forked from Minki/linux
5317464dcc
Signed-off-by: Borislav Petkov <petkovbb@gmail.com> Signed-off-by: Bartlomiej Zolnierkiewicz <bzolnier@gmail.com>
1239 lines
34 KiB
C
1239 lines
34 KiB
C
/*
|
|
* IDE I/O functions
|
|
*
|
|
* Basic PIO and command management functionality.
|
|
*
|
|
* This code was split off from ide.c. See ide.c for history and original
|
|
* copyrights.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation; either version 2, or (at your option) any
|
|
* later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* For the avoidance of doubt the "preferred form" of this code is one which
|
|
* is in an open non patent encumbered format. Where cryptographic key signing
|
|
* forms part of the process of creating an executable the information
|
|
* including keys needed to generate an equivalently functional executable
|
|
* are deemed to be part of the source code.
|
|
*/
|
|
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/types.h>
|
|
#include <linux/string.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/major.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/genhd.h>
|
|
#include <linux/blkpg.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/init.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/ide.h>
|
|
#include <linux/hdreg.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/cdrom.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/device.h>
|
|
#include <linux/kmod.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/bitops.h>
|
|
|
|
#include <asm/byteorder.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/io.h>
|
|
|
|
static int __ide_end_request(ide_drive_t *drive, struct request *rq,
|
|
int uptodate, unsigned int nr_bytes, int dequeue)
|
|
{
|
|
int ret = 1;
|
|
int error = 0;
|
|
|
|
if (uptodate <= 0)
|
|
error = uptodate ? uptodate : -EIO;
|
|
|
|
/*
|
|
* if failfast is set on a request, override number of sectors and
|
|
* complete the whole request right now
|
|
*/
|
|
if (blk_noretry_request(rq) && error)
|
|
nr_bytes = rq->hard_nr_sectors << 9;
|
|
|
|
if (!blk_fs_request(rq) && error && !rq->errors)
|
|
rq->errors = -EIO;
|
|
|
|
/*
|
|
* decide whether to reenable DMA -- 3 is a random magic for now,
|
|
* if we DMA timeout more than 3 times, just stay in PIO
|
|
*/
|
|
if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
|
|
drive->retry_pio <= 3) {
|
|
drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
|
|
ide_dma_on(drive);
|
|
}
|
|
|
|
if (!blk_end_request(rq, error, nr_bytes))
|
|
ret = 0;
|
|
|
|
if (ret == 0 && dequeue)
|
|
drive->hwif->hwgroup->rq = NULL;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ide_end_request - complete an IDE I/O
|
|
* @drive: IDE device for the I/O
|
|
* @uptodate:
|
|
* @nr_sectors: number of sectors completed
|
|
*
|
|
* This is our end_request wrapper function. We complete the I/O
|
|
* update random number input and dequeue the request, which if
|
|
* it was tagged may be out of order.
|
|
*/
|
|
|
|
int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
|
|
{
|
|
unsigned int nr_bytes = nr_sectors << 9;
|
|
struct request *rq = drive->hwif->hwgroup->rq;
|
|
|
|
if (!nr_bytes) {
|
|
if (blk_pc_request(rq))
|
|
nr_bytes = rq->data_len;
|
|
else
|
|
nr_bytes = rq->hard_cur_sectors << 9;
|
|
}
|
|
|
|
return __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
|
|
}
|
|
EXPORT_SYMBOL(ide_end_request);
|
|
|
|
/**
|
|
* ide_end_dequeued_request - complete an IDE I/O
|
|
* @drive: IDE device for the I/O
|
|
* @uptodate:
|
|
* @nr_sectors: number of sectors completed
|
|
*
|
|
* Complete an I/O that is no longer on the request queue. This
|
|
* typically occurs when we pull the request and issue a REQUEST_SENSE.
|
|
* We must still finish the old request but we must not tamper with the
|
|
* queue in the meantime.
|
|
*
|
|
* NOTE: This path does not handle barrier, but barrier is not supported
|
|
* on ide-cd anyway.
|
|
*/
|
|
|
|
int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
|
|
int uptodate, int nr_sectors)
|
|
{
|
|
BUG_ON(!blk_rq_started(rq));
|
|
|
|
return __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
|
|
|
|
/**
|
|
* ide_end_drive_cmd - end an explicit drive command
|
|
* @drive: command
|
|
* @stat: status bits
|
|
* @err: error bits
|
|
*
|
|
* Clean up after success/failure of an explicit drive command.
|
|
* These get thrown onto the queue so they are synchronized with
|
|
* real I/O operations on the drive.
|
|
*
|
|
* In LBA48 mode we have to read the register set twice to get
|
|
* all the extra information out.
|
|
*/
|
|
|
|
void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
|
|
{
|
|
ide_hwgroup_t *hwgroup = drive->hwif->hwgroup;
|
|
struct request *rq = hwgroup->rq;
|
|
|
|
if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
|
|
ide_task_t *task = (ide_task_t *)rq->special;
|
|
|
|
if (task) {
|
|
struct ide_taskfile *tf = &task->tf;
|
|
|
|
tf->error = err;
|
|
tf->status = stat;
|
|
|
|
drive->hwif->tp_ops->tf_read(drive, task);
|
|
|
|
if (task->tf_flags & IDE_TFLAG_DYN)
|
|
kfree(task);
|
|
}
|
|
} else if (blk_pm_request(rq)) {
|
|
struct request_pm_state *pm = rq->data;
|
|
|
|
ide_complete_power_step(drive, rq);
|
|
if (pm->pm_step == IDE_PM_COMPLETED)
|
|
ide_complete_pm_request(drive, rq);
|
|
return;
|
|
}
|
|
|
|
hwgroup->rq = NULL;
|
|
|
|
rq->errors = err;
|
|
|
|
if (unlikely(blk_end_request(rq, (rq->errors ? -EIO : 0),
|
|
blk_rq_bytes(rq))))
|
|
BUG();
|
|
}
|
|
EXPORT_SYMBOL(ide_end_drive_cmd);
|
|
|
|
static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
|
|
{
|
|
if (rq->rq_disk) {
|
|
ide_driver_t *drv;
|
|
|
|
drv = *(ide_driver_t **)rq->rq_disk->private_data;
|
|
drv->end_request(drive, 0, 0);
|
|
} else
|
|
ide_end_request(drive, 0, 0);
|
|
}
|
|
|
|
static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
|
|
{
|
|
ide_hwif_t *hwif = drive->hwif;
|
|
|
|
if ((stat & ATA_BUSY) ||
|
|
((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
|
|
/* other bits are useless when BUSY */
|
|
rq->errors |= ERROR_RESET;
|
|
} else if (stat & ATA_ERR) {
|
|
/* err has different meaning on cdrom and tape */
|
|
if (err == ATA_ABORTED) {
|
|
if ((drive->dev_flags & IDE_DFLAG_LBA) &&
|
|
/* some newer drives don't support ATA_CMD_INIT_DEV_PARAMS */
|
|
hwif->tp_ops->read_status(hwif) == ATA_CMD_INIT_DEV_PARAMS)
|
|
return ide_stopped;
|
|
} else if ((err & BAD_CRC) == BAD_CRC) {
|
|
/* UDMA crc error, just retry the operation */
|
|
drive->crc_count++;
|
|
} else if (err & (ATA_BBK | ATA_UNC)) {
|
|
/* retries won't help these */
|
|
rq->errors = ERROR_MAX;
|
|
} else if (err & ATA_TRK0NF) {
|
|
/* help it find track zero */
|
|
rq->errors |= ERROR_RECAL;
|
|
}
|
|
}
|
|
|
|
if ((stat & ATA_DRQ) && rq_data_dir(rq) == READ &&
|
|
(hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) {
|
|
int nsect = drive->mult_count ? drive->mult_count : 1;
|
|
|
|
ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE);
|
|
}
|
|
|
|
if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
|
|
ide_kill_rq(drive, rq);
|
|
return ide_stopped;
|
|
}
|
|
|
|
if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
|
|
rq->errors |= ERROR_RESET;
|
|
|
|
if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
|
|
++rq->errors;
|
|
return ide_do_reset(drive);
|
|
}
|
|
|
|
if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
|
|
drive->special.b.recalibrate = 1;
|
|
|
|
++rq->errors;
|
|
|
|
return ide_stopped;
|
|
}
|
|
|
|
static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
|
|
{
|
|
ide_hwif_t *hwif = drive->hwif;
|
|
|
|
if ((stat & ATA_BUSY) ||
|
|
((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
|
|
/* other bits are useless when BUSY */
|
|
rq->errors |= ERROR_RESET;
|
|
} else {
|
|
/* add decoding error stuff */
|
|
}
|
|
|
|
if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
|
|
/* force an abort */
|
|
hwif->tp_ops->exec_command(hwif, ATA_CMD_IDLEIMMEDIATE);
|
|
|
|
if (rq->errors >= ERROR_MAX) {
|
|
ide_kill_rq(drive, rq);
|
|
} else {
|
|
if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
|
|
++rq->errors;
|
|
return ide_do_reset(drive);
|
|
}
|
|
++rq->errors;
|
|
}
|
|
|
|
return ide_stopped;
|
|
}
|
|
|
|
ide_startstop_t
|
|
__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
|
|
{
|
|
if (drive->media == ide_disk)
|
|
return ide_ata_error(drive, rq, stat, err);
|
|
return ide_atapi_error(drive, rq, stat, err);
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(__ide_error);
|
|
|
|
/**
|
|
* ide_error - handle an error on the IDE
|
|
* @drive: drive the error occurred on
|
|
* @msg: message to report
|
|
* @stat: status bits
|
|
*
|
|
* ide_error() takes action based on the error returned by the drive.
|
|
* For normal I/O that may well include retries. We deal with
|
|
* both new-style (taskfile) and old style command handling here.
|
|
* In the case of taskfile command handling there is work left to
|
|
* do
|
|
*/
|
|
|
|
ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
|
|
{
|
|
struct request *rq;
|
|
u8 err;
|
|
|
|
err = ide_dump_status(drive, msg, stat);
|
|
|
|
if ((rq = HWGROUP(drive)->rq) == NULL)
|
|
return ide_stopped;
|
|
|
|
/* retry only "normal" I/O: */
|
|
if (!blk_fs_request(rq)) {
|
|
rq->errors = 1;
|
|
ide_end_drive_cmd(drive, stat, err);
|
|
return ide_stopped;
|
|
}
|
|
|
|
if (rq->rq_disk) {
|
|
ide_driver_t *drv;
|
|
|
|
drv = *(ide_driver_t **)rq->rq_disk->private_data;
|
|
return drv->error(drive, rq, stat, err);
|
|
} else
|
|
return __ide_error(drive, rq, stat, err);
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(ide_error);
|
|
|
|
static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
|
|
{
|
|
tf->nsect = drive->sect;
|
|
tf->lbal = drive->sect;
|
|
tf->lbam = drive->cyl;
|
|
tf->lbah = drive->cyl >> 8;
|
|
tf->device = (drive->head - 1) | drive->select;
|
|
tf->command = ATA_CMD_INIT_DEV_PARAMS;
|
|
}
|
|
|
|
static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
|
|
{
|
|
tf->nsect = drive->sect;
|
|
tf->command = ATA_CMD_RESTORE;
|
|
}
|
|
|
|
static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
|
|
{
|
|
tf->nsect = drive->mult_req;
|
|
tf->command = ATA_CMD_SET_MULTI;
|
|
}
|
|
|
|
static ide_startstop_t ide_disk_special(ide_drive_t *drive)
|
|
{
|
|
special_t *s = &drive->special;
|
|
ide_task_t args;
|
|
|
|
memset(&args, 0, sizeof(ide_task_t));
|
|
args.data_phase = TASKFILE_NO_DATA;
|
|
|
|
if (s->b.set_geometry) {
|
|
s->b.set_geometry = 0;
|
|
ide_tf_set_specify_cmd(drive, &args.tf);
|
|
} else if (s->b.recalibrate) {
|
|
s->b.recalibrate = 0;
|
|
ide_tf_set_restore_cmd(drive, &args.tf);
|
|
} else if (s->b.set_multmode) {
|
|
s->b.set_multmode = 0;
|
|
ide_tf_set_setmult_cmd(drive, &args.tf);
|
|
} else if (s->all) {
|
|
int special = s->all;
|
|
s->all = 0;
|
|
printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
|
|
return ide_stopped;
|
|
}
|
|
|
|
args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
|
|
IDE_TFLAG_CUSTOM_HANDLER;
|
|
|
|
do_rw_taskfile(drive, &args);
|
|
|
|
return ide_started;
|
|
}
|
|
|
|
/**
|
|
* do_special - issue some special commands
|
|
* @drive: drive the command is for
|
|
*
|
|
* do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
|
|
* ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
|
|
*
|
|
* It used to do much more, but has been scaled back.
|
|
*/
|
|
|
|
static ide_startstop_t do_special (ide_drive_t *drive)
|
|
{
|
|
special_t *s = &drive->special;
|
|
|
|
#ifdef DEBUG
|
|
printk("%s: do_special: 0x%02x\n", drive->name, s->all);
|
|
#endif
|
|
if (drive->media == ide_disk)
|
|
return ide_disk_special(drive);
|
|
|
|
s->all = 0;
|
|
drive->mult_req = 0;
|
|
return ide_stopped;
|
|
}
|
|
|
|
void ide_map_sg(ide_drive_t *drive, struct request *rq)
|
|
{
|
|
ide_hwif_t *hwif = drive->hwif;
|
|
struct scatterlist *sg = hwif->sg_table;
|
|
|
|
if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
|
|
hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
|
|
} else {
|
|
sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
|
|
hwif->sg_nents = 1;
|
|
}
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(ide_map_sg);
|
|
|
|
void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
|
|
{
|
|
ide_hwif_t *hwif = drive->hwif;
|
|
|
|
hwif->nsect = hwif->nleft = rq->nr_sectors;
|
|
hwif->cursg_ofs = 0;
|
|
hwif->cursg = NULL;
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
|
|
|
|
/**
|
|
* execute_drive_command - issue special drive command
|
|
* @drive: the drive to issue the command on
|
|
* @rq: the request structure holding the command
|
|
*
|
|
* execute_drive_cmd() issues a special drive command, usually
|
|
* initiated by ioctl() from the external hdparm program. The
|
|
* command can be a drive command, drive task or taskfile
|
|
* operation. Weirdly you can call it with NULL to wait for
|
|
* all commands to finish. Don't do this as that is due to change
|
|
*/
|
|
|
|
static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
|
|
struct request *rq)
|
|
{
|
|
ide_hwif_t *hwif = HWIF(drive);
|
|
ide_task_t *task = rq->special;
|
|
|
|
if (task) {
|
|
hwif->data_phase = task->data_phase;
|
|
|
|
switch (hwif->data_phase) {
|
|
case TASKFILE_MULTI_OUT:
|
|
case TASKFILE_OUT:
|
|
case TASKFILE_MULTI_IN:
|
|
case TASKFILE_IN:
|
|
ide_init_sg_cmd(drive, rq);
|
|
ide_map_sg(drive, rq);
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return do_rw_taskfile(drive, task);
|
|
}
|
|
|
|
/*
|
|
* NULL is actually a valid way of waiting for
|
|
* all current requests to be flushed from the queue.
|
|
*/
|
|
#ifdef DEBUG
|
|
printk("%s: DRIVE_CMD (null)\n", drive->name);
|
|
#endif
|
|
ide_end_drive_cmd(drive, hwif->tp_ops->read_status(hwif),
|
|
ide_read_error(drive));
|
|
|
|
return ide_stopped;
|
|
}
|
|
|
|
int ide_devset_execute(ide_drive_t *drive, const struct ide_devset *setting,
|
|
int arg)
|
|
{
|
|
struct request_queue *q = drive->queue;
|
|
struct request *rq;
|
|
int ret = 0;
|
|
|
|
if (!(setting->flags & DS_SYNC))
|
|
return setting->set(drive, arg);
|
|
|
|
rq = blk_get_request(q, READ, __GFP_WAIT);
|
|
rq->cmd_type = REQ_TYPE_SPECIAL;
|
|
rq->cmd_len = 5;
|
|
rq->cmd[0] = REQ_DEVSET_EXEC;
|
|
*(int *)&rq->cmd[1] = arg;
|
|
rq->special = setting->set;
|
|
|
|
if (blk_execute_rq(q, NULL, rq, 0))
|
|
ret = rq->errors;
|
|
blk_put_request(rq);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ide_devset_execute);
|
|
|
|
static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
|
|
{
|
|
u8 cmd = rq->cmd[0];
|
|
|
|
if (cmd == REQ_PARK_HEADS || cmd == REQ_UNPARK_HEADS) {
|
|
ide_task_t task;
|
|
struct ide_taskfile *tf = &task.tf;
|
|
|
|
memset(&task, 0, sizeof(task));
|
|
if (cmd == REQ_PARK_HEADS) {
|
|
drive->sleep = *(unsigned long *)rq->special;
|
|
drive->dev_flags |= IDE_DFLAG_SLEEPING;
|
|
tf->command = ATA_CMD_IDLEIMMEDIATE;
|
|
tf->feature = 0x44;
|
|
tf->lbal = 0x4c;
|
|
tf->lbam = 0x4e;
|
|
tf->lbah = 0x55;
|
|
task.tf_flags |= IDE_TFLAG_CUSTOM_HANDLER;
|
|
} else /* cmd == REQ_UNPARK_HEADS */
|
|
tf->command = ATA_CMD_CHK_POWER;
|
|
|
|
task.tf_flags |= IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
|
|
task.rq = rq;
|
|
drive->hwif->data_phase = task.data_phase = TASKFILE_NO_DATA;
|
|
return do_rw_taskfile(drive, &task);
|
|
}
|
|
|
|
switch (cmd) {
|
|
case REQ_DEVSET_EXEC:
|
|
{
|
|
int err, (*setfunc)(ide_drive_t *, int) = rq->special;
|
|
|
|
err = setfunc(drive, *(int *)&rq->cmd[1]);
|
|
if (err)
|
|
rq->errors = err;
|
|
else
|
|
err = 1;
|
|
ide_end_request(drive, err, 0);
|
|
return ide_stopped;
|
|
}
|
|
case REQ_DRIVE_RESET:
|
|
return ide_do_reset(drive);
|
|
default:
|
|
blk_dump_rq_flags(rq, "ide_special_rq - bad request");
|
|
ide_end_request(drive, 0, 0);
|
|
return ide_stopped;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* start_request - start of I/O and command issuing for IDE
|
|
*
|
|
* start_request() initiates handling of a new I/O request. It
|
|
* accepts commands and I/O (read/write) requests.
|
|
*
|
|
* FIXME: this function needs a rename
|
|
*/
|
|
|
|
static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
|
|
{
|
|
ide_startstop_t startstop;
|
|
|
|
BUG_ON(!blk_rq_started(rq));
|
|
|
|
#ifdef DEBUG
|
|
printk("%s: start_request: current=0x%08lx\n",
|
|
HWIF(drive)->name, (unsigned long) rq);
|
|
#endif
|
|
|
|
/* bail early if we've exceeded max_failures */
|
|
if (drive->max_failures && (drive->failures > drive->max_failures)) {
|
|
rq->cmd_flags |= REQ_FAILED;
|
|
goto kill_rq;
|
|
}
|
|
|
|
if (blk_pm_request(rq))
|
|
ide_check_pm_state(drive, rq);
|
|
|
|
SELECT_DRIVE(drive);
|
|
if (ide_wait_stat(&startstop, drive, drive->ready_stat,
|
|
ATA_BUSY | ATA_DRQ, WAIT_READY)) {
|
|
printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
|
|
return startstop;
|
|
}
|
|
if (!drive->special.all) {
|
|
ide_driver_t *drv;
|
|
|
|
/*
|
|
* We reset the drive so we need to issue a SETFEATURES.
|
|
* Do it _after_ do_special() restored device parameters.
|
|
*/
|
|
if (drive->current_speed == 0xff)
|
|
ide_config_drive_speed(drive, drive->desired_speed);
|
|
|
|
if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
|
|
return execute_drive_cmd(drive, rq);
|
|
else if (blk_pm_request(rq)) {
|
|
struct request_pm_state *pm = rq->data;
|
|
#ifdef DEBUG_PM
|
|
printk("%s: start_power_step(step: %d)\n",
|
|
drive->name, pm->pm_step);
|
|
#endif
|
|
startstop = ide_start_power_step(drive, rq);
|
|
if (startstop == ide_stopped &&
|
|
pm->pm_step == IDE_PM_COMPLETED)
|
|
ide_complete_pm_request(drive, rq);
|
|
return startstop;
|
|
} else if (!rq->rq_disk && blk_special_request(rq))
|
|
/*
|
|
* TODO: Once all ULDs have been modified to
|
|
* check for specific op codes rather than
|
|
* blindly accepting any special request, the
|
|
* check for ->rq_disk above may be replaced
|
|
* by a more suitable mechanism or even
|
|
* dropped entirely.
|
|
*/
|
|
return ide_special_rq(drive, rq);
|
|
|
|
drv = *(ide_driver_t **)rq->rq_disk->private_data;
|
|
|
|
return drv->do_request(drive, rq, rq->sector);
|
|
}
|
|
return do_special(drive);
|
|
kill_rq:
|
|
ide_kill_rq(drive, rq);
|
|
return ide_stopped;
|
|
}
|
|
|
|
/**
|
|
* ide_stall_queue - pause an IDE device
|
|
* @drive: drive to stall
|
|
* @timeout: time to stall for (jiffies)
|
|
*
|
|
* ide_stall_queue() can be used by a drive to give excess bandwidth back
|
|
* to the hwgroup by sleeping for timeout jiffies.
|
|
*/
|
|
|
|
void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
|
|
{
|
|
if (timeout > WAIT_WORSTCASE)
|
|
timeout = WAIT_WORSTCASE;
|
|
drive->sleep = timeout + jiffies;
|
|
drive->dev_flags |= IDE_DFLAG_SLEEPING;
|
|
}
|
|
EXPORT_SYMBOL(ide_stall_queue);
|
|
|
|
/*
|
|
* Issue a new request to a drive from hwgroup
|
|
*
|
|
* A hwgroup is a serialized group of IDE interfaces. Usually there is
|
|
* exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
|
|
* may have both interfaces in a single hwgroup to "serialize" access.
|
|
* Or possibly multiple ISA interfaces can share a common IRQ by being grouped
|
|
* together into one hwgroup for serialized access.
|
|
*
|
|
* Note also that several hwgroups can end up sharing a single IRQ,
|
|
* possibly along with many other devices. This is especially common in
|
|
* PCI-based systems with off-board IDE controller cards.
|
|
*
|
|
* The IDE driver uses a per-hwgroup lock to protect the hwgroup->busy flag.
|
|
*
|
|
* The first thread into the driver for a particular hwgroup sets the
|
|
* hwgroup->busy flag to indicate that this hwgroup is now active,
|
|
* and then initiates processing of the top request from the request queue.
|
|
*
|
|
* Other threads attempting entry notice the busy setting, and will simply
|
|
* queue their new requests and exit immediately. Note that hwgroup->busy
|
|
* remains set even when the driver is merely awaiting the next interrupt.
|
|
* Thus, the meaning is "this hwgroup is busy processing a request".
|
|
*
|
|
* When processing of a request completes, the completing thread or IRQ-handler
|
|
* will start the next request from the queue. If no more work remains,
|
|
* the driver will clear the hwgroup->busy flag and exit.
|
|
*
|
|
* The per-hwgroup spinlock is used to protect all access to the
|
|
* hwgroup->busy flag, but is otherwise not needed for most processing in
|
|
* the driver. This makes the driver much more friendlier to shared IRQs
|
|
* than previous designs, while remaining 100% (?) SMP safe and capable.
|
|
*/
|
|
void do_ide_request(struct request_queue *q)
|
|
{
|
|
ide_drive_t *drive = q->queuedata;
|
|
ide_hwif_t *hwif = drive->hwif;
|
|
ide_hwgroup_t *hwgroup = hwif->hwgroup;
|
|
struct request *rq;
|
|
ide_startstop_t startstop;
|
|
|
|
/*
|
|
* drive is doing pre-flush, ordered write, post-flush sequence. even
|
|
* though that is 3 requests, it must be seen as a single transaction.
|
|
* we must not preempt this drive until that is complete
|
|
*/
|
|
if (blk_queue_flushing(q))
|
|
/*
|
|
* small race where queue could get replugged during
|
|
* the 3-request flush cycle, just yank the plug since
|
|
* we want it to finish asap
|
|
*/
|
|
blk_remove_plug(q);
|
|
|
|
spin_unlock_irq(q->queue_lock);
|
|
spin_lock_irq(&hwgroup->lock);
|
|
|
|
if (!ide_lock_hwgroup(hwgroup)) {
|
|
repeat:
|
|
hwgroup->rq = NULL;
|
|
|
|
if (drive->dev_flags & IDE_DFLAG_SLEEPING) {
|
|
if (time_before(drive->sleep, jiffies)) {
|
|
ide_unlock_hwgroup(hwgroup);
|
|
goto plug_device;
|
|
}
|
|
}
|
|
|
|
if (hwif != hwgroup->hwif) {
|
|
/*
|
|
* set nIEN for previous hwif, drives in the
|
|
* quirk_list may not like intr setups/cleanups
|
|
*/
|
|
if (drive->quirk_list == 0)
|
|
hwif->tp_ops->set_irq(hwif, 0);
|
|
}
|
|
hwgroup->hwif = hwif;
|
|
hwgroup->drive = drive;
|
|
drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
|
|
|
|
spin_unlock_irq(&hwgroup->lock);
|
|
spin_lock_irq(q->queue_lock);
|
|
/*
|
|
* we know that the queue isn't empty, but this can happen
|
|
* if the q->prep_rq_fn() decides to kill a request
|
|
*/
|
|
rq = elv_next_request(drive->queue);
|
|
spin_unlock_irq(q->queue_lock);
|
|
spin_lock_irq(&hwgroup->lock);
|
|
|
|
if (!rq) {
|
|
ide_unlock_hwgroup(hwgroup);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Sanity: don't accept a request that isn't a PM request
|
|
* if we are currently power managed. This is very important as
|
|
* blk_stop_queue() doesn't prevent the elv_next_request()
|
|
* above to return us whatever is in the queue. Since we call
|
|
* ide_do_request() ourselves, we end up taking requests while
|
|
* the queue is blocked...
|
|
*
|
|
* We let requests forced at head of queue with ide-preempt
|
|
* though. I hope that doesn't happen too much, hopefully not
|
|
* unless the subdriver triggers such a thing in its own PM
|
|
* state machine.
|
|
*/
|
|
if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
|
|
blk_pm_request(rq) == 0 &&
|
|
(rq->cmd_flags & REQ_PREEMPT) == 0) {
|
|
/* there should be no pending command at this point */
|
|
ide_unlock_hwgroup(hwgroup);
|
|
goto plug_device;
|
|
}
|
|
|
|
hwgroup->rq = rq;
|
|
|
|
spin_unlock_irq(&hwgroup->lock);
|
|
startstop = start_request(drive, rq);
|
|
spin_lock_irq(&hwgroup->lock);
|
|
|
|
if (startstop == ide_stopped)
|
|
goto repeat;
|
|
} else
|
|
goto plug_device;
|
|
out:
|
|
spin_unlock_irq(&hwgroup->lock);
|
|
spin_lock_irq(q->queue_lock);
|
|
return;
|
|
|
|
plug_device:
|
|
spin_unlock_irq(&hwgroup->lock);
|
|
spin_lock_irq(q->queue_lock);
|
|
|
|
if (!elv_queue_empty(q))
|
|
blk_plug_device(q);
|
|
}
|
|
|
|
/*
|
|
* un-busy the hwgroup etc, and clear any pending DMA status. we want to
|
|
* retry the current request in pio mode instead of risking tossing it
|
|
* all away
|
|
*/
|
|
static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
|
|
{
|
|
ide_hwif_t *hwif = HWIF(drive);
|
|
struct request *rq;
|
|
ide_startstop_t ret = ide_stopped;
|
|
|
|
/*
|
|
* end current dma transaction
|
|
*/
|
|
|
|
if (error < 0) {
|
|
printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
|
|
(void)hwif->dma_ops->dma_end(drive);
|
|
ret = ide_error(drive, "dma timeout error",
|
|
hwif->tp_ops->read_status(hwif));
|
|
} else {
|
|
printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
|
|
hwif->dma_ops->dma_timeout(drive);
|
|
}
|
|
|
|
/*
|
|
* disable dma for now, but remember that we did so because of
|
|
* a timeout -- we'll reenable after we finish this next request
|
|
* (or rather the first chunk of it) in pio.
|
|
*/
|
|
drive->dev_flags |= IDE_DFLAG_DMA_PIO_RETRY;
|
|
drive->retry_pio++;
|
|
ide_dma_off_quietly(drive);
|
|
|
|
/*
|
|
* un-busy drive etc (hwgroup->busy is cleared on return) and
|
|
* make sure request is sane
|
|
*/
|
|
rq = HWGROUP(drive)->rq;
|
|
|
|
if (!rq)
|
|
goto out;
|
|
|
|
HWGROUP(drive)->rq = NULL;
|
|
|
|
rq->errors = 0;
|
|
|
|
if (!rq->bio)
|
|
goto out;
|
|
|
|
rq->sector = rq->bio->bi_sector;
|
|
rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
|
|
rq->hard_cur_sectors = rq->current_nr_sectors;
|
|
rq->buffer = bio_data(rq->bio);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static void ide_plug_device(ide_drive_t *drive)
|
|
{
|
|
struct request_queue *q = drive->queue;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(q->queue_lock, flags);
|
|
if (!elv_queue_empty(q))
|
|
blk_plug_device(q);
|
|
spin_unlock_irqrestore(q->queue_lock, flags);
|
|
}
|
|
|
|
/**
|
|
* ide_timer_expiry - handle lack of an IDE interrupt
|
|
* @data: timer callback magic (hwgroup)
|
|
*
|
|
* An IDE command has timed out before the expected drive return
|
|
* occurred. At this point we attempt to clean up the current
|
|
* mess. If the current handler includes an expiry handler then
|
|
* we invoke the expiry handler, and providing it is happy the
|
|
* work is done. If that fails we apply generic recovery rules
|
|
* invoking the handler and checking the drive DMA status. We
|
|
* have an excessively incestuous relationship with the DMA
|
|
* logic that wants cleaning up.
|
|
*/
|
|
|
|
void ide_timer_expiry (unsigned long data)
|
|
{
|
|
ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data;
|
|
ide_drive_t *uninitialized_var(drive);
|
|
ide_handler_t *handler;
|
|
ide_expiry_t *expiry;
|
|
unsigned long flags;
|
|
unsigned long wait = -1;
|
|
int plug_device = 0;
|
|
|
|
spin_lock_irqsave(&hwgroup->lock, flags);
|
|
|
|
if (((handler = hwgroup->handler) == NULL) ||
|
|
(hwgroup->req_gen != hwgroup->req_gen_timer)) {
|
|
/*
|
|
* Either a marginal timeout occurred
|
|
* (got the interrupt just as timer expired),
|
|
* or we were "sleeping" to give other devices a chance.
|
|
* Either way, we don't really want to complain about anything.
|
|
*/
|
|
} else {
|
|
drive = hwgroup->drive;
|
|
if (!drive) {
|
|
printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
|
|
hwgroup->handler = NULL;
|
|
} else {
|
|
ide_hwif_t *hwif;
|
|
ide_startstop_t startstop = ide_stopped;
|
|
|
|
if ((expiry = hwgroup->expiry) != NULL) {
|
|
/* continue */
|
|
if ((wait = expiry(drive)) > 0) {
|
|
/* reset timer */
|
|
hwgroup->timer.expires = jiffies + wait;
|
|
hwgroup->req_gen_timer = hwgroup->req_gen;
|
|
add_timer(&hwgroup->timer);
|
|
spin_unlock_irqrestore(&hwgroup->lock, flags);
|
|
return;
|
|
}
|
|
}
|
|
hwgroup->handler = NULL;
|
|
/*
|
|
* We need to simulate a real interrupt when invoking
|
|
* the handler() function, which means we need to
|
|
* globally mask the specific IRQ:
|
|
*/
|
|
spin_unlock(&hwgroup->lock);
|
|
hwif = HWIF(drive);
|
|
/* disable_irq_nosync ?? */
|
|
disable_irq(hwif->irq);
|
|
/* local CPU only,
|
|
* as if we were handling an interrupt */
|
|
local_irq_disable();
|
|
if (hwgroup->polling) {
|
|
startstop = handler(drive);
|
|
} else if (drive_is_ready(drive)) {
|
|
if (drive->waiting_for_dma)
|
|
hwif->dma_ops->dma_lost_irq(drive);
|
|
(void)ide_ack_intr(hwif);
|
|
printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
|
|
startstop = handler(drive);
|
|
} else {
|
|
if (drive->waiting_for_dma) {
|
|
startstop = ide_dma_timeout_retry(drive, wait);
|
|
} else
|
|
startstop =
|
|
ide_error(drive, "irq timeout",
|
|
hwif->tp_ops->read_status(hwif));
|
|
}
|
|
spin_lock_irq(&hwgroup->lock);
|
|
enable_irq(hwif->irq);
|
|
if (startstop == ide_stopped) {
|
|
ide_unlock_hwgroup(hwgroup);
|
|
plug_device = 1;
|
|
}
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&hwgroup->lock, flags);
|
|
|
|
if (plug_device)
|
|
ide_plug_device(drive);
|
|
}
|
|
|
|
/**
|
|
* unexpected_intr - handle an unexpected IDE interrupt
|
|
* @irq: interrupt line
|
|
* @hwgroup: hwgroup being processed
|
|
*
|
|
* There's nothing really useful we can do with an unexpected interrupt,
|
|
* other than reading the status register (to clear it), and logging it.
|
|
* There should be no way that an irq can happen before we're ready for it,
|
|
* so we needn't worry much about losing an "important" interrupt here.
|
|
*
|
|
* On laptops (and "green" PCs), an unexpected interrupt occurs whenever
|
|
* the drive enters "idle", "standby", or "sleep" mode, so if the status
|
|
* looks "good", we just ignore the interrupt completely.
|
|
*
|
|
* This routine assumes __cli() is in effect when called.
|
|
*
|
|
* If an unexpected interrupt happens on irq15 while we are handling irq14
|
|
* and if the two interfaces are "serialized" (CMD640), then it looks like
|
|
* we could screw up by interfering with a new request being set up for
|
|
* irq15.
|
|
*
|
|
* In reality, this is a non-issue. The new command is not sent unless
|
|
* the drive is ready to accept one, in which case we know the drive is
|
|
* not trying to interrupt us. And ide_set_handler() is always invoked
|
|
* before completing the issuance of any new drive command, so we will not
|
|
* be accidentally invoked as a result of any valid command completion
|
|
* interrupt.
|
|
*
|
|
* Note that we must walk the entire hwgroup here. We know which hwif
|
|
* is doing the current command, but we don't know which hwif burped
|
|
* mysteriously.
|
|
*/
|
|
|
|
static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
|
|
{
|
|
u8 stat;
|
|
ide_hwif_t *hwif = hwgroup->hwif;
|
|
|
|
/*
|
|
* handle the unexpected interrupt
|
|
*/
|
|
do {
|
|
if (hwif->irq == irq) {
|
|
stat = hwif->tp_ops->read_status(hwif);
|
|
|
|
if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
|
|
/* Try to not flood the console with msgs */
|
|
static unsigned long last_msgtime, count;
|
|
++count;
|
|
if (time_after(jiffies, last_msgtime + HZ)) {
|
|
last_msgtime = jiffies;
|
|
printk(KERN_ERR "%s%s: unexpected interrupt, "
|
|
"status=0x%02x, count=%ld\n",
|
|
hwif->name,
|
|
(hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
|
|
}
|
|
}
|
|
}
|
|
} while ((hwif = hwif->next) != hwgroup->hwif);
|
|
}
|
|
|
|
/**
|
|
* ide_intr - default IDE interrupt handler
|
|
* @irq: interrupt number
|
|
* @dev_id: hwif group
|
|
* @regs: unused weirdness from the kernel irq layer
|
|
*
|
|
* This is the default IRQ handler for the IDE layer. You should
|
|
* not need to override it. If you do be aware it is subtle in
|
|
* places
|
|
*
|
|
* hwgroup->hwif is the interface in the group currently performing
|
|
* a command. hwgroup->drive is the drive and hwgroup->handler is
|
|
* the IRQ handler to call. As we issue a command the handlers
|
|
* step through multiple states, reassigning the handler to the
|
|
* next step in the process. Unlike a smart SCSI controller IDE
|
|
* expects the main processor to sequence the various transfer
|
|
* stages. We also manage a poll timer to catch up with most
|
|
* timeout situations. There are still a few where the handlers
|
|
* don't ever decide to give up.
|
|
*
|
|
* The handler eventually returns ide_stopped to indicate the
|
|
* request completed. At this point we issue the next request
|
|
* on the hwgroup and the process begins again.
|
|
*/
|
|
|
|
irqreturn_t ide_intr (int irq, void *dev_id)
|
|
{
|
|
unsigned long flags;
|
|
ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
|
|
ide_hwif_t *hwif = hwgroup->hwif;
|
|
ide_drive_t *uninitialized_var(drive);
|
|
ide_handler_t *handler;
|
|
ide_startstop_t startstop;
|
|
irqreturn_t irq_ret = IRQ_NONE;
|
|
int plug_device = 0;
|
|
|
|
spin_lock_irqsave(&hwgroup->lock, flags);
|
|
|
|
if (!ide_ack_intr(hwif))
|
|
goto out;
|
|
|
|
if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
|
|
/*
|
|
* Not expecting an interrupt from this drive.
|
|
* That means this could be:
|
|
* (1) an interrupt from another PCI device
|
|
* sharing the same PCI INT# as us.
|
|
* or (2) a drive just entered sleep or standby mode,
|
|
* and is interrupting to let us know.
|
|
* or (3) a spurious interrupt of unknown origin.
|
|
*
|
|
* For PCI, we cannot tell the difference,
|
|
* so in that case we just ignore it and hope it goes away.
|
|
*
|
|
* FIXME: unexpected_intr should be hwif-> then we can
|
|
* remove all the ifdef PCI crap
|
|
*/
|
|
#ifdef CONFIG_BLK_DEV_IDEPCI
|
|
if (hwif->chipset != ide_pci)
|
|
#endif /* CONFIG_BLK_DEV_IDEPCI */
|
|
{
|
|
/*
|
|
* Probably not a shared PCI interrupt,
|
|
* so we can safely try to do something about it:
|
|
*/
|
|
unexpected_intr(irq, hwgroup);
|
|
#ifdef CONFIG_BLK_DEV_IDEPCI
|
|
} else {
|
|
/*
|
|
* Whack the status register, just in case
|
|
* we have a leftover pending IRQ.
|
|
*/
|
|
(void)hwif->tp_ops->read_status(hwif);
|
|
#endif /* CONFIG_BLK_DEV_IDEPCI */
|
|
}
|
|
goto out;
|
|
}
|
|
|
|
drive = hwgroup->drive;
|
|
if (!drive) {
|
|
/*
|
|
* This should NEVER happen, and there isn't much
|
|
* we could do about it here.
|
|
*
|
|
* [Note - this can occur if the drive is hot unplugged]
|
|
*/
|
|
goto out_handled;
|
|
}
|
|
|
|
if (!drive_is_ready(drive))
|
|
/*
|
|
* This happens regularly when we share a PCI IRQ with
|
|
* another device. Unfortunately, it can also happen
|
|
* with some buggy drives that trigger the IRQ before
|
|
* their status register is up to date. Hopefully we have
|
|
* enough advance overhead that the latter isn't a problem.
|
|
*/
|
|
goto out;
|
|
|
|
hwgroup->handler = NULL;
|
|
hwgroup->req_gen++;
|
|
del_timer(&hwgroup->timer);
|
|
spin_unlock(&hwgroup->lock);
|
|
|
|
if (hwif->port_ops && hwif->port_ops->clear_irq)
|
|
hwif->port_ops->clear_irq(drive);
|
|
|
|
if (drive->dev_flags & IDE_DFLAG_UNMASK)
|
|
local_irq_enable_in_hardirq();
|
|
|
|
/* service this interrupt, may set handler for next interrupt */
|
|
startstop = handler(drive);
|
|
|
|
spin_lock_irq(&hwgroup->lock);
|
|
/*
|
|
* Note that handler() may have set things up for another
|
|
* interrupt to occur soon, but it cannot happen until
|
|
* we exit from this routine, because it will be the
|
|
* same irq as is currently being serviced here, and Linux
|
|
* won't allow another of the same (on any CPU) until we return.
|
|
*/
|
|
if (startstop == ide_stopped) {
|
|
if (hwgroup->handler == NULL) { /* paranoia */
|
|
ide_unlock_hwgroup(hwgroup);
|
|
plug_device = 1;
|
|
} else
|
|
printk(KERN_ERR "%s: %s: huh? expected NULL handler "
|
|
"on exit\n", __func__, drive->name);
|
|
}
|
|
out_handled:
|
|
irq_ret = IRQ_HANDLED;
|
|
out:
|
|
spin_unlock_irqrestore(&hwgroup->lock, flags);
|
|
|
|
if (plug_device)
|
|
ide_plug_device(drive);
|
|
|
|
return irq_ret;
|
|
}
|
|
|
|
/**
|
|
* ide_do_drive_cmd - issue IDE special command
|
|
* @drive: device to issue command
|
|
* @rq: request to issue
|
|
*
|
|
* This function issues a special IDE device request
|
|
* onto the request queue.
|
|
*
|
|
* the rq is queued at the head of the request queue, displacing
|
|
* the currently-being-processed request and this function
|
|
* returns immediately without waiting for the new rq to be
|
|
* completed. This is VERY DANGEROUS, and is intended for
|
|
* careful use by the ATAPI tape/cdrom driver code.
|
|
*/
|
|
|
|
void ide_do_drive_cmd(ide_drive_t *drive, struct request *rq)
|
|
{
|
|
ide_hwgroup_t *hwgroup = drive->hwif->hwgroup;
|
|
struct request_queue *q = drive->queue;
|
|
unsigned long flags;
|
|
|
|
hwgroup->rq = NULL;
|
|
|
|
spin_lock_irqsave(q->queue_lock, flags);
|
|
__elv_add_request(q, rq, ELEVATOR_INSERT_FRONT, 0);
|
|
blk_start_queueing(q);
|
|
spin_unlock_irqrestore(q->queue_lock, flags);
|
|
}
|
|
EXPORT_SYMBOL(ide_do_drive_cmd);
|
|
|
|
void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
|
|
{
|
|
ide_hwif_t *hwif = drive->hwif;
|
|
ide_task_t task;
|
|
|
|
memset(&task, 0, sizeof(task));
|
|
task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
|
|
IDE_TFLAG_OUT_FEATURE | tf_flags;
|
|
task.tf.feature = dma; /* Use PIO/DMA */
|
|
task.tf.lbam = bcount & 0xff;
|
|
task.tf.lbah = (bcount >> 8) & 0xff;
|
|
|
|
ide_tf_dump(drive->name, &task.tf);
|
|
hwif->tp_ops->set_irq(hwif, 1);
|
|
SELECT_MASK(drive, 0);
|
|
hwif->tp_ops->tf_load(drive, &task);
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
|
|
|
|
void ide_pad_transfer(ide_drive_t *drive, int write, int len)
|
|
{
|
|
ide_hwif_t *hwif = drive->hwif;
|
|
u8 buf[4] = { 0 };
|
|
|
|
while (len > 0) {
|
|
if (write)
|
|
hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
|
|
else
|
|
hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
|
|
len -= 4;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(ide_pad_transfer);
|