linux/drivers/net/wireless/brcm80211/brcmfmac/dhd_sdio.c
Arend van Spriel fad1322850 brcmfmac: cleanup helper functions in sdio probe path
Moving code from helper functions to the calling function
as it makes code easier to read.

Reviewed-by: Hante Meuleman <meuleman@broadcom.com>
Reviewed-by: Pieter-Paul Giesberts <pieterpg@broadcom.com>
Signed-off-by: Arend van Spriel <arend@broadcom.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2014-01-06 15:48:00 -05:00

4119 lines
108 KiB
C

/*
* Copyright (c) 2010 Broadcom Corporation
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/printk.h>
#include <linux/pci_ids.h>
#include <linux/netdevice.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/mmc/sdio.h>
#include <linux/mmc/sdio_func.h>
#include <linux/mmc/card.h>
#include <linux/semaphore.h>
#include <linux/firmware.h>
#include <linux/module.h>
#include <linux/bcma/bcma.h>
#include <linux/debugfs.h>
#include <linux/vmalloc.h>
#include <linux/platform_data/brcmfmac-sdio.h>
#include <linux/moduleparam.h>
#include <asm/unaligned.h>
#include <defs.h>
#include <brcmu_wifi.h>
#include <brcmu_utils.h>
#include <brcm_hw_ids.h>
#include <soc.h>
#include "sdio_host.h"
#include "sdio_chip.h"
#define DCMD_RESP_TIMEOUT 2000 /* In milli second */
#ifdef DEBUG
#define BRCMF_TRAP_INFO_SIZE 80
#define CBUF_LEN (128)
/* Device console log buffer state */
#define CONSOLE_BUFFER_MAX 2024
struct rte_log_le {
__le32 buf; /* Can't be pointer on (64-bit) hosts */
__le32 buf_size;
__le32 idx;
char *_buf_compat; /* Redundant pointer for backward compat. */
};
struct rte_console {
/* Virtual UART
* When there is no UART (e.g. Quickturn),
* the host should write a complete
* input line directly into cbuf and then write
* the length into vcons_in.
* This may also be used when there is a real UART
* (at risk of conflicting with
* the real UART). vcons_out is currently unused.
*/
uint vcons_in;
uint vcons_out;
/* Output (logging) buffer
* Console output is written to a ring buffer log_buf at index log_idx.
* The host may read the output when it sees log_idx advance.
* Output will be lost if the output wraps around faster than the host
* polls.
*/
struct rte_log_le log_le;
/* Console input line buffer
* Characters are read one at a time into cbuf
* until <CR> is received, then
* the buffer is processed as a command line.
* Also used for virtual UART.
*/
uint cbuf_idx;
char cbuf[CBUF_LEN];
};
#endif /* DEBUG */
#include <chipcommon.h>
#include "dhd_bus.h"
#include "dhd_dbg.h"
#include "tracepoint.h"
#define TXQLEN 2048 /* bulk tx queue length */
#define TXHI (TXQLEN - 256) /* turn on flow control above TXHI */
#define TXLOW (TXHI - 256) /* turn off flow control below TXLOW */
#define PRIOMASK 7
#define TXRETRIES 2 /* # of retries for tx frames */
#define BRCMF_RXBOUND 50 /* Default for max rx frames in
one scheduling */
#define BRCMF_TXBOUND 20 /* Default for max tx frames in
one scheduling */
#define BRCMF_DEFAULT_TXGLOM_SIZE 32 /* max tx frames in glom chain */
#define BRCMF_TXMINMAX 1 /* Max tx frames if rx still pending */
#define MEMBLOCK 2048 /* Block size used for downloading
of dongle image */
#define MAX_DATA_BUF (32 * 1024) /* Must be large enough to hold
biggest possible glom */
#define BRCMF_FIRSTREAD (1 << 6)
/* SBSDIO_DEVICE_CTL */
/* 1: device will assert busy signal when receiving CMD53 */
#define SBSDIO_DEVCTL_SETBUSY 0x01
/* 1: assertion of sdio interrupt is synchronous to the sdio clock */
#define SBSDIO_DEVCTL_SPI_INTR_SYNC 0x02
/* 1: mask all interrupts to host except the chipActive (rev 8) */
#define SBSDIO_DEVCTL_CA_INT_ONLY 0x04
/* 1: isolate internal sdio signals, put external pads in tri-state; requires
* sdio bus power cycle to clear (rev 9) */
#define SBSDIO_DEVCTL_PADS_ISO 0x08
/* Force SD->SB reset mapping (rev 11) */
#define SBSDIO_DEVCTL_SB_RST_CTL 0x30
/* Determined by CoreControl bit */
#define SBSDIO_DEVCTL_RST_CORECTL 0x00
/* Force backplane reset */
#define SBSDIO_DEVCTL_RST_BPRESET 0x10
/* Force no backplane reset */
#define SBSDIO_DEVCTL_RST_NOBPRESET 0x20
/* direct(mapped) cis space */
/* MAPPED common CIS address */
#define SBSDIO_CIS_BASE_COMMON 0x1000
/* maximum bytes in one CIS */
#define SBSDIO_CIS_SIZE_LIMIT 0x200
/* cis offset addr is < 17 bits */
#define SBSDIO_CIS_OFT_ADDR_MASK 0x1FFFF
/* manfid tuple length, include tuple, link bytes */
#define SBSDIO_CIS_MANFID_TUPLE_LEN 6
/* intstatus */
#define I_SMB_SW0 (1 << 0) /* To SB Mail S/W interrupt 0 */
#define I_SMB_SW1 (1 << 1) /* To SB Mail S/W interrupt 1 */
#define I_SMB_SW2 (1 << 2) /* To SB Mail S/W interrupt 2 */
#define I_SMB_SW3 (1 << 3) /* To SB Mail S/W interrupt 3 */
#define I_SMB_SW_MASK 0x0000000f /* To SB Mail S/W interrupts mask */
#define I_SMB_SW_SHIFT 0 /* To SB Mail S/W interrupts shift */
#define I_HMB_SW0 (1 << 4) /* To Host Mail S/W interrupt 0 */
#define I_HMB_SW1 (1 << 5) /* To Host Mail S/W interrupt 1 */
#define I_HMB_SW2 (1 << 6) /* To Host Mail S/W interrupt 2 */
#define I_HMB_SW3 (1 << 7) /* To Host Mail S/W interrupt 3 */
#define I_HMB_SW_MASK 0x000000f0 /* To Host Mail S/W interrupts mask */
#define I_HMB_SW_SHIFT 4 /* To Host Mail S/W interrupts shift */
#define I_WR_OOSYNC (1 << 8) /* Write Frame Out Of Sync */
#define I_RD_OOSYNC (1 << 9) /* Read Frame Out Of Sync */
#define I_PC (1 << 10) /* descriptor error */
#define I_PD (1 << 11) /* data error */
#define I_DE (1 << 12) /* Descriptor protocol Error */
#define I_RU (1 << 13) /* Receive descriptor Underflow */
#define I_RO (1 << 14) /* Receive fifo Overflow */
#define I_XU (1 << 15) /* Transmit fifo Underflow */
#define I_RI (1 << 16) /* Receive Interrupt */
#define I_BUSPWR (1 << 17) /* SDIO Bus Power Change (rev 9) */
#define I_XMTDATA_AVAIL (1 << 23) /* bits in fifo */
#define I_XI (1 << 24) /* Transmit Interrupt */
#define I_RF_TERM (1 << 25) /* Read Frame Terminate */
#define I_WF_TERM (1 << 26) /* Write Frame Terminate */
#define I_PCMCIA_XU (1 << 27) /* PCMCIA Transmit FIFO Underflow */
#define I_SBINT (1 << 28) /* sbintstatus Interrupt */
#define I_CHIPACTIVE (1 << 29) /* chip from doze to active state */
#define I_SRESET (1 << 30) /* CCCR RES interrupt */
#define I_IOE2 (1U << 31) /* CCCR IOE2 Bit Changed */
#define I_ERRORS (I_PC | I_PD | I_DE | I_RU | I_RO | I_XU)
#define I_DMA (I_RI | I_XI | I_ERRORS)
/* corecontrol */
#define CC_CISRDY (1 << 0) /* CIS Ready */
#define CC_BPRESEN (1 << 1) /* CCCR RES signal */
#define CC_F2RDY (1 << 2) /* set CCCR IOR2 bit */
#define CC_CLRPADSISO (1 << 3) /* clear SDIO pads isolation */
#define CC_XMTDATAAVAIL_MODE (1 << 4)
#define CC_XMTDATAAVAIL_CTRL (1 << 5)
/* SDA_FRAMECTRL */
#define SFC_RF_TERM (1 << 0) /* Read Frame Terminate */
#define SFC_WF_TERM (1 << 1) /* Write Frame Terminate */
#define SFC_CRC4WOOS (1 << 2) /* CRC error for write out of sync */
#define SFC_ABORTALL (1 << 3) /* Abort all in-progress frames */
/*
* Software allocation of To SB Mailbox resources
*/
/* tosbmailbox bits corresponding to intstatus bits */
#define SMB_NAK (1 << 0) /* Frame NAK */
#define SMB_INT_ACK (1 << 1) /* Host Interrupt ACK */
#define SMB_USE_OOB (1 << 2) /* Use OOB Wakeup */
#define SMB_DEV_INT (1 << 3) /* Miscellaneous Interrupt */
/* tosbmailboxdata */
#define SMB_DATA_VERSION_SHIFT 16 /* host protocol version */
/*
* Software allocation of To Host Mailbox resources
*/
/* intstatus bits */
#define I_HMB_FC_STATE I_HMB_SW0 /* Flow Control State */
#define I_HMB_FC_CHANGE I_HMB_SW1 /* Flow Control State Changed */
#define I_HMB_FRAME_IND I_HMB_SW2 /* Frame Indication */
#define I_HMB_HOST_INT I_HMB_SW3 /* Miscellaneous Interrupt */
/* tohostmailboxdata */
#define HMB_DATA_NAKHANDLED 1 /* retransmit NAK'd frame */
#define HMB_DATA_DEVREADY 2 /* talk to host after enable */
#define HMB_DATA_FC 4 /* per prio flowcontrol update flag */
#define HMB_DATA_FWREADY 8 /* fw ready for protocol activity */
#define HMB_DATA_FCDATA_MASK 0xff000000
#define HMB_DATA_FCDATA_SHIFT 24
#define HMB_DATA_VERSION_MASK 0x00ff0000
#define HMB_DATA_VERSION_SHIFT 16
/*
* Software-defined protocol header
*/
/* Current protocol version */
#define SDPCM_PROT_VERSION 4
/*
* Shared structure between dongle and the host.
* The structure contains pointers to trap or assert information.
*/
#define SDPCM_SHARED_VERSION 0x0003
#define SDPCM_SHARED_VERSION_MASK 0x00FF
#define SDPCM_SHARED_ASSERT_BUILT 0x0100
#define SDPCM_SHARED_ASSERT 0x0200
#define SDPCM_SHARED_TRAP 0x0400
/* Space for header read, limit for data packets */
#define MAX_HDR_READ (1 << 6)
#define MAX_RX_DATASZ 2048
/* Bump up limit on waiting for HT to account for first startup;
* if the image is doing a CRC calculation before programming the PMU
* for HT availability, it could take a couple hundred ms more, so
* max out at a 1 second (1000000us).
*/
#undef PMU_MAX_TRANSITION_DLY
#define PMU_MAX_TRANSITION_DLY 1000000
/* Value for ChipClockCSR during initial setup */
#define BRCMF_INIT_CLKCTL1 (SBSDIO_FORCE_HW_CLKREQ_OFF | \
SBSDIO_ALP_AVAIL_REQ)
/* Flags for SDH calls */
#define F2SYNC (SDIO_REQ_4BYTE | SDIO_REQ_FIXED)
#define BRCMF_IDLE_IMMEDIATE (-1) /* Enter idle immediately */
#define BRCMF_IDLE_ACTIVE 0 /* Do not request any SD clock change
* when idle
*/
#define BRCMF_IDLE_INTERVAL 1
#define KSO_WAIT_US 50
#define MAX_KSO_ATTEMPTS (PMU_MAX_TRANSITION_DLY/KSO_WAIT_US)
/*
* Conversion of 802.1D priority to precedence level
*/
static uint prio2prec(u32 prio)
{
return (prio == PRIO_8021D_NONE || prio == PRIO_8021D_BE) ?
(prio^2) : prio;
}
#ifdef DEBUG
/* Device console log buffer state */
struct brcmf_console {
uint count; /* Poll interval msec counter */
uint log_addr; /* Log struct address (fixed) */
struct rte_log_le log_le; /* Log struct (host copy) */
uint bufsize; /* Size of log buffer */
u8 *buf; /* Log buffer (host copy) */
uint last; /* Last buffer read index */
};
struct brcmf_trap_info {
__le32 type;
__le32 epc;
__le32 cpsr;
__le32 spsr;
__le32 r0; /* a1 */
__le32 r1; /* a2 */
__le32 r2; /* a3 */
__le32 r3; /* a4 */
__le32 r4; /* v1 */
__le32 r5; /* v2 */
__le32 r6; /* v3 */
__le32 r7; /* v4 */
__le32 r8; /* v5 */
__le32 r9; /* sb/v6 */
__le32 r10; /* sl/v7 */
__le32 r11; /* fp/v8 */
__le32 r12; /* ip */
__le32 r13; /* sp */
__le32 r14; /* lr */
__le32 pc; /* r15 */
};
#endif /* DEBUG */
struct sdpcm_shared {
u32 flags;
u32 trap_addr;
u32 assert_exp_addr;
u32 assert_file_addr;
u32 assert_line;
u32 console_addr; /* Address of struct rte_console */
u32 msgtrace_addr;
u8 tag[32];
u32 brpt_addr;
};
struct sdpcm_shared_le {
__le32 flags;
__le32 trap_addr;
__le32 assert_exp_addr;
__le32 assert_file_addr;
__le32 assert_line;
__le32 console_addr; /* Address of struct rte_console */
__le32 msgtrace_addr;
u8 tag[32];
__le32 brpt_addr;
};
/* dongle SDIO bus specific header info */
struct brcmf_sdio_hdrinfo {
u8 seq_num;
u8 channel;
u16 len;
u16 len_left;
u16 len_nxtfrm;
u8 dat_offset;
bool lastfrm;
u16 tail_pad;
};
/* misc chip info needed by some of the routines */
/* Private data for SDIO bus interaction */
struct brcmf_sdio {
struct brcmf_sdio_dev *sdiodev; /* sdio device handler */
struct chip_info *ci; /* Chip info struct */
char *vars; /* Variables (from CIS and/or other) */
uint varsz; /* Size of variables buffer */
u32 ramsize; /* Size of RAM in SOCRAM (bytes) */
u32 hostintmask; /* Copy of Host Interrupt Mask */
atomic_t intstatus; /* Intstatus bits (events) pending */
atomic_t fcstate; /* State of dongle flow-control */
uint blocksize; /* Block size of SDIO transfers */
uint roundup; /* Max roundup limit */
struct pktq txq; /* Queue length used for flow-control */
u8 flowcontrol; /* per prio flow control bitmask */
u8 tx_seq; /* Transmit sequence number (next) */
u8 tx_max; /* Maximum transmit sequence allowed */
u8 *hdrbuf; /* buffer for handling rx frame */
u8 *rxhdr; /* Header of current rx frame (in hdrbuf) */
u8 rx_seq; /* Receive sequence number (expected) */
struct brcmf_sdio_hdrinfo cur_read;
/* info of current read frame */
bool rxskip; /* Skip receive (awaiting NAK ACK) */
bool rxpending; /* Data frame pending in dongle */
uint rxbound; /* Rx frames to read before resched */
uint txbound; /* Tx frames to send before resched */
uint txminmax;
struct sk_buff *glomd; /* Packet containing glomming descriptor */
struct sk_buff_head glom; /* Packet list for glommed superframe */
uint glomerr; /* Glom packet read errors */
u8 *rxbuf; /* Buffer for receiving control packets */
uint rxblen; /* Allocated length of rxbuf */
u8 *rxctl; /* Aligned pointer into rxbuf */
u8 *rxctl_orig; /* pointer for freeing rxctl */
uint rxlen; /* Length of valid data in buffer */
spinlock_t rxctl_lock; /* protection lock for ctrl frame resources */
u8 sdpcm_ver; /* Bus protocol reported by dongle */
bool intr; /* Use interrupts */
bool poll; /* Use polling */
atomic_t ipend; /* Device interrupt is pending */
uint spurious; /* Count of spurious interrupts */
uint pollrate; /* Ticks between device polls */
uint polltick; /* Tick counter */
#ifdef DEBUG
uint console_interval;
struct brcmf_console console; /* Console output polling support */
uint console_addr; /* Console address from shared struct */
#endif /* DEBUG */
uint clkstate; /* State of sd and backplane clock(s) */
bool activity; /* Activity flag for clock down */
s32 idletime; /* Control for activity timeout */
s32 idlecount; /* Activity timeout counter */
s32 idleclock; /* How to set bus driver when idle */
bool rxflow_mode; /* Rx flow control mode */
bool rxflow; /* Is rx flow control on */
bool alp_only; /* Don't use HT clock (ALP only) */
u8 *ctrl_frame_buf;
u32 ctrl_frame_len;
bool ctrl_frame_stat;
spinlock_t txqlock;
wait_queue_head_t ctrl_wait;
wait_queue_head_t dcmd_resp_wait;
struct timer_list timer;
struct completion watchdog_wait;
struct task_struct *watchdog_tsk;
bool wd_timer_valid;
uint save_ms;
struct workqueue_struct *brcmf_wq;
struct work_struct datawork;
atomic_t dpc_tskcnt;
bool txoff; /* Transmit flow-controlled */
struct brcmf_sdio_count sdcnt;
bool sr_enabled; /* SaveRestore enabled */
bool sleeping; /* SDIO bus sleeping */
u8 tx_hdrlen; /* sdio bus header length for tx packet */
bool txglom; /* host tx glomming enable flag */
struct sk_buff *txglom_sgpad; /* scatter-gather padding buffer */
u16 head_align; /* buffer pointer alignment */
u16 sgentry_align; /* scatter-gather buffer alignment */
};
/* clkstate */
#define CLK_NONE 0
#define CLK_SDONLY 1
#define CLK_PENDING 2
#define CLK_AVAIL 3
#ifdef DEBUG
static int qcount[NUMPRIO];
#endif /* DEBUG */
#define DEFAULT_SDIO_DRIVE_STRENGTH 6 /* in milliamps */
#define RETRYCHAN(chan) ((chan) == SDPCM_EVENT_CHANNEL)
/* Retry count for register access failures */
static const uint retry_limit = 2;
/* Limit on rounding up frames */
static const uint max_roundup = 512;
#define ALIGNMENT 4
static int brcmf_sdio_txglomsz = BRCMF_DEFAULT_TXGLOM_SIZE;
module_param_named(txglomsz, brcmf_sdio_txglomsz, int, 0);
MODULE_PARM_DESC(txglomsz, "maximum tx packet chain size [SDIO]");
enum brcmf_sdio_frmtype {
BRCMF_SDIO_FT_NORMAL,
BRCMF_SDIO_FT_SUPER,
BRCMF_SDIO_FT_SUB,
};
#define BCM43143_FIRMWARE_NAME "brcm/brcmfmac43143-sdio.bin"
#define BCM43143_NVRAM_NAME "brcm/brcmfmac43143-sdio.txt"
#define BCM43241B0_FIRMWARE_NAME "brcm/brcmfmac43241b0-sdio.bin"
#define BCM43241B0_NVRAM_NAME "brcm/brcmfmac43241b0-sdio.txt"
#define BCM43241B4_FIRMWARE_NAME "brcm/brcmfmac43241b4-sdio.bin"
#define BCM43241B4_NVRAM_NAME "brcm/brcmfmac43241b4-sdio.txt"
#define BCM4329_FIRMWARE_NAME "brcm/brcmfmac4329-sdio.bin"
#define BCM4329_NVRAM_NAME "brcm/brcmfmac4329-sdio.txt"
#define BCM4330_FIRMWARE_NAME "brcm/brcmfmac4330-sdio.bin"
#define BCM4330_NVRAM_NAME "brcm/brcmfmac4330-sdio.txt"
#define BCM4334_FIRMWARE_NAME "brcm/brcmfmac4334-sdio.bin"
#define BCM4334_NVRAM_NAME "brcm/brcmfmac4334-sdio.txt"
#define BCM4335_FIRMWARE_NAME "brcm/brcmfmac4335-sdio.bin"
#define BCM4335_NVRAM_NAME "brcm/brcmfmac4335-sdio.txt"
#define BCM4339_FIRMWARE_NAME "brcm/brcmfmac4339-sdio.bin"
#define BCM4339_NVRAM_NAME "brcm/brcmfmac4339-sdio.txt"
MODULE_FIRMWARE(BCM43143_FIRMWARE_NAME);
MODULE_FIRMWARE(BCM43143_NVRAM_NAME);
MODULE_FIRMWARE(BCM43241B0_FIRMWARE_NAME);
MODULE_FIRMWARE(BCM43241B0_NVRAM_NAME);
MODULE_FIRMWARE(BCM43241B4_FIRMWARE_NAME);
MODULE_FIRMWARE(BCM43241B4_NVRAM_NAME);
MODULE_FIRMWARE(BCM4329_FIRMWARE_NAME);
MODULE_FIRMWARE(BCM4329_NVRAM_NAME);
MODULE_FIRMWARE(BCM4330_FIRMWARE_NAME);
MODULE_FIRMWARE(BCM4330_NVRAM_NAME);
MODULE_FIRMWARE(BCM4334_FIRMWARE_NAME);
MODULE_FIRMWARE(BCM4334_NVRAM_NAME);
MODULE_FIRMWARE(BCM4335_FIRMWARE_NAME);
MODULE_FIRMWARE(BCM4335_NVRAM_NAME);
MODULE_FIRMWARE(BCM4339_FIRMWARE_NAME);
MODULE_FIRMWARE(BCM4339_NVRAM_NAME);
struct brcmf_firmware_names {
u32 chipid;
u32 revmsk;
const char *bin;
const char *nv;
};
enum brcmf_firmware_type {
BRCMF_FIRMWARE_BIN,
BRCMF_FIRMWARE_NVRAM
};
#define BRCMF_FIRMWARE_NVRAM(name) \
name ## _FIRMWARE_NAME, name ## _NVRAM_NAME
static const struct brcmf_firmware_names brcmf_fwname_data[] = {
{ BCM43143_CHIP_ID, 0xFFFFFFFF, BRCMF_FIRMWARE_NVRAM(BCM43143) },
{ BCM43241_CHIP_ID, 0x0000001F, BRCMF_FIRMWARE_NVRAM(BCM43241B0) },
{ BCM43241_CHIP_ID, 0xFFFFFFE0, BRCMF_FIRMWARE_NVRAM(BCM43241B4) },
{ BCM4329_CHIP_ID, 0xFFFFFFFF, BRCMF_FIRMWARE_NVRAM(BCM4329) },
{ BCM4330_CHIP_ID, 0xFFFFFFFF, BRCMF_FIRMWARE_NVRAM(BCM4330) },
{ BCM4334_CHIP_ID, 0xFFFFFFFF, BRCMF_FIRMWARE_NVRAM(BCM4334) },
{ BCM4335_CHIP_ID, 0xFFFFFFFF, BRCMF_FIRMWARE_NVRAM(BCM4335) },
{ BCM4339_CHIP_ID, 0xFFFFFFFF, BRCMF_FIRMWARE_NVRAM(BCM4339) }
};
static const struct firmware *brcmf_sdio_get_fw(struct brcmf_sdio *bus,
enum brcmf_firmware_type type)
{
const struct firmware *fw;
const char *name;
int err, i;
for (i = 0; i < ARRAY_SIZE(brcmf_fwname_data); i++) {
if (brcmf_fwname_data[i].chipid == bus->ci->chip &&
brcmf_fwname_data[i].revmsk & BIT(bus->ci->chiprev)) {
switch (type) {
case BRCMF_FIRMWARE_BIN:
name = brcmf_fwname_data[i].bin;
break;
case BRCMF_FIRMWARE_NVRAM:
name = brcmf_fwname_data[i].nv;
break;
default:
brcmf_err("invalid firmware type (%d)\n", type);
return NULL;
}
goto found;
}
}
brcmf_err("Unknown chipid %d [%d]\n",
bus->ci->chip, bus->ci->chiprev);
return NULL;
found:
err = request_firmware(&fw, name, &bus->sdiodev->func[2]->dev);
if ((err) || (!fw)) {
brcmf_err("fail to request firmware %s (%d)\n", name, err);
return NULL;
}
return fw;
}
static void pkt_align(struct sk_buff *p, int len, int align)
{
uint datalign;
datalign = (unsigned long)(p->data);
datalign = roundup(datalign, (align)) - datalign;
if (datalign)
skb_pull(p, datalign);
__skb_trim(p, len);
}
/* To check if there's window offered */
static bool data_ok(struct brcmf_sdio *bus)
{
return (u8)(bus->tx_max - bus->tx_seq) != 0 &&
((u8)(bus->tx_max - bus->tx_seq) & 0x80) == 0;
}
/*
* Reads a register in the SDIO hardware block. This block occupies a series of
* adresses on the 32 bit backplane bus.
*/
static int
r_sdreg32(struct brcmf_sdio *bus, u32 *regvar, u32 offset)
{
u8 idx = brcmf_sdio_chip_getinfidx(bus->ci, BCMA_CORE_SDIO_DEV);
int ret;
*regvar = brcmf_sdiod_regrl(bus->sdiodev,
bus->ci->c_inf[idx].base + offset, &ret);
return ret;
}
static int
w_sdreg32(struct brcmf_sdio *bus, u32 regval, u32 reg_offset)
{
u8 idx = brcmf_sdio_chip_getinfidx(bus->ci, BCMA_CORE_SDIO_DEV);
int ret;
brcmf_sdiod_regwl(bus->sdiodev,
bus->ci->c_inf[idx].base + reg_offset,
regval, &ret);
return ret;
}
static int
brcmf_sdio_kso_control(struct brcmf_sdio *bus, bool on)
{
u8 wr_val = 0, rd_val, cmp_val, bmask;
int err = 0;
int try_cnt = 0;
brcmf_dbg(TRACE, "Enter\n");
wr_val = (on << SBSDIO_FUNC1_SLEEPCSR_KSO_SHIFT);
/* 1st KSO write goes to AOS wake up core if device is asleep */
brcmf_sdiod_regwb(bus->sdiodev, SBSDIO_FUNC1_SLEEPCSR,
wr_val, &err);
if (err) {
brcmf_err("SDIO_AOS KSO write error: %d\n", err);
return err;
}
if (on) {
/* device WAKEUP through KSO:
* write bit 0 & read back until
* both bits 0 (kso bit) & 1 (dev on status) are set
*/
cmp_val = SBSDIO_FUNC1_SLEEPCSR_KSO_MASK |
SBSDIO_FUNC1_SLEEPCSR_DEVON_MASK;
bmask = cmp_val;
usleep_range(2000, 3000);
} else {
/* Put device to sleep, turn off KSO */
cmp_val = 0;
/* only check for bit0, bit1(dev on status) may not
* get cleared right away
*/
bmask = SBSDIO_FUNC1_SLEEPCSR_KSO_MASK;
}
do {
/* reliable KSO bit set/clr:
* the sdiod sleep write access is synced to PMU 32khz clk
* just one write attempt may fail,
* read it back until it matches written value
*/
rd_val = brcmf_sdiod_regrb(bus->sdiodev, SBSDIO_FUNC1_SLEEPCSR,
&err);
if (((rd_val & bmask) == cmp_val) && !err)
break;
brcmf_dbg(SDIO, "KSO wr/rd retry:%d (max: %d) ERR:%x\n",
try_cnt, MAX_KSO_ATTEMPTS, err);
udelay(KSO_WAIT_US);
brcmf_sdiod_regwb(bus->sdiodev, SBSDIO_FUNC1_SLEEPCSR,
wr_val, &err);
} while (try_cnt++ < MAX_KSO_ATTEMPTS);
return err;
}
#define PKT_AVAILABLE() (intstatus & I_HMB_FRAME_IND)
#define HOSTINTMASK (I_HMB_SW_MASK | I_CHIPACTIVE)
/* Turn backplane clock on or off */
static int brcmf_sdio_htclk(struct brcmf_sdio *bus, bool on, bool pendok)
{
int err;
u8 clkctl, clkreq, devctl;
unsigned long timeout;
brcmf_dbg(SDIO, "Enter\n");
clkctl = 0;
if (bus->sr_enabled) {
bus->clkstate = (on ? CLK_AVAIL : CLK_SDONLY);
return 0;
}
if (on) {
/* Request HT Avail */
clkreq =
bus->alp_only ? SBSDIO_ALP_AVAIL_REQ : SBSDIO_HT_AVAIL_REQ;
brcmf_sdiod_regwb(bus->sdiodev, SBSDIO_FUNC1_CHIPCLKCSR,
clkreq, &err);
if (err) {
brcmf_err("HT Avail request error: %d\n", err);
return -EBADE;
}
/* Check current status */
clkctl = brcmf_sdiod_regrb(bus->sdiodev,
SBSDIO_FUNC1_CHIPCLKCSR, &err);
if (err) {
brcmf_err("HT Avail read error: %d\n", err);
return -EBADE;
}
/* Go to pending and await interrupt if appropriate */
if (!SBSDIO_CLKAV(clkctl, bus->alp_only) && pendok) {
/* Allow only clock-available interrupt */
devctl = brcmf_sdiod_regrb(bus->sdiodev,
SBSDIO_DEVICE_CTL, &err);
if (err) {
brcmf_err("Devctl error setting CA: %d\n",
err);
return -EBADE;
}
devctl |= SBSDIO_DEVCTL_CA_INT_ONLY;
brcmf_sdiod_regwb(bus->sdiodev, SBSDIO_DEVICE_CTL,
devctl, &err);
brcmf_dbg(SDIO, "CLKCTL: set PENDING\n");
bus->clkstate = CLK_PENDING;
return 0;
} else if (bus->clkstate == CLK_PENDING) {
/* Cancel CA-only interrupt filter */
devctl = brcmf_sdiod_regrb(bus->sdiodev,
SBSDIO_DEVICE_CTL, &err);
devctl &= ~SBSDIO_DEVCTL_CA_INT_ONLY;
brcmf_sdiod_regwb(bus->sdiodev, SBSDIO_DEVICE_CTL,
devctl, &err);
}
/* Otherwise, wait here (polling) for HT Avail */
timeout = jiffies +
msecs_to_jiffies(PMU_MAX_TRANSITION_DLY/1000);
while (!SBSDIO_CLKAV(clkctl, bus->alp_only)) {
clkctl = brcmf_sdiod_regrb(bus->sdiodev,
SBSDIO_FUNC1_CHIPCLKCSR,
&err);
if (time_after(jiffies, timeout))
break;
else
usleep_range(5000, 10000);
}
if (err) {
brcmf_err("HT Avail request error: %d\n", err);
return -EBADE;
}
if (!SBSDIO_CLKAV(clkctl, bus->alp_only)) {
brcmf_err("HT Avail timeout (%d): clkctl 0x%02x\n",
PMU_MAX_TRANSITION_DLY, clkctl);
return -EBADE;
}
/* Mark clock available */
bus->clkstate = CLK_AVAIL;
brcmf_dbg(SDIO, "CLKCTL: turned ON\n");
#if defined(DEBUG)
if (!bus->alp_only) {
if (SBSDIO_ALPONLY(clkctl))
brcmf_err("HT Clock should be on\n");
}
#endif /* defined (DEBUG) */
bus->activity = true;
} else {
clkreq = 0;
if (bus->clkstate == CLK_PENDING) {
/* Cancel CA-only interrupt filter */
devctl = brcmf_sdiod_regrb(bus->sdiodev,
SBSDIO_DEVICE_CTL, &err);
devctl &= ~SBSDIO_DEVCTL_CA_INT_ONLY;
brcmf_sdiod_regwb(bus->sdiodev, SBSDIO_DEVICE_CTL,
devctl, &err);
}
bus->clkstate = CLK_SDONLY;
brcmf_sdiod_regwb(bus->sdiodev, SBSDIO_FUNC1_CHIPCLKCSR,
clkreq, &err);
brcmf_dbg(SDIO, "CLKCTL: turned OFF\n");
if (err) {
brcmf_err("Failed access turning clock off: %d\n",
err);
return -EBADE;
}
}
return 0;
}
/* Change idle/active SD state */
static int brcmf_sdio_sdclk(struct brcmf_sdio *bus, bool on)
{
brcmf_dbg(SDIO, "Enter\n");
if (on)
bus->clkstate = CLK_SDONLY;
else
bus->clkstate = CLK_NONE;
return 0;
}
/* Transition SD and backplane clock readiness */
static int brcmf_sdio_clkctl(struct brcmf_sdio *bus, uint target, bool pendok)
{
#ifdef DEBUG
uint oldstate = bus->clkstate;
#endif /* DEBUG */
brcmf_dbg(SDIO, "Enter\n");
/* Early exit if we're already there */
if (bus->clkstate == target) {
if (target == CLK_AVAIL) {
brcmf_sdio_wd_timer(bus, BRCMF_WD_POLL_MS);
bus->activity = true;
}
return 0;
}
switch (target) {
case CLK_AVAIL:
/* Make sure SD clock is available */
if (bus->clkstate == CLK_NONE)
brcmf_sdio_sdclk(bus, true);
/* Now request HT Avail on the backplane */
brcmf_sdio_htclk(bus, true, pendok);
brcmf_sdio_wd_timer(bus, BRCMF_WD_POLL_MS);
bus->activity = true;
break;
case CLK_SDONLY:
/* Remove HT request, or bring up SD clock */
if (bus->clkstate == CLK_NONE)
brcmf_sdio_sdclk(bus, true);
else if (bus->clkstate == CLK_AVAIL)
brcmf_sdio_htclk(bus, false, false);
else
brcmf_err("request for %d -> %d\n",
bus->clkstate, target);
brcmf_sdio_wd_timer(bus, BRCMF_WD_POLL_MS);
break;
case CLK_NONE:
/* Make sure to remove HT request */
if (bus->clkstate == CLK_AVAIL)
brcmf_sdio_htclk(bus, false, false);
/* Now remove the SD clock */
brcmf_sdio_sdclk(bus, false);
brcmf_sdio_wd_timer(bus, 0);
break;
}
#ifdef DEBUG
brcmf_dbg(SDIO, "%d -> %d\n", oldstate, bus->clkstate);
#endif /* DEBUG */
return 0;
}
static int
brcmf_sdio_bus_sleep(struct brcmf_sdio *bus, bool sleep, bool pendok)
{
int err = 0;
brcmf_dbg(TRACE, "Enter\n");
brcmf_dbg(SDIO, "request %s currently %s\n",
(sleep ? "SLEEP" : "WAKE"),
(bus->sleeping ? "SLEEP" : "WAKE"));
/* If SR is enabled control bus state with KSO */
if (bus->sr_enabled) {
/* Done if we're already in the requested state */
if (sleep == bus->sleeping)
goto end;
/* Going to sleep */
if (sleep) {
/* Don't sleep if something is pending */
if (atomic_read(&bus->intstatus) ||
atomic_read(&bus->ipend) > 0 ||
(!atomic_read(&bus->fcstate) &&
brcmu_pktq_mlen(&bus->txq, ~bus->flowcontrol) &&
data_ok(bus)))
return -EBUSY;
err = brcmf_sdio_kso_control(bus, false);
/* disable watchdog */
if (!err)
brcmf_sdio_wd_timer(bus, 0);
} else {
bus->idlecount = 0;
err = brcmf_sdio_kso_control(bus, true);
}
if (!err) {
/* Change state */
bus->sleeping = sleep;
brcmf_dbg(SDIO, "new state %s\n",
(sleep ? "SLEEP" : "WAKE"));
} else {
brcmf_err("error while changing bus sleep state %d\n",
err);
return err;
}
}
end:
/* control clocks */
if (sleep) {
if (!bus->sr_enabled)
brcmf_sdio_clkctl(bus, CLK_NONE, pendok);
} else {
brcmf_sdio_clkctl(bus, CLK_AVAIL, pendok);
}
return err;
}
static u32 brcmf_sdio_hostmail(struct brcmf_sdio *bus)
{
u32 intstatus = 0;
u32 hmb_data;
u8 fcbits;
int ret;
brcmf_dbg(SDIO, "Enter\n");
/* Read mailbox data and ack that we did so */
ret = r_sdreg32(bus, &hmb_data,
offsetof(struct sdpcmd_regs, tohostmailboxdata));
if (ret == 0)
w_sdreg32(bus, SMB_INT_ACK,
offsetof(struct sdpcmd_regs, tosbmailbox));
bus->sdcnt.f1regdata += 2;
/* Dongle recomposed rx frames, accept them again */
if (hmb_data & HMB_DATA_NAKHANDLED) {
brcmf_dbg(SDIO, "Dongle reports NAK handled, expect rtx of %d\n",
bus->rx_seq);
if (!bus->rxskip)
brcmf_err("unexpected NAKHANDLED!\n");
bus->rxskip = false;
intstatus |= I_HMB_FRAME_IND;
}
/*
* DEVREADY does not occur with gSPI.
*/
if (hmb_data & (HMB_DATA_DEVREADY | HMB_DATA_FWREADY)) {
bus->sdpcm_ver =
(hmb_data & HMB_DATA_VERSION_MASK) >>
HMB_DATA_VERSION_SHIFT;
if (bus->sdpcm_ver != SDPCM_PROT_VERSION)
brcmf_err("Version mismatch, dongle reports %d, "
"expecting %d\n",
bus->sdpcm_ver, SDPCM_PROT_VERSION);
else
brcmf_dbg(SDIO, "Dongle ready, protocol version %d\n",
bus->sdpcm_ver);
}
/*
* Flow Control has been moved into the RX headers and this out of band
* method isn't used any more.
* remaining backward compatible with older dongles.
*/
if (hmb_data & HMB_DATA_FC) {
fcbits = (hmb_data & HMB_DATA_FCDATA_MASK) >>
HMB_DATA_FCDATA_SHIFT;
if (fcbits & ~bus->flowcontrol)
bus->sdcnt.fc_xoff++;
if (bus->flowcontrol & ~fcbits)
bus->sdcnt.fc_xon++;
bus->sdcnt.fc_rcvd++;
bus->flowcontrol = fcbits;
}
/* Shouldn't be any others */
if (hmb_data & ~(HMB_DATA_DEVREADY |
HMB_DATA_NAKHANDLED |
HMB_DATA_FC |
HMB_DATA_FWREADY |
HMB_DATA_FCDATA_MASK | HMB_DATA_VERSION_MASK))
brcmf_err("Unknown mailbox data content: 0x%02x\n",
hmb_data);
return intstatus;
}
static void brcmf_sdio_rxfail(struct brcmf_sdio *bus, bool abort, bool rtx)
{
uint retries = 0;
u16 lastrbc;
u8 hi, lo;
int err;
brcmf_err("%sterminate frame%s\n",
abort ? "abort command, " : "",
rtx ? ", send NAK" : "");
if (abort)
brcmf_sdiod_abort(bus->sdiodev, SDIO_FUNC_2);
brcmf_sdiod_regwb(bus->sdiodev, SBSDIO_FUNC1_FRAMECTRL,
SFC_RF_TERM, &err);
bus->sdcnt.f1regdata++;
/* Wait until the packet has been flushed (device/FIFO stable) */
for (lastrbc = retries = 0xffff; retries > 0; retries--) {
hi = brcmf_sdiod_regrb(bus->sdiodev,
SBSDIO_FUNC1_RFRAMEBCHI, &err);
lo = brcmf_sdiod_regrb(bus->sdiodev,
SBSDIO_FUNC1_RFRAMEBCLO, &err);
bus->sdcnt.f1regdata += 2;
if ((hi == 0) && (lo == 0))
break;
if ((hi > (lastrbc >> 8)) && (lo > (lastrbc & 0x00ff))) {
brcmf_err("count growing: last 0x%04x now 0x%04x\n",
lastrbc, (hi << 8) + lo);
}
lastrbc = (hi << 8) + lo;
}
if (!retries)
brcmf_err("count never zeroed: last 0x%04x\n", lastrbc);
else
brcmf_dbg(SDIO, "flush took %d iterations\n", 0xffff - retries);
if (rtx) {
bus->sdcnt.rxrtx++;
err = w_sdreg32(bus, SMB_NAK,
offsetof(struct sdpcmd_regs, tosbmailbox));
bus->sdcnt.f1regdata++;
if (err == 0)
bus->rxskip = true;
}
/* Clear partial in any case */
bus->cur_read.len = 0;
/* If we can't reach the device, signal failure */
if (err)
bus->sdiodev->bus_if->state = BRCMF_BUS_DOWN;
}
/* return total length of buffer chain */
static uint brcmf_sdio_glom_len(struct brcmf_sdio *bus)
{
struct sk_buff *p;
uint total;
total = 0;
skb_queue_walk(&bus->glom, p)
total += p->len;
return total;
}
static void brcmf_sdio_free_glom(struct brcmf_sdio *bus)
{
struct sk_buff *cur, *next;
skb_queue_walk_safe(&bus->glom, cur, next) {
skb_unlink(cur, &bus->glom);
brcmu_pkt_buf_free_skb(cur);
}
}
/**
* brcmfmac sdio bus specific header
* This is the lowest layer header wrapped on the packets transmitted between
* host and WiFi dongle which contains information needed for SDIO core and
* firmware
*
* It consists of 3 parts: hardware header, hardware extension header and
* software header
* hardware header (frame tag) - 4 bytes
* Byte 0~1: Frame length
* Byte 2~3: Checksum, bit-wise inverse of frame length
* hardware extension header - 8 bytes
* Tx glom mode only, N/A for Rx or normal Tx
* Byte 0~1: Packet length excluding hw frame tag
* Byte 2: Reserved
* Byte 3: Frame flags, bit 0: last frame indication
* Byte 4~5: Reserved
* Byte 6~7: Tail padding length
* software header - 8 bytes
* Byte 0: Rx/Tx sequence number
* Byte 1: 4 MSB Channel number, 4 LSB arbitrary flag
* Byte 2: Length of next data frame, reserved for Tx
* Byte 3: Data offset
* Byte 4: Flow control bits, reserved for Tx
* Byte 5: Maximum Sequence number allowed by firmware for Tx, N/A for Tx packet
* Byte 6~7: Reserved
*/
#define SDPCM_HWHDR_LEN 4
#define SDPCM_HWEXT_LEN 8
#define SDPCM_SWHDR_LEN 8
#define SDPCM_HDRLEN (SDPCM_HWHDR_LEN + SDPCM_SWHDR_LEN)
/* software header */
#define SDPCM_SEQ_MASK 0x000000ff
#define SDPCM_SEQ_WRAP 256
#define SDPCM_CHANNEL_MASK 0x00000f00
#define SDPCM_CHANNEL_SHIFT 8
#define SDPCM_CONTROL_CHANNEL 0 /* Control */
#define SDPCM_EVENT_CHANNEL 1 /* Asyc Event Indication */
#define SDPCM_DATA_CHANNEL 2 /* Data Xmit/Recv */
#define SDPCM_GLOM_CHANNEL 3 /* Coalesced packets */
#define SDPCM_TEST_CHANNEL 15 /* Test/debug packets */
#define SDPCM_GLOMDESC(p) (((u8 *)p)[1] & 0x80)
#define SDPCM_NEXTLEN_MASK 0x00ff0000
#define SDPCM_NEXTLEN_SHIFT 16
#define SDPCM_DOFFSET_MASK 0xff000000
#define SDPCM_DOFFSET_SHIFT 24
#define SDPCM_FCMASK_MASK 0x000000ff
#define SDPCM_WINDOW_MASK 0x0000ff00
#define SDPCM_WINDOW_SHIFT 8
static inline u8 brcmf_sdio_getdatoffset(u8 *swheader)
{
u32 hdrvalue;
hdrvalue = *(u32 *)swheader;
return (u8)((hdrvalue & SDPCM_DOFFSET_MASK) >> SDPCM_DOFFSET_SHIFT);
}
static int brcmf_sdio_hdparse(struct brcmf_sdio *bus, u8 *header,
struct brcmf_sdio_hdrinfo *rd,
enum brcmf_sdio_frmtype type)
{
u16 len, checksum;
u8 rx_seq, fc, tx_seq_max;
u32 swheader;
trace_brcmf_sdpcm_hdr(SDPCM_RX, header);
/* hw header */
len = get_unaligned_le16(header);
checksum = get_unaligned_le16(header + sizeof(u16));
/* All zero means no more to read */
if (!(len | checksum)) {
bus->rxpending = false;
return -ENODATA;
}
if ((u16)(~(len ^ checksum))) {
brcmf_err("HW header checksum error\n");
bus->sdcnt.rx_badhdr++;
brcmf_sdio_rxfail(bus, false, false);
return -EIO;
}
if (len < SDPCM_HDRLEN) {
brcmf_err("HW header length error\n");
return -EPROTO;
}
if (type == BRCMF_SDIO_FT_SUPER &&
(roundup(len, bus->blocksize) != rd->len)) {
brcmf_err("HW superframe header length error\n");
return -EPROTO;
}
if (type == BRCMF_SDIO_FT_SUB && len > rd->len) {
brcmf_err("HW subframe header length error\n");
return -EPROTO;
}
rd->len = len;
/* software header */
header += SDPCM_HWHDR_LEN;
swheader = le32_to_cpu(*(__le32 *)header);
if (type == BRCMF_SDIO_FT_SUPER && SDPCM_GLOMDESC(header)) {
brcmf_err("Glom descriptor found in superframe head\n");
rd->len = 0;
return -EINVAL;
}
rx_seq = (u8)(swheader & SDPCM_SEQ_MASK);
rd->channel = (swheader & SDPCM_CHANNEL_MASK) >> SDPCM_CHANNEL_SHIFT;
if (len > MAX_RX_DATASZ && rd->channel != SDPCM_CONTROL_CHANNEL &&
type != BRCMF_SDIO_FT_SUPER) {
brcmf_err("HW header length too long\n");
bus->sdcnt.rx_toolong++;
brcmf_sdio_rxfail(bus, false, false);
rd->len = 0;
return -EPROTO;
}
if (type == BRCMF_SDIO_FT_SUPER && rd->channel != SDPCM_GLOM_CHANNEL) {
brcmf_err("Wrong channel for superframe\n");
rd->len = 0;
return -EINVAL;
}
if (type == BRCMF_SDIO_FT_SUB && rd->channel != SDPCM_DATA_CHANNEL &&
rd->channel != SDPCM_EVENT_CHANNEL) {
brcmf_err("Wrong channel for subframe\n");
rd->len = 0;
return -EINVAL;
}
rd->dat_offset = brcmf_sdio_getdatoffset(header);
if (rd->dat_offset < SDPCM_HDRLEN || rd->dat_offset > rd->len) {
brcmf_err("seq %d: bad data offset\n", rx_seq);
bus->sdcnt.rx_badhdr++;
brcmf_sdio_rxfail(bus, false, false);
rd->len = 0;
return -ENXIO;
}
if (rd->seq_num != rx_seq) {
brcmf_err("seq %d: sequence number error, expect %d\n",
rx_seq, rd->seq_num);
bus->sdcnt.rx_badseq++;
rd->seq_num = rx_seq;
}
/* no need to check the reset for subframe */
if (type == BRCMF_SDIO_FT_SUB)
return 0;
rd->len_nxtfrm = (swheader & SDPCM_NEXTLEN_MASK) >> SDPCM_NEXTLEN_SHIFT;
if (rd->len_nxtfrm << 4 > MAX_RX_DATASZ) {
/* only warm for NON glom packet */
if (rd->channel != SDPCM_GLOM_CHANNEL)
brcmf_err("seq %d: next length error\n", rx_seq);
rd->len_nxtfrm = 0;
}
swheader = le32_to_cpu(*(__le32 *)(header + 4));
fc = swheader & SDPCM_FCMASK_MASK;
if (bus->flowcontrol != fc) {
if (~bus->flowcontrol & fc)
bus->sdcnt.fc_xoff++;
if (bus->flowcontrol & ~fc)
bus->sdcnt.fc_xon++;
bus->sdcnt.fc_rcvd++;
bus->flowcontrol = fc;
}
tx_seq_max = (swheader & SDPCM_WINDOW_MASK) >> SDPCM_WINDOW_SHIFT;
if ((u8)(tx_seq_max - bus->tx_seq) > 0x40) {
brcmf_err("seq %d: max tx seq number error\n", rx_seq);
tx_seq_max = bus->tx_seq + 2;
}
bus->tx_max = tx_seq_max;
return 0;
}
static inline void brcmf_sdio_update_hwhdr(u8 *header, u16 frm_length)
{
*(__le16 *)header = cpu_to_le16(frm_length);
*(((__le16 *)header) + 1) = cpu_to_le16(~frm_length);
}
static void brcmf_sdio_hdpack(struct brcmf_sdio *bus, u8 *header,
struct brcmf_sdio_hdrinfo *hd_info)
{
u32 hdrval;
u8 hdr_offset;
brcmf_sdio_update_hwhdr(header, hd_info->len);
hdr_offset = SDPCM_HWHDR_LEN;
if (bus->txglom) {
hdrval = (hd_info->len - hdr_offset) | (hd_info->lastfrm << 24);
*((__le32 *)(header + hdr_offset)) = cpu_to_le32(hdrval);
hdrval = (u16)hd_info->tail_pad << 16;
*(((__le32 *)(header + hdr_offset)) + 1) = cpu_to_le32(hdrval);
hdr_offset += SDPCM_HWEXT_LEN;
}
hdrval = hd_info->seq_num;
hdrval |= (hd_info->channel << SDPCM_CHANNEL_SHIFT) &
SDPCM_CHANNEL_MASK;
hdrval |= (hd_info->dat_offset << SDPCM_DOFFSET_SHIFT) &
SDPCM_DOFFSET_MASK;
*((__le32 *)(header + hdr_offset)) = cpu_to_le32(hdrval);
*(((__le32 *)(header + hdr_offset)) + 1) = 0;
trace_brcmf_sdpcm_hdr(SDPCM_TX + !!(bus->txglom), header);
}
static u8 brcmf_sdio_rxglom(struct brcmf_sdio *bus, u8 rxseq)
{
u16 dlen, totlen;
u8 *dptr, num = 0;
u16 sublen;
struct sk_buff *pfirst, *pnext;
int errcode;
u8 doff, sfdoff;
struct brcmf_sdio_hdrinfo rd_new;
/* If packets, issue read(s) and send up packet chain */
/* Return sequence numbers consumed? */
brcmf_dbg(SDIO, "start: glomd %p glom %p\n",
bus->glomd, skb_peek(&bus->glom));
/* If there's a descriptor, generate the packet chain */
if (bus->glomd) {
pfirst = pnext = NULL;
dlen = (u16) (bus->glomd->len);
dptr = bus->glomd->data;
if (!dlen || (dlen & 1)) {
brcmf_err("bad glomd len(%d), ignore descriptor\n",
dlen);
dlen = 0;
}
for (totlen = num = 0; dlen; num++) {
/* Get (and move past) next length */
sublen = get_unaligned_le16(dptr);
dlen -= sizeof(u16);
dptr += sizeof(u16);
if ((sublen < SDPCM_HDRLEN) ||
((num == 0) && (sublen < (2 * SDPCM_HDRLEN)))) {
brcmf_err("descriptor len %d bad: %d\n",
num, sublen);
pnext = NULL;
break;
}
if (sublen % bus->sgentry_align) {
brcmf_err("sublen %d not multiple of %d\n",
sublen, bus->sgentry_align);
}
totlen += sublen;
/* For last frame, adjust read len so total
is a block multiple */
if (!dlen) {
sublen +=
(roundup(totlen, bus->blocksize) - totlen);
totlen = roundup(totlen, bus->blocksize);
}
/* Allocate/chain packet for next subframe */
pnext = brcmu_pkt_buf_get_skb(sublen + bus->sgentry_align);
if (pnext == NULL) {
brcmf_err("bcm_pkt_buf_get_skb failed, num %d len %d\n",
num, sublen);
break;
}
skb_queue_tail(&bus->glom, pnext);
/* Adhere to start alignment requirements */
pkt_align(pnext, sublen, bus->sgentry_align);
}
/* If all allocations succeeded, save packet chain
in bus structure */
if (pnext) {
brcmf_dbg(GLOM, "allocated %d-byte packet chain for %d subframes\n",
totlen, num);
if (BRCMF_GLOM_ON() && bus->cur_read.len &&
totlen != bus->cur_read.len) {
brcmf_dbg(GLOM, "glomdesc mismatch: nextlen %d glomdesc %d rxseq %d\n",
bus->cur_read.len, totlen, rxseq);
}
pfirst = pnext = NULL;
} else {
brcmf_sdio_free_glom(bus);
num = 0;
}
/* Done with descriptor packet */
brcmu_pkt_buf_free_skb(bus->glomd);
bus->glomd = NULL;
bus->cur_read.len = 0;
}
/* Ok -- either we just generated a packet chain,
or had one from before */
if (!skb_queue_empty(&bus->glom)) {
if (BRCMF_GLOM_ON()) {
brcmf_dbg(GLOM, "try superframe read, packet chain:\n");
skb_queue_walk(&bus->glom, pnext) {
brcmf_dbg(GLOM, " %p: %p len 0x%04x (%d)\n",
pnext, (u8 *) (pnext->data),
pnext->len, pnext->len);
}
}
pfirst = skb_peek(&bus->glom);
dlen = (u16) brcmf_sdio_glom_len(bus);
/* Do an SDIO read for the superframe. Configurable iovar to
* read directly into the chained packet, or allocate a large
* packet and and copy into the chain.
*/
sdio_claim_host(bus->sdiodev->func[1]);
errcode = brcmf_sdiod_recv_chain(bus->sdiodev,
&bus->glom, dlen);
sdio_release_host(bus->sdiodev->func[1]);
bus->sdcnt.f2rxdata++;
/* On failure, kill the superframe, allow a couple retries */
if (errcode < 0) {
brcmf_err("glom read of %d bytes failed: %d\n",
dlen, errcode);
sdio_claim_host(bus->sdiodev->func[1]);
if (bus->glomerr++ < 3) {
brcmf_sdio_rxfail(bus, true, true);
} else {
bus->glomerr = 0;
brcmf_sdio_rxfail(bus, true, false);
bus->sdcnt.rxglomfail++;
brcmf_sdio_free_glom(bus);
}
sdio_release_host(bus->sdiodev->func[1]);
return 0;
}
brcmf_dbg_hex_dump(BRCMF_GLOM_ON(),
pfirst->data, min_t(int, pfirst->len, 48),
"SUPERFRAME:\n");
rd_new.seq_num = rxseq;
rd_new.len = dlen;
sdio_claim_host(bus->sdiodev->func[1]);
errcode = brcmf_sdio_hdparse(bus, pfirst->data, &rd_new,
BRCMF_SDIO_FT_SUPER);
sdio_release_host(bus->sdiodev->func[1]);
bus->cur_read.len = rd_new.len_nxtfrm << 4;
/* Remove superframe header, remember offset */
skb_pull(pfirst, rd_new.dat_offset);
sfdoff = rd_new.dat_offset;
num = 0;
/* Validate all the subframe headers */
skb_queue_walk(&bus->glom, pnext) {
/* leave when invalid subframe is found */
if (errcode)
break;
rd_new.len = pnext->len;
rd_new.seq_num = rxseq++;
sdio_claim_host(bus->sdiodev->func[1]);
errcode = brcmf_sdio_hdparse(bus, pnext->data, &rd_new,
BRCMF_SDIO_FT_SUB);
sdio_release_host(bus->sdiodev->func[1]);
brcmf_dbg_hex_dump(BRCMF_GLOM_ON(),
pnext->data, 32, "subframe:\n");
num++;
}
if (errcode) {
/* Terminate frame on error, request
a couple retries */
sdio_claim_host(bus->sdiodev->func[1]);
if (bus->glomerr++ < 3) {
/* Restore superframe header space */
skb_push(pfirst, sfdoff);
brcmf_sdio_rxfail(bus, true, true);
} else {
bus->glomerr = 0;
brcmf_sdio_rxfail(bus, true, false);
bus->sdcnt.rxglomfail++;
brcmf_sdio_free_glom(bus);
}
sdio_release_host(bus->sdiodev->func[1]);
bus->cur_read.len = 0;
return 0;
}
/* Basic SD framing looks ok - process each packet (header) */
skb_queue_walk_safe(&bus->glom, pfirst, pnext) {
dptr = (u8 *) (pfirst->data);
sublen = get_unaligned_le16(dptr);
doff = brcmf_sdio_getdatoffset(&dptr[SDPCM_HWHDR_LEN]);
brcmf_dbg_hex_dump(BRCMF_BYTES_ON() && BRCMF_DATA_ON(),
dptr, pfirst->len,
"Rx Subframe Data:\n");
__skb_trim(pfirst, sublen);
skb_pull(pfirst, doff);
if (pfirst->len == 0) {
skb_unlink(pfirst, &bus->glom);
brcmu_pkt_buf_free_skb(pfirst);
continue;
}
brcmf_dbg_hex_dump(BRCMF_GLOM_ON(),
pfirst->data,
min_t(int, pfirst->len, 32),
"subframe %d to stack, %p (%p/%d) nxt/lnk %p/%p\n",
bus->glom.qlen, pfirst, pfirst->data,
pfirst->len, pfirst->next,
pfirst->prev);
skb_unlink(pfirst, &bus->glom);
brcmf_rx_frame(bus->sdiodev->dev, pfirst);
bus->sdcnt.rxglompkts++;
}
bus->sdcnt.rxglomframes++;
}
return num;
}
static int brcmf_sdio_dcmd_resp_wait(struct brcmf_sdio *bus, uint *condition,
bool *pending)
{
DECLARE_WAITQUEUE(wait, current);
int timeout = msecs_to_jiffies(DCMD_RESP_TIMEOUT);
/* Wait until control frame is available */
add_wait_queue(&bus->dcmd_resp_wait, &wait);
set_current_state(TASK_INTERRUPTIBLE);
while (!(*condition) && (!signal_pending(current) && timeout))
timeout = schedule_timeout(timeout);
if (signal_pending(current))
*pending = true;
set_current_state(TASK_RUNNING);
remove_wait_queue(&bus->dcmd_resp_wait, &wait);
return timeout;
}
static int brcmf_sdio_dcmd_resp_wake(struct brcmf_sdio *bus)
{
if (waitqueue_active(&bus->dcmd_resp_wait))
wake_up_interruptible(&bus->dcmd_resp_wait);
return 0;
}
static void
brcmf_sdio_read_control(struct brcmf_sdio *bus, u8 *hdr, uint len, uint doff)
{
uint rdlen, pad;
u8 *buf = NULL, *rbuf;
int sdret;
brcmf_dbg(TRACE, "Enter\n");
if (bus->rxblen)
buf = vzalloc(bus->rxblen);
if (!buf)
goto done;
rbuf = bus->rxbuf;
pad = ((unsigned long)rbuf % bus->head_align);
if (pad)
rbuf += (bus->head_align - pad);
/* Copy the already-read portion over */
memcpy(buf, hdr, BRCMF_FIRSTREAD);
if (len <= BRCMF_FIRSTREAD)
goto gotpkt;
/* Raise rdlen to next SDIO block to avoid tail command */
rdlen = len - BRCMF_FIRSTREAD;
if (bus->roundup && bus->blocksize && (rdlen > bus->blocksize)) {
pad = bus->blocksize - (rdlen % bus->blocksize);
if ((pad <= bus->roundup) && (pad < bus->blocksize) &&
((len + pad) < bus->sdiodev->bus_if->maxctl))
rdlen += pad;
} else if (rdlen % bus->head_align) {
rdlen += bus->head_align - (rdlen % bus->head_align);
}
/* Drop if the read is too big or it exceeds our maximum */
if ((rdlen + BRCMF_FIRSTREAD) > bus->sdiodev->bus_if->maxctl) {
brcmf_err("%d-byte control read exceeds %d-byte buffer\n",
rdlen, bus->sdiodev->bus_if->maxctl);
brcmf_sdio_rxfail(bus, false, false);
goto done;
}
if ((len - doff) > bus->sdiodev->bus_if->maxctl) {
brcmf_err("%d-byte ctl frame (%d-byte ctl data) exceeds %d-byte limit\n",
len, len - doff, bus->sdiodev->bus_if->maxctl);
bus->sdcnt.rx_toolong++;
brcmf_sdio_rxfail(bus, false, false);
goto done;
}
/* Read remain of frame body */
sdret = brcmf_sdiod_recv_buf(bus->sdiodev, rbuf, rdlen);
bus->sdcnt.f2rxdata++;
/* Control frame failures need retransmission */
if (sdret < 0) {
brcmf_err("read %d control bytes failed: %d\n",
rdlen, sdret);
bus->sdcnt.rxc_errors++;
brcmf_sdio_rxfail(bus, true, true);
goto done;
} else
memcpy(buf + BRCMF_FIRSTREAD, rbuf, rdlen);
gotpkt:
brcmf_dbg_hex_dump(BRCMF_BYTES_ON() && BRCMF_CTL_ON(),
buf, len, "RxCtrl:\n");
/* Point to valid data and indicate its length */
spin_lock_bh(&bus->rxctl_lock);
if (bus->rxctl) {
brcmf_err("last control frame is being processed.\n");
spin_unlock_bh(&bus->rxctl_lock);
vfree(buf);
goto done;
}
bus->rxctl = buf + doff;
bus->rxctl_orig = buf;
bus->rxlen = len - doff;
spin_unlock_bh(&bus->rxctl_lock);
done:
/* Awake any waiters */
brcmf_sdio_dcmd_resp_wake(bus);
}
/* Pad read to blocksize for efficiency */
static void brcmf_sdio_pad(struct brcmf_sdio *bus, u16 *pad, u16 *rdlen)
{
if (bus->roundup && bus->blocksize && *rdlen > bus->blocksize) {
*pad = bus->blocksize - (*rdlen % bus->blocksize);
if (*pad <= bus->roundup && *pad < bus->blocksize &&
*rdlen + *pad + BRCMF_FIRSTREAD < MAX_RX_DATASZ)
*rdlen += *pad;
} else if (*rdlen % bus->head_align) {
*rdlen += bus->head_align - (*rdlen % bus->head_align);
}
}
static uint brcmf_sdio_readframes(struct brcmf_sdio *bus, uint maxframes)
{
struct sk_buff *pkt; /* Packet for event or data frames */
u16 pad; /* Number of pad bytes to read */
uint rxleft = 0; /* Remaining number of frames allowed */
int ret; /* Return code from calls */
uint rxcount = 0; /* Total frames read */
struct brcmf_sdio_hdrinfo *rd = &bus->cur_read, rd_new;
u8 head_read = 0;
brcmf_dbg(TRACE, "Enter\n");
/* Not finished unless we encounter no more frames indication */
bus->rxpending = true;
for (rd->seq_num = bus->rx_seq, rxleft = maxframes;
!bus->rxskip && rxleft &&
bus->sdiodev->bus_if->state != BRCMF_BUS_DOWN;
rd->seq_num++, rxleft--) {
/* Handle glomming separately */
if (bus->glomd || !skb_queue_empty(&bus->glom)) {
u8 cnt;
brcmf_dbg(GLOM, "calling rxglom: glomd %p, glom %p\n",
bus->glomd, skb_peek(&bus->glom));
cnt = brcmf_sdio_rxglom(bus, rd->seq_num);
brcmf_dbg(GLOM, "rxglom returned %d\n", cnt);
rd->seq_num += cnt - 1;
rxleft = (rxleft > cnt) ? (rxleft - cnt) : 1;
continue;
}
rd->len_left = rd->len;
/* read header first for unknow frame length */
sdio_claim_host(bus->sdiodev->func[1]);
if (!rd->len) {
ret = brcmf_sdiod_recv_buf(bus->sdiodev,
bus->rxhdr, BRCMF_FIRSTREAD);
bus->sdcnt.f2rxhdrs++;
if (ret < 0) {
brcmf_err("RXHEADER FAILED: %d\n",
ret);
bus->sdcnt.rx_hdrfail++;
brcmf_sdio_rxfail(bus, true, true);
sdio_release_host(bus->sdiodev->func[1]);
continue;
}
brcmf_dbg_hex_dump(BRCMF_BYTES_ON() || BRCMF_HDRS_ON(),
bus->rxhdr, SDPCM_HDRLEN,
"RxHdr:\n");
if (brcmf_sdio_hdparse(bus, bus->rxhdr, rd,
BRCMF_SDIO_FT_NORMAL)) {
sdio_release_host(bus->sdiodev->func[1]);
if (!bus->rxpending)
break;
else
continue;
}
if (rd->channel == SDPCM_CONTROL_CHANNEL) {
brcmf_sdio_read_control(bus, bus->rxhdr,
rd->len,
rd->dat_offset);
/* prepare the descriptor for the next read */
rd->len = rd->len_nxtfrm << 4;
rd->len_nxtfrm = 0;
/* treat all packet as event if we don't know */
rd->channel = SDPCM_EVENT_CHANNEL;
sdio_release_host(bus->sdiodev->func[1]);
continue;
}
rd->len_left = rd->len > BRCMF_FIRSTREAD ?
rd->len - BRCMF_FIRSTREAD : 0;
head_read = BRCMF_FIRSTREAD;
}
brcmf_sdio_pad(bus, &pad, &rd->len_left);
pkt = brcmu_pkt_buf_get_skb(rd->len_left + head_read +
bus->head_align);
if (!pkt) {
/* Give up on data, request rtx of events */
brcmf_err("brcmu_pkt_buf_get_skb failed\n");
brcmf_sdio_rxfail(bus, false,
RETRYCHAN(rd->channel));
sdio_release_host(bus->sdiodev->func[1]);
continue;
}
skb_pull(pkt, head_read);
pkt_align(pkt, rd->len_left, bus->head_align);
ret = brcmf_sdiod_recv_pkt(bus->sdiodev, pkt);
bus->sdcnt.f2rxdata++;
sdio_release_host(bus->sdiodev->func[1]);
if (ret < 0) {
brcmf_err("read %d bytes from channel %d failed: %d\n",
rd->len, rd->channel, ret);
brcmu_pkt_buf_free_skb(pkt);
sdio_claim_host(bus->sdiodev->func[1]);
brcmf_sdio_rxfail(bus, true,
RETRYCHAN(rd->channel));
sdio_release_host(bus->sdiodev->func[1]);
continue;
}
if (head_read) {
skb_push(pkt, head_read);
memcpy(pkt->data, bus->rxhdr, head_read);
head_read = 0;
} else {
memcpy(bus->rxhdr, pkt->data, SDPCM_HDRLEN);
rd_new.seq_num = rd->seq_num;
sdio_claim_host(bus->sdiodev->func[1]);
if (brcmf_sdio_hdparse(bus, bus->rxhdr, &rd_new,
BRCMF_SDIO_FT_NORMAL)) {
rd->len = 0;
brcmu_pkt_buf_free_skb(pkt);
}
bus->sdcnt.rx_readahead_cnt++;
if (rd->len != roundup(rd_new.len, 16)) {
brcmf_err("frame length mismatch:read %d, should be %d\n",
rd->len,
roundup(rd_new.len, 16) >> 4);
rd->len = 0;
brcmf_sdio_rxfail(bus, true, true);
sdio_release_host(bus->sdiodev->func[1]);
brcmu_pkt_buf_free_skb(pkt);
continue;
}
sdio_release_host(bus->sdiodev->func[1]);
rd->len_nxtfrm = rd_new.len_nxtfrm;
rd->channel = rd_new.channel;
rd->dat_offset = rd_new.dat_offset;
brcmf_dbg_hex_dump(!(BRCMF_BYTES_ON() &&
BRCMF_DATA_ON()) &&
BRCMF_HDRS_ON(),
bus->rxhdr, SDPCM_HDRLEN,
"RxHdr:\n");
if (rd_new.channel == SDPCM_CONTROL_CHANNEL) {
brcmf_err("readahead on control packet %d?\n",
rd_new.seq_num);
/* Force retry w/normal header read */
rd->len = 0;
sdio_claim_host(bus->sdiodev->func[1]);
brcmf_sdio_rxfail(bus, false, true);
sdio_release_host(bus->sdiodev->func[1]);
brcmu_pkt_buf_free_skb(pkt);
continue;
}
}
brcmf_dbg_hex_dump(BRCMF_BYTES_ON() && BRCMF_DATA_ON(),
pkt->data, rd->len, "Rx Data:\n");
/* Save superframe descriptor and allocate packet frame */
if (rd->channel == SDPCM_GLOM_CHANNEL) {
if (SDPCM_GLOMDESC(&bus->rxhdr[SDPCM_HWHDR_LEN])) {
brcmf_dbg(GLOM, "glom descriptor, %d bytes:\n",
rd->len);
brcmf_dbg_hex_dump(BRCMF_GLOM_ON(),
pkt->data, rd->len,
"Glom Data:\n");
__skb_trim(pkt, rd->len);
skb_pull(pkt, SDPCM_HDRLEN);
bus->glomd = pkt;
} else {
brcmf_err("%s: glom superframe w/o "
"descriptor!\n", __func__);
sdio_claim_host(bus->sdiodev->func[1]);
brcmf_sdio_rxfail(bus, false, false);
sdio_release_host(bus->sdiodev->func[1]);
}
/* prepare the descriptor for the next read */
rd->len = rd->len_nxtfrm << 4;
rd->len_nxtfrm = 0;
/* treat all packet as event if we don't know */
rd->channel = SDPCM_EVENT_CHANNEL;
continue;
}
/* Fill in packet len and prio, deliver upward */
__skb_trim(pkt, rd->len);
skb_pull(pkt, rd->dat_offset);
/* prepare the descriptor for the next read */
rd->len = rd->len_nxtfrm << 4;
rd->len_nxtfrm = 0;
/* treat all packet as event if we don't know */
rd->channel = SDPCM_EVENT_CHANNEL;
if (pkt->len == 0) {
brcmu_pkt_buf_free_skb(pkt);
continue;
}
brcmf_rx_frame(bus->sdiodev->dev, pkt);
}
rxcount = maxframes - rxleft;
/* Message if we hit the limit */
if (!rxleft)
brcmf_dbg(DATA, "hit rx limit of %d frames\n", maxframes);
else
brcmf_dbg(DATA, "processed %d frames\n", rxcount);
/* Back off rxseq if awaiting rtx, update rx_seq */
if (bus->rxskip)
rd->seq_num--;
bus->rx_seq = rd->seq_num;
return rxcount;
}
static void
brcmf_sdio_wait_event_wakeup(struct brcmf_sdio *bus)
{
if (waitqueue_active(&bus->ctrl_wait))
wake_up_interruptible(&bus->ctrl_wait);
return;
}
static int brcmf_sdio_txpkt_hdalign(struct brcmf_sdio *bus, struct sk_buff *pkt)
{
u16 head_pad;
u8 *dat_buf;
dat_buf = (u8 *)(pkt->data);
/* Check head padding */
head_pad = ((unsigned long)dat_buf % bus->head_align);
if (head_pad) {
if (skb_headroom(pkt) < head_pad) {
bus->sdiodev->bus_if->tx_realloc++;
head_pad = 0;
if (skb_cow(pkt, head_pad))
return -ENOMEM;
}
skb_push(pkt, head_pad);
dat_buf = (u8 *)(pkt->data);
memset(dat_buf, 0, head_pad + bus->tx_hdrlen);
}
return head_pad;
}
/**
* struct brcmf_skbuff_cb reserves first two bytes in sk_buff::cb for
* bus layer usage.
*/
/* flag marking a dummy skb added for DMA alignment requirement */
#define ALIGN_SKB_FLAG 0x8000
/* bit mask of data length chopped from the previous packet */
#define ALIGN_SKB_CHOP_LEN_MASK 0x7fff
static int brcmf_sdio_txpkt_prep_sg(struct brcmf_sdio *bus,
struct sk_buff_head *pktq,
struct sk_buff *pkt, u16 total_len)
{
struct brcmf_sdio_dev *sdiodev;
struct sk_buff *pkt_pad;
u16 tail_pad, tail_chop, chain_pad;
unsigned int blksize;
bool lastfrm;
int ntail, ret;
sdiodev = bus->sdiodev;
blksize = sdiodev->func[SDIO_FUNC_2]->cur_blksize;
/* sg entry alignment should be a divisor of block size */
WARN_ON(blksize % bus->sgentry_align);
/* Check tail padding */
lastfrm = skb_queue_is_last(pktq, pkt);
tail_pad = 0;
tail_chop = pkt->len % bus->sgentry_align;
if (tail_chop)
tail_pad = bus->sgentry_align - tail_chop;
chain_pad = (total_len + tail_pad) % blksize;
if (lastfrm && chain_pad)
tail_pad += blksize - chain_pad;
if (skb_tailroom(pkt) < tail_pad && pkt->len > blksize) {
pkt_pad = bus->txglom_sgpad;
if (pkt_pad == NULL)
brcmu_pkt_buf_get_skb(tail_pad + tail_chop);
if (pkt_pad == NULL)
return -ENOMEM;
ret = brcmf_sdio_txpkt_hdalign(bus, pkt_pad);
if (unlikely(ret < 0))
return ret;
memcpy(pkt_pad->data,
pkt->data + pkt->len - tail_chop,
tail_chop);
*(u32 *)(pkt_pad->cb) = ALIGN_SKB_FLAG + tail_chop;
skb_trim(pkt, pkt->len - tail_chop);
__skb_queue_after(pktq, pkt, pkt_pad);
} else {
ntail = pkt->data_len + tail_pad -
(pkt->end - pkt->tail);
if (skb_cloned(pkt) || ntail > 0)
if (pskb_expand_head(pkt, 0, ntail, GFP_ATOMIC))
return -ENOMEM;
if (skb_linearize(pkt))
return -ENOMEM;
__skb_put(pkt, tail_pad);
}
return tail_pad;
}
/**
* brcmf_sdio_txpkt_prep - packet preparation for transmit
* @bus: brcmf_sdio structure pointer
* @pktq: packet list pointer
* @chan: virtual channel to transmit the packet
*
* Processes to be applied to the packet
* - Align data buffer pointer
* - Align data buffer length
* - Prepare header
* Return: negative value if there is error
*/
static int
brcmf_sdio_txpkt_prep(struct brcmf_sdio *bus, struct sk_buff_head *pktq,
uint chan)
{
u16 head_pad, total_len;
struct sk_buff *pkt_next;
u8 txseq;
int ret;
struct brcmf_sdio_hdrinfo hd_info = {0};
txseq = bus->tx_seq;
total_len = 0;
skb_queue_walk(pktq, pkt_next) {
/* alignment packet inserted in previous
* loop cycle can be skipped as it is
* already properly aligned and does not
* need an sdpcm header.
*/
if (*(u32 *)(pkt_next->cb) & ALIGN_SKB_FLAG)
continue;
/* align packet data pointer */
ret = brcmf_sdio_txpkt_hdalign(bus, pkt_next);
if (ret < 0)
return ret;
head_pad = (u16)ret;
if (head_pad)
memset(pkt_next->data, 0, head_pad + bus->tx_hdrlen);
total_len += pkt_next->len;
hd_info.len = pkt_next->len;
hd_info.lastfrm = skb_queue_is_last(pktq, pkt_next);
if (bus->txglom && pktq->qlen > 1) {
ret = brcmf_sdio_txpkt_prep_sg(bus, pktq,
pkt_next, total_len);
if (ret < 0)
return ret;
hd_info.tail_pad = (u16)ret;
total_len += (u16)ret;
}
hd_info.channel = chan;
hd_info.dat_offset = head_pad + bus->tx_hdrlen;
hd_info.seq_num = txseq++;
/* Now fill the header */
brcmf_sdio_hdpack(bus, pkt_next->data, &hd_info);
if (BRCMF_BYTES_ON() &&
((BRCMF_CTL_ON() && chan == SDPCM_CONTROL_CHANNEL) ||
(BRCMF_DATA_ON() && chan != SDPCM_CONTROL_CHANNEL)))
brcmf_dbg_hex_dump(true, pkt_next, hd_info.len,
"Tx Frame:\n");
else if (BRCMF_HDRS_ON())
brcmf_dbg_hex_dump(true, pkt_next,
head_pad + bus->tx_hdrlen,
"Tx Header:\n");
}
/* Hardware length tag of the first packet should be total
* length of the chain (including padding)
*/
if (bus->txglom)
brcmf_sdio_update_hwhdr(pktq->next->data, total_len);
return 0;
}
/**
* brcmf_sdio_txpkt_postp - packet post processing for transmit
* @bus: brcmf_sdio structure pointer
* @pktq: packet list pointer
*
* Processes to be applied to the packet
* - Remove head padding
* - Remove tail padding
*/
static void
brcmf_sdio_txpkt_postp(struct brcmf_sdio *bus, struct sk_buff_head *pktq)
{
u8 *hdr;
u32 dat_offset;
u16 tail_pad;
u32 dummy_flags, chop_len;
struct sk_buff *pkt_next, *tmp, *pkt_prev;
skb_queue_walk_safe(pktq, pkt_next, tmp) {
dummy_flags = *(u32 *)(pkt_next->cb);
if (dummy_flags & ALIGN_SKB_FLAG) {
chop_len = dummy_flags & ALIGN_SKB_CHOP_LEN_MASK;
if (chop_len) {
pkt_prev = pkt_next->prev;
skb_put(pkt_prev, chop_len);
}
__skb_unlink(pkt_next, pktq);
brcmu_pkt_buf_free_skb(pkt_next);
} else {
hdr = pkt_next->data + bus->tx_hdrlen - SDPCM_SWHDR_LEN;
dat_offset = le32_to_cpu(*(__le32 *)hdr);
dat_offset = (dat_offset & SDPCM_DOFFSET_MASK) >>
SDPCM_DOFFSET_SHIFT;
skb_pull(pkt_next, dat_offset);
if (bus->txglom) {
tail_pad = le16_to_cpu(*(__le16 *)(hdr - 2));
skb_trim(pkt_next, pkt_next->len - tail_pad);
}
}
}
}
/* Writes a HW/SW header into the packet and sends it. */
/* Assumes: (a) header space already there, (b) caller holds lock */
static int brcmf_sdio_txpkt(struct brcmf_sdio *bus, struct sk_buff_head *pktq,
uint chan)
{
int ret;
int i;
struct sk_buff *pkt_next, *tmp;
brcmf_dbg(TRACE, "Enter\n");
ret = brcmf_sdio_txpkt_prep(bus, pktq, chan);
if (ret)
goto done;
sdio_claim_host(bus->sdiodev->func[1]);
ret = brcmf_sdiod_send_pkt(bus->sdiodev, pktq);
bus->sdcnt.f2txdata++;
if (ret < 0) {
/* On failure, abort the command and terminate the frame */
brcmf_dbg(INFO, "sdio error %d, abort command and terminate frame\n",
ret);
bus->sdcnt.tx_sderrs++;
brcmf_sdiod_abort(bus->sdiodev, SDIO_FUNC_2);
brcmf_sdiod_regwb(bus->sdiodev, SBSDIO_FUNC1_FRAMECTRL,
SFC_WF_TERM, NULL);
bus->sdcnt.f1regdata++;
for (i = 0; i < 3; i++) {
u8 hi, lo;
hi = brcmf_sdiod_regrb(bus->sdiodev,
SBSDIO_FUNC1_WFRAMEBCHI, NULL);
lo = brcmf_sdiod_regrb(bus->sdiodev,
SBSDIO_FUNC1_WFRAMEBCLO, NULL);
bus->sdcnt.f1regdata += 2;
if ((hi == 0) && (lo == 0))
break;
}
}
sdio_release_host(bus->sdiodev->func[1]);
done:
brcmf_sdio_txpkt_postp(bus, pktq);
if (ret == 0)
bus->tx_seq = (bus->tx_seq + pktq->qlen) % SDPCM_SEQ_WRAP;
skb_queue_walk_safe(pktq, pkt_next, tmp) {
__skb_unlink(pkt_next, pktq);
brcmf_txcomplete(bus->sdiodev->dev, pkt_next, ret == 0);
}
return ret;
}
static uint brcmf_sdio_sendfromq(struct brcmf_sdio *bus, uint maxframes)
{
struct sk_buff *pkt;
struct sk_buff_head pktq;
u32 intstatus = 0;
int ret = 0, prec_out, i;
uint cnt = 0;
u8 tx_prec_map, pkt_num;
brcmf_dbg(TRACE, "Enter\n");
tx_prec_map = ~bus->flowcontrol;
/* Send frames until the limit or some other event */
for (cnt = 0; (cnt < maxframes) && data_ok(bus);) {
pkt_num = 1;
__skb_queue_head_init(&pktq);
if (bus->txglom)
pkt_num = min_t(u8, bus->tx_max - bus->tx_seq,
brcmf_sdio_txglomsz);
pkt_num = min_t(u32, pkt_num,
brcmu_pktq_mlen(&bus->txq, ~bus->flowcontrol));
spin_lock_bh(&bus->txqlock);
for (i = 0; i < pkt_num; i++) {
pkt = brcmu_pktq_mdeq(&bus->txq, tx_prec_map,
&prec_out);
if (pkt == NULL)
break;
__skb_queue_tail(&pktq, pkt);
}
spin_unlock_bh(&bus->txqlock);
if (i == 0)
break;
ret = brcmf_sdio_txpkt(bus, &pktq, SDPCM_DATA_CHANNEL);
cnt += i;
/* In poll mode, need to check for other events */
if (!bus->intr && cnt) {
/* Check device status, signal pending interrupt */
sdio_claim_host(bus->sdiodev->func[1]);
ret = r_sdreg32(bus, &intstatus,
offsetof(struct sdpcmd_regs,
intstatus));
sdio_release_host(bus->sdiodev->func[1]);
bus->sdcnt.f2txdata++;
if (ret != 0)
break;
if (intstatus & bus->hostintmask)
atomic_set(&bus->ipend, 1);
}
}
/* Deflow-control stack if needed */
if ((bus->sdiodev->bus_if->state == BRCMF_BUS_DATA) &&
bus->txoff && (pktq_len(&bus->txq) < TXLOW)) {
bus->txoff = false;
brcmf_txflowblock(bus->sdiodev->dev, false);
}
return cnt;
}
static void brcmf_sdio_bus_stop(struct device *dev)
{
u32 local_hostintmask;
u8 saveclk;
int err;
struct brcmf_bus *bus_if = dev_get_drvdata(dev);
struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio;
struct brcmf_sdio *bus = sdiodev->bus;
brcmf_dbg(TRACE, "Enter\n");
if (bus->watchdog_tsk) {
send_sig(SIGTERM, bus->watchdog_tsk, 1);
kthread_stop(bus->watchdog_tsk);
bus->watchdog_tsk = NULL;
}
sdio_claim_host(bus->sdiodev->func[1]);
/* Enable clock for device interrupts */
brcmf_sdio_bus_sleep(bus, false, false);
/* Disable and clear interrupts at the chip level also */
w_sdreg32(bus, 0, offsetof(struct sdpcmd_regs, hostintmask));
local_hostintmask = bus->hostintmask;
bus->hostintmask = 0;
/* Change our idea of bus state */
bus->sdiodev->bus_if->state = BRCMF_BUS_DOWN;
/* Force clocks on backplane to be sure F2 interrupt propagates */
saveclk = brcmf_sdiod_regrb(bus->sdiodev,
SBSDIO_FUNC1_CHIPCLKCSR, &err);
if (!err) {
brcmf_sdiod_regwb(bus->sdiodev, SBSDIO_FUNC1_CHIPCLKCSR,
(saveclk | SBSDIO_FORCE_HT), &err);
}
if (err)
brcmf_err("Failed to force clock for F2: err %d\n", err);
/* Turn off the bus (F2), free any pending packets */
brcmf_dbg(INTR, "disable SDIO interrupts\n");
sdio_disable_func(bus->sdiodev->func[SDIO_FUNC_2]);
/* Clear any pending interrupts now that F2 is disabled */
w_sdreg32(bus, local_hostintmask,
offsetof(struct sdpcmd_regs, intstatus));
/* Turn off the backplane clock (only) */
brcmf_sdio_clkctl(bus, CLK_SDONLY, false);
sdio_release_host(bus->sdiodev->func[1]);
/* Clear the data packet queues */
brcmu_pktq_flush(&bus->txq, true, NULL, NULL);
/* Clear any held glomming stuff */
if (bus->glomd)
brcmu_pkt_buf_free_skb(bus->glomd);
brcmf_sdio_free_glom(bus);
/* Clear rx control and wake any waiters */
spin_lock_bh(&bus->rxctl_lock);
bus->rxlen = 0;
spin_unlock_bh(&bus->rxctl_lock);
brcmf_sdio_dcmd_resp_wake(bus);
/* Reset some F2 state stuff */
bus->rxskip = false;
bus->tx_seq = bus->rx_seq = 0;
}
static inline void brcmf_sdio_clrintr(struct brcmf_sdio *bus)
{
unsigned long flags;
if (bus->sdiodev->oob_irq_requested) {
spin_lock_irqsave(&bus->sdiodev->irq_en_lock, flags);
if (!bus->sdiodev->irq_en && !atomic_read(&bus->ipend)) {
enable_irq(bus->sdiodev->pdata->oob_irq_nr);
bus->sdiodev->irq_en = true;
}
spin_unlock_irqrestore(&bus->sdiodev->irq_en_lock, flags);
}
}
static int brcmf_sdio_intr_rstatus(struct brcmf_sdio *bus)
{
u8 idx;
u32 addr;
unsigned long val;
int n, ret;
idx = brcmf_sdio_chip_getinfidx(bus->ci, BCMA_CORE_SDIO_DEV);
addr = bus->ci->c_inf[idx].base +
offsetof(struct sdpcmd_regs, intstatus);
val = brcmf_sdiod_regrl(bus->sdiodev, addr, &ret);
bus->sdcnt.f1regdata++;
if (ret != 0)
val = 0;
val &= bus->hostintmask;
atomic_set(&bus->fcstate, !!(val & I_HMB_FC_STATE));
/* Clear interrupts */
if (val) {
brcmf_sdiod_regwl(bus->sdiodev, addr, val, &ret);
bus->sdcnt.f1regdata++;
}
if (ret) {
atomic_set(&bus->intstatus, 0);
} else if (val) {
for_each_set_bit(n, &val, 32)
set_bit(n, (unsigned long *)&bus->intstatus.counter);
}
return ret;
}
static void brcmf_sdio_dpc(struct brcmf_sdio *bus)
{
u32 newstatus = 0;
unsigned long intstatus;
uint rxlimit = bus->rxbound; /* Rx frames to read before resched */
uint txlimit = bus->txbound; /* Tx frames to send before resched */
uint framecnt = 0; /* Temporary counter of tx/rx frames */
int err = 0, n;
brcmf_dbg(TRACE, "Enter\n");
sdio_claim_host(bus->sdiodev->func[1]);
/* If waiting for HTAVAIL, check status */
if (!bus->sr_enabled && bus->clkstate == CLK_PENDING) {
u8 clkctl, devctl = 0;
#ifdef DEBUG
/* Check for inconsistent device control */
devctl = brcmf_sdiod_regrb(bus->sdiodev,
SBSDIO_DEVICE_CTL, &err);
if (err) {
brcmf_err("error reading DEVCTL: %d\n", err);
bus->sdiodev->bus_if->state = BRCMF_BUS_DOWN;
}
#endif /* DEBUG */
/* Read CSR, if clock on switch to AVAIL, else ignore */
clkctl = brcmf_sdiod_regrb(bus->sdiodev,
SBSDIO_FUNC1_CHIPCLKCSR, &err);
if (err) {
brcmf_err("error reading CSR: %d\n",
err);
bus->sdiodev->bus_if->state = BRCMF_BUS_DOWN;
}
brcmf_dbg(SDIO, "DPC: PENDING, devctl 0x%02x clkctl 0x%02x\n",
devctl, clkctl);
if (SBSDIO_HTAV(clkctl)) {
devctl = brcmf_sdiod_regrb(bus->sdiodev,
SBSDIO_DEVICE_CTL, &err);
if (err) {
brcmf_err("error reading DEVCTL: %d\n",
err);
bus->sdiodev->bus_if->state = BRCMF_BUS_DOWN;
}
devctl &= ~SBSDIO_DEVCTL_CA_INT_ONLY;
brcmf_sdiod_regwb(bus->sdiodev, SBSDIO_DEVICE_CTL,
devctl, &err);
if (err) {
brcmf_err("error writing DEVCTL: %d\n",
err);
bus->sdiodev->bus_if->state = BRCMF_BUS_DOWN;
}
bus->clkstate = CLK_AVAIL;
}
}
/* Make sure backplane clock is on */
brcmf_sdio_bus_sleep(bus, false, true);
/* Pending interrupt indicates new device status */
if (atomic_read(&bus->ipend) > 0) {
atomic_set(&bus->ipend, 0);
err = brcmf_sdio_intr_rstatus(bus);
}
/* Start with leftover status bits */
intstatus = atomic_xchg(&bus->intstatus, 0);
/* Handle flow-control change: read new state in case our ack
* crossed another change interrupt. If change still set, assume
* FC ON for safety, let next loop through do the debounce.
*/
if (intstatus & I_HMB_FC_CHANGE) {
intstatus &= ~I_HMB_FC_CHANGE;
err = w_sdreg32(bus, I_HMB_FC_CHANGE,
offsetof(struct sdpcmd_regs, intstatus));
err = r_sdreg32(bus, &newstatus,
offsetof(struct sdpcmd_regs, intstatus));
bus->sdcnt.f1regdata += 2;
atomic_set(&bus->fcstate,
!!(newstatus & (I_HMB_FC_STATE | I_HMB_FC_CHANGE)));
intstatus |= (newstatus & bus->hostintmask);
}
/* Handle host mailbox indication */
if (intstatus & I_HMB_HOST_INT) {
intstatus &= ~I_HMB_HOST_INT;
intstatus |= brcmf_sdio_hostmail(bus);
}
sdio_release_host(bus->sdiodev->func[1]);
/* Generally don't ask for these, can get CRC errors... */
if (intstatus & I_WR_OOSYNC) {
brcmf_err("Dongle reports WR_OOSYNC\n");
intstatus &= ~I_WR_OOSYNC;
}
if (intstatus & I_RD_OOSYNC) {
brcmf_err("Dongle reports RD_OOSYNC\n");
intstatus &= ~I_RD_OOSYNC;
}
if (intstatus & I_SBINT) {
brcmf_err("Dongle reports SBINT\n");
intstatus &= ~I_SBINT;
}
/* Would be active due to wake-wlan in gSPI */
if (intstatus & I_CHIPACTIVE) {
brcmf_dbg(INFO, "Dongle reports CHIPACTIVE\n");
intstatus &= ~I_CHIPACTIVE;
}
/* Ignore frame indications if rxskip is set */
if (bus->rxskip)
intstatus &= ~I_HMB_FRAME_IND;
/* On frame indication, read available frames */
if (PKT_AVAILABLE() && bus->clkstate == CLK_AVAIL) {
framecnt = brcmf_sdio_readframes(bus, rxlimit);
if (!bus->rxpending)
intstatus &= ~I_HMB_FRAME_IND;
rxlimit -= min(framecnt, rxlimit);
}
/* Keep still-pending events for next scheduling */
if (intstatus) {
for_each_set_bit(n, &intstatus, 32)
set_bit(n, (unsigned long *)&bus->intstatus.counter);
}
brcmf_sdio_clrintr(bus);
if (data_ok(bus) && bus->ctrl_frame_stat &&
(bus->clkstate == CLK_AVAIL)) {
int i;
sdio_claim_host(bus->sdiodev->func[1]);
err = brcmf_sdiod_send_buf(bus->sdiodev, bus->ctrl_frame_buf,
(u32)bus->ctrl_frame_len);
if (err < 0) {
/* On failure, abort the command and
terminate the frame */
brcmf_dbg(INFO, "sdio error %d, abort command and terminate frame\n",
err);
bus->sdcnt.tx_sderrs++;
brcmf_sdiod_abort(bus->sdiodev, SDIO_FUNC_2);
brcmf_sdiod_regwb(bus->sdiodev, SBSDIO_FUNC1_FRAMECTRL,
SFC_WF_TERM, &err);
bus->sdcnt.f1regdata++;
for (i = 0; i < 3; i++) {
u8 hi, lo;
hi = brcmf_sdiod_regrb(bus->sdiodev,
SBSDIO_FUNC1_WFRAMEBCHI,
&err);
lo = brcmf_sdiod_regrb(bus->sdiodev,
SBSDIO_FUNC1_WFRAMEBCLO,
&err);
bus->sdcnt.f1regdata += 2;
if ((hi == 0) && (lo == 0))
break;
}
} else {
bus->tx_seq = (bus->tx_seq + 1) % SDPCM_SEQ_WRAP;
}
sdio_release_host(bus->sdiodev->func[1]);
bus->ctrl_frame_stat = false;
brcmf_sdio_wait_event_wakeup(bus);
}
/* Send queued frames (limit 1 if rx may still be pending) */
else if ((bus->clkstate == CLK_AVAIL) && !atomic_read(&bus->fcstate) &&
brcmu_pktq_mlen(&bus->txq, ~bus->flowcontrol) && txlimit
&& data_ok(bus)) {
framecnt = bus->rxpending ? min(txlimit, bus->txminmax) :
txlimit;
framecnt = brcmf_sdio_sendfromq(bus, framecnt);
txlimit -= framecnt;
}
if ((bus->sdiodev->bus_if->state == BRCMF_BUS_DOWN) || (err != 0)) {
brcmf_err("failed backplane access over SDIO, halting operation\n");
bus->sdiodev->bus_if->state = BRCMF_BUS_DOWN;
atomic_set(&bus->intstatus, 0);
} else if (atomic_read(&bus->intstatus) ||
atomic_read(&bus->ipend) > 0 ||
(!atomic_read(&bus->fcstate) &&
brcmu_pktq_mlen(&bus->txq, ~bus->flowcontrol) &&
data_ok(bus)) || PKT_AVAILABLE()) {
atomic_inc(&bus->dpc_tskcnt);
}
/* If we're done for now, turn off clock request. */
if ((bus->clkstate != CLK_PENDING)
&& bus->idletime == BRCMF_IDLE_IMMEDIATE) {
bus->activity = false;
brcmf_dbg(SDIO, "idle state\n");
sdio_claim_host(bus->sdiodev->func[1]);
brcmf_sdio_bus_sleep(bus, true, false);
sdio_release_host(bus->sdiodev->func[1]);
}
}
static struct pktq *brcmf_sdio_bus_gettxq(struct device *dev)
{
struct brcmf_bus *bus_if = dev_get_drvdata(dev);
struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio;
struct brcmf_sdio *bus = sdiodev->bus;
return &bus->txq;
}
static int brcmf_sdio_bus_txdata(struct device *dev, struct sk_buff *pkt)
{
int ret = -EBADE;
uint datalen, prec;
struct brcmf_bus *bus_if = dev_get_drvdata(dev);
struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio;
struct brcmf_sdio *bus = sdiodev->bus;
ulong flags;
brcmf_dbg(TRACE, "Enter\n");
datalen = pkt->len;
/* Add space for the header */
skb_push(pkt, bus->tx_hdrlen);
/* precondition: IS_ALIGNED((unsigned long)(pkt->data), 2) */
prec = prio2prec((pkt->priority & PRIOMASK));
/* Check for existing queue, current flow-control,
pending event, or pending clock */
brcmf_dbg(TRACE, "deferring pktq len %d\n", pktq_len(&bus->txq));
bus->sdcnt.fcqueued++;
/* Priority based enq */
spin_lock_irqsave(&bus->txqlock, flags);
if (!brcmf_c_prec_enq(bus->sdiodev->dev, &bus->txq, pkt, prec)) {
skb_pull(pkt, bus->tx_hdrlen);
brcmf_err("out of bus->txq !!!\n");
ret = -ENOSR;
} else {
ret = 0;
}
if (pktq_len(&bus->txq) >= TXHI) {
bus->txoff = true;
brcmf_txflowblock(bus->sdiodev->dev, true);
}
spin_unlock_irqrestore(&bus->txqlock, flags);
#ifdef DEBUG
if (pktq_plen(&bus->txq, prec) > qcount[prec])
qcount[prec] = pktq_plen(&bus->txq, prec);
#endif
if (atomic_read(&bus->dpc_tskcnt) == 0) {
atomic_inc(&bus->dpc_tskcnt);
queue_work(bus->brcmf_wq, &bus->datawork);
}
return ret;
}
#ifdef DEBUG
#define CONSOLE_LINE_MAX 192
static int brcmf_sdio_readconsole(struct brcmf_sdio *bus)
{
struct brcmf_console *c = &bus->console;
u8 line[CONSOLE_LINE_MAX], ch;
u32 n, idx, addr;
int rv;
/* Don't do anything until FWREADY updates console address */
if (bus->console_addr == 0)
return 0;
/* Read console log struct */
addr = bus->console_addr + offsetof(struct rte_console, log_le);
rv = brcmf_sdiod_ramrw(bus->sdiodev, false, addr, (u8 *)&c->log_le,
sizeof(c->log_le));
if (rv < 0)
return rv;
/* Allocate console buffer (one time only) */
if (c->buf == NULL) {
c->bufsize = le32_to_cpu(c->log_le.buf_size);
c->buf = kmalloc(c->bufsize, GFP_ATOMIC);
if (c->buf == NULL)
return -ENOMEM;
}
idx = le32_to_cpu(c->log_le.idx);
/* Protect against corrupt value */
if (idx > c->bufsize)
return -EBADE;
/* Skip reading the console buffer if the index pointer
has not moved */
if (idx == c->last)
return 0;
/* Read the console buffer */
addr = le32_to_cpu(c->log_le.buf);
rv = brcmf_sdiod_ramrw(bus->sdiodev, false, addr, c->buf, c->bufsize);
if (rv < 0)
return rv;
while (c->last != idx) {
for (n = 0; n < CONSOLE_LINE_MAX - 2; n++) {
if (c->last == idx) {
/* This would output a partial line.
* Instead, back up
* the buffer pointer and output this
* line next time around.
*/
if (c->last >= n)
c->last -= n;
else
c->last = c->bufsize - n;
goto break2;
}
ch = c->buf[c->last];
c->last = (c->last + 1) % c->bufsize;
if (ch == '\n')
break;
line[n] = ch;
}
if (n > 0) {
if (line[n - 1] == '\r')
n--;
line[n] = 0;
pr_debug("CONSOLE: %s\n", line);
}
}
break2:
return 0;
}
#endif /* DEBUG */
static int brcmf_sdio_tx_frame(struct brcmf_sdio *bus, u8 *frame, u16 len)
{
int i;
int ret;
bus->ctrl_frame_stat = false;
ret = brcmf_sdiod_send_buf(bus->sdiodev, frame, len);
if (ret < 0) {
/* On failure, abort the command and terminate the frame */
brcmf_dbg(INFO, "sdio error %d, abort command and terminate frame\n",
ret);
bus->sdcnt.tx_sderrs++;
brcmf_sdiod_abort(bus->sdiodev, SDIO_FUNC_2);
brcmf_sdiod_regwb(bus->sdiodev, SBSDIO_FUNC1_FRAMECTRL,
SFC_WF_TERM, NULL);
bus->sdcnt.f1regdata++;
for (i = 0; i < 3; i++) {
u8 hi, lo;
hi = brcmf_sdiod_regrb(bus->sdiodev,
SBSDIO_FUNC1_WFRAMEBCHI, NULL);
lo = brcmf_sdiod_regrb(bus->sdiodev,
SBSDIO_FUNC1_WFRAMEBCLO, NULL);
bus->sdcnt.f1regdata += 2;
if (hi == 0 && lo == 0)
break;
}
return ret;
}
bus->tx_seq = (bus->tx_seq + 1) % SDPCM_SEQ_WRAP;
return ret;
}
static int
brcmf_sdio_bus_txctl(struct device *dev, unsigned char *msg, uint msglen)
{
u8 *frame;
u16 len, pad;
uint retries = 0;
u8 doff = 0;
int ret = -1;
struct brcmf_bus *bus_if = dev_get_drvdata(dev);
struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio;
struct brcmf_sdio *bus = sdiodev->bus;
struct brcmf_sdio_hdrinfo hd_info = {0};
brcmf_dbg(TRACE, "Enter\n");
/* Back the pointer to make a room for bus header */
frame = msg - bus->tx_hdrlen;
len = (msglen += bus->tx_hdrlen);
/* Add alignment padding (optional for ctl frames) */
doff = ((unsigned long)frame % bus->head_align);
if (doff) {
frame -= doff;
len += doff;
msglen += doff;
memset(frame, 0, doff + bus->tx_hdrlen);
}
/* precondition: doff < bus->head_align */
doff += bus->tx_hdrlen;
/* Round send length to next SDIO block */
pad = 0;
if (bus->roundup && bus->blocksize && (len > bus->blocksize)) {
pad = bus->blocksize - (len % bus->blocksize);
if ((pad > bus->roundup) || (pad >= bus->blocksize))
pad = 0;
} else if (len % bus->head_align) {
pad = bus->head_align - (len % bus->head_align);
}
len += pad;
/* precondition: IS_ALIGNED((unsigned long)frame, 2) */
/* Make sure backplane clock is on */
sdio_claim_host(bus->sdiodev->func[1]);
brcmf_sdio_bus_sleep(bus, false, false);
sdio_release_host(bus->sdiodev->func[1]);
hd_info.len = (u16)msglen;
hd_info.channel = SDPCM_CONTROL_CHANNEL;
hd_info.dat_offset = doff;
hd_info.seq_num = bus->tx_seq;
hd_info.lastfrm = true;
hd_info.tail_pad = pad;
brcmf_sdio_hdpack(bus, frame, &hd_info);
if (bus->txglom)
brcmf_sdio_update_hwhdr(frame, len);
if (!data_ok(bus)) {
brcmf_dbg(INFO, "No bus credit bus->tx_max %d, bus->tx_seq %d\n",
bus->tx_max, bus->tx_seq);
bus->ctrl_frame_stat = true;
/* Send from dpc */
bus->ctrl_frame_buf = frame;
bus->ctrl_frame_len = len;
wait_event_interruptible_timeout(bus->ctrl_wait,
!bus->ctrl_frame_stat,
msecs_to_jiffies(2000));
if (!bus->ctrl_frame_stat) {
brcmf_dbg(SDIO, "ctrl_frame_stat == false\n");
ret = 0;
} else {
brcmf_dbg(SDIO, "ctrl_frame_stat == true\n");
ret = -1;
}
}
if (ret == -1) {
brcmf_dbg_hex_dump(BRCMF_BYTES_ON() && BRCMF_CTL_ON(),
frame, len, "Tx Frame:\n");
brcmf_dbg_hex_dump(!(BRCMF_BYTES_ON() && BRCMF_CTL_ON()) &&
BRCMF_HDRS_ON(),
frame, min_t(u16, len, 16), "TxHdr:\n");
do {
sdio_claim_host(bus->sdiodev->func[1]);
ret = brcmf_sdio_tx_frame(bus, frame, len);
sdio_release_host(bus->sdiodev->func[1]);
} while (ret < 0 && retries++ < TXRETRIES);
}
if ((bus->idletime == BRCMF_IDLE_IMMEDIATE) &&
atomic_read(&bus->dpc_tskcnt) == 0) {
bus->activity = false;
sdio_claim_host(bus->sdiodev->func[1]);
brcmf_dbg(INFO, "idle\n");
brcmf_sdio_clkctl(bus, CLK_NONE, true);
sdio_release_host(bus->sdiodev->func[1]);
}
if (ret)
bus->sdcnt.tx_ctlerrs++;
else
bus->sdcnt.tx_ctlpkts++;
return ret ? -EIO : 0;
}
#ifdef DEBUG
static inline bool brcmf_sdio_valid_shared_address(u32 addr)
{
return !(addr == 0 || ((~addr >> 16) & 0xffff) == (addr & 0xffff));
}
static int brcmf_sdio_readshared(struct brcmf_sdio *bus,
struct sdpcm_shared *sh)
{
u32 addr;
int rv;
u32 shaddr = 0;
struct sdpcm_shared_le sh_le;
__le32 addr_le;
shaddr = bus->ci->rambase + bus->ramsize - 4;
/*
* Read last word in socram to determine
* address of sdpcm_shared structure
*/
sdio_claim_host(bus->sdiodev->func[1]);
brcmf_sdio_bus_sleep(bus, false, false);
rv = brcmf_sdiod_ramrw(bus->sdiodev, false, shaddr, (u8 *)&addr_le, 4);
sdio_release_host(bus->sdiodev->func[1]);
if (rv < 0)
return rv;
addr = le32_to_cpu(addr_le);
brcmf_dbg(SDIO, "sdpcm_shared address 0x%08X\n", addr);
/*
* Check if addr is valid.
* NVRAM length at the end of memory should have been overwritten.
*/
if (!brcmf_sdio_valid_shared_address(addr)) {
brcmf_err("invalid sdpcm_shared address 0x%08X\n",
addr);
return -EINVAL;
}
/* Read hndrte_shared structure */
rv = brcmf_sdiod_ramrw(bus->sdiodev, false, addr, (u8 *)&sh_le,
sizeof(struct sdpcm_shared_le));
if (rv < 0)
return rv;
/* Endianness */
sh->flags = le32_to_cpu(sh_le.flags);
sh->trap_addr = le32_to_cpu(sh_le.trap_addr);
sh->assert_exp_addr = le32_to_cpu(sh_le.assert_exp_addr);
sh->assert_file_addr = le32_to_cpu(sh_le.assert_file_addr);
sh->assert_line = le32_to_cpu(sh_le.assert_line);
sh->console_addr = le32_to_cpu(sh_le.console_addr);
sh->msgtrace_addr = le32_to_cpu(sh_le.msgtrace_addr);
if ((sh->flags & SDPCM_SHARED_VERSION_MASK) > SDPCM_SHARED_VERSION) {
brcmf_err("sdpcm shared version unsupported: dhd %d dongle %d\n",
SDPCM_SHARED_VERSION,
sh->flags & SDPCM_SHARED_VERSION_MASK);
return -EPROTO;
}
return 0;
}
static int brcmf_sdio_dump_console(struct brcmf_sdio *bus,
struct sdpcm_shared *sh, char __user *data,
size_t count)
{
u32 addr, console_ptr, console_size, console_index;
char *conbuf = NULL;
__le32 sh_val;
int rv;
loff_t pos = 0;
int nbytes = 0;
/* obtain console information from device memory */
addr = sh->console_addr + offsetof(struct rte_console, log_le);
rv = brcmf_sdiod_ramrw(bus->sdiodev, false, addr,
(u8 *)&sh_val, sizeof(u32));
if (rv < 0)
return rv;
console_ptr = le32_to_cpu(sh_val);
addr = sh->console_addr + offsetof(struct rte_console, log_le.buf_size);
rv = brcmf_sdiod_ramrw(bus->sdiodev, false, addr,
(u8 *)&sh_val, sizeof(u32));
if (rv < 0)
return rv;
console_size = le32_to_cpu(sh_val);
addr = sh->console_addr + offsetof(struct rte_console, log_le.idx);
rv = brcmf_sdiod_ramrw(bus->sdiodev, false, addr,
(u8 *)&sh_val, sizeof(u32));
if (rv < 0)
return rv;
console_index = le32_to_cpu(sh_val);
/* allocate buffer for console data */
if (console_size <= CONSOLE_BUFFER_MAX)
conbuf = vzalloc(console_size+1);
if (!conbuf)
return -ENOMEM;
/* obtain the console data from device */
conbuf[console_size] = '\0';
rv = brcmf_sdiod_ramrw(bus->sdiodev, false, console_ptr, (u8 *)conbuf,
console_size);
if (rv < 0)
goto done;
rv = simple_read_from_buffer(data, count, &pos,
conbuf + console_index,
console_size - console_index);
if (rv < 0)
goto done;
nbytes = rv;
if (console_index > 0) {
pos = 0;
rv = simple_read_from_buffer(data+nbytes, count, &pos,
conbuf, console_index - 1);
if (rv < 0)
goto done;
rv += nbytes;
}
done:
vfree(conbuf);
return rv;
}
static int brcmf_sdio_trap_info(struct brcmf_sdio *bus, struct sdpcm_shared *sh,
char __user *data, size_t count)
{
int error, res;
char buf[350];
struct brcmf_trap_info tr;
loff_t pos = 0;
if ((sh->flags & SDPCM_SHARED_TRAP) == 0) {
brcmf_dbg(INFO, "no trap in firmware\n");
return 0;
}
error = brcmf_sdiod_ramrw(bus->sdiodev, false, sh->trap_addr, (u8 *)&tr,
sizeof(struct brcmf_trap_info));
if (error < 0)
return error;
res = scnprintf(buf, sizeof(buf),
"dongle trap info: type 0x%x @ epc 0x%08x\n"
" cpsr 0x%08x spsr 0x%08x sp 0x%08x\n"
" lr 0x%08x pc 0x%08x offset 0x%x\n"
" r0 0x%08x r1 0x%08x r2 0x%08x r3 0x%08x\n"
" r4 0x%08x r5 0x%08x r6 0x%08x r7 0x%08x\n",
le32_to_cpu(tr.type), le32_to_cpu(tr.epc),
le32_to_cpu(tr.cpsr), le32_to_cpu(tr.spsr),
le32_to_cpu(tr.r13), le32_to_cpu(tr.r14),
le32_to_cpu(tr.pc), sh->trap_addr,
le32_to_cpu(tr.r0), le32_to_cpu(tr.r1),
le32_to_cpu(tr.r2), le32_to_cpu(tr.r3),
le32_to_cpu(tr.r4), le32_to_cpu(tr.r5),
le32_to_cpu(tr.r6), le32_to_cpu(tr.r7));
return simple_read_from_buffer(data, count, &pos, buf, res);
}
static int brcmf_sdio_assert_info(struct brcmf_sdio *bus,
struct sdpcm_shared *sh, char __user *data,
size_t count)
{
int error = 0;
char buf[200];
char file[80] = "?";
char expr[80] = "<???>";
int res;
loff_t pos = 0;
if ((sh->flags & SDPCM_SHARED_ASSERT_BUILT) == 0) {
brcmf_dbg(INFO, "firmware not built with -assert\n");
return 0;
} else if ((sh->flags & SDPCM_SHARED_ASSERT) == 0) {
brcmf_dbg(INFO, "no assert in dongle\n");
return 0;
}
sdio_claim_host(bus->sdiodev->func[1]);
if (sh->assert_file_addr != 0) {
error = brcmf_sdiod_ramrw(bus->sdiodev, false,
sh->assert_file_addr, (u8 *)file, 80);
if (error < 0)
return error;
}
if (sh->assert_exp_addr != 0) {
error = brcmf_sdiod_ramrw(bus->sdiodev, false,
sh->assert_exp_addr, (u8 *)expr, 80);
if (error < 0)
return error;
}
sdio_release_host(bus->sdiodev->func[1]);
res = scnprintf(buf, sizeof(buf),
"dongle assert: %s:%d: assert(%s)\n",
file, sh->assert_line, expr);
return simple_read_from_buffer(data, count, &pos, buf, res);
}
static int brcmf_sdio_checkdied(struct brcmf_sdio *bus)
{
int error;
struct sdpcm_shared sh;
error = brcmf_sdio_readshared(bus, &sh);
if (error < 0)
return error;
if ((sh.flags & SDPCM_SHARED_ASSERT_BUILT) == 0)
brcmf_dbg(INFO, "firmware not built with -assert\n");
else if (sh.flags & SDPCM_SHARED_ASSERT)
brcmf_err("assertion in dongle\n");
if (sh.flags & SDPCM_SHARED_TRAP)
brcmf_err("firmware trap in dongle\n");
return 0;
}
static int brcmf_sdio_died_dump(struct brcmf_sdio *bus, char __user *data,
size_t count, loff_t *ppos)
{
int error = 0;
struct sdpcm_shared sh;
int nbytes = 0;
loff_t pos = *ppos;
if (pos != 0)
return 0;
error = brcmf_sdio_readshared(bus, &sh);
if (error < 0)
goto done;
error = brcmf_sdio_assert_info(bus, &sh, data, count);
if (error < 0)
goto done;
nbytes = error;
error = brcmf_sdio_trap_info(bus, &sh, data+nbytes, count);
if (error < 0)
goto done;
nbytes += error;
error = brcmf_sdio_dump_console(bus, &sh, data+nbytes, count);
if (error < 0)
goto done;
nbytes += error;
error = nbytes;
*ppos += nbytes;
done:
return error;
}
static ssize_t brcmf_sdio_forensic_read(struct file *f, char __user *data,
size_t count, loff_t *ppos)
{
struct brcmf_sdio *bus = f->private_data;
int res;
res = brcmf_sdio_died_dump(bus, data, count, ppos);
if (res > 0)
*ppos += res;
return (ssize_t)res;
}
static const struct file_operations brcmf_sdio_forensic_ops = {
.owner = THIS_MODULE,
.open = simple_open,
.read = brcmf_sdio_forensic_read
};
static void brcmf_sdio_debugfs_create(struct brcmf_sdio *bus)
{
struct brcmf_pub *drvr = bus->sdiodev->bus_if->drvr;
struct dentry *dentry = brcmf_debugfs_get_devdir(drvr);
if (IS_ERR_OR_NULL(dentry))
return;
debugfs_create_file("forensics", S_IRUGO, dentry, bus,
&brcmf_sdio_forensic_ops);
brcmf_debugfs_create_sdio_count(drvr, &bus->sdcnt);
}
#else
static int brcmf_sdio_checkdied(struct brcmf_sdio *bus)
{
return 0;
}
static void brcmf_sdio_debugfs_create(struct brcmf_sdio *bus)
{
}
#endif /* DEBUG */
static int
brcmf_sdio_bus_rxctl(struct device *dev, unsigned char *msg, uint msglen)
{
int timeleft;
uint rxlen = 0;
bool pending;
u8 *buf;
struct brcmf_bus *bus_if = dev_get_drvdata(dev);
struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio;
struct brcmf_sdio *bus = sdiodev->bus;
brcmf_dbg(TRACE, "Enter\n");
/* Wait until control frame is available */
timeleft = brcmf_sdio_dcmd_resp_wait(bus, &bus->rxlen, &pending);
spin_lock_bh(&bus->rxctl_lock);
rxlen = bus->rxlen;
memcpy(msg, bus->rxctl, min(msglen, rxlen));
bus->rxctl = NULL;
buf = bus->rxctl_orig;
bus->rxctl_orig = NULL;
bus->rxlen = 0;
spin_unlock_bh(&bus->rxctl_lock);
vfree(buf);
if (rxlen) {
brcmf_dbg(CTL, "resumed on rxctl frame, got %d expected %d\n",
rxlen, msglen);
} else if (timeleft == 0) {
brcmf_err("resumed on timeout\n");
brcmf_sdio_checkdied(bus);
} else if (pending) {
brcmf_dbg(CTL, "cancelled\n");
return -ERESTARTSYS;
} else {
brcmf_dbg(CTL, "resumed for unknown reason?\n");
brcmf_sdio_checkdied(bus);
}
if (rxlen)
bus->sdcnt.rx_ctlpkts++;
else
bus->sdcnt.rx_ctlerrs++;
return rxlen ? (int)rxlen : -ETIMEDOUT;
}
static bool brcmf_sdio_download_state(struct brcmf_sdio *bus, bool enter)
{
struct chip_info *ci = bus->ci;
/* To enter download state, disable ARM and reset SOCRAM.
* To exit download state, simply reset ARM (default is RAM boot).
*/
if (enter) {
bus->alp_only = true;
brcmf_sdio_chip_enter_download(bus->sdiodev, ci);
} else {
if (!brcmf_sdio_chip_exit_download(bus->sdiodev, ci, bus->vars,
bus->varsz))
return false;
/* Allow HT Clock now that the ARM is running. */
bus->alp_only = false;
bus->sdiodev->bus_if->state = BRCMF_BUS_LOAD;
}
return true;
}
static int brcmf_sdio_download_code_file(struct brcmf_sdio *bus)
{
const struct firmware *fw;
int err;
int offset;
int address;
int len;
fw = brcmf_sdio_get_fw(bus, BRCMF_FIRMWARE_BIN);
if (fw == NULL)
return -ENOENT;
if (brcmf_sdio_chip_getinfidx(bus->ci, BCMA_CORE_ARM_CR4) !=
BRCMF_MAX_CORENUM)
memcpy(&bus->ci->rst_vec, fw->data, sizeof(bus->ci->rst_vec));
err = 0;
offset = 0;
address = bus->ci->rambase;
while (offset < fw->size) {
len = ((offset + MEMBLOCK) < fw->size) ? MEMBLOCK :
fw->size - offset;
err = brcmf_sdiod_ramrw(bus->sdiodev, true, address,
(u8 *)&fw->data[offset], len);
if (err) {
brcmf_err("error %d on writing %d membytes at 0x%08x\n",
err, len, address);
goto failure;
}
offset += len;
address += len;
}
failure:
release_firmware(fw);
return err;
}
/*
* ProcessVars:Takes a buffer of "<var>=<value>\n" lines read from a file
* and ending in a NUL.
* Removes carriage returns, empty lines, comment lines, and converts
* newlines to NULs.
* Shortens buffer as needed and pads with NULs. End of buffer is marked
* by two NULs.
*/
static int brcmf_sdio_strip_nvram(struct brcmf_sdio *bus,
const struct firmware *nv)
{
char *varbuf;
char *dp;
bool findNewline;
int column;
int ret = 0;
uint buf_len, n, len;
len = nv->size;
varbuf = vmalloc(len);
if (!varbuf)
return -ENOMEM;
memcpy(varbuf, nv->data, len);
dp = varbuf;
findNewline = false;
column = 0;
for (n = 0; n < len; n++) {
if (varbuf[n] == 0)
break;
if (varbuf[n] == '\r')
continue;
if (findNewline && varbuf[n] != '\n')
continue;
findNewline = false;
if (varbuf[n] == '#') {
findNewline = true;
continue;
}
if (varbuf[n] == '\n') {
if (column == 0)
continue;
*dp++ = 0;
column = 0;
continue;
}
*dp++ = varbuf[n];
column++;
}
buf_len = dp - varbuf;
while (dp < varbuf + n)
*dp++ = 0;
kfree(bus->vars);
/* roundup needed for download to device */
bus->varsz = roundup(buf_len + 1, 4);
bus->vars = kmalloc(bus->varsz, GFP_KERNEL);
if (bus->vars == NULL) {
bus->varsz = 0;
ret = -ENOMEM;
goto err;
}
/* copy the processed variables and add null termination */
memcpy(bus->vars, varbuf, buf_len);
bus->vars[buf_len] = 0;
err:
vfree(varbuf);
return ret;
}
static int brcmf_sdio_download_nvram(struct brcmf_sdio *bus)
{
const struct firmware *nv;
int ret;
nv = brcmf_sdio_get_fw(bus, BRCMF_FIRMWARE_NVRAM);
if (nv == NULL)
return -ENOENT;
ret = brcmf_sdio_strip_nvram(bus, nv);
release_firmware(nv);
return ret;
}
static int brcmf_sdio_download_firmware(struct brcmf_sdio *bus)
{
int bcmerror = -EFAULT;
sdio_claim_host(bus->sdiodev->func[1]);
brcmf_sdio_clkctl(bus, CLK_AVAIL, false);
/* Keep arm in reset */
if (!brcmf_sdio_download_state(bus, true)) {
brcmf_err("error placing ARM core in reset\n");
goto err;
}
if (brcmf_sdio_download_code_file(bus)) {
brcmf_err("dongle image file download failed\n");
goto err;
}
if (brcmf_sdio_download_nvram(bus)) {
brcmf_err("dongle nvram file download failed\n");
goto err;
}
/* Take arm out of reset */
if (!brcmf_sdio_download_state(bus, false)) {
brcmf_err("error getting out of ARM core reset\n");
goto err;
}
bcmerror = 0;
err:
brcmf_sdio_clkctl(bus, CLK_SDONLY, false);
sdio_release_host(bus->sdiodev->func[1]);
return bcmerror;
}
static bool brcmf_sdio_sr_capable(struct brcmf_sdio *bus)
{
u32 addr, reg;
brcmf_dbg(TRACE, "Enter\n");
/* old chips with PMU version less than 17 don't support save restore */
if (bus->ci->pmurev < 17)
return false;
/* read PMU chipcontrol register 3*/
addr = CORE_CC_REG(bus->ci->c_inf[0].base, chipcontrol_addr);
brcmf_sdiod_regwl(bus->sdiodev, addr, 3, NULL);
addr = CORE_CC_REG(bus->ci->c_inf[0].base, chipcontrol_data);
reg = brcmf_sdiod_regrl(bus->sdiodev, addr, NULL);
return (bool)reg;
}
static void brcmf_sdio_sr_init(struct brcmf_sdio *bus)
{
int err = 0;
u8 val;
brcmf_dbg(TRACE, "Enter\n");
val = brcmf_sdiod_regrb(bus->sdiodev, SBSDIO_FUNC1_WAKEUPCTRL, &err);
if (err) {
brcmf_err("error reading SBSDIO_FUNC1_WAKEUPCTRL\n");
return;
}
val |= 1 << SBSDIO_FUNC1_WCTRL_HTWAIT_SHIFT;
brcmf_sdiod_regwb(bus->sdiodev, SBSDIO_FUNC1_WAKEUPCTRL, val, &err);
if (err) {
brcmf_err("error writing SBSDIO_FUNC1_WAKEUPCTRL\n");
return;
}
/* Add CMD14 Support */
brcmf_sdiod_regwb(bus->sdiodev, SDIO_CCCR_BRCM_CARDCAP,
(SDIO_CCCR_BRCM_CARDCAP_CMD14_SUPPORT |
SDIO_CCCR_BRCM_CARDCAP_CMD14_EXT),
&err);
if (err) {
brcmf_err("error writing SDIO_CCCR_BRCM_CARDCAP\n");
return;
}
brcmf_sdiod_regwb(bus->sdiodev, SBSDIO_FUNC1_CHIPCLKCSR,
SBSDIO_FORCE_HT, &err);
if (err) {
brcmf_err("error writing SBSDIO_FUNC1_CHIPCLKCSR\n");
return;
}
/* set flag */
bus->sr_enabled = true;
brcmf_dbg(INFO, "SR enabled\n");
}
/* enable KSO bit */
static int brcmf_sdio_kso_init(struct brcmf_sdio *bus)
{
u8 val;
int err = 0;
brcmf_dbg(TRACE, "Enter\n");
/* KSO bit added in SDIO core rev 12 */
if (bus->ci->c_inf[1].rev < 12)
return 0;
val = brcmf_sdiod_regrb(bus->sdiodev, SBSDIO_FUNC1_SLEEPCSR, &err);
if (err) {
brcmf_err("error reading SBSDIO_FUNC1_SLEEPCSR\n");
return err;
}
if (!(val & SBSDIO_FUNC1_SLEEPCSR_KSO_MASK)) {
val |= (SBSDIO_FUNC1_SLEEPCSR_KSO_EN <<
SBSDIO_FUNC1_SLEEPCSR_KSO_SHIFT);
brcmf_sdiod_regwb(bus->sdiodev, SBSDIO_FUNC1_SLEEPCSR,
val, &err);
if (err) {
brcmf_err("error writing SBSDIO_FUNC1_SLEEPCSR\n");
return err;
}
}
return 0;
}
static int brcmf_sdio_bus_preinit(struct device *dev)
{
struct brcmf_bus *bus_if = dev_get_drvdata(dev);
struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio;
struct brcmf_sdio *bus = sdiodev->bus;
uint pad_size;
u32 value;
u8 idx;
int err;
/* the commands below use the terms tx and rx from
* a device perspective, ie. bus:txglom affects the
* bus transfers from device to host.
*/
idx = brcmf_sdio_chip_getinfidx(bus->ci, BCMA_CORE_SDIO_DEV);
if (bus->ci->c_inf[idx].rev < 12) {
/* for sdio core rev < 12, disable txgloming */
value = 0;
err = brcmf_iovar_data_set(dev, "bus:txglom", &value,
sizeof(u32));
} else {
/* otherwise, set txglomalign */
value = 4;
if (sdiodev->pdata)
value = sdiodev->pdata->sd_sgentry_align;
/* SDIO ADMA requires at least 32 bit alignment */
value = max_t(u32, value, 4);
err = brcmf_iovar_data_set(dev, "bus:txglomalign", &value,
sizeof(u32));
}
if (err < 0)
goto done;
bus->tx_hdrlen = SDPCM_HWHDR_LEN + SDPCM_SWHDR_LEN;
if (sdiodev->sg_support) {
bus->txglom = false;
value = 1;
pad_size = bus->sdiodev->func[2]->cur_blksize << 1;
bus->txglom_sgpad = brcmu_pkt_buf_get_skb(pad_size);
if (!bus->txglom_sgpad)
brcmf_err("allocating txglom padding skb failed, reduced performance\n");
err = brcmf_iovar_data_set(bus->sdiodev->dev, "bus:rxglom",
&value, sizeof(u32));
if (err < 0) {
/* bus:rxglom is allowed to fail */
err = 0;
} else {
bus->txglom = true;
bus->tx_hdrlen += SDPCM_HWEXT_LEN;
}
}
brcmf_bus_add_txhdrlen(bus->sdiodev->dev, bus->tx_hdrlen);
done:
return err;
}
static int brcmf_sdio_bus_init(struct device *dev)
{
struct brcmf_bus *bus_if = dev_get_drvdata(dev);
struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio;
struct brcmf_sdio *bus = sdiodev->bus;
int err, ret = 0;
u8 saveclk;
brcmf_dbg(TRACE, "Enter\n");
/* try to download image and nvram to the dongle */
if (bus_if->state == BRCMF_BUS_DOWN) {
err = brcmf_sdio_download_firmware(bus);
if (err)
return err;
}
if (!bus->sdiodev->bus_if->drvr)
return 0;
/* Start the watchdog timer */
bus->sdcnt.tickcnt = 0;
brcmf_sdio_wd_timer(bus, BRCMF_WD_POLL_MS);
sdio_claim_host(bus->sdiodev->func[1]);
/* Make sure backplane clock is on, needed to generate F2 interrupt */
brcmf_sdio_clkctl(bus, CLK_AVAIL, false);
if (bus->clkstate != CLK_AVAIL)
goto exit;
/* Force clocks on backplane to be sure F2 interrupt propagates */
saveclk = brcmf_sdiod_regrb(bus->sdiodev,
SBSDIO_FUNC1_CHIPCLKCSR, &err);
if (!err) {
brcmf_sdiod_regwb(bus->sdiodev, SBSDIO_FUNC1_CHIPCLKCSR,
(saveclk | SBSDIO_FORCE_HT), &err);
}
if (err) {
brcmf_err("Failed to force clock for F2: err %d\n", err);
goto exit;
}
/* Enable function 2 (frame transfers) */
w_sdreg32(bus, SDPCM_PROT_VERSION << SMB_DATA_VERSION_SHIFT,
offsetof(struct sdpcmd_regs, tosbmailboxdata));
err = sdio_enable_func(bus->sdiodev->func[SDIO_FUNC_2]);
brcmf_dbg(INFO, "enable F2: err=%d\n", err);
/* If F2 successfully enabled, set core and enable interrupts */
if (!err) {
/* Set up the interrupt mask and enable interrupts */
bus->hostintmask = HOSTINTMASK;
w_sdreg32(bus, bus->hostintmask,
offsetof(struct sdpcmd_regs, hostintmask));
brcmf_sdiod_regwb(bus->sdiodev, SBSDIO_WATERMARK, 8, &err);
} else {
/* Disable F2 again */
sdio_disable_func(bus->sdiodev->func[SDIO_FUNC_2]);
ret = -ENODEV;
}
if (brcmf_sdio_sr_capable(bus)) {
brcmf_sdio_sr_init(bus);
} else {
/* Restore previous clock setting */
brcmf_sdiod_regwb(bus->sdiodev, SBSDIO_FUNC1_CHIPCLKCSR,
saveclk, &err);
}
if (ret == 0) {
ret = brcmf_sdiod_intr_register(bus->sdiodev);
if (ret != 0)
brcmf_err("intr register failed:%d\n", ret);
}
/* If we didn't come up, turn off backplane clock */
if (bus_if->state != BRCMF_BUS_DATA)
brcmf_sdio_clkctl(bus, CLK_NONE, false);
exit:
sdio_release_host(bus->sdiodev->func[1]);
return ret;
}
void brcmf_sdio_isr(struct brcmf_sdio *bus)
{
brcmf_dbg(TRACE, "Enter\n");
if (!bus) {
brcmf_err("bus is null pointer, exiting\n");
return;
}
if (bus->sdiodev->bus_if->state == BRCMF_BUS_DOWN) {
brcmf_err("bus is down. we have nothing to do\n");
return;
}
/* Count the interrupt call */
bus->sdcnt.intrcount++;
if (in_interrupt())
atomic_set(&bus->ipend, 1);
else
if (brcmf_sdio_intr_rstatus(bus)) {
brcmf_err("failed backplane access\n");
bus->sdiodev->bus_if->state = BRCMF_BUS_DOWN;
}
/* Disable additional interrupts (is this needed now)? */
if (!bus->intr)
brcmf_err("isr w/o interrupt configured!\n");
atomic_inc(&bus->dpc_tskcnt);
queue_work(bus->brcmf_wq, &bus->datawork);
}
static bool brcmf_sdio_bus_watchdog(struct brcmf_sdio *bus)
{
#ifdef DEBUG
struct brcmf_bus *bus_if = dev_get_drvdata(bus->sdiodev->dev);
#endif /* DEBUG */
brcmf_dbg(TIMER, "Enter\n");
/* Poll period: check device if appropriate. */
if (!bus->sr_enabled &&
bus->poll && (++bus->polltick >= bus->pollrate)) {
u32 intstatus = 0;
/* Reset poll tick */
bus->polltick = 0;
/* Check device if no interrupts */
if (!bus->intr ||
(bus->sdcnt.intrcount == bus->sdcnt.lastintrs)) {
if (atomic_read(&bus->dpc_tskcnt) == 0) {
u8 devpend;
sdio_claim_host(bus->sdiodev->func[1]);
devpend = brcmf_sdiod_regrb(bus->sdiodev,
SDIO_CCCR_INTx,
NULL);
sdio_release_host(bus->sdiodev->func[1]);
intstatus =
devpend & (INTR_STATUS_FUNC1 |
INTR_STATUS_FUNC2);
}
/* If there is something, make like the ISR and
schedule the DPC */
if (intstatus) {
bus->sdcnt.pollcnt++;
atomic_set(&bus->ipend, 1);
atomic_inc(&bus->dpc_tskcnt);
queue_work(bus->brcmf_wq, &bus->datawork);
}
}
/* Update interrupt tracking */
bus->sdcnt.lastintrs = bus->sdcnt.intrcount;
}
#ifdef DEBUG
/* Poll for console output periodically */
if (bus_if && bus_if->state == BRCMF_BUS_DATA &&
bus->console_interval != 0) {
bus->console.count += BRCMF_WD_POLL_MS;
if (bus->console.count >= bus->console_interval) {
bus->console.count -= bus->console_interval;
sdio_claim_host(bus->sdiodev->func[1]);
/* Make sure backplane clock is on */
brcmf_sdio_bus_sleep(bus, false, false);
if (brcmf_sdio_readconsole(bus) < 0)
/* stop on error */
bus->console_interval = 0;
sdio_release_host(bus->sdiodev->func[1]);
}
}
#endif /* DEBUG */
/* On idle timeout clear activity flag and/or turn off clock */
if ((bus->idletime > 0) && (bus->clkstate == CLK_AVAIL)) {
if (++bus->idlecount >= bus->idletime) {
bus->idlecount = 0;
if (bus->activity) {
bus->activity = false;
brcmf_sdio_wd_timer(bus, BRCMF_WD_POLL_MS);
} else {
brcmf_dbg(SDIO, "idle\n");
sdio_claim_host(bus->sdiodev->func[1]);
brcmf_sdio_bus_sleep(bus, true, false);
sdio_release_host(bus->sdiodev->func[1]);
}
}
}
return (atomic_read(&bus->ipend) > 0);
}
static void brcmf_sdio_dataworker(struct work_struct *work)
{
struct brcmf_sdio *bus = container_of(work, struct brcmf_sdio,
datawork);
while (atomic_read(&bus->dpc_tskcnt)) {
brcmf_sdio_dpc(bus);
atomic_dec(&bus->dpc_tskcnt);
}
}
static bool
brcmf_sdio_probe_attach(struct brcmf_sdio *bus)
{
u8 clkctl = 0;
int err = 0;
int reg_addr;
u32 reg_val;
u32 drivestrength;
bus->alp_only = true;
sdio_claim_host(bus->sdiodev->func[1]);
pr_debug("F1 signature read @0x18000000=0x%4x\n",
brcmf_sdiod_regrl(bus->sdiodev, SI_ENUM_BASE, NULL));
/*
* Force PLL off until brcmf_sdio_chip_attach()
* programs PLL control regs
*/
brcmf_sdiod_regwb(bus->sdiodev, SBSDIO_FUNC1_CHIPCLKCSR,
BRCMF_INIT_CLKCTL1, &err);
if (!err)
clkctl = brcmf_sdiod_regrb(bus->sdiodev,
SBSDIO_FUNC1_CHIPCLKCSR, &err);
if (err || ((clkctl & ~SBSDIO_AVBITS) != BRCMF_INIT_CLKCTL1)) {
brcmf_err("ChipClkCSR access: err %d wrote 0x%02x read 0x%02x\n",
err, BRCMF_INIT_CLKCTL1, clkctl);
goto fail;
}
if (brcmf_sdio_chip_attach(bus->sdiodev, &bus->ci)) {
brcmf_err("brcmf_sdio_chip_attach failed!\n");
goto fail;
}
if (brcmf_sdio_kso_init(bus)) {
brcmf_err("error enabling KSO\n");
goto fail;
}
if ((bus->sdiodev->pdata) && (bus->sdiodev->pdata->drive_strength))
drivestrength = bus->sdiodev->pdata->drive_strength;
else
drivestrength = DEFAULT_SDIO_DRIVE_STRENGTH;
brcmf_sdio_chip_drivestrengthinit(bus->sdiodev, bus->ci, drivestrength);
/* Get info on the SOCRAM cores... */
bus->ramsize = bus->ci->ramsize;
if (!(bus->ramsize)) {
brcmf_err("failed to find SOCRAM memory!\n");
goto fail;
}
/* Set card control so an SDIO card reset does a WLAN backplane reset */
reg_val = brcmf_sdiod_regrb(bus->sdiodev,
SDIO_CCCR_BRCM_CARDCTRL, &err);
if (err)
goto fail;
reg_val |= SDIO_CCCR_BRCM_CARDCTRL_WLANRESET;
brcmf_sdiod_regwb(bus->sdiodev,
SDIO_CCCR_BRCM_CARDCTRL, reg_val, &err);
if (err)
goto fail;
/* set PMUControl so a backplane reset does PMU state reload */
reg_addr = CORE_CC_REG(bus->ci->c_inf[0].base,
pmucontrol);
reg_val = brcmf_sdiod_regrl(bus->sdiodev,
reg_addr,
&err);
if (err)
goto fail;
reg_val |= (BCMA_CC_PMU_CTL_RES_RELOAD << BCMA_CC_PMU_CTL_RES_SHIFT);
brcmf_sdiod_regwl(bus->sdiodev,
reg_addr,
reg_val,
&err);
if (err)
goto fail;
sdio_release_host(bus->sdiodev->func[1]);
brcmu_pktq_init(&bus->txq, (PRIOMASK + 1), TXQLEN);
/* allocate header buffer */
bus->hdrbuf = kzalloc(MAX_HDR_READ + bus->head_align, GFP_KERNEL);
if (!bus->hdrbuf)
return false;
/* Locate an appropriately-aligned portion of hdrbuf */
bus->rxhdr = (u8 *) roundup((unsigned long)&bus->hdrbuf[0],
bus->head_align);
/* Set the poll and/or interrupt flags */
bus->intr = true;
bus->poll = false;
if (bus->poll)
bus->pollrate = 1;
return true;
fail:
sdio_release_host(bus->sdiodev->func[1]);
return false;
}
static int
brcmf_sdio_watchdog_thread(void *data)
{
struct brcmf_sdio *bus = (struct brcmf_sdio *)data;
allow_signal(SIGTERM);
/* Run until signal received */
while (1) {
if (kthread_should_stop())
break;
if (!wait_for_completion_interruptible(&bus->watchdog_wait)) {
brcmf_sdio_bus_watchdog(bus);
/* Count the tick for reference */
bus->sdcnt.tickcnt++;
} else
break;
}
return 0;
}
static void
brcmf_sdio_watchdog(unsigned long data)
{
struct brcmf_sdio *bus = (struct brcmf_sdio *)data;
if (bus->watchdog_tsk) {
complete(&bus->watchdog_wait);
/* Reschedule the watchdog */
if (bus->wd_timer_valid)
mod_timer(&bus->timer,
jiffies + BRCMF_WD_POLL_MS * HZ / 1000);
}
}
static struct brcmf_bus_ops brcmf_sdio_bus_ops = {
.stop = brcmf_sdio_bus_stop,
.preinit = brcmf_sdio_bus_preinit,
.init = brcmf_sdio_bus_init,
.txdata = brcmf_sdio_bus_txdata,
.txctl = brcmf_sdio_bus_txctl,
.rxctl = brcmf_sdio_bus_rxctl,
.gettxq = brcmf_sdio_bus_gettxq,
};
struct brcmf_sdio *brcmf_sdio_probe(struct brcmf_sdio_dev *sdiodev)
{
int ret;
struct brcmf_sdio *bus;
brcmf_dbg(TRACE, "Enter\n");
/* Allocate private bus interface state */
bus = kzalloc(sizeof(struct brcmf_sdio), GFP_ATOMIC);
if (!bus)
goto fail;
bus->sdiodev = sdiodev;
sdiodev->bus = bus;
skb_queue_head_init(&bus->glom);
bus->txbound = BRCMF_TXBOUND;
bus->rxbound = BRCMF_RXBOUND;
bus->txminmax = BRCMF_TXMINMAX;
bus->tx_seq = SDPCM_SEQ_WRAP - 1;
/* platform specific configuration:
* alignments must be at least 4 bytes for ADMA
*/
bus->head_align = ALIGNMENT;
bus->sgentry_align = ALIGNMENT;
if (sdiodev->pdata) {
if (sdiodev->pdata->sd_head_align > ALIGNMENT)
bus->head_align = sdiodev->pdata->sd_head_align;
if (sdiodev->pdata->sd_sgentry_align > ALIGNMENT)
bus->sgentry_align = sdiodev->pdata->sd_sgentry_align;
}
INIT_WORK(&bus->datawork, brcmf_sdio_dataworker);
bus->brcmf_wq = create_singlethread_workqueue("brcmf_wq");
if (bus->brcmf_wq == NULL) {
brcmf_err("insufficient memory to create txworkqueue\n");
goto fail;
}
/* attempt to attach to the dongle */
if (!(brcmf_sdio_probe_attach(bus))) {
brcmf_err("brcmf_sdio_probe_attach failed\n");
goto fail;
}
spin_lock_init(&bus->rxctl_lock);
spin_lock_init(&bus->txqlock);
init_waitqueue_head(&bus->ctrl_wait);
init_waitqueue_head(&bus->dcmd_resp_wait);
/* Set up the watchdog timer */
init_timer(&bus->timer);
bus->timer.data = (unsigned long)bus;
bus->timer.function = brcmf_sdio_watchdog;
/* Initialize watchdog thread */
init_completion(&bus->watchdog_wait);
bus->watchdog_tsk = kthread_run(brcmf_sdio_watchdog_thread,
bus, "brcmf_watchdog");
if (IS_ERR(bus->watchdog_tsk)) {
pr_warn("brcmf_watchdog thread failed to start\n");
bus->watchdog_tsk = NULL;
}
/* Initialize DPC thread */
atomic_set(&bus->dpc_tskcnt, 0);
/* Assign bus interface call back */
bus->sdiodev->bus_if->dev = bus->sdiodev->dev;
bus->sdiodev->bus_if->ops = &brcmf_sdio_bus_ops;
bus->sdiodev->bus_if->chip = bus->ci->chip;
bus->sdiodev->bus_if->chiprev = bus->ci->chiprev;
/* default sdio bus header length for tx packet */
bus->tx_hdrlen = SDPCM_HWHDR_LEN + SDPCM_SWHDR_LEN;
/* Attach to the common layer, reserve hdr space */
ret = brcmf_attach(bus->sdiodev->dev);
if (ret != 0) {
brcmf_err("brcmf_attach failed\n");
goto fail;
}
/* Allocate buffers */
if (bus->sdiodev->bus_if->maxctl) {
bus->rxblen =
roundup((bus->sdiodev->bus_if->maxctl + SDPCM_HDRLEN),
ALIGNMENT) + bus->head_align;
bus->rxbuf = kmalloc(bus->rxblen, GFP_ATOMIC);
if (!(bus->rxbuf)) {
brcmf_err("rxbuf allocation failed\n");
goto fail;
}
}
sdio_claim_host(bus->sdiodev->func[1]);
/* Disable F2 to clear any intermediate frame state on the dongle */
sdio_disable_func(bus->sdiodev->func[SDIO_FUNC_2]);
bus->sdiodev->bus_if->state = BRCMF_BUS_DOWN;
bus->rxflow = false;
/* Done with backplane-dependent accesses, can drop clock... */
brcmf_sdiod_regwb(bus->sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, 0, NULL);
sdio_release_host(bus->sdiodev->func[1]);
/* ...and initialize clock/power states */
bus->clkstate = CLK_SDONLY;
bus->idletime = BRCMF_IDLE_INTERVAL;
bus->idleclock = BRCMF_IDLE_ACTIVE;
/* Query the F2 block size, set roundup accordingly */
bus->blocksize = bus->sdiodev->func[2]->cur_blksize;
bus->roundup = min(max_roundup, bus->blocksize);
/* SR state */
bus->sleeping = false;
bus->sr_enabled = false;
brcmf_sdio_debugfs_create(bus);
brcmf_dbg(INFO, "completed!!\n");
/* if firmware path present try to download and bring up bus */
ret = brcmf_bus_start(bus->sdiodev->dev);
if (ret != 0) {
brcmf_err("dongle is not responding\n");
goto fail;
}
return bus;
fail:
brcmf_sdio_remove(bus);
return NULL;
}
/* Detach and free everything */
void brcmf_sdio_remove(struct brcmf_sdio *bus)
{
brcmf_dbg(TRACE, "Enter\n");
if (bus) {
/* De-register interrupt handler */
brcmf_sdiod_intr_unregister(bus->sdiodev);
cancel_work_sync(&bus->datawork);
if (bus->brcmf_wq)
destroy_workqueue(bus->brcmf_wq);
if (bus->sdiodev->bus_if->drvr) {
brcmf_detach(bus->sdiodev->dev);
}
if (bus->ci) {
sdio_claim_host(bus->sdiodev->func[1]);
brcmf_sdio_clkctl(bus, CLK_AVAIL, false);
brcmf_sdio_clkctl(bus, CLK_NONE, false);
sdio_release_host(bus->sdiodev->func[1]);
brcmf_sdio_chip_detach(&bus->ci);
}
brcmu_pkt_buf_free_skb(bus->txglom_sgpad);
kfree(bus->rxbuf);
kfree(bus->hdrbuf);
kfree(bus->vars);
kfree(bus);
}
brcmf_dbg(TRACE, "Disconnected\n");
}
void brcmf_sdio_wd_timer(struct brcmf_sdio *bus, uint wdtick)
{
/* Totally stop the timer */
if (!wdtick && bus->wd_timer_valid) {
del_timer_sync(&bus->timer);
bus->wd_timer_valid = false;
bus->save_ms = wdtick;
return;
}
/* don't start the wd until fw is loaded */
if (bus->sdiodev->bus_if->state == BRCMF_BUS_DOWN)
return;
if (wdtick) {
if (bus->save_ms != BRCMF_WD_POLL_MS) {
if (bus->wd_timer_valid)
/* Stop timer and restart at new value */
del_timer_sync(&bus->timer);
/* Create timer again when watchdog period is
dynamically changed or in the first instance
*/
bus->timer.expires =
jiffies + BRCMF_WD_POLL_MS * HZ / 1000;
add_timer(&bus->timer);
} else {
/* Re arm the timer, at last watchdog period */
mod_timer(&bus->timer,
jiffies + BRCMF_WD_POLL_MS * HZ / 1000);
}
bus->wd_timer_valid = true;
bus->save_ms = wdtick;
}
}