forked from Minki/linux
05ed690efb
This while loop has an overly complex condition, which performs a couple of assignments. This hurts readability. We don't really need a loop at all. We can just return -EAGAIN and (providing we set SK_DATA), the function will be called again. So discard the loop, make the complex conditional become a few clear function calls, and hopefully improve readability. Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1946 lines
50 KiB
C
1946 lines
50 KiB
C
/*
|
|
* linux/net/sunrpc/svcsock.c
|
|
*
|
|
* These are the RPC server socket internals.
|
|
*
|
|
* The server scheduling algorithm does not always distribute the load
|
|
* evenly when servicing a single client. May need to modify the
|
|
* svc_sock_enqueue procedure...
|
|
*
|
|
* TCP support is largely untested and may be a little slow. The problem
|
|
* is that we currently do two separate recvfrom's, one for the 4-byte
|
|
* record length, and the second for the actual record. This could possibly
|
|
* be improved by always reading a minimum size of around 100 bytes and
|
|
* tucking any superfluous bytes away in a temporary store. Still, that
|
|
* leaves write requests out in the rain. An alternative may be to peek at
|
|
* the first skb in the queue, and if it matches the next TCP sequence
|
|
* number, to extract the record marker. Yuck.
|
|
*
|
|
* Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
|
|
*/
|
|
|
|
#include <linux/sched.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/fcntl.h>
|
|
#include <linux/net.h>
|
|
#include <linux/in.h>
|
|
#include <linux/inet.h>
|
|
#include <linux/udp.h>
|
|
#include <linux/tcp.h>
|
|
#include <linux/unistd.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/file.h>
|
|
#include <linux/freezer.h>
|
|
#include <net/sock.h>
|
|
#include <net/checksum.h>
|
|
#include <net/ip.h>
|
|
#include <net/ipv6.h>
|
|
#include <net/tcp_states.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/ioctls.h>
|
|
|
|
#include <linux/sunrpc/types.h>
|
|
#include <linux/sunrpc/clnt.h>
|
|
#include <linux/sunrpc/xdr.h>
|
|
#include <linux/sunrpc/svcsock.h>
|
|
#include <linux/sunrpc/stats.h>
|
|
|
|
/* SMP locking strategy:
|
|
*
|
|
* svc_pool->sp_lock protects most of the fields of that pool.
|
|
* svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
|
|
* when both need to be taken (rare), svc_serv->sv_lock is first.
|
|
* BKL protects svc_serv->sv_nrthread.
|
|
* svc_sock->sk_lock protects the svc_sock->sk_deferred list
|
|
* and the ->sk_info_authunix cache.
|
|
* svc_sock->sk_flags.SK_BUSY prevents a svc_sock being enqueued multiply.
|
|
*
|
|
* Some flags can be set to certain values at any time
|
|
* providing that certain rules are followed:
|
|
*
|
|
* SK_CONN, SK_DATA, can be set or cleared at any time.
|
|
* after a set, svc_sock_enqueue must be called.
|
|
* after a clear, the socket must be read/accepted
|
|
* if this succeeds, it must be set again.
|
|
* SK_CLOSE can set at any time. It is never cleared.
|
|
* sk_inuse contains a bias of '1' until SK_DEAD is set.
|
|
* so when sk_inuse hits zero, we know the socket is dead
|
|
* and no-one is using it.
|
|
* SK_DEAD can only be set while SK_BUSY is held which ensures
|
|
* no other thread will be using the socket or will try to
|
|
* set SK_DEAD.
|
|
*
|
|
*/
|
|
|
|
#define RPCDBG_FACILITY RPCDBG_SVCSOCK
|
|
|
|
|
|
static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
|
|
int *errp, int flags);
|
|
static void svc_delete_socket(struct svc_sock *svsk);
|
|
static void svc_udp_data_ready(struct sock *, int);
|
|
static int svc_udp_recvfrom(struct svc_rqst *);
|
|
static int svc_udp_sendto(struct svc_rqst *);
|
|
static void svc_close_socket(struct svc_sock *svsk);
|
|
|
|
static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk);
|
|
static int svc_deferred_recv(struct svc_rqst *rqstp);
|
|
static struct cache_deferred_req *svc_defer(struct cache_req *req);
|
|
|
|
/* apparently the "standard" is that clients close
|
|
* idle connections after 5 minutes, servers after
|
|
* 6 minutes
|
|
* http://www.connectathon.org/talks96/nfstcp.pdf
|
|
*/
|
|
static int svc_conn_age_period = 6*60;
|
|
|
|
#ifdef CONFIG_DEBUG_LOCK_ALLOC
|
|
static struct lock_class_key svc_key[2];
|
|
static struct lock_class_key svc_slock_key[2];
|
|
|
|
static inline void svc_reclassify_socket(struct socket *sock)
|
|
{
|
|
struct sock *sk = sock->sk;
|
|
BUG_ON(sk->sk_lock.owner != NULL);
|
|
switch (sk->sk_family) {
|
|
case AF_INET:
|
|
sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD",
|
|
&svc_slock_key[0], "sk_lock-AF_INET-NFSD", &svc_key[0]);
|
|
break;
|
|
|
|
case AF_INET6:
|
|
sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD",
|
|
&svc_slock_key[1], "sk_lock-AF_INET6-NFSD", &svc_key[1]);
|
|
break;
|
|
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
#else
|
|
static inline void svc_reclassify_socket(struct socket *sock)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static char *__svc_print_addr(struct sockaddr *addr, char *buf, size_t len)
|
|
{
|
|
switch (addr->sa_family) {
|
|
case AF_INET:
|
|
snprintf(buf, len, "%u.%u.%u.%u, port=%u",
|
|
NIPQUAD(((struct sockaddr_in *) addr)->sin_addr),
|
|
htons(((struct sockaddr_in *) addr)->sin_port));
|
|
break;
|
|
|
|
case AF_INET6:
|
|
snprintf(buf, len, "%x:%x:%x:%x:%x:%x:%x:%x, port=%u",
|
|
NIP6(((struct sockaddr_in6 *) addr)->sin6_addr),
|
|
htons(((struct sockaddr_in6 *) addr)->sin6_port));
|
|
break;
|
|
|
|
default:
|
|
snprintf(buf, len, "unknown address type: %d", addr->sa_family);
|
|
break;
|
|
}
|
|
return buf;
|
|
}
|
|
|
|
/**
|
|
* svc_print_addr - Format rq_addr field for printing
|
|
* @rqstp: svc_rqst struct containing address to print
|
|
* @buf: target buffer for formatted address
|
|
* @len: length of target buffer
|
|
*
|
|
*/
|
|
char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
|
|
{
|
|
return __svc_print_addr(svc_addr(rqstp), buf, len);
|
|
}
|
|
EXPORT_SYMBOL_GPL(svc_print_addr);
|
|
|
|
/*
|
|
* Queue up an idle server thread. Must have pool->sp_lock held.
|
|
* Note: this is really a stack rather than a queue, so that we only
|
|
* use as many different threads as we need, and the rest don't pollute
|
|
* the cache.
|
|
*/
|
|
static inline void
|
|
svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
|
|
{
|
|
list_add(&rqstp->rq_list, &pool->sp_threads);
|
|
}
|
|
|
|
/*
|
|
* Dequeue an nfsd thread. Must have pool->sp_lock held.
|
|
*/
|
|
static inline void
|
|
svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
|
|
{
|
|
list_del(&rqstp->rq_list);
|
|
}
|
|
|
|
/*
|
|
* Release an skbuff after use
|
|
*/
|
|
static inline void
|
|
svc_release_skb(struct svc_rqst *rqstp)
|
|
{
|
|
struct sk_buff *skb = rqstp->rq_skbuff;
|
|
struct svc_deferred_req *dr = rqstp->rq_deferred;
|
|
|
|
if (skb) {
|
|
rqstp->rq_skbuff = NULL;
|
|
|
|
dprintk("svc: service %p, releasing skb %p\n", rqstp, skb);
|
|
skb_free_datagram(rqstp->rq_sock->sk_sk, skb);
|
|
}
|
|
if (dr) {
|
|
rqstp->rq_deferred = NULL;
|
|
kfree(dr);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Any space to write?
|
|
*/
|
|
static inline unsigned long
|
|
svc_sock_wspace(struct svc_sock *svsk)
|
|
{
|
|
int wspace;
|
|
|
|
if (svsk->sk_sock->type == SOCK_STREAM)
|
|
wspace = sk_stream_wspace(svsk->sk_sk);
|
|
else
|
|
wspace = sock_wspace(svsk->sk_sk);
|
|
|
|
return wspace;
|
|
}
|
|
|
|
/*
|
|
* Queue up a socket with data pending. If there are idle nfsd
|
|
* processes, wake 'em up.
|
|
*
|
|
*/
|
|
static void
|
|
svc_sock_enqueue(struct svc_sock *svsk)
|
|
{
|
|
struct svc_serv *serv = svsk->sk_server;
|
|
struct svc_pool *pool;
|
|
struct svc_rqst *rqstp;
|
|
int cpu;
|
|
|
|
if (!(svsk->sk_flags &
|
|
( (1<<SK_CONN)|(1<<SK_DATA)|(1<<SK_CLOSE)|(1<<SK_DEFERRED)) ))
|
|
return;
|
|
if (test_bit(SK_DEAD, &svsk->sk_flags))
|
|
return;
|
|
|
|
cpu = get_cpu();
|
|
pool = svc_pool_for_cpu(svsk->sk_server, cpu);
|
|
put_cpu();
|
|
|
|
spin_lock_bh(&pool->sp_lock);
|
|
|
|
if (!list_empty(&pool->sp_threads) &&
|
|
!list_empty(&pool->sp_sockets))
|
|
printk(KERN_ERR
|
|
"svc_sock_enqueue: threads and sockets both waiting??\n");
|
|
|
|
if (test_bit(SK_DEAD, &svsk->sk_flags)) {
|
|
/* Don't enqueue dead sockets */
|
|
dprintk("svc: socket %p is dead, not enqueued\n", svsk->sk_sk);
|
|
goto out_unlock;
|
|
}
|
|
|
|
/* Mark socket as busy. It will remain in this state until the
|
|
* server has processed all pending data and put the socket back
|
|
* on the idle list. We update SK_BUSY atomically because
|
|
* it also guards against trying to enqueue the svc_sock twice.
|
|
*/
|
|
if (test_and_set_bit(SK_BUSY, &svsk->sk_flags)) {
|
|
/* Don't enqueue socket while already enqueued */
|
|
dprintk("svc: socket %p busy, not enqueued\n", svsk->sk_sk);
|
|
goto out_unlock;
|
|
}
|
|
BUG_ON(svsk->sk_pool != NULL);
|
|
svsk->sk_pool = pool;
|
|
|
|
set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
|
|
if (((atomic_read(&svsk->sk_reserved) + serv->sv_max_mesg)*2
|
|
> svc_sock_wspace(svsk))
|
|
&& !test_bit(SK_CLOSE, &svsk->sk_flags)
|
|
&& !test_bit(SK_CONN, &svsk->sk_flags)) {
|
|
/* Don't enqueue while not enough space for reply */
|
|
dprintk("svc: socket %p no space, %d*2 > %ld, not enqueued\n",
|
|
svsk->sk_sk, atomic_read(&svsk->sk_reserved)+serv->sv_max_mesg,
|
|
svc_sock_wspace(svsk));
|
|
svsk->sk_pool = NULL;
|
|
clear_bit(SK_BUSY, &svsk->sk_flags);
|
|
goto out_unlock;
|
|
}
|
|
clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
|
|
|
|
|
|
if (!list_empty(&pool->sp_threads)) {
|
|
rqstp = list_entry(pool->sp_threads.next,
|
|
struct svc_rqst,
|
|
rq_list);
|
|
dprintk("svc: socket %p served by daemon %p\n",
|
|
svsk->sk_sk, rqstp);
|
|
svc_thread_dequeue(pool, rqstp);
|
|
if (rqstp->rq_sock)
|
|
printk(KERN_ERR
|
|
"svc_sock_enqueue: server %p, rq_sock=%p!\n",
|
|
rqstp, rqstp->rq_sock);
|
|
rqstp->rq_sock = svsk;
|
|
atomic_inc(&svsk->sk_inuse);
|
|
rqstp->rq_reserved = serv->sv_max_mesg;
|
|
atomic_add(rqstp->rq_reserved, &svsk->sk_reserved);
|
|
BUG_ON(svsk->sk_pool != pool);
|
|
wake_up(&rqstp->rq_wait);
|
|
} else {
|
|
dprintk("svc: socket %p put into queue\n", svsk->sk_sk);
|
|
list_add_tail(&svsk->sk_ready, &pool->sp_sockets);
|
|
BUG_ON(svsk->sk_pool != pool);
|
|
}
|
|
|
|
out_unlock:
|
|
spin_unlock_bh(&pool->sp_lock);
|
|
}
|
|
|
|
/*
|
|
* Dequeue the first socket. Must be called with the pool->sp_lock held.
|
|
*/
|
|
static inline struct svc_sock *
|
|
svc_sock_dequeue(struct svc_pool *pool)
|
|
{
|
|
struct svc_sock *svsk;
|
|
|
|
if (list_empty(&pool->sp_sockets))
|
|
return NULL;
|
|
|
|
svsk = list_entry(pool->sp_sockets.next,
|
|
struct svc_sock, sk_ready);
|
|
list_del_init(&svsk->sk_ready);
|
|
|
|
dprintk("svc: socket %p dequeued, inuse=%d\n",
|
|
svsk->sk_sk, atomic_read(&svsk->sk_inuse));
|
|
|
|
return svsk;
|
|
}
|
|
|
|
/*
|
|
* Having read something from a socket, check whether it
|
|
* needs to be re-enqueued.
|
|
* Note: SK_DATA only gets cleared when a read-attempt finds
|
|
* no (or insufficient) data.
|
|
*/
|
|
static inline void
|
|
svc_sock_received(struct svc_sock *svsk)
|
|
{
|
|
svsk->sk_pool = NULL;
|
|
clear_bit(SK_BUSY, &svsk->sk_flags);
|
|
svc_sock_enqueue(svsk);
|
|
}
|
|
|
|
|
|
/**
|
|
* svc_reserve - change the space reserved for the reply to a request.
|
|
* @rqstp: The request in question
|
|
* @space: new max space to reserve
|
|
*
|
|
* Each request reserves some space on the output queue of the socket
|
|
* to make sure the reply fits. This function reduces that reserved
|
|
* space to be the amount of space used already, plus @space.
|
|
*
|
|
*/
|
|
void svc_reserve(struct svc_rqst *rqstp, int space)
|
|
{
|
|
space += rqstp->rq_res.head[0].iov_len;
|
|
|
|
if (space < rqstp->rq_reserved) {
|
|
struct svc_sock *svsk = rqstp->rq_sock;
|
|
atomic_sub((rqstp->rq_reserved - space), &svsk->sk_reserved);
|
|
rqstp->rq_reserved = space;
|
|
|
|
svc_sock_enqueue(svsk);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Release a socket after use.
|
|
*/
|
|
static inline void
|
|
svc_sock_put(struct svc_sock *svsk)
|
|
{
|
|
if (atomic_dec_and_test(&svsk->sk_inuse)) {
|
|
BUG_ON(! test_bit(SK_DEAD, &svsk->sk_flags));
|
|
|
|
dprintk("svc: releasing dead socket\n");
|
|
if (svsk->sk_sock->file)
|
|
sockfd_put(svsk->sk_sock);
|
|
else
|
|
sock_release(svsk->sk_sock);
|
|
if (svsk->sk_info_authunix != NULL)
|
|
svcauth_unix_info_release(svsk->sk_info_authunix);
|
|
kfree(svsk);
|
|
}
|
|
}
|
|
|
|
static void
|
|
svc_sock_release(struct svc_rqst *rqstp)
|
|
{
|
|
struct svc_sock *svsk = rqstp->rq_sock;
|
|
|
|
svc_release_skb(rqstp);
|
|
|
|
svc_free_res_pages(rqstp);
|
|
rqstp->rq_res.page_len = 0;
|
|
rqstp->rq_res.page_base = 0;
|
|
|
|
|
|
/* Reset response buffer and release
|
|
* the reservation.
|
|
* But first, check that enough space was reserved
|
|
* for the reply, otherwise we have a bug!
|
|
*/
|
|
if ((rqstp->rq_res.len) > rqstp->rq_reserved)
|
|
printk(KERN_ERR "RPC request reserved %d but used %d\n",
|
|
rqstp->rq_reserved,
|
|
rqstp->rq_res.len);
|
|
|
|
rqstp->rq_res.head[0].iov_len = 0;
|
|
svc_reserve(rqstp, 0);
|
|
rqstp->rq_sock = NULL;
|
|
|
|
svc_sock_put(svsk);
|
|
}
|
|
|
|
/*
|
|
* External function to wake up a server waiting for data
|
|
* This really only makes sense for services like lockd
|
|
* which have exactly one thread anyway.
|
|
*/
|
|
void
|
|
svc_wake_up(struct svc_serv *serv)
|
|
{
|
|
struct svc_rqst *rqstp;
|
|
unsigned int i;
|
|
struct svc_pool *pool;
|
|
|
|
for (i = 0; i < serv->sv_nrpools; i++) {
|
|
pool = &serv->sv_pools[i];
|
|
|
|
spin_lock_bh(&pool->sp_lock);
|
|
if (!list_empty(&pool->sp_threads)) {
|
|
rqstp = list_entry(pool->sp_threads.next,
|
|
struct svc_rqst,
|
|
rq_list);
|
|
dprintk("svc: daemon %p woken up.\n", rqstp);
|
|
/*
|
|
svc_thread_dequeue(pool, rqstp);
|
|
rqstp->rq_sock = NULL;
|
|
*/
|
|
wake_up(&rqstp->rq_wait);
|
|
}
|
|
spin_unlock_bh(&pool->sp_lock);
|
|
}
|
|
}
|
|
|
|
union svc_pktinfo_u {
|
|
struct in_pktinfo pkti;
|
|
struct in6_pktinfo pkti6;
|
|
};
|
|
#define SVC_PKTINFO_SPACE \
|
|
CMSG_SPACE(sizeof(union svc_pktinfo_u))
|
|
|
|
static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh)
|
|
{
|
|
switch (rqstp->rq_sock->sk_sk->sk_family) {
|
|
case AF_INET: {
|
|
struct in_pktinfo *pki = CMSG_DATA(cmh);
|
|
|
|
cmh->cmsg_level = SOL_IP;
|
|
cmh->cmsg_type = IP_PKTINFO;
|
|
pki->ipi_ifindex = 0;
|
|
pki->ipi_spec_dst.s_addr = rqstp->rq_daddr.addr.s_addr;
|
|
cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
|
|
}
|
|
break;
|
|
|
|
case AF_INET6: {
|
|
struct in6_pktinfo *pki = CMSG_DATA(cmh);
|
|
|
|
cmh->cmsg_level = SOL_IPV6;
|
|
cmh->cmsg_type = IPV6_PKTINFO;
|
|
pki->ipi6_ifindex = 0;
|
|
ipv6_addr_copy(&pki->ipi6_addr,
|
|
&rqstp->rq_daddr.addr6);
|
|
cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
|
|
}
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Generic sendto routine
|
|
*/
|
|
static int
|
|
svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr)
|
|
{
|
|
struct svc_sock *svsk = rqstp->rq_sock;
|
|
struct socket *sock = svsk->sk_sock;
|
|
int slen;
|
|
union {
|
|
struct cmsghdr hdr;
|
|
long all[SVC_PKTINFO_SPACE / sizeof(long)];
|
|
} buffer;
|
|
struct cmsghdr *cmh = &buffer.hdr;
|
|
int len = 0;
|
|
int result;
|
|
int size;
|
|
struct page **ppage = xdr->pages;
|
|
size_t base = xdr->page_base;
|
|
unsigned int pglen = xdr->page_len;
|
|
unsigned int flags = MSG_MORE;
|
|
char buf[RPC_MAX_ADDRBUFLEN];
|
|
|
|
slen = xdr->len;
|
|
|
|
if (rqstp->rq_prot == IPPROTO_UDP) {
|
|
struct msghdr msg = {
|
|
.msg_name = &rqstp->rq_addr,
|
|
.msg_namelen = rqstp->rq_addrlen,
|
|
.msg_control = cmh,
|
|
.msg_controllen = sizeof(buffer),
|
|
.msg_flags = MSG_MORE,
|
|
};
|
|
|
|
svc_set_cmsg_data(rqstp, cmh);
|
|
|
|
if (sock_sendmsg(sock, &msg, 0) < 0)
|
|
goto out;
|
|
}
|
|
|
|
/* send head */
|
|
if (slen == xdr->head[0].iov_len)
|
|
flags = 0;
|
|
len = kernel_sendpage(sock, rqstp->rq_respages[0], 0,
|
|
xdr->head[0].iov_len, flags);
|
|
if (len != xdr->head[0].iov_len)
|
|
goto out;
|
|
slen -= xdr->head[0].iov_len;
|
|
if (slen == 0)
|
|
goto out;
|
|
|
|
/* send page data */
|
|
size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen;
|
|
while (pglen > 0) {
|
|
if (slen == size)
|
|
flags = 0;
|
|
result = kernel_sendpage(sock, *ppage, base, size, flags);
|
|
if (result > 0)
|
|
len += result;
|
|
if (result != size)
|
|
goto out;
|
|
slen -= size;
|
|
pglen -= size;
|
|
size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen;
|
|
base = 0;
|
|
ppage++;
|
|
}
|
|
/* send tail */
|
|
if (xdr->tail[0].iov_len) {
|
|
result = kernel_sendpage(sock, rqstp->rq_respages[0],
|
|
((unsigned long)xdr->tail[0].iov_base)
|
|
& (PAGE_SIZE-1),
|
|
xdr->tail[0].iov_len, 0);
|
|
|
|
if (result > 0)
|
|
len += result;
|
|
}
|
|
out:
|
|
dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %s)\n",
|
|
rqstp->rq_sock, xdr->head[0].iov_base, xdr->head[0].iov_len,
|
|
xdr->len, len, svc_print_addr(rqstp, buf, sizeof(buf)));
|
|
|
|
return len;
|
|
}
|
|
|
|
/*
|
|
* Report socket names for nfsdfs
|
|
*/
|
|
static int one_sock_name(char *buf, struct svc_sock *svsk)
|
|
{
|
|
int len;
|
|
|
|
switch(svsk->sk_sk->sk_family) {
|
|
case AF_INET:
|
|
len = sprintf(buf, "ipv4 %s %u.%u.%u.%u %d\n",
|
|
svsk->sk_sk->sk_protocol==IPPROTO_UDP?
|
|
"udp" : "tcp",
|
|
NIPQUAD(inet_sk(svsk->sk_sk)->rcv_saddr),
|
|
inet_sk(svsk->sk_sk)->num);
|
|
break;
|
|
default:
|
|
len = sprintf(buf, "*unknown-%d*\n",
|
|
svsk->sk_sk->sk_family);
|
|
}
|
|
return len;
|
|
}
|
|
|
|
int
|
|
svc_sock_names(char *buf, struct svc_serv *serv, char *toclose)
|
|
{
|
|
struct svc_sock *svsk, *closesk = NULL;
|
|
int len = 0;
|
|
|
|
if (!serv)
|
|
return 0;
|
|
spin_lock_bh(&serv->sv_lock);
|
|
list_for_each_entry(svsk, &serv->sv_permsocks, sk_list) {
|
|
int onelen = one_sock_name(buf+len, svsk);
|
|
if (toclose && strcmp(toclose, buf+len) == 0)
|
|
closesk = svsk;
|
|
else
|
|
len += onelen;
|
|
}
|
|
spin_unlock_bh(&serv->sv_lock);
|
|
if (closesk)
|
|
/* Should unregister with portmap, but you cannot
|
|
* unregister just one protocol...
|
|
*/
|
|
svc_close_socket(closesk);
|
|
else if (toclose)
|
|
return -ENOENT;
|
|
return len;
|
|
}
|
|
EXPORT_SYMBOL(svc_sock_names);
|
|
|
|
/*
|
|
* Check input queue length
|
|
*/
|
|
static int
|
|
svc_recv_available(struct svc_sock *svsk)
|
|
{
|
|
struct socket *sock = svsk->sk_sock;
|
|
int avail, err;
|
|
|
|
err = kernel_sock_ioctl(sock, TIOCINQ, (unsigned long) &avail);
|
|
|
|
return (err >= 0)? avail : err;
|
|
}
|
|
|
|
/*
|
|
* Generic recvfrom routine.
|
|
*/
|
|
static int
|
|
svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr, int buflen)
|
|
{
|
|
struct svc_sock *svsk = rqstp->rq_sock;
|
|
struct msghdr msg = {
|
|
.msg_flags = MSG_DONTWAIT,
|
|
};
|
|
int len;
|
|
|
|
len = kernel_recvmsg(svsk->sk_sock, &msg, iov, nr, buflen,
|
|
msg.msg_flags);
|
|
|
|
/* sock_recvmsg doesn't fill in the name/namelen, so we must..
|
|
*/
|
|
memcpy(&rqstp->rq_addr, &svsk->sk_remote, svsk->sk_remotelen);
|
|
rqstp->rq_addrlen = svsk->sk_remotelen;
|
|
|
|
dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
|
|
svsk, iov[0].iov_base, iov[0].iov_len, len);
|
|
|
|
return len;
|
|
}
|
|
|
|
/*
|
|
* Set socket snd and rcv buffer lengths
|
|
*/
|
|
static inline void
|
|
svc_sock_setbufsize(struct socket *sock, unsigned int snd, unsigned int rcv)
|
|
{
|
|
#if 0
|
|
mm_segment_t oldfs;
|
|
oldfs = get_fs(); set_fs(KERNEL_DS);
|
|
sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF,
|
|
(char*)&snd, sizeof(snd));
|
|
sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
|
|
(char*)&rcv, sizeof(rcv));
|
|
#else
|
|
/* sock_setsockopt limits use to sysctl_?mem_max,
|
|
* which isn't acceptable. Until that is made conditional
|
|
* on not having CAP_SYS_RESOURCE or similar, we go direct...
|
|
* DaveM said I could!
|
|
*/
|
|
lock_sock(sock->sk);
|
|
sock->sk->sk_sndbuf = snd * 2;
|
|
sock->sk->sk_rcvbuf = rcv * 2;
|
|
sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK;
|
|
release_sock(sock->sk);
|
|
#endif
|
|
}
|
|
/*
|
|
* INET callback when data has been received on the socket.
|
|
*/
|
|
static void
|
|
svc_udp_data_ready(struct sock *sk, int count)
|
|
{
|
|
struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
|
|
|
|
if (svsk) {
|
|
dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
|
|
svsk, sk, count, test_bit(SK_BUSY, &svsk->sk_flags));
|
|
set_bit(SK_DATA, &svsk->sk_flags);
|
|
svc_sock_enqueue(svsk);
|
|
}
|
|
if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
|
|
wake_up_interruptible(sk->sk_sleep);
|
|
}
|
|
|
|
/*
|
|
* INET callback when space is newly available on the socket.
|
|
*/
|
|
static void
|
|
svc_write_space(struct sock *sk)
|
|
{
|
|
struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data);
|
|
|
|
if (svsk) {
|
|
dprintk("svc: socket %p(inet %p), write_space busy=%d\n",
|
|
svsk, sk, test_bit(SK_BUSY, &svsk->sk_flags));
|
|
svc_sock_enqueue(svsk);
|
|
}
|
|
|
|
if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) {
|
|
dprintk("RPC svc_write_space: someone sleeping on %p\n",
|
|
svsk);
|
|
wake_up_interruptible(sk->sk_sleep);
|
|
}
|
|
}
|
|
|
|
static inline void svc_udp_get_dest_address(struct svc_rqst *rqstp,
|
|
struct cmsghdr *cmh)
|
|
{
|
|
switch (rqstp->rq_sock->sk_sk->sk_family) {
|
|
case AF_INET: {
|
|
struct in_pktinfo *pki = CMSG_DATA(cmh);
|
|
rqstp->rq_daddr.addr.s_addr = pki->ipi_spec_dst.s_addr;
|
|
break;
|
|
}
|
|
case AF_INET6: {
|
|
struct in6_pktinfo *pki = CMSG_DATA(cmh);
|
|
ipv6_addr_copy(&rqstp->rq_daddr.addr6, &pki->ipi6_addr);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Receive a datagram from a UDP socket.
|
|
*/
|
|
static int
|
|
svc_udp_recvfrom(struct svc_rqst *rqstp)
|
|
{
|
|
struct svc_sock *svsk = rqstp->rq_sock;
|
|
struct svc_serv *serv = svsk->sk_server;
|
|
struct sk_buff *skb;
|
|
union {
|
|
struct cmsghdr hdr;
|
|
long all[SVC_PKTINFO_SPACE / sizeof(long)];
|
|
} buffer;
|
|
struct cmsghdr *cmh = &buffer.hdr;
|
|
int err, len;
|
|
struct msghdr msg = {
|
|
.msg_name = svc_addr(rqstp),
|
|
.msg_control = cmh,
|
|
.msg_controllen = sizeof(buffer),
|
|
.msg_flags = MSG_DONTWAIT,
|
|
};
|
|
|
|
if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
|
|
/* udp sockets need large rcvbuf as all pending
|
|
* requests are still in that buffer. sndbuf must
|
|
* also be large enough that there is enough space
|
|
* for one reply per thread. We count all threads
|
|
* rather than threads in a particular pool, which
|
|
* provides an upper bound on the number of threads
|
|
* which will access the socket.
|
|
*/
|
|
svc_sock_setbufsize(svsk->sk_sock,
|
|
(serv->sv_nrthreads+3) * serv->sv_max_mesg,
|
|
(serv->sv_nrthreads+3) * serv->sv_max_mesg);
|
|
|
|
if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
|
|
svc_sock_received(svsk);
|
|
return svc_deferred_recv(rqstp);
|
|
}
|
|
|
|
if (test_bit(SK_CLOSE, &svsk->sk_flags)) {
|
|
svc_delete_socket(svsk);
|
|
return 0;
|
|
}
|
|
|
|
clear_bit(SK_DATA, &svsk->sk_flags);
|
|
skb = NULL;
|
|
err = kernel_recvmsg(svsk->sk_sock, &msg, NULL,
|
|
0, 0, MSG_PEEK | MSG_DONTWAIT);
|
|
if (err >= 0)
|
|
skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err);
|
|
|
|
if (skb == NULL) {
|
|
if (err != -EAGAIN) {
|
|
/* possibly an icmp error */
|
|
dprintk("svc: recvfrom returned error %d\n", -err);
|
|
set_bit(SK_DATA, &svsk->sk_flags);
|
|
}
|
|
svc_sock_received(svsk);
|
|
return -EAGAIN;
|
|
}
|
|
rqstp->rq_addrlen = sizeof(rqstp->rq_addr);
|
|
if (skb->tstamp.tv64 == 0) {
|
|
skb->tstamp = ktime_get_real();
|
|
/* Don't enable netstamp, sunrpc doesn't
|
|
need that much accuracy */
|
|
}
|
|
svsk->sk_sk->sk_stamp = skb->tstamp;
|
|
set_bit(SK_DATA, &svsk->sk_flags); /* there may be more data... */
|
|
|
|
/*
|
|
* Maybe more packets - kick another thread ASAP.
|
|
*/
|
|
svc_sock_received(svsk);
|
|
|
|
len = skb->len - sizeof(struct udphdr);
|
|
rqstp->rq_arg.len = len;
|
|
|
|
rqstp->rq_prot = IPPROTO_UDP;
|
|
|
|
if (cmh->cmsg_level != IPPROTO_IP ||
|
|
cmh->cmsg_type != IP_PKTINFO) {
|
|
if (net_ratelimit())
|
|
printk("rpcsvc: received unknown control message:"
|
|
"%d/%d\n",
|
|
cmh->cmsg_level, cmh->cmsg_type);
|
|
skb_free_datagram(svsk->sk_sk, skb);
|
|
return 0;
|
|
}
|
|
svc_udp_get_dest_address(rqstp, cmh);
|
|
|
|
if (skb_is_nonlinear(skb)) {
|
|
/* we have to copy */
|
|
local_bh_disable();
|
|
if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) {
|
|
local_bh_enable();
|
|
/* checksum error */
|
|
skb_free_datagram(svsk->sk_sk, skb);
|
|
return 0;
|
|
}
|
|
local_bh_enable();
|
|
skb_free_datagram(svsk->sk_sk, skb);
|
|
} else {
|
|
/* we can use it in-place */
|
|
rqstp->rq_arg.head[0].iov_base = skb->data + sizeof(struct udphdr);
|
|
rqstp->rq_arg.head[0].iov_len = len;
|
|
if (skb_checksum_complete(skb)) {
|
|
skb_free_datagram(svsk->sk_sk, skb);
|
|
return 0;
|
|
}
|
|
rqstp->rq_skbuff = skb;
|
|
}
|
|
|
|
rqstp->rq_arg.page_base = 0;
|
|
if (len <= rqstp->rq_arg.head[0].iov_len) {
|
|
rqstp->rq_arg.head[0].iov_len = len;
|
|
rqstp->rq_arg.page_len = 0;
|
|
rqstp->rq_respages = rqstp->rq_pages+1;
|
|
} else {
|
|
rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
|
|
rqstp->rq_respages = rqstp->rq_pages + 1 +
|
|
(rqstp->rq_arg.page_len + PAGE_SIZE - 1)/ PAGE_SIZE;
|
|
}
|
|
|
|
if (serv->sv_stats)
|
|
serv->sv_stats->netudpcnt++;
|
|
|
|
return len;
|
|
}
|
|
|
|
static int
|
|
svc_udp_sendto(struct svc_rqst *rqstp)
|
|
{
|
|
int error;
|
|
|
|
error = svc_sendto(rqstp, &rqstp->rq_res);
|
|
if (error == -ECONNREFUSED)
|
|
/* ICMP error on earlier request. */
|
|
error = svc_sendto(rqstp, &rqstp->rq_res);
|
|
|
|
return error;
|
|
}
|
|
|
|
static void
|
|
svc_udp_init(struct svc_sock *svsk)
|
|
{
|
|
int one = 1;
|
|
mm_segment_t oldfs;
|
|
|
|
svsk->sk_sk->sk_data_ready = svc_udp_data_ready;
|
|
svsk->sk_sk->sk_write_space = svc_write_space;
|
|
svsk->sk_recvfrom = svc_udp_recvfrom;
|
|
svsk->sk_sendto = svc_udp_sendto;
|
|
|
|
/* initialise setting must have enough space to
|
|
* receive and respond to one request.
|
|
* svc_udp_recvfrom will re-adjust if necessary
|
|
*/
|
|
svc_sock_setbufsize(svsk->sk_sock,
|
|
3 * svsk->sk_server->sv_max_mesg,
|
|
3 * svsk->sk_server->sv_max_mesg);
|
|
|
|
set_bit(SK_DATA, &svsk->sk_flags); /* might have come in before data_ready set up */
|
|
set_bit(SK_CHNGBUF, &svsk->sk_flags);
|
|
|
|
oldfs = get_fs();
|
|
set_fs(KERNEL_DS);
|
|
/* make sure we get destination address info */
|
|
svsk->sk_sock->ops->setsockopt(svsk->sk_sock, IPPROTO_IP, IP_PKTINFO,
|
|
(char __user *)&one, sizeof(one));
|
|
set_fs(oldfs);
|
|
}
|
|
|
|
/*
|
|
* A data_ready event on a listening socket means there's a connection
|
|
* pending. Do not use state_change as a substitute for it.
|
|
*/
|
|
static void
|
|
svc_tcp_listen_data_ready(struct sock *sk, int count_unused)
|
|
{
|
|
struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
|
|
|
|
dprintk("svc: socket %p TCP (listen) state change %d\n",
|
|
sk, sk->sk_state);
|
|
|
|
/*
|
|
* This callback may called twice when a new connection
|
|
* is established as a child socket inherits everything
|
|
* from a parent LISTEN socket.
|
|
* 1) data_ready method of the parent socket will be called
|
|
* when one of child sockets become ESTABLISHED.
|
|
* 2) data_ready method of the child socket may be called
|
|
* when it receives data before the socket is accepted.
|
|
* In case of 2, we should ignore it silently.
|
|
*/
|
|
if (sk->sk_state == TCP_LISTEN) {
|
|
if (svsk) {
|
|
set_bit(SK_CONN, &svsk->sk_flags);
|
|
svc_sock_enqueue(svsk);
|
|
} else
|
|
printk("svc: socket %p: no user data\n", sk);
|
|
}
|
|
|
|
if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
|
|
wake_up_interruptible_all(sk->sk_sleep);
|
|
}
|
|
|
|
/*
|
|
* A state change on a connected socket means it's dying or dead.
|
|
*/
|
|
static void
|
|
svc_tcp_state_change(struct sock *sk)
|
|
{
|
|
struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
|
|
|
|
dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
|
|
sk, sk->sk_state, sk->sk_user_data);
|
|
|
|
if (!svsk)
|
|
printk("svc: socket %p: no user data\n", sk);
|
|
else {
|
|
set_bit(SK_CLOSE, &svsk->sk_flags);
|
|
svc_sock_enqueue(svsk);
|
|
}
|
|
if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
|
|
wake_up_interruptible_all(sk->sk_sleep);
|
|
}
|
|
|
|
static void
|
|
svc_tcp_data_ready(struct sock *sk, int count)
|
|
{
|
|
struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
|
|
|
|
dprintk("svc: socket %p TCP data ready (svsk %p)\n",
|
|
sk, sk->sk_user_data);
|
|
if (svsk) {
|
|
set_bit(SK_DATA, &svsk->sk_flags);
|
|
svc_sock_enqueue(svsk);
|
|
}
|
|
if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
|
|
wake_up_interruptible(sk->sk_sleep);
|
|
}
|
|
|
|
static inline int svc_port_is_privileged(struct sockaddr *sin)
|
|
{
|
|
switch (sin->sa_family) {
|
|
case AF_INET:
|
|
return ntohs(((struct sockaddr_in *)sin)->sin_port)
|
|
< PROT_SOCK;
|
|
case AF_INET6:
|
|
return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
|
|
< PROT_SOCK;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Accept a TCP connection
|
|
*/
|
|
static void
|
|
svc_tcp_accept(struct svc_sock *svsk)
|
|
{
|
|
struct sockaddr_storage addr;
|
|
struct sockaddr *sin = (struct sockaddr *) &addr;
|
|
struct svc_serv *serv = svsk->sk_server;
|
|
struct socket *sock = svsk->sk_sock;
|
|
struct socket *newsock;
|
|
struct svc_sock *newsvsk;
|
|
int err, slen;
|
|
char buf[RPC_MAX_ADDRBUFLEN];
|
|
|
|
dprintk("svc: tcp_accept %p sock %p\n", svsk, sock);
|
|
if (!sock)
|
|
return;
|
|
|
|
clear_bit(SK_CONN, &svsk->sk_flags);
|
|
err = kernel_accept(sock, &newsock, O_NONBLOCK);
|
|
if (err < 0) {
|
|
if (err == -ENOMEM)
|
|
printk(KERN_WARNING "%s: no more sockets!\n",
|
|
serv->sv_name);
|
|
else if (err != -EAGAIN && net_ratelimit())
|
|
printk(KERN_WARNING "%s: accept failed (err %d)!\n",
|
|
serv->sv_name, -err);
|
|
return;
|
|
}
|
|
|
|
set_bit(SK_CONN, &svsk->sk_flags);
|
|
svc_sock_enqueue(svsk);
|
|
|
|
err = kernel_getpeername(newsock, sin, &slen);
|
|
if (err < 0) {
|
|
if (net_ratelimit())
|
|
printk(KERN_WARNING "%s: peername failed (err %d)!\n",
|
|
serv->sv_name, -err);
|
|
goto failed; /* aborted connection or whatever */
|
|
}
|
|
|
|
/* Ideally, we would want to reject connections from unauthorized
|
|
* hosts here, but when we get encryption, the IP of the host won't
|
|
* tell us anything. For now just warn about unpriv connections.
|
|
*/
|
|
if (!svc_port_is_privileged(sin)) {
|
|
dprintk(KERN_WARNING
|
|
"%s: connect from unprivileged port: %s\n",
|
|
serv->sv_name,
|
|
__svc_print_addr(sin, buf, sizeof(buf)));
|
|
}
|
|
dprintk("%s: connect from %s\n", serv->sv_name,
|
|
__svc_print_addr(sin, buf, sizeof(buf)));
|
|
|
|
/* make sure that a write doesn't block forever when
|
|
* low on memory
|
|
*/
|
|
newsock->sk->sk_sndtimeo = HZ*30;
|
|
|
|
if (!(newsvsk = svc_setup_socket(serv, newsock, &err,
|
|
(SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY))))
|
|
goto failed;
|
|
memcpy(&newsvsk->sk_remote, sin, slen);
|
|
newsvsk->sk_remotelen = slen;
|
|
|
|
svc_sock_received(newsvsk);
|
|
|
|
/* make sure that we don't have too many active connections.
|
|
* If we have, something must be dropped.
|
|
*
|
|
* There's no point in trying to do random drop here for
|
|
* DoS prevention. The NFS clients does 1 reconnect in 15
|
|
* seconds. An attacker can easily beat that.
|
|
*
|
|
* The only somewhat efficient mechanism would be if drop
|
|
* old connections from the same IP first. But right now
|
|
* we don't even record the client IP in svc_sock.
|
|
*/
|
|
if (serv->sv_tmpcnt > (serv->sv_nrthreads+3)*20) {
|
|
struct svc_sock *svsk = NULL;
|
|
spin_lock_bh(&serv->sv_lock);
|
|
if (!list_empty(&serv->sv_tempsocks)) {
|
|
if (net_ratelimit()) {
|
|
/* Try to help the admin */
|
|
printk(KERN_NOTICE "%s: too many open TCP "
|
|
"sockets, consider increasing the "
|
|
"number of nfsd threads\n",
|
|
serv->sv_name);
|
|
printk(KERN_NOTICE
|
|
"%s: last TCP connect from %s\n",
|
|
serv->sv_name, buf);
|
|
}
|
|
/*
|
|
* Always select the oldest socket. It's not fair,
|
|
* but so is life
|
|
*/
|
|
svsk = list_entry(serv->sv_tempsocks.prev,
|
|
struct svc_sock,
|
|
sk_list);
|
|
set_bit(SK_CLOSE, &svsk->sk_flags);
|
|
atomic_inc(&svsk->sk_inuse);
|
|
}
|
|
spin_unlock_bh(&serv->sv_lock);
|
|
|
|
if (svsk) {
|
|
svc_sock_enqueue(svsk);
|
|
svc_sock_put(svsk);
|
|
}
|
|
|
|
}
|
|
|
|
if (serv->sv_stats)
|
|
serv->sv_stats->nettcpconn++;
|
|
|
|
return;
|
|
|
|
failed:
|
|
sock_release(newsock);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Receive data from a TCP socket.
|
|
*/
|
|
static int
|
|
svc_tcp_recvfrom(struct svc_rqst *rqstp)
|
|
{
|
|
struct svc_sock *svsk = rqstp->rq_sock;
|
|
struct svc_serv *serv = svsk->sk_server;
|
|
int len;
|
|
struct kvec *vec;
|
|
int pnum, vlen;
|
|
|
|
dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
|
|
svsk, test_bit(SK_DATA, &svsk->sk_flags),
|
|
test_bit(SK_CONN, &svsk->sk_flags),
|
|
test_bit(SK_CLOSE, &svsk->sk_flags));
|
|
|
|
if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
|
|
svc_sock_received(svsk);
|
|
return svc_deferred_recv(rqstp);
|
|
}
|
|
|
|
if (test_bit(SK_CLOSE, &svsk->sk_flags)) {
|
|
svc_delete_socket(svsk);
|
|
return 0;
|
|
}
|
|
|
|
if (svsk->sk_sk->sk_state == TCP_LISTEN) {
|
|
svc_tcp_accept(svsk);
|
|
svc_sock_received(svsk);
|
|
return 0;
|
|
}
|
|
|
|
if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
|
|
/* sndbuf needs to have room for one request
|
|
* per thread, otherwise we can stall even when the
|
|
* network isn't a bottleneck.
|
|
*
|
|
* We count all threads rather than threads in a
|
|
* particular pool, which provides an upper bound
|
|
* on the number of threads which will access the socket.
|
|
*
|
|
* rcvbuf just needs to be able to hold a few requests.
|
|
* Normally they will be removed from the queue
|
|
* as soon a a complete request arrives.
|
|
*/
|
|
svc_sock_setbufsize(svsk->sk_sock,
|
|
(serv->sv_nrthreads+3) * serv->sv_max_mesg,
|
|
3 * serv->sv_max_mesg);
|
|
|
|
clear_bit(SK_DATA, &svsk->sk_flags);
|
|
|
|
/* Receive data. If we haven't got the record length yet, get
|
|
* the next four bytes. Otherwise try to gobble up as much as
|
|
* possible up to the complete record length.
|
|
*/
|
|
if (svsk->sk_tcplen < 4) {
|
|
unsigned long want = 4 - svsk->sk_tcplen;
|
|
struct kvec iov;
|
|
|
|
iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen;
|
|
iov.iov_len = want;
|
|
if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0)
|
|
goto error;
|
|
svsk->sk_tcplen += len;
|
|
|
|
if (len < want) {
|
|
dprintk("svc: short recvfrom while reading record length (%d of %lu)\n",
|
|
len, want);
|
|
svc_sock_received(svsk);
|
|
return -EAGAIN; /* record header not complete */
|
|
}
|
|
|
|
svsk->sk_reclen = ntohl(svsk->sk_reclen);
|
|
if (!(svsk->sk_reclen & 0x80000000)) {
|
|
/* FIXME: technically, a record can be fragmented,
|
|
* and non-terminal fragments will not have the top
|
|
* bit set in the fragment length header.
|
|
* But apparently no known nfs clients send fragmented
|
|
* records. */
|
|
if (net_ratelimit())
|
|
printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
|
|
" (non-terminal)\n",
|
|
(unsigned long) svsk->sk_reclen);
|
|
goto err_delete;
|
|
}
|
|
svsk->sk_reclen &= 0x7fffffff;
|
|
dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen);
|
|
if (svsk->sk_reclen > serv->sv_max_mesg) {
|
|
if (net_ratelimit())
|
|
printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
|
|
" (large)\n",
|
|
(unsigned long) svsk->sk_reclen);
|
|
goto err_delete;
|
|
}
|
|
}
|
|
|
|
/* Check whether enough data is available */
|
|
len = svc_recv_available(svsk);
|
|
if (len < 0)
|
|
goto error;
|
|
|
|
if (len < svsk->sk_reclen) {
|
|
dprintk("svc: incomplete TCP record (%d of %d)\n",
|
|
len, svsk->sk_reclen);
|
|
svc_sock_received(svsk);
|
|
return -EAGAIN; /* record not complete */
|
|
}
|
|
len = svsk->sk_reclen;
|
|
set_bit(SK_DATA, &svsk->sk_flags);
|
|
|
|
vec = rqstp->rq_vec;
|
|
vec[0] = rqstp->rq_arg.head[0];
|
|
vlen = PAGE_SIZE;
|
|
pnum = 1;
|
|
while (vlen < len) {
|
|
vec[pnum].iov_base = page_address(rqstp->rq_pages[pnum]);
|
|
vec[pnum].iov_len = PAGE_SIZE;
|
|
pnum++;
|
|
vlen += PAGE_SIZE;
|
|
}
|
|
rqstp->rq_respages = &rqstp->rq_pages[pnum];
|
|
|
|
/* Now receive data */
|
|
len = svc_recvfrom(rqstp, vec, pnum, len);
|
|
if (len < 0)
|
|
goto error;
|
|
|
|
dprintk("svc: TCP complete record (%d bytes)\n", len);
|
|
rqstp->rq_arg.len = len;
|
|
rqstp->rq_arg.page_base = 0;
|
|
if (len <= rqstp->rq_arg.head[0].iov_len) {
|
|
rqstp->rq_arg.head[0].iov_len = len;
|
|
rqstp->rq_arg.page_len = 0;
|
|
} else {
|
|
rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
|
|
}
|
|
|
|
rqstp->rq_skbuff = NULL;
|
|
rqstp->rq_prot = IPPROTO_TCP;
|
|
|
|
/* Reset TCP read info */
|
|
svsk->sk_reclen = 0;
|
|
svsk->sk_tcplen = 0;
|
|
|
|
svc_sock_received(svsk);
|
|
if (serv->sv_stats)
|
|
serv->sv_stats->nettcpcnt++;
|
|
|
|
return len;
|
|
|
|
err_delete:
|
|
svc_delete_socket(svsk);
|
|
return -EAGAIN;
|
|
|
|
error:
|
|
if (len == -EAGAIN) {
|
|
dprintk("RPC: TCP recvfrom got EAGAIN\n");
|
|
svc_sock_received(svsk);
|
|
} else {
|
|
printk(KERN_NOTICE "%s: recvfrom returned errno %d\n",
|
|
svsk->sk_server->sv_name, -len);
|
|
goto err_delete;
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
/*
|
|
* Send out data on TCP socket.
|
|
*/
|
|
static int
|
|
svc_tcp_sendto(struct svc_rqst *rqstp)
|
|
{
|
|
struct xdr_buf *xbufp = &rqstp->rq_res;
|
|
int sent;
|
|
__be32 reclen;
|
|
|
|
/* Set up the first element of the reply kvec.
|
|
* Any other kvecs that may be in use have been taken
|
|
* care of by the server implementation itself.
|
|
*/
|
|
reclen = htonl(0x80000000|((xbufp->len ) - 4));
|
|
memcpy(xbufp->head[0].iov_base, &reclen, 4);
|
|
|
|
if (test_bit(SK_DEAD, &rqstp->rq_sock->sk_flags))
|
|
return -ENOTCONN;
|
|
|
|
sent = svc_sendto(rqstp, &rqstp->rq_res);
|
|
if (sent != xbufp->len) {
|
|
printk(KERN_NOTICE "rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n",
|
|
rqstp->rq_sock->sk_server->sv_name,
|
|
(sent<0)?"got error":"sent only",
|
|
sent, xbufp->len);
|
|
set_bit(SK_CLOSE, &rqstp->rq_sock->sk_flags);
|
|
svc_sock_enqueue(rqstp->rq_sock);
|
|
sent = -EAGAIN;
|
|
}
|
|
return sent;
|
|
}
|
|
|
|
static void
|
|
svc_tcp_init(struct svc_sock *svsk)
|
|
{
|
|
struct sock *sk = svsk->sk_sk;
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
|
|
svsk->sk_recvfrom = svc_tcp_recvfrom;
|
|
svsk->sk_sendto = svc_tcp_sendto;
|
|
|
|
if (sk->sk_state == TCP_LISTEN) {
|
|
dprintk("setting up TCP socket for listening\n");
|
|
sk->sk_data_ready = svc_tcp_listen_data_ready;
|
|
set_bit(SK_CONN, &svsk->sk_flags);
|
|
} else {
|
|
dprintk("setting up TCP socket for reading\n");
|
|
sk->sk_state_change = svc_tcp_state_change;
|
|
sk->sk_data_ready = svc_tcp_data_ready;
|
|
sk->sk_write_space = svc_write_space;
|
|
|
|
svsk->sk_reclen = 0;
|
|
svsk->sk_tcplen = 0;
|
|
|
|
tp->nonagle = 1; /* disable Nagle's algorithm */
|
|
|
|
/* initialise setting must have enough space to
|
|
* receive and respond to one request.
|
|
* svc_tcp_recvfrom will re-adjust if necessary
|
|
*/
|
|
svc_sock_setbufsize(svsk->sk_sock,
|
|
3 * svsk->sk_server->sv_max_mesg,
|
|
3 * svsk->sk_server->sv_max_mesg);
|
|
|
|
set_bit(SK_CHNGBUF, &svsk->sk_flags);
|
|
set_bit(SK_DATA, &svsk->sk_flags);
|
|
if (sk->sk_state != TCP_ESTABLISHED)
|
|
set_bit(SK_CLOSE, &svsk->sk_flags);
|
|
}
|
|
}
|
|
|
|
void
|
|
svc_sock_update_bufs(struct svc_serv *serv)
|
|
{
|
|
/*
|
|
* The number of server threads has changed. Update
|
|
* rcvbuf and sndbuf accordingly on all sockets
|
|
*/
|
|
struct list_head *le;
|
|
|
|
spin_lock_bh(&serv->sv_lock);
|
|
list_for_each(le, &serv->sv_permsocks) {
|
|
struct svc_sock *svsk =
|
|
list_entry(le, struct svc_sock, sk_list);
|
|
set_bit(SK_CHNGBUF, &svsk->sk_flags);
|
|
}
|
|
list_for_each(le, &serv->sv_tempsocks) {
|
|
struct svc_sock *svsk =
|
|
list_entry(le, struct svc_sock, sk_list);
|
|
set_bit(SK_CHNGBUF, &svsk->sk_flags);
|
|
}
|
|
spin_unlock_bh(&serv->sv_lock);
|
|
}
|
|
|
|
/*
|
|
* Receive the next request on any socket. This code is carefully
|
|
* organised not to touch any cachelines in the shared svc_serv
|
|
* structure, only cachelines in the local svc_pool.
|
|
*/
|
|
int
|
|
svc_recv(struct svc_rqst *rqstp, long timeout)
|
|
{
|
|
struct svc_sock *svsk = NULL;
|
|
struct svc_serv *serv = rqstp->rq_server;
|
|
struct svc_pool *pool = rqstp->rq_pool;
|
|
int len, i;
|
|
int pages;
|
|
struct xdr_buf *arg;
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
|
|
dprintk("svc: server %p waiting for data (to = %ld)\n",
|
|
rqstp, timeout);
|
|
|
|
if (rqstp->rq_sock)
|
|
printk(KERN_ERR
|
|
"svc_recv: service %p, socket not NULL!\n",
|
|
rqstp);
|
|
if (waitqueue_active(&rqstp->rq_wait))
|
|
printk(KERN_ERR
|
|
"svc_recv: service %p, wait queue active!\n",
|
|
rqstp);
|
|
|
|
|
|
/* now allocate needed pages. If we get a failure, sleep briefly */
|
|
pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
|
|
for (i=0; i < pages ; i++)
|
|
while (rqstp->rq_pages[i] == NULL) {
|
|
struct page *p = alloc_page(GFP_KERNEL);
|
|
if (!p)
|
|
schedule_timeout_uninterruptible(msecs_to_jiffies(500));
|
|
rqstp->rq_pages[i] = p;
|
|
}
|
|
rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
|
|
BUG_ON(pages >= RPCSVC_MAXPAGES);
|
|
|
|
/* Make arg->head point to first page and arg->pages point to rest */
|
|
arg = &rqstp->rq_arg;
|
|
arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
|
|
arg->head[0].iov_len = PAGE_SIZE;
|
|
arg->pages = rqstp->rq_pages + 1;
|
|
arg->page_base = 0;
|
|
/* save at least one page for response */
|
|
arg->page_len = (pages-2)*PAGE_SIZE;
|
|
arg->len = (pages-1)*PAGE_SIZE;
|
|
arg->tail[0].iov_len = 0;
|
|
|
|
try_to_freeze();
|
|
cond_resched();
|
|
if (signalled())
|
|
return -EINTR;
|
|
|
|
spin_lock_bh(&pool->sp_lock);
|
|
if ((svsk = svc_sock_dequeue(pool)) != NULL) {
|
|
rqstp->rq_sock = svsk;
|
|
atomic_inc(&svsk->sk_inuse);
|
|
rqstp->rq_reserved = serv->sv_max_mesg;
|
|
atomic_add(rqstp->rq_reserved, &svsk->sk_reserved);
|
|
} else {
|
|
/* No data pending. Go to sleep */
|
|
svc_thread_enqueue(pool, rqstp);
|
|
|
|
/*
|
|
* We have to be able to interrupt this wait
|
|
* to bring down the daemons ...
|
|
*/
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
add_wait_queue(&rqstp->rq_wait, &wait);
|
|
spin_unlock_bh(&pool->sp_lock);
|
|
|
|
schedule_timeout(timeout);
|
|
|
|
try_to_freeze();
|
|
|
|
spin_lock_bh(&pool->sp_lock);
|
|
remove_wait_queue(&rqstp->rq_wait, &wait);
|
|
|
|
if (!(svsk = rqstp->rq_sock)) {
|
|
svc_thread_dequeue(pool, rqstp);
|
|
spin_unlock_bh(&pool->sp_lock);
|
|
dprintk("svc: server %p, no data yet\n", rqstp);
|
|
return signalled()? -EINTR : -EAGAIN;
|
|
}
|
|
}
|
|
spin_unlock_bh(&pool->sp_lock);
|
|
|
|
dprintk("svc: server %p, pool %u, socket %p, inuse=%d\n",
|
|
rqstp, pool->sp_id, svsk, atomic_read(&svsk->sk_inuse));
|
|
len = svsk->sk_recvfrom(rqstp);
|
|
dprintk("svc: got len=%d\n", len);
|
|
|
|
/* No data, incomplete (TCP) read, or accept() */
|
|
if (len == 0 || len == -EAGAIN) {
|
|
rqstp->rq_res.len = 0;
|
|
svc_sock_release(rqstp);
|
|
return -EAGAIN;
|
|
}
|
|
svsk->sk_lastrecv = get_seconds();
|
|
clear_bit(SK_OLD, &svsk->sk_flags);
|
|
|
|
rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
|
|
rqstp->rq_chandle.defer = svc_defer;
|
|
|
|
if (serv->sv_stats)
|
|
serv->sv_stats->netcnt++;
|
|
return len;
|
|
}
|
|
|
|
/*
|
|
* Drop request
|
|
*/
|
|
void
|
|
svc_drop(struct svc_rqst *rqstp)
|
|
{
|
|
dprintk("svc: socket %p dropped request\n", rqstp->rq_sock);
|
|
svc_sock_release(rqstp);
|
|
}
|
|
|
|
/*
|
|
* Return reply to client.
|
|
*/
|
|
int
|
|
svc_send(struct svc_rqst *rqstp)
|
|
{
|
|
struct svc_sock *svsk;
|
|
int len;
|
|
struct xdr_buf *xb;
|
|
|
|
if ((svsk = rqstp->rq_sock) == NULL) {
|
|
printk(KERN_WARNING "NULL socket pointer in %s:%d\n",
|
|
__FILE__, __LINE__);
|
|
return -EFAULT;
|
|
}
|
|
|
|
/* release the receive skb before sending the reply */
|
|
svc_release_skb(rqstp);
|
|
|
|
/* calculate over-all length */
|
|
xb = & rqstp->rq_res;
|
|
xb->len = xb->head[0].iov_len +
|
|
xb->page_len +
|
|
xb->tail[0].iov_len;
|
|
|
|
/* Grab svsk->sk_mutex to serialize outgoing data. */
|
|
mutex_lock(&svsk->sk_mutex);
|
|
if (test_bit(SK_DEAD, &svsk->sk_flags))
|
|
len = -ENOTCONN;
|
|
else
|
|
len = svsk->sk_sendto(rqstp);
|
|
mutex_unlock(&svsk->sk_mutex);
|
|
svc_sock_release(rqstp);
|
|
|
|
if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
|
|
return 0;
|
|
return len;
|
|
}
|
|
|
|
/*
|
|
* Timer function to close old temporary sockets, using
|
|
* a mark-and-sweep algorithm.
|
|
*/
|
|
static void
|
|
svc_age_temp_sockets(unsigned long closure)
|
|
{
|
|
struct svc_serv *serv = (struct svc_serv *)closure;
|
|
struct svc_sock *svsk;
|
|
struct list_head *le, *next;
|
|
LIST_HEAD(to_be_aged);
|
|
|
|
dprintk("svc_age_temp_sockets\n");
|
|
|
|
if (!spin_trylock_bh(&serv->sv_lock)) {
|
|
/* busy, try again 1 sec later */
|
|
dprintk("svc_age_temp_sockets: busy\n");
|
|
mod_timer(&serv->sv_temptimer, jiffies + HZ);
|
|
return;
|
|
}
|
|
|
|
list_for_each_safe(le, next, &serv->sv_tempsocks) {
|
|
svsk = list_entry(le, struct svc_sock, sk_list);
|
|
|
|
if (!test_and_set_bit(SK_OLD, &svsk->sk_flags))
|
|
continue;
|
|
if (atomic_read(&svsk->sk_inuse) || test_bit(SK_BUSY, &svsk->sk_flags))
|
|
continue;
|
|
atomic_inc(&svsk->sk_inuse);
|
|
list_move(le, &to_be_aged);
|
|
set_bit(SK_CLOSE, &svsk->sk_flags);
|
|
set_bit(SK_DETACHED, &svsk->sk_flags);
|
|
}
|
|
spin_unlock_bh(&serv->sv_lock);
|
|
|
|
while (!list_empty(&to_be_aged)) {
|
|
le = to_be_aged.next;
|
|
/* fiddling the sk_list node is safe 'cos we're SK_DETACHED */
|
|
list_del_init(le);
|
|
svsk = list_entry(le, struct svc_sock, sk_list);
|
|
|
|
dprintk("queuing svsk %p for closing, %lu seconds old\n",
|
|
svsk, get_seconds() - svsk->sk_lastrecv);
|
|
|
|
/* a thread will dequeue and close it soon */
|
|
svc_sock_enqueue(svsk);
|
|
svc_sock_put(svsk);
|
|
}
|
|
|
|
mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
|
|
}
|
|
|
|
/*
|
|
* Initialize socket for RPC use and create svc_sock struct
|
|
* XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
|
|
*/
|
|
static struct svc_sock *svc_setup_socket(struct svc_serv *serv,
|
|
struct socket *sock,
|
|
int *errp, int flags)
|
|
{
|
|
struct svc_sock *svsk;
|
|
struct sock *inet;
|
|
int pmap_register = !(flags & SVC_SOCK_ANONYMOUS);
|
|
int is_temporary = flags & SVC_SOCK_TEMPORARY;
|
|
|
|
dprintk("svc: svc_setup_socket %p\n", sock);
|
|
if (!(svsk = kzalloc(sizeof(*svsk), GFP_KERNEL))) {
|
|
*errp = -ENOMEM;
|
|
return NULL;
|
|
}
|
|
|
|
inet = sock->sk;
|
|
|
|
/* Register socket with portmapper */
|
|
if (*errp >= 0 && pmap_register)
|
|
*errp = svc_register(serv, inet->sk_protocol,
|
|
ntohs(inet_sk(inet)->sport));
|
|
|
|
if (*errp < 0) {
|
|
kfree(svsk);
|
|
return NULL;
|
|
}
|
|
|
|
set_bit(SK_BUSY, &svsk->sk_flags);
|
|
inet->sk_user_data = svsk;
|
|
svsk->sk_sock = sock;
|
|
svsk->sk_sk = inet;
|
|
svsk->sk_ostate = inet->sk_state_change;
|
|
svsk->sk_odata = inet->sk_data_ready;
|
|
svsk->sk_owspace = inet->sk_write_space;
|
|
svsk->sk_server = serv;
|
|
atomic_set(&svsk->sk_inuse, 1);
|
|
svsk->sk_lastrecv = get_seconds();
|
|
spin_lock_init(&svsk->sk_lock);
|
|
INIT_LIST_HEAD(&svsk->sk_deferred);
|
|
INIT_LIST_HEAD(&svsk->sk_ready);
|
|
mutex_init(&svsk->sk_mutex);
|
|
|
|
/* Initialize the socket */
|
|
if (sock->type == SOCK_DGRAM)
|
|
svc_udp_init(svsk);
|
|
else
|
|
svc_tcp_init(svsk);
|
|
|
|
spin_lock_bh(&serv->sv_lock);
|
|
if (is_temporary) {
|
|
set_bit(SK_TEMP, &svsk->sk_flags);
|
|
list_add(&svsk->sk_list, &serv->sv_tempsocks);
|
|
serv->sv_tmpcnt++;
|
|
if (serv->sv_temptimer.function == NULL) {
|
|
/* setup timer to age temp sockets */
|
|
setup_timer(&serv->sv_temptimer, svc_age_temp_sockets,
|
|
(unsigned long)serv);
|
|
mod_timer(&serv->sv_temptimer,
|
|
jiffies + svc_conn_age_period * HZ);
|
|
}
|
|
} else {
|
|
clear_bit(SK_TEMP, &svsk->sk_flags);
|
|
list_add(&svsk->sk_list, &serv->sv_permsocks);
|
|
}
|
|
spin_unlock_bh(&serv->sv_lock);
|
|
|
|
dprintk("svc: svc_setup_socket created %p (inet %p)\n",
|
|
svsk, svsk->sk_sk);
|
|
|
|
return svsk;
|
|
}
|
|
|
|
int svc_addsock(struct svc_serv *serv,
|
|
int fd,
|
|
char *name_return,
|
|
int *proto)
|
|
{
|
|
int err = 0;
|
|
struct socket *so = sockfd_lookup(fd, &err);
|
|
struct svc_sock *svsk = NULL;
|
|
|
|
if (!so)
|
|
return err;
|
|
if (so->sk->sk_family != AF_INET)
|
|
err = -EAFNOSUPPORT;
|
|
else if (so->sk->sk_protocol != IPPROTO_TCP &&
|
|
so->sk->sk_protocol != IPPROTO_UDP)
|
|
err = -EPROTONOSUPPORT;
|
|
else if (so->state > SS_UNCONNECTED)
|
|
err = -EISCONN;
|
|
else {
|
|
svsk = svc_setup_socket(serv, so, &err, SVC_SOCK_DEFAULTS);
|
|
if (svsk) {
|
|
svc_sock_received(svsk);
|
|
err = 0;
|
|
}
|
|
}
|
|
if (err) {
|
|
sockfd_put(so);
|
|
return err;
|
|
}
|
|
if (proto) *proto = so->sk->sk_protocol;
|
|
return one_sock_name(name_return, svsk);
|
|
}
|
|
EXPORT_SYMBOL_GPL(svc_addsock);
|
|
|
|
/*
|
|
* Create socket for RPC service.
|
|
*/
|
|
static int svc_create_socket(struct svc_serv *serv, int protocol,
|
|
struct sockaddr *sin, int len, int flags)
|
|
{
|
|
struct svc_sock *svsk;
|
|
struct socket *sock;
|
|
int error;
|
|
int type;
|
|
char buf[RPC_MAX_ADDRBUFLEN];
|
|
|
|
dprintk("svc: svc_create_socket(%s, %d, %s)\n",
|
|
serv->sv_program->pg_name, protocol,
|
|
__svc_print_addr(sin, buf, sizeof(buf)));
|
|
|
|
if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
|
|
printk(KERN_WARNING "svc: only UDP and TCP "
|
|
"sockets supported\n");
|
|
return -EINVAL;
|
|
}
|
|
type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
|
|
|
|
error = sock_create_kern(sin->sa_family, type, protocol, &sock);
|
|
if (error < 0)
|
|
return error;
|
|
|
|
svc_reclassify_socket(sock);
|
|
|
|
if (type == SOCK_STREAM)
|
|
sock->sk->sk_reuse = 1; /* allow address reuse */
|
|
error = kernel_bind(sock, sin, len);
|
|
if (error < 0)
|
|
goto bummer;
|
|
|
|
if (protocol == IPPROTO_TCP) {
|
|
if ((error = kernel_listen(sock, 64)) < 0)
|
|
goto bummer;
|
|
}
|
|
|
|
if ((svsk = svc_setup_socket(serv, sock, &error, flags)) != NULL) {
|
|
svc_sock_received(svsk);
|
|
return ntohs(inet_sk(svsk->sk_sk)->sport);
|
|
}
|
|
|
|
bummer:
|
|
dprintk("svc: svc_create_socket error = %d\n", -error);
|
|
sock_release(sock);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Remove a dead socket
|
|
*/
|
|
static void
|
|
svc_delete_socket(struct svc_sock *svsk)
|
|
{
|
|
struct svc_serv *serv;
|
|
struct sock *sk;
|
|
|
|
dprintk("svc: svc_delete_socket(%p)\n", svsk);
|
|
|
|
serv = svsk->sk_server;
|
|
sk = svsk->sk_sk;
|
|
|
|
sk->sk_state_change = svsk->sk_ostate;
|
|
sk->sk_data_ready = svsk->sk_odata;
|
|
sk->sk_write_space = svsk->sk_owspace;
|
|
|
|
spin_lock_bh(&serv->sv_lock);
|
|
|
|
if (!test_and_set_bit(SK_DETACHED, &svsk->sk_flags))
|
|
list_del_init(&svsk->sk_list);
|
|
/*
|
|
* We used to delete the svc_sock from whichever list
|
|
* it's sk_ready node was on, but we don't actually
|
|
* need to. This is because the only time we're called
|
|
* while still attached to a queue, the queue itself
|
|
* is about to be destroyed (in svc_destroy).
|
|
*/
|
|
if (!test_and_set_bit(SK_DEAD, &svsk->sk_flags)) {
|
|
BUG_ON(atomic_read(&svsk->sk_inuse)<2);
|
|
atomic_dec(&svsk->sk_inuse);
|
|
if (test_bit(SK_TEMP, &svsk->sk_flags))
|
|
serv->sv_tmpcnt--;
|
|
}
|
|
|
|
spin_unlock_bh(&serv->sv_lock);
|
|
}
|
|
|
|
static void svc_close_socket(struct svc_sock *svsk)
|
|
{
|
|
set_bit(SK_CLOSE, &svsk->sk_flags);
|
|
if (test_and_set_bit(SK_BUSY, &svsk->sk_flags))
|
|
/* someone else will have to effect the close */
|
|
return;
|
|
|
|
atomic_inc(&svsk->sk_inuse);
|
|
svc_delete_socket(svsk);
|
|
clear_bit(SK_BUSY, &svsk->sk_flags);
|
|
svc_sock_put(svsk);
|
|
}
|
|
|
|
void svc_force_close_socket(struct svc_sock *svsk)
|
|
{
|
|
set_bit(SK_CLOSE, &svsk->sk_flags);
|
|
if (test_bit(SK_BUSY, &svsk->sk_flags)) {
|
|
/* Waiting to be processed, but no threads left,
|
|
* So just remove it from the waiting list
|
|
*/
|
|
list_del_init(&svsk->sk_ready);
|
|
clear_bit(SK_BUSY, &svsk->sk_flags);
|
|
}
|
|
svc_close_socket(svsk);
|
|
}
|
|
|
|
/**
|
|
* svc_makesock - Make a socket for nfsd and lockd
|
|
* @serv: RPC server structure
|
|
* @protocol: transport protocol to use
|
|
* @port: port to use
|
|
* @flags: requested socket characteristics
|
|
*
|
|
*/
|
|
int svc_makesock(struct svc_serv *serv, int protocol, unsigned short port,
|
|
int flags)
|
|
{
|
|
struct sockaddr_in sin = {
|
|
.sin_family = AF_INET,
|
|
.sin_addr.s_addr = INADDR_ANY,
|
|
.sin_port = htons(port),
|
|
};
|
|
|
|
dprintk("svc: creating socket proto = %d\n", protocol);
|
|
return svc_create_socket(serv, protocol, (struct sockaddr *) &sin,
|
|
sizeof(sin), flags);
|
|
}
|
|
|
|
/*
|
|
* Handle defer and revisit of requests
|
|
*/
|
|
|
|
static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
|
|
{
|
|
struct svc_deferred_req *dr = container_of(dreq, struct svc_deferred_req, handle);
|
|
struct svc_sock *svsk;
|
|
|
|
if (too_many) {
|
|
svc_sock_put(dr->svsk);
|
|
kfree(dr);
|
|
return;
|
|
}
|
|
dprintk("revisit queued\n");
|
|
svsk = dr->svsk;
|
|
dr->svsk = NULL;
|
|
spin_lock(&svsk->sk_lock);
|
|
list_add(&dr->handle.recent, &svsk->sk_deferred);
|
|
spin_unlock(&svsk->sk_lock);
|
|
set_bit(SK_DEFERRED, &svsk->sk_flags);
|
|
svc_sock_enqueue(svsk);
|
|
svc_sock_put(svsk);
|
|
}
|
|
|
|
static struct cache_deferred_req *
|
|
svc_defer(struct cache_req *req)
|
|
{
|
|
struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
|
|
int size = sizeof(struct svc_deferred_req) + (rqstp->rq_arg.len);
|
|
struct svc_deferred_req *dr;
|
|
|
|
if (rqstp->rq_arg.page_len)
|
|
return NULL; /* if more than a page, give up FIXME */
|
|
if (rqstp->rq_deferred) {
|
|
dr = rqstp->rq_deferred;
|
|
rqstp->rq_deferred = NULL;
|
|
} else {
|
|
int skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
|
|
/* FIXME maybe discard if size too large */
|
|
dr = kmalloc(size, GFP_KERNEL);
|
|
if (dr == NULL)
|
|
return NULL;
|
|
|
|
dr->handle.owner = rqstp->rq_server;
|
|
dr->prot = rqstp->rq_prot;
|
|
memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
|
|
dr->addrlen = rqstp->rq_addrlen;
|
|
dr->daddr = rqstp->rq_daddr;
|
|
dr->argslen = rqstp->rq_arg.len >> 2;
|
|
memcpy(dr->args, rqstp->rq_arg.head[0].iov_base-skip, dr->argslen<<2);
|
|
}
|
|
atomic_inc(&rqstp->rq_sock->sk_inuse);
|
|
dr->svsk = rqstp->rq_sock;
|
|
|
|
dr->handle.revisit = svc_revisit;
|
|
return &dr->handle;
|
|
}
|
|
|
|
/*
|
|
* recv data from a deferred request into an active one
|
|
*/
|
|
static int svc_deferred_recv(struct svc_rqst *rqstp)
|
|
{
|
|
struct svc_deferred_req *dr = rqstp->rq_deferred;
|
|
|
|
rqstp->rq_arg.head[0].iov_base = dr->args;
|
|
rqstp->rq_arg.head[0].iov_len = dr->argslen<<2;
|
|
rqstp->rq_arg.page_len = 0;
|
|
rqstp->rq_arg.len = dr->argslen<<2;
|
|
rqstp->rq_prot = dr->prot;
|
|
memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
|
|
rqstp->rq_addrlen = dr->addrlen;
|
|
rqstp->rq_daddr = dr->daddr;
|
|
rqstp->rq_respages = rqstp->rq_pages;
|
|
return dr->argslen<<2;
|
|
}
|
|
|
|
|
|
static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk)
|
|
{
|
|
struct svc_deferred_req *dr = NULL;
|
|
|
|
if (!test_bit(SK_DEFERRED, &svsk->sk_flags))
|
|
return NULL;
|
|
spin_lock(&svsk->sk_lock);
|
|
clear_bit(SK_DEFERRED, &svsk->sk_flags);
|
|
if (!list_empty(&svsk->sk_deferred)) {
|
|
dr = list_entry(svsk->sk_deferred.next,
|
|
struct svc_deferred_req,
|
|
handle.recent);
|
|
list_del_init(&dr->handle.recent);
|
|
set_bit(SK_DEFERRED, &svsk->sk_flags);
|
|
}
|
|
spin_unlock(&svsk->sk_lock);
|
|
return dr;
|
|
}
|