {
dev_err(&pdev->dev, "failed to request irq: %d\n", ret);
return ret;
}
dev->rstc = devm_reset_control_get_optional_exclusive(&pdev->dev,
NULL);
if (IS_ERR(dev->rstc)) {
ret = PTR_ERR(dev->rstc);
dev_err(&pdev->dev, "failed get reset control: %d\n", ret);
return ret;
}
/* Get IRAM pool from device tree or platform data */
pool = of_gen_pool_get(np, "iram", 0);
if (!pool && pdata)
pool = gen_pool_get(pdata->iram_dev, NULL);
if (!pool) {
dev_err(&pdev->dev, "iram pool not available\n");
return -ENOMEM;
}
dev->iram_pool = pool;
/* Get vdoa_data if supported by the platform */
dev->vdoa = coda_get_vdoa_data();
if (PTR_ERR(dev->vdoa) == -EPROBE_DEFER)
return -EPROBE_DEFER;
ret = v4l2_device_register(&pdev->dev, &dev->v4l2_dev);
if (ret)
return ret;
mutex_init(&dev->dev_mutex);
mutex_init(&dev->coda_mutex);
dev->debugfs_root = debugfs_create_dir("coda", NULL);
if (!dev->debugfs_root)
dev_warn(&pdev->dev, "failed to create debugfs root\n");
/* allocate auxiliary per-device buffers for the BIT processor */
if (dev->devtype->product == CODA_DX6) {
ret = coda_alloc_aux_buf(dev, &dev->workbuf,
dev->devtype->workbuf_size, "workbuf",
dev->debugfs_root);
if (ret < 0)
goto err_v4l2_register;
}
if (dev->devtype->tempbuf_size) {
ret = coda_alloc_aux_buf(dev, &dev->tempbuf,
dev->devtype->tempbuf_size, "tempbuf",
dev->debugfs_root);
if (ret < 0)
goto err_v4l2_register;
}
dev->iram.size = dev->devtype->iram_size;
dev->iram.vaddr = gen_pool_dma_alloc(dev->iram_pool, dev->iram.size,
&dev->iram.paddr);
if (!dev->iram.vaddr) {
dev_warn(&pdev->dev, "unable to alloc iram\n");
} else {
memset(dev->iram.vaddr, 0, dev->iram.size);
dev->iram.blob.data = dev->iram.vaddr;
dev->iram.blob.size = dev->iram.size;
dev->iram.dentry = debugfs_create_blob("iram", 0644,
dev->debugfs_root,
&dev->iram.blob);
}
dev->workqueue = alloc_workqueue("coda", WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
if (!dev->workqueue) {
dev_err(&pdev->dev, "unable to alloc workqueue\n");
ret = -ENOMEM;
goto err_v4l2_register;
}
platform_set_drvdata(pdev, dev);
/*
* Start activated so we can directly call coda_hw_init in
* coda_fw_callback regardless of whether CONFIG_PM is
* enabled or whether the device is associated with a PM domain.
*/
pm_runtime_get_noresume(&pdev->dev);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
ret = coda_firmware_request(dev);
if (ret)
goto err_alloc_workqueue;
return 0;
err_alloc_workqueue:
destroy_workqueue(dev->workqueue);
err_v4l2_register:
v4l2_device_unregister(&dev->v4l2_dev);
return ret;
}
static int coda_remove(struct platform_device *pdev)
{
struct coda_dev *dev = platform_get_drvdata(pdev);
int i;
for (i = 0; i < ARRAY_SIZE(dev->vfd); i++) {
if (video_get_drvdata(&dev->vfd[i]))
video_unregister_device(&dev->vfd[i]);
}
if (dev->m2m_dev)
v4l2_m2m_release(dev->m2m_dev);
pm_runtime_disable(&pdev->dev);
v4l2_device_unregister(&dev->v4l2_dev);
destroy_workqueue(dev->workqueue);
if (dev->iram.vaddr)
gen_pool_free(dev->iram_pool, (unsigned long)dev->iram.vaddr,
dev->iram.size);
coda_free_aux_buf(dev, &dev->codebuf);
coda_free_aux_buf(dev, &dev->tempbuf);
coda_free_aux_buf(dev, &dev->workbuf);
debugfs_remove_recursive(dev->debugfs_root);
return 0;
}
#ifdef CONFIG_PM
static int coda_runtime_resume(struct device *dev)
{
struct coda_dev *cdev = dev_get_drvdata(dev);
int ret = 0;
if (dev->pm_domain && cdev->codebuf.vaddr) {
ret = coda_hw_init(cdev);
if (ret)
v4l2_err(&cdev->v4l2_dev, "HW initialization failed\n");
}
return ret;
}
#endif
static const struct dev_pm_ops coda_pm_ops = {
SET_RUNTIME_PM_OPS(NULL, coda_runtime_resume, NULL)
};
static struct platform_driver coda_driver = {
.probe = coda_probe,
.remove = coda_remove,
.driver = {
.name = CODA_NAME,
.of_match_table = of_match_ptr(coda_dt_ids),
.pm = &coda_pm_ops,
},
.id_table = coda_platform_ids,
};
module_platform_driver(coda_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Javier Martin <javier.martin@vista-silicon.com>");
MODULE_DESCRIPTION("Coda multi-standard codec V4L2 driver");