linux/drivers/media/i2c/smiapp/smiapp-core.c
Sakari Ailus 21734b0643 [media] smiapp: Set left and top to zero for crop bounds selection
The fields were previously uninitialised, leaving the returned values to
where the user had set them. This was never the intention.

Signed-off-by: Sakari Ailus <sakari.ailus@iki.fi>
Acked-by: Hans Verkuil <hans.verkuil@cisco.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@osg.samsung.com>
2014-12-04 12:38:41 -02:00

3006 lines
80 KiB
C

/*
* drivers/media/i2c/smiapp/smiapp-core.c
*
* Generic driver for SMIA/SMIA++ compliant camera modules
*
* Copyright (C) 2010--2012 Nokia Corporation
* Contact: Sakari Ailus <sakari.ailus@iki.fi>
*
* Based on smiapp driver by Vimarsh Zutshi
* Based on jt8ev1.c by Vimarsh Zutshi
* Based on smia-sensor.c by Tuukka Toivonen <tuukkat76@gmail.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
* 02110-1301 USA
*
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/gpio.h>
#include <linux/module.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <linux/smiapp.h>
#include <linux/v4l2-mediabus.h>
#include <media/v4l2-device.h>
#include "smiapp.h"
#define SMIAPP_ALIGN_DIM(dim, flags) \
((flags) & V4L2_SEL_FLAG_GE \
? ALIGN((dim), 2) \
: (dim) & ~1)
/*
* smiapp_module_idents - supported camera modules
*/
static const struct smiapp_module_ident smiapp_module_idents[] = {
SMIAPP_IDENT_L(0x01, 0x022b, -1, "vs6555"),
SMIAPP_IDENT_L(0x01, 0x022e, -1, "vw6558"),
SMIAPP_IDENT_L(0x07, 0x7698, -1, "ovm7698"),
SMIAPP_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"),
SMIAPP_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"),
SMIAPP_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk),
SMIAPP_IDENT_L(0x0c, 0x213e, -1, "et8en2"),
SMIAPP_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"),
SMIAPP_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk),
SMIAPP_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk),
SMIAPP_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk),
};
/*
*
* Dynamic Capability Identification
*
*/
static int smiapp_read_frame_fmt(struct smiapp_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
u32 fmt_model_type, fmt_model_subtype, ncol_desc, nrow_desc;
unsigned int i;
int rval;
int line_count = 0;
int embedded_start = -1, embedded_end = -1;
int image_start = 0;
rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_TYPE,
&fmt_model_type);
if (rval)
return rval;
rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_SUBTYPE,
&fmt_model_subtype);
if (rval)
return rval;
ncol_desc = (fmt_model_subtype
& SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_MASK)
>> SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_SHIFT;
nrow_desc = fmt_model_subtype
& SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NROWS_MASK;
dev_dbg(&client->dev, "format_model_type %s\n",
fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE
? "2 byte" :
fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE
? "4 byte" : "is simply bad");
for (i = 0; i < ncol_desc + nrow_desc; i++) {
u32 desc;
u32 pixelcode;
u32 pixels;
char *which;
char *what;
if (fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE) {
rval = smiapp_read(
sensor,
SMIAPP_REG_U16_FRAME_FORMAT_DESCRIPTOR_2(i),
&desc);
if (rval)
return rval;
pixelcode =
(desc
& SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_MASK)
>> SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_SHIFT;
pixels = desc & SMIAPP_FRAME_FORMAT_DESC_2_PIXELS_MASK;
} else if (fmt_model_type
== SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE) {
rval = smiapp_read(
sensor,
SMIAPP_REG_U32_FRAME_FORMAT_DESCRIPTOR_4(i),
&desc);
if (rval)
return rval;
pixelcode =
(desc
& SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_MASK)
>> SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_SHIFT;
pixels = desc & SMIAPP_FRAME_FORMAT_DESC_4_PIXELS_MASK;
} else {
dev_dbg(&client->dev,
"invalid frame format model type %d\n",
fmt_model_type);
return -EINVAL;
}
if (i < ncol_desc)
which = "columns";
else
which = "rows";
switch (pixelcode) {
case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED:
what = "embedded";
break;
case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DUMMY:
what = "dummy";
break;
case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_BLACK:
what = "black";
break;
case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DARK:
what = "dark";
break;
case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE:
what = "visible";
break;
default:
what = "invalid";
dev_dbg(&client->dev, "pixelcode %d\n", pixelcode);
break;
}
dev_dbg(&client->dev, "%s pixels: %d %s\n",
what, pixels, which);
if (i < ncol_desc)
continue;
/* Handle row descriptors */
if (pixelcode
== SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED) {
embedded_start = line_count;
} else {
if (pixelcode == SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE
|| pixels >= sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES] / 2)
image_start = line_count;
if (embedded_start != -1 && embedded_end == -1)
embedded_end = line_count;
}
line_count += pixels;
}
if (embedded_start == -1 || embedded_end == -1) {
embedded_start = 0;
embedded_end = 0;
}
dev_dbg(&client->dev, "embedded data from lines %d to %d\n",
embedded_start, embedded_end);
dev_dbg(&client->dev, "image data starts at line %d\n", image_start);
return 0;
}
static int smiapp_pll_configure(struct smiapp_sensor *sensor)
{
struct smiapp_pll *pll = &sensor->pll;
int rval;
rval = smiapp_write(
sensor, SMIAPP_REG_U16_VT_PIX_CLK_DIV, pll->vt.pix_clk_div);
if (rval < 0)
return rval;
rval = smiapp_write(
sensor, SMIAPP_REG_U16_VT_SYS_CLK_DIV, pll->vt.sys_clk_div);
if (rval < 0)
return rval;
rval = smiapp_write(
sensor, SMIAPP_REG_U16_PRE_PLL_CLK_DIV, pll->pre_pll_clk_div);
if (rval < 0)
return rval;
rval = smiapp_write(
sensor, SMIAPP_REG_U16_PLL_MULTIPLIER, pll->pll_multiplier);
if (rval < 0)
return rval;
/* Lane op clock ratio does not apply here. */
rval = smiapp_write(
sensor, SMIAPP_REG_U32_REQUESTED_LINK_BIT_RATE_MBPS,
DIV_ROUND_UP(pll->op.sys_clk_freq_hz, 1000000 / 256 / 256));
if (rval < 0 || sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0)
return rval;
rval = smiapp_write(
sensor, SMIAPP_REG_U16_OP_PIX_CLK_DIV, pll->op.pix_clk_div);
if (rval < 0)
return rval;
return smiapp_write(
sensor, SMIAPP_REG_U16_OP_SYS_CLK_DIV, pll->op.sys_clk_div);
}
static int smiapp_pll_try(struct smiapp_sensor *sensor,
struct smiapp_pll *pll)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
struct smiapp_pll_limits lim = {
.min_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_PRE_PLL_CLK_DIV],
.max_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_PRE_PLL_CLK_DIV],
.min_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_IP_FREQ_HZ],
.max_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_IP_FREQ_HZ],
.min_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MIN_PLL_MULTIPLIER],
.max_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MAX_PLL_MULTIPLIER],
.min_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_OP_FREQ_HZ],
.max_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_OP_FREQ_HZ],
.op.min_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV],
.op.max_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV],
.op.min_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV],
.op.max_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV],
.op.min_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_FREQ_HZ],
.op.max_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_FREQ_HZ],
.op.min_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_FREQ_HZ],
.op.max_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_FREQ_HZ],
.vt.min_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_DIV],
.vt.max_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_DIV],
.vt.min_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_DIV],
.vt.max_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_DIV],
.vt.min_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_FREQ_HZ],
.vt.max_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_FREQ_HZ],
.vt.min_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_FREQ_HZ],
.vt.max_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_FREQ_HZ],
.min_line_length_pck_bin = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN],
.min_line_length_pck = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK],
};
return smiapp_pll_calculate(&client->dev, &lim, pll);
}
static int smiapp_pll_update(struct smiapp_sensor *sensor)
{
struct smiapp_pll *pll = &sensor->pll;
int rval;
pll->binning_horizontal = sensor->binning_horizontal;
pll->binning_vertical = sensor->binning_vertical;
pll->link_freq =
sensor->link_freq->qmenu_int[sensor->link_freq->val];
pll->scale_m = sensor->scale_m;
pll->bits_per_pixel = sensor->csi_format->compressed;
rval = smiapp_pll_try(sensor, pll);
if (rval < 0)
return rval;
__v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_parray,
pll->pixel_rate_pixel_array);
__v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_csi, pll->pixel_rate_csi);
return 0;
}
/*
*
* V4L2 Controls handling
*
*/
static void __smiapp_update_exposure_limits(struct smiapp_sensor *sensor)
{
struct v4l2_ctrl *ctrl = sensor->exposure;
int max;
max = sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
+ sensor->vblank->val
- sensor->limits[SMIAPP_LIMIT_COARSE_INTEGRATION_TIME_MAX_MARGIN];
__v4l2_ctrl_modify_range(ctrl, ctrl->minimum, max, ctrl->step, max);
}
/*
* Order matters.
*
* 1. Bits-per-pixel, descending.
* 2. Bits-per-pixel compressed, descending.
* 3. Pixel order, same as in pixel_order_str. Formats for all four pixel
* orders must be defined.
*/
static const struct smiapp_csi_data_format smiapp_csi_data_formats[] = {
{ MEDIA_BUS_FMT_SGRBG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GRBG, },
{ MEDIA_BUS_FMT_SRGGB12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_RGGB, },
{ MEDIA_BUS_FMT_SBGGR12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_BGGR, },
{ MEDIA_BUS_FMT_SGBRG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GBRG, },
{ MEDIA_BUS_FMT_SGRBG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GRBG, },
{ MEDIA_BUS_FMT_SRGGB10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_RGGB, },
{ MEDIA_BUS_FMT_SBGGR10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_BGGR, },
{ MEDIA_BUS_FMT_SGBRG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GBRG, },
{ MEDIA_BUS_FMT_SGRBG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GRBG, },
{ MEDIA_BUS_FMT_SRGGB10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_RGGB, },
{ MEDIA_BUS_FMT_SBGGR10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_BGGR, },
{ MEDIA_BUS_FMT_SGBRG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GBRG, },
{ MEDIA_BUS_FMT_SGRBG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GRBG, },
{ MEDIA_BUS_FMT_SRGGB8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_RGGB, },
{ MEDIA_BUS_FMT_SBGGR8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_BGGR, },
{ MEDIA_BUS_FMT_SGBRG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GBRG, },
};
const char *pixel_order_str[] = { "GRBG", "RGGB", "BGGR", "GBRG" };
#define to_csi_format_idx(fmt) (((unsigned long)(fmt) \
- (unsigned long)smiapp_csi_data_formats) \
/ sizeof(*smiapp_csi_data_formats))
static u32 smiapp_pixel_order(struct smiapp_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
int flip = 0;
if (sensor->hflip) {
if (sensor->hflip->val)
flip |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
if (sensor->vflip->val)
flip |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
}
flip ^= sensor->hvflip_inv_mask;
dev_dbg(&client->dev, "flip %d\n", flip);
return sensor->default_pixel_order ^ flip;
}
static void smiapp_update_mbus_formats(struct smiapp_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
unsigned int csi_format_idx =
to_csi_format_idx(sensor->csi_format) & ~3;
unsigned int internal_csi_format_idx =
to_csi_format_idx(sensor->internal_csi_format) & ~3;
unsigned int pixel_order = smiapp_pixel_order(sensor);
sensor->mbus_frame_fmts =
sensor->default_mbus_frame_fmts << pixel_order;
sensor->csi_format =
&smiapp_csi_data_formats[csi_format_idx + pixel_order];
sensor->internal_csi_format =
&smiapp_csi_data_formats[internal_csi_format_idx
+ pixel_order];
BUG_ON(max(internal_csi_format_idx, csi_format_idx) + pixel_order
>= ARRAY_SIZE(smiapp_csi_data_formats));
dev_dbg(&client->dev, "new pixel order %s\n",
pixel_order_str[pixel_order]);
}
static const char * const smiapp_test_patterns[] = {
"Disabled",
"Solid Colour",
"Eight Vertical Colour Bars",
"Colour Bars With Fade to Grey",
"Pseudorandom Sequence (PN9)",
};
static int smiapp_set_ctrl(struct v4l2_ctrl *ctrl)
{
struct smiapp_sensor *sensor =
container_of(ctrl->handler, struct smiapp_subdev, ctrl_handler)
->sensor;
u32 orient = 0;
int exposure;
int rval;
switch (ctrl->id) {
case V4L2_CID_ANALOGUE_GAIN:
return smiapp_write(
sensor,
SMIAPP_REG_U16_ANALOGUE_GAIN_CODE_GLOBAL, ctrl->val);
case V4L2_CID_EXPOSURE:
return smiapp_write(
sensor,
SMIAPP_REG_U16_COARSE_INTEGRATION_TIME, ctrl->val);
case V4L2_CID_HFLIP:
case V4L2_CID_VFLIP:
if (sensor->streaming)
return -EBUSY;
if (sensor->hflip->val)
orient |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
if (sensor->vflip->val)
orient |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
orient ^= sensor->hvflip_inv_mask;
rval = smiapp_write(sensor,
SMIAPP_REG_U8_IMAGE_ORIENTATION,
orient);
if (rval < 0)
return rval;
smiapp_update_mbus_formats(sensor);
return 0;
case V4L2_CID_VBLANK:
exposure = sensor->exposure->val;
__smiapp_update_exposure_limits(sensor);
if (exposure > sensor->exposure->maximum) {
sensor->exposure->val =
sensor->exposure->maximum;
rval = smiapp_set_ctrl(
sensor->exposure);
if (rval < 0)
return rval;
}
return smiapp_write(
sensor, SMIAPP_REG_U16_FRAME_LENGTH_LINES,
sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
+ ctrl->val);
case V4L2_CID_HBLANK:
return smiapp_write(
sensor, SMIAPP_REG_U16_LINE_LENGTH_PCK,
sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
+ ctrl->val);
case V4L2_CID_LINK_FREQ:
if (sensor->streaming)
return -EBUSY;
return smiapp_pll_update(sensor);
case V4L2_CID_TEST_PATTERN: {
unsigned int i;
for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
v4l2_ctrl_activate(
sensor->test_data[i],
ctrl->val ==
V4L2_SMIAPP_TEST_PATTERN_MODE_SOLID_COLOUR);
return smiapp_write(
sensor, SMIAPP_REG_U16_TEST_PATTERN_MODE, ctrl->val);
}
case V4L2_CID_TEST_PATTERN_RED:
return smiapp_write(
sensor, SMIAPP_REG_U16_TEST_DATA_RED, ctrl->val);
case V4L2_CID_TEST_PATTERN_GREENR:
return smiapp_write(
sensor, SMIAPP_REG_U16_TEST_DATA_GREENR, ctrl->val);
case V4L2_CID_TEST_PATTERN_BLUE:
return smiapp_write(
sensor, SMIAPP_REG_U16_TEST_DATA_BLUE, ctrl->val);
case V4L2_CID_TEST_PATTERN_GREENB:
return smiapp_write(
sensor, SMIAPP_REG_U16_TEST_DATA_GREENB, ctrl->val);
case V4L2_CID_PIXEL_RATE:
/* For v4l2_ctrl_s_ctrl_int64() used internally. */
return 0;
default:
return -EINVAL;
}
}
static const struct v4l2_ctrl_ops smiapp_ctrl_ops = {
.s_ctrl = smiapp_set_ctrl,
};
static int smiapp_init_controls(struct smiapp_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
unsigned long *valid_link_freqs = &sensor->valid_link_freqs[
sensor->csi_format->compressed - SMIAPP_COMPRESSED_BASE];
unsigned int max, i;
int rval;
rval = v4l2_ctrl_handler_init(&sensor->pixel_array->ctrl_handler, 12);
if (rval)
return rval;
sensor->pixel_array->ctrl_handler.lock = &sensor->mutex;
sensor->analog_gain = v4l2_ctrl_new_std(
&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
V4L2_CID_ANALOGUE_GAIN,
sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN],
sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MAX],
max(sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_STEP], 1U),
sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN]);
/* Exposure limits will be updated soon, use just something here. */
sensor->exposure = v4l2_ctrl_new_std(
&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
V4L2_CID_EXPOSURE, 0, 0, 1, 0);
sensor->hflip = v4l2_ctrl_new_std(
&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
V4L2_CID_HFLIP, 0, 1, 1, 0);
sensor->vflip = v4l2_ctrl_new_std(
&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
V4L2_CID_VFLIP, 0, 1, 1, 0);
sensor->vblank = v4l2_ctrl_new_std(
&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
V4L2_CID_VBLANK, 0, 1, 1, 0);
if (sensor->vblank)
sensor->vblank->flags |= V4L2_CTRL_FLAG_UPDATE;
sensor->hblank = v4l2_ctrl_new_std(
&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
V4L2_CID_HBLANK, 0, 1, 1, 0);
if (sensor->hblank)
sensor->hblank->flags |= V4L2_CTRL_FLAG_UPDATE;
sensor->pixel_rate_parray = v4l2_ctrl_new_std(
&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
v4l2_ctrl_new_std_menu_items(&sensor->pixel_array->ctrl_handler,
&smiapp_ctrl_ops, V4L2_CID_TEST_PATTERN,
ARRAY_SIZE(smiapp_test_patterns) - 1,
0, 0, smiapp_test_patterns);
for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++) {
int max_value = (1 << sensor->csi_format->width) - 1;
sensor->test_data[i] =
v4l2_ctrl_new_std(
&sensor->pixel_array->ctrl_handler,
&smiapp_ctrl_ops, V4L2_CID_TEST_PATTERN_RED + i,
0, max_value, 1, max_value);
}
if (sensor->pixel_array->ctrl_handler.error) {
dev_err(&client->dev,
"pixel array controls initialization failed (%d)\n",
sensor->pixel_array->ctrl_handler.error);
rval = sensor->pixel_array->ctrl_handler.error;
goto error;
}
sensor->pixel_array->sd.ctrl_handler =
&sensor->pixel_array->ctrl_handler;
v4l2_ctrl_cluster(2, &sensor->hflip);
rval = v4l2_ctrl_handler_init(&sensor->src->ctrl_handler, 0);
if (rval)
goto error;
sensor->src->ctrl_handler.lock = &sensor->mutex;
for (max = 0; sensor->platform_data->op_sys_clock[max + 1]; max++);
sensor->link_freq = v4l2_ctrl_new_int_menu(
&sensor->src->ctrl_handler, &smiapp_ctrl_ops,
V4L2_CID_LINK_FREQ, __fls(*valid_link_freqs),
__ffs(*valid_link_freqs), sensor->platform_data->op_sys_clock);
sensor->pixel_rate_csi = v4l2_ctrl_new_std(
&sensor->src->ctrl_handler, &smiapp_ctrl_ops,
V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
if (sensor->src->ctrl_handler.error) {
dev_err(&client->dev,
"src controls initialization failed (%d)\n",
sensor->src->ctrl_handler.error);
rval = sensor->src->ctrl_handler.error;
goto error;
}
sensor->src->sd.ctrl_handler =
&sensor->src->ctrl_handler;
return 0;
error:
v4l2_ctrl_handler_free(&sensor->pixel_array->ctrl_handler);
v4l2_ctrl_handler_free(&sensor->src->ctrl_handler);
return rval;
}
static void smiapp_free_controls(struct smiapp_sensor *sensor)
{
unsigned int i;
for (i = 0; i < sensor->ssds_used; i++)
v4l2_ctrl_handler_free(&sensor->ssds[i].ctrl_handler);
}
static int smiapp_get_limits(struct smiapp_sensor *sensor, int const *limit,
unsigned int n)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
unsigned int i;
u32 val;
int rval;
for (i = 0; i < n; i++) {
rval = smiapp_read(
sensor, smiapp_reg_limits[limit[i]].addr, &val);
if (rval)
return rval;
sensor->limits[limit[i]] = val;
dev_dbg(&client->dev, "0x%8.8x \"%s\" = %u, 0x%x\n",
smiapp_reg_limits[limit[i]].addr,
smiapp_reg_limits[limit[i]].what, val, val);
}
return 0;
}
static int smiapp_get_all_limits(struct smiapp_sensor *sensor)
{
unsigned int i;
int rval;
for (i = 0; i < SMIAPP_LIMIT_LAST; i++) {
rval = smiapp_get_limits(sensor, &i, 1);
if (rval < 0)
return rval;
}
if (sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] == 0)
smiapp_replace_limit(sensor, SMIAPP_LIMIT_SCALER_N_MIN, 16);
return 0;
}
static int smiapp_get_limits_binning(struct smiapp_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
static u32 const limits[] = {
SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN,
SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN,
SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN,
SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN,
SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN,
SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN_BIN,
SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN_BIN,
};
static u32 const limits_replace[] = {
SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES,
SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES,
SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK,
SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK,
SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK,
SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN,
SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN,
};
unsigned int i;
int rval;
if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY] ==
SMIAPP_BINNING_CAPABILITY_NO) {
for (i = 0; i < ARRAY_SIZE(limits); i++)
sensor->limits[limits[i]] =
sensor->limits[limits_replace[i]];
return 0;
}
rval = smiapp_get_limits(sensor, limits, ARRAY_SIZE(limits));
if (rval < 0)
return rval;
/*
* Sanity check whether the binning limits are valid. If not,
* use the non-binning ones.
*/
if (sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN]
&& sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN]
&& sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN])
return 0;
for (i = 0; i < ARRAY_SIZE(limits); i++) {
dev_dbg(&client->dev,
"replace limit 0x%8.8x \"%s\" = %d, 0x%x\n",
smiapp_reg_limits[limits[i]].addr,
smiapp_reg_limits[limits[i]].what,
sensor->limits[limits_replace[i]],
sensor->limits[limits_replace[i]]);
sensor->limits[limits[i]] =
sensor->limits[limits_replace[i]];
}
return 0;
}
static int smiapp_get_mbus_formats(struct smiapp_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
struct smiapp_pll *pll = &sensor->pll;
unsigned int type, n;
unsigned int i, pixel_order;
int rval;
rval = smiapp_read(
sensor, SMIAPP_REG_U8_DATA_FORMAT_MODEL_TYPE, &type);
if (rval)
return rval;
dev_dbg(&client->dev, "data_format_model_type %d\n", type);
rval = smiapp_read(sensor, SMIAPP_REG_U8_PIXEL_ORDER,
&pixel_order);
if (rval)
return rval;
if (pixel_order >= ARRAY_SIZE(pixel_order_str)) {
dev_dbg(&client->dev, "bad pixel order %d\n", pixel_order);
return -EINVAL;
}
dev_dbg(&client->dev, "pixel order %d (%s)\n", pixel_order,
pixel_order_str[pixel_order]);
switch (type) {
case SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL:
n = SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N;
break;
case SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED:
n = SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED_N;
break;
default:
return -EINVAL;
}
sensor->default_pixel_order = pixel_order;
sensor->mbus_frame_fmts = 0;
for (i = 0; i < n; i++) {
unsigned int fmt, j;
rval = smiapp_read(
sensor,
SMIAPP_REG_U16_DATA_FORMAT_DESCRIPTOR(i), &fmt);
if (rval)
return rval;
dev_dbg(&client->dev, "%u: bpp %u, compressed %u\n",
i, fmt >> 8, (u8)fmt);
for (j = 0; j < ARRAY_SIZE(smiapp_csi_data_formats); j++) {
const struct smiapp_csi_data_format *f =
&smiapp_csi_data_formats[j];
if (f->pixel_order != SMIAPP_PIXEL_ORDER_GRBG)
continue;
if (f->width != fmt >> 8 || f->compressed != (u8)fmt)
continue;
dev_dbg(&client->dev, "jolly good! %d\n", j);
sensor->default_mbus_frame_fmts |= 1 << j;
}
}
/* Figure out which BPP values can be used with which formats. */
pll->binning_horizontal = 1;
pll->binning_vertical = 1;
pll->scale_m = sensor->scale_m;
for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
const struct smiapp_csi_data_format *f =
&smiapp_csi_data_formats[i];
unsigned long *valid_link_freqs =
&sensor->valid_link_freqs[
f->compressed - SMIAPP_COMPRESSED_BASE];
unsigned int j;
BUG_ON(f->compressed < SMIAPP_COMPRESSED_BASE);
BUG_ON(f->compressed > SMIAPP_COMPRESSED_MAX);
if (!(sensor->default_mbus_frame_fmts & 1 << i))
continue;
pll->bits_per_pixel = f->compressed;
for (j = 0; sensor->platform_data->op_sys_clock[j]; j++) {
pll->link_freq = sensor->platform_data->op_sys_clock[j];
rval = smiapp_pll_try(sensor, pll);
dev_dbg(&client->dev, "link freq %u Hz, bpp %u %s\n",
pll->link_freq, pll->bits_per_pixel,
rval ? "not ok" : "ok");
if (rval)
continue;
set_bit(j, valid_link_freqs);
}
if (!*valid_link_freqs) {
dev_info(&client->dev,
"no valid link frequencies for %u bpp\n",
f->compressed);
sensor->default_mbus_frame_fmts &= ~BIT(i);
continue;
}
if (!sensor->csi_format
|| f->width > sensor->csi_format->width
|| (f->width == sensor->csi_format->width
&& f->compressed > sensor->csi_format->compressed)) {
sensor->csi_format = f;
sensor->internal_csi_format = f;
}
}
if (!sensor->csi_format) {
dev_err(&client->dev, "no supported mbus code found\n");
return -EINVAL;
}
smiapp_update_mbus_formats(sensor);
return 0;
}
static void smiapp_update_blanking(struct smiapp_sensor *sensor)
{
struct v4l2_ctrl *vblank = sensor->vblank;
struct v4l2_ctrl *hblank = sensor->hblank;
int min, max;
min = max_t(int,
sensor->limits[SMIAPP_LIMIT_MIN_FRAME_BLANKING_LINES],
sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN] -
sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height);
max = sensor->limits[SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN] -
sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height;
__v4l2_ctrl_modify_range(vblank, min, max, vblank->step, min);
min = max_t(int,
sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN] -
sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width,
sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN]);
max = sensor->limits[SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN] -
sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width;
__v4l2_ctrl_modify_range(hblank, min, max, hblank->step, min);
__smiapp_update_exposure_limits(sensor);
}
static int smiapp_update_mode(struct smiapp_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
unsigned int binning_mode;
int rval;
dev_dbg(&client->dev, "frame size: %dx%d\n",
sensor->src->crop[SMIAPP_PAD_SRC].width,
sensor->src->crop[SMIAPP_PAD_SRC].height);
dev_dbg(&client->dev, "csi format width: %d\n",
sensor->csi_format->width);
/* Binning has to be set up here; it affects limits */
if (sensor->binning_horizontal == 1 &&
sensor->binning_vertical == 1) {
binning_mode = 0;
} else {
u8 binning_type =
(sensor->binning_horizontal << 4)
| sensor->binning_vertical;
rval = smiapp_write(
sensor, SMIAPP_REG_U8_BINNING_TYPE, binning_type);
if (rval < 0)
return rval;
binning_mode = 1;
}
rval = smiapp_write(sensor, SMIAPP_REG_U8_BINNING_MODE, binning_mode);
if (rval < 0)
return rval;
/* Get updated limits due to binning */
rval = smiapp_get_limits_binning(sensor);
if (rval < 0)
return rval;
rval = smiapp_pll_update(sensor);
if (rval < 0)
return rval;
/* Output from pixel array, including blanking */
smiapp_update_blanking(sensor);
dev_dbg(&client->dev, "vblank\t\t%d\n", sensor->vblank->val);
dev_dbg(&client->dev, "hblank\t\t%d\n", sensor->hblank->val);
dev_dbg(&client->dev, "real timeperframe\t100/%d\n",
sensor->pll.pixel_rate_pixel_array /
((sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
+ sensor->hblank->val) *
(sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
+ sensor->vblank->val) / 100));
return 0;
}
/*
*
* SMIA++ NVM handling
*
*/
static int smiapp_read_nvm(struct smiapp_sensor *sensor,
unsigned char *nvm)
{
u32 i, s, p, np, v;
int rval = 0, rval2;
np = sensor->nvm_size / SMIAPP_NVM_PAGE_SIZE;
for (p = 0; p < np; p++) {
rval = smiapp_write(
sensor,
SMIAPP_REG_U8_DATA_TRANSFER_IF_1_PAGE_SELECT, p);
if (rval)
goto out;
rval = smiapp_write(sensor,
SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL,
SMIAPP_DATA_TRANSFER_IF_1_CTRL_EN |
SMIAPP_DATA_TRANSFER_IF_1_CTRL_RD_EN);
if (rval)
goto out;
for (i = 0; i < 1000; i++) {
rval = smiapp_read(
sensor,
SMIAPP_REG_U8_DATA_TRANSFER_IF_1_STATUS, &s);
if (rval)
goto out;
if (s & SMIAPP_DATA_TRANSFER_IF_1_STATUS_RD_READY)
break;
if (--i == 0) {
rval = -ETIMEDOUT;
goto out;
}
}
for (i = 0; i < SMIAPP_NVM_PAGE_SIZE; i++) {
rval = smiapp_read(
sensor,
SMIAPP_REG_U8_DATA_TRANSFER_IF_1_DATA_0 + i,
&v);
if (rval)
goto out;
*nvm++ = v;
}
}
out:
rval2 = smiapp_write(sensor, SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL, 0);
if (rval < 0)
return rval;
else
return rval2;
}
/*
*
* SMIA++ CCI address control
*
*/
static int smiapp_change_cci_addr(struct smiapp_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
int rval;
u32 val;
client->addr = sensor->platform_data->i2c_addr_dfl;
rval = smiapp_write(sensor,
SMIAPP_REG_U8_CCI_ADDRESS_CONTROL,
sensor->platform_data->i2c_addr_alt << 1);
if (rval)
return rval;
client->addr = sensor->platform_data->i2c_addr_alt;
/* verify addr change went ok */
rval = smiapp_read(sensor, SMIAPP_REG_U8_CCI_ADDRESS_CONTROL, &val);
if (rval)
return rval;
if (val != sensor->platform_data->i2c_addr_alt << 1)
return -ENODEV;
return 0;
}
/*
*
* SMIA++ Mode Control
*
*/
static int smiapp_setup_flash_strobe(struct smiapp_sensor *sensor)
{
struct smiapp_flash_strobe_parms *strobe_setup;
unsigned int ext_freq = sensor->platform_data->ext_clk;
u32 tmp;
u32 strobe_adjustment;
u32 strobe_width_high_rs;
int rval;
strobe_setup = sensor->platform_data->strobe_setup;
/*
* How to calculate registers related to strobe length. Please
* do not change, or if you do at least know what you're
* doing. :-)
*
* Sakari Ailus <sakari.ailus@iki.fi> 2010-10-25
*
* flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl
* / EXTCLK freq [Hz]) * flash_strobe_adjustment
*
* tFlash_strobe_width_ctrl E N, [1 - 0xffff]
* flash_strobe_adjustment E N, [1 - 0xff]
*
* The formula above is written as below to keep it on one
* line:
*
* l / 10^6 = w / e * a
*
* Let's mark w * a by x:
*
* x = w * a
*
* Thus, we get:
*
* x = l * e / 10^6
*
* The strobe width must be at least as long as requested,
* thus rounding upwards is needed.
*
* x = (l * e + 10^6 - 1) / 10^6
* -----------------------------
*
* Maximum possible accuracy is wanted at all times. Thus keep
* a as small as possible.
*
* Calculate a, assuming maximum w, with rounding upwards:
*
* a = (x + (2^16 - 1) - 1) / (2^16 - 1)
* -------------------------------------
*
* Thus, we also get w, with that a, with rounding upwards:
*
* w = (x + a - 1) / a
* -------------------
*
* To get limits:
*
* x E [1, (2^16 - 1) * (2^8 - 1)]
*
* Substituting maximum x to the original formula (with rounding),
* the maximum l is thus
*
* (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1
*
* l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e
* --------------------------------------------------
*
* flash_strobe_length must be clamped between 1 and
* (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq.
*
* Then,
*
* flash_strobe_adjustment = ((flash_strobe_length *
* EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1)
*
* tFlash_strobe_width_ctrl = ((flash_strobe_length *
* EXTCLK freq + 10^6 - 1) / 10^6 +
* flash_strobe_adjustment - 1) / flash_strobe_adjustment
*/
tmp = div_u64(1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) -
1000000 + 1, ext_freq);
strobe_setup->strobe_width_high_us =
clamp_t(u32, strobe_setup->strobe_width_high_us, 1, tmp);
tmp = div_u64(((u64)strobe_setup->strobe_width_high_us * (u64)ext_freq +
1000000 - 1), 1000000ULL);
strobe_adjustment = (tmp + (1 << 16) - 1 - 1) / ((1 << 16) - 1);
strobe_width_high_rs = (tmp + strobe_adjustment - 1) /
strobe_adjustment;
rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_MODE_RS,
strobe_setup->mode);
if (rval < 0)
goto out;
rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_STROBE_ADJUSTMENT,
strobe_adjustment);
if (rval < 0)
goto out;
rval = smiapp_write(
sensor, SMIAPP_REG_U16_TFLASH_STROBE_WIDTH_HIGH_RS_CTRL,
strobe_width_high_rs);
if (rval < 0)
goto out;
rval = smiapp_write(sensor, SMIAPP_REG_U16_TFLASH_STROBE_DELAY_RS_CTRL,
strobe_setup->strobe_delay);
if (rval < 0)
goto out;
rval = smiapp_write(sensor, SMIAPP_REG_U16_FLASH_STROBE_START_POINT,
strobe_setup->stobe_start_point);
if (rval < 0)
goto out;
rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_TRIGGER_RS,
strobe_setup->trigger);
out:
sensor->platform_data->strobe_setup->trigger = 0;
return rval;
}
/* -----------------------------------------------------------------------------
* Power management
*/
static int smiapp_power_on(struct smiapp_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
unsigned int sleep;
int rval;
rval = regulator_enable(sensor->vana);
if (rval) {
dev_err(&client->dev, "failed to enable vana regulator\n");
return rval;
}
usleep_range(1000, 1000);
if (sensor->platform_data->set_xclk)
rval = sensor->platform_data->set_xclk(
&sensor->src->sd, sensor->platform_data->ext_clk);
else
rval = clk_prepare_enable(sensor->ext_clk);
if (rval < 0) {
dev_dbg(&client->dev, "failed to enable xclk\n");
goto out_xclk_fail;
}
usleep_range(1000, 1000);
if (gpio_is_valid(sensor->platform_data->xshutdown))
gpio_set_value(sensor->platform_data->xshutdown, 1);
sleep = SMIAPP_RESET_DELAY(sensor->platform_data->ext_clk);
usleep_range(sleep, sleep);
/*
* Failures to respond to the address change command have been noticed.
* Those failures seem to be caused by the sensor requiring a longer
* boot time than advertised. An additional 10ms delay seems to work
* around the issue, but the SMIA++ I2C write retry hack makes the delay
* unnecessary. The failures need to be investigated to find a proper
* fix, and a delay will likely need to be added here if the I2C write
* retry hack is reverted before the root cause of the boot time issue
* is found.
*/
if (sensor->platform_data->i2c_addr_alt) {
rval = smiapp_change_cci_addr(sensor);
if (rval) {
dev_err(&client->dev, "cci address change error\n");
goto out_cci_addr_fail;
}
}
rval = smiapp_write(sensor, SMIAPP_REG_U8_SOFTWARE_RESET,
SMIAPP_SOFTWARE_RESET);
if (rval < 0) {
dev_err(&client->dev, "software reset failed\n");
goto out_cci_addr_fail;
}
if (sensor->platform_data->i2c_addr_alt) {
rval = smiapp_change_cci_addr(sensor);
if (rval) {
dev_err(&client->dev, "cci address change error\n");
goto out_cci_addr_fail;
}
}
rval = smiapp_write(sensor, SMIAPP_REG_U16_COMPRESSION_MODE,
SMIAPP_COMPRESSION_MODE_SIMPLE_PREDICTOR);
if (rval) {
dev_err(&client->dev, "compression mode set failed\n");
goto out_cci_addr_fail;
}
rval = smiapp_write(
sensor, SMIAPP_REG_U16_EXTCLK_FREQUENCY_MHZ,
sensor->platform_data->ext_clk / (1000000 / (1 << 8)));
if (rval) {
dev_err(&client->dev, "extclk frequency set failed\n");
goto out_cci_addr_fail;
}
rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_LANE_MODE,
sensor->platform_data->lanes - 1);
if (rval) {
dev_err(&client->dev, "csi lane mode set failed\n");
goto out_cci_addr_fail;
}
rval = smiapp_write(sensor, SMIAPP_REG_U8_FAST_STANDBY_CTRL,
SMIAPP_FAST_STANDBY_CTRL_IMMEDIATE);
if (rval) {
dev_err(&client->dev, "fast standby set failed\n");
goto out_cci_addr_fail;
}
rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_SIGNALLING_MODE,
sensor->platform_data->csi_signalling_mode);
if (rval) {
dev_err(&client->dev, "csi signalling mode set failed\n");
goto out_cci_addr_fail;
}
/* DPHY control done by sensor based on requested link rate */
rval = smiapp_write(sensor, SMIAPP_REG_U8_DPHY_CTRL,
SMIAPP_DPHY_CTRL_UI);
if (rval < 0)
return rval;
rval = smiapp_call_quirk(sensor, post_poweron);
if (rval) {
dev_err(&client->dev, "post_poweron quirks failed\n");
goto out_cci_addr_fail;
}
/* Are we still initialising...? If yes, return here. */
if (!sensor->pixel_array)
return 0;
rval = v4l2_ctrl_handler_setup(
&sensor->pixel_array->ctrl_handler);
if (rval)
goto out_cci_addr_fail;
rval = v4l2_ctrl_handler_setup(&sensor->src->ctrl_handler);
if (rval)
goto out_cci_addr_fail;
mutex_lock(&sensor->mutex);
rval = smiapp_update_mode(sensor);
mutex_unlock(&sensor->mutex);
if (rval < 0)
goto out_cci_addr_fail;
return 0;
out_cci_addr_fail:
if (gpio_is_valid(sensor->platform_data->xshutdown))
gpio_set_value(sensor->platform_data->xshutdown, 0);
if (sensor->platform_data->set_xclk)
sensor->platform_data->set_xclk(&sensor->src->sd, 0);
else
clk_disable_unprepare(sensor->ext_clk);
out_xclk_fail:
regulator_disable(sensor->vana);
return rval;
}
static void smiapp_power_off(struct smiapp_sensor *sensor)
{
/*
* Currently power/clock to lens are enable/disabled separately
* but they are essentially the same signals. So if the sensor is
* powered off while the lens is powered on the sensor does not
* really see a power off and next time the cci address change
* will fail. So do a soft reset explicitly here.
*/
if (sensor->platform_data->i2c_addr_alt)
smiapp_write(sensor,
SMIAPP_REG_U8_SOFTWARE_RESET,
SMIAPP_SOFTWARE_RESET);
if (gpio_is_valid(sensor->platform_data->xshutdown))
gpio_set_value(sensor->platform_data->xshutdown, 0);
if (sensor->platform_data->set_xclk)
sensor->platform_data->set_xclk(&sensor->src->sd, 0);
else
clk_disable_unprepare(sensor->ext_clk);
usleep_range(5000, 5000);
regulator_disable(sensor->vana);
sensor->streaming = false;
}
static int smiapp_set_power(struct v4l2_subdev *subdev, int on)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
int ret = 0;
mutex_lock(&sensor->power_mutex);
if (on && !sensor->power_count) {
/* Power on and perform initialisation. */
ret = smiapp_power_on(sensor);
if (ret < 0)
goto out;
} else if (!on && sensor->power_count == 1) {
smiapp_power_off(sensor);
}
/* Update the power count. */
sensor->power_count += on ? 1 : -1;
WARN_ON(sensor->power_count < 0);
out:
mutex_unlock(&sensor->power_mutex);
return ret;
}
/* -----------------------------------------------------------------------------
* Video stream management
*/
static int smiapp_start_streaming(struct smiapp_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
int rval;
mutex_lock(&sensor->mutex);
rval = smiapp_write(sensor, SMIAPP_REG_U16_CSI_DATA_FORMAT,
(sensor->csi_format->width << 8) |
sensor->csi_format->compressed);
if (rval)
goto out;
rval = smiapp_pll_configure(sensor);
if (rval)
goto out;
/* Analog crop start coordinates */
rval = smiapp_write(sensor, SMIAPP_REG_U16_X_ADDR_START,
sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left);
if (rval < 0)
goto out;
rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_ADDR_START,
sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top);
if (rval < 0)
goto out;
/* Analog crop end coordinates */
rval = smiapp_write(
sensor, SMIAPP_REG_U16_X_ADDR_END,
sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left
+ sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width - 1);
if (rval < 0)
goto out;
rval = smiapp_write(
sensor, SMIAPP_REG_U16_Y_ADDR_END,
sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top
+ sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height - 1);
if (rval < 0)
goto out;
/*
* Output from pixel array, including blanking, is set using
* controls below. No need to set here.
*/
/* Digital crop */
if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
== SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
rval = smiapp_write(
sensor, SMIAPP_REG_U16_DIGITAL_CROP_X_OFFSET,
sensor->scaler->crop[SMIAPP_PAD_SINK].left);
if (rval < 0)
goto out;
rval = smiapp_write(
sensor, SMIAPP_REG_U16_DIGITAL_CROP_Y_OFFSET,
sensor->scaler->crop[SMIAPP_PAD_SINK].top);
if (rval < 0)
goto out;
rval = smiapp_write(
sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_WIDTH,
sensor->scaler->crop[SMIAPP_PAD_SINK].width);
if (rval < 0)
goto out;
rval = smiapp_write(
sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_HEIGHT,
sensor->scaler->crop[SMIAPP_PAD_SINK].height);
if (rval < 0)
goto out;
}
/* Scaling */
if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
!= SMIAPP_SCALING_CAPABILITY_NONE) {
rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALING_MODE,
sensor->scaling_mode);
if (rval < 0)
goto out;
rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALE_M,
sensor->scale_m);
if (rval < 0)
goto out;
}
/* Output size from sensor */
rval = smiapp_write(sensor, SMIAPP_REG_U16_X_OUTPUT_SIZE,
sensor->src->crop[SMIAPP_PAD_SRC].width);
if (rval < 0)
goto out;
rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_OUTPUT_SIZE,
sensor->src->crop[SMIAPP_PAD_SRC].height);
if (rval < 0)
goto out;
if ((sensor->flash_capability &
(SMIAPP_FLASH_MODE_CAPABILITY_SINGLE_STROBE |
SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE)) &&
sensor->platform_data->strobe_setup != NULL &&
sensor->platform_data->strobe_setup->trigger != 0) {
rval = smiapp_setup_flash_strobe(sensor);
if (rval)
goto out;
}
rval = smiapp_call_quirk(sensor, pre_streamon);
if (rval) {
dev_err(&client->dev, "pre_streamon quirks failed\n");
goto out;
}
rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
SMIAPP_MODE_SELECT_STREAMING);
out:
mutex_unlock(&sensor->mutex);
return rval;
}
static int smiapp_stop_streaming(struct smiapp_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
int rval;
mutex_lock(&sensor->mutex);
rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
SMIAPP_MODE_SELECT_SOFTWARE_STANDBY);
if (rval)
goto out;
rval = smiapp_call_quirk(sensor, post_streamoff);
if (rval)
dev_err(&client->dev, "post_streamoff quirks failed\n");
out:
mutex_unlock(&sensor->mutex);
return rval;
}
/* -----------------------------------------------------------------------------
* V4L2 subdev video operations
*/
static int smiapp_set_stream(struct v4l2_subdev *subdev, int enable)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
int rval;
if (sensor->streaming == enable)
return 0;
if (enable) {
sensor->streaming = true;
rval = smiapp_start_streaming(sensor);
if (rval < 0)
sensor->streaming = false;
} else {
rval = smiapp_stop_streaming(sensor);
sensor->streaming = false;
}
return rval;
}
static int smiapp_enum_mbus_code(struct v4l2_subdev *subdev,
struct v4l2_subdev_fh *fh,
struct v4l2_subdev_mbus_code_enum *code)
{
struct i2c_client *client = v4l2_get_subdevdata(subdev);
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
unsigned int i;
int idx = -1;
int rval = -EINVAL;
mutex_lock(&sensor->mutex);
dev_err(&client->dev, "subdev %s, pad %d, index %d\n",
subdev->name, code->pad, code->index);
if (subdev != &sensor->src->sd || code->pad != SMIAPP_PAD_SRC) {
if (code->index)
goto out;
code->code = sensor->internal_csi_format->code;
rval = 0;
goto out;
}
for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
if (sensor->mbus_frame_fmts & (1 << i))
idx++;
if (idx == code->index) {
code->code = smiapp_csi_data_formats[i].code;
dev_err(&client->dev, "found index %d, i %d, code %x\n",
code->index, i, code->code);
rval = 0;
break;
}
}
out:
mutex_unlock(&sensor->mutex);
return rval;
}
static u32 __smiapp_get_mbus_code(struct v4l2_subdev *subdev,
unsigned int pad)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
if (subdev == &sensor->src->sd && pad == SMIAPP_PAD_SRC)
return sensor->csi_format->code;
else
return sensor->internal_csi_format->code;
}
static int __smiapp_get_format(struct v4l2_subdev *subdev,
struct v4l2_subdev_fh *fh,
struct v4l2_subdev_format *fmt)
{
struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
fmt->format = *v4l2_subdev_get_try_format(fh, fmt->pad);
} else {
struct v4l2_rect *r;
if (fmt->pad == ssd->source_pad)
r = &ssd->crop[ssd->source_pad];
else
r = &ssd->sink_fmt;
fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
fmt->format.width = r->width;
fmt->format.height = r->height;
fmt->format.field = V4L2_FIELD_NONE;
}
return 0;
}
static int smiapp_get_format(struct v4l2_subdev *subdev,
struct v4l2_subdev_fh *fh,
struct v4l2_subdev_format *fmt)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
int rval;
mutex_lock(&sensor->mutex);
rval = __smiapp_get_format(subdev, fh, fmt);
mutex_unlock(&sensor->mutex);
return rval;
}
static void smiapp_get_crop_compose(struct v4l2_subdev *subdev,
struct v4l2_subdev_fh *fh,
struct v4l2_rect **crops,
struct v4l2_rect **comps, int which)
{
struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
unsigned int i;
if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
if (crops)
for (i = 0; i < subdev->entity.num_pads; i++)
crops[i] = &ssd->crop[i];
if (comps)
*comps = &ssd->compose;
} else {
if (crops) {
for (i = 0; i < subdev->entity.num_pads; i++) {
crops[i] = v4l2_subdev_get_try_crop(fh, i);
BUG_ON(!crops[i]);
}
}
if (comps) {
*comps = v4l2_subdev_get_try_compose(fh,
SMIAPP_PAD_SINK);
BUG_ON(!*comps);
}
}
}
/* Changes require propagation only on sink pad. */
static void smiapp_propagate(struct v4l2_subdev *subdev,
struct v4l2_subdev_fh *fh, int which,
int target)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
struct v4l2_rect *comp, *crops[SMIAPP_PADS];
smiapp_get_crop_compose(subdev, fh, crops, &comp, which);
switch (target) {
case V4L2_SEL_TGT_CROP:
comp->width = crops[SMIAPP_PAD_SINK]->width;
comp->height = crops[SMIAPP_PAD_SINK]->height;
if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
if (ssd == sensor->scaler) {
sensor->scale_m =
sensor->limits[
SMIAPP_LIMIT_SCALER_N_MIN];
sensor->scaling_mode =
SMIAPP_SCALING_MODE_NONE;
} else if (ssd == sensor->binner) {
sensor->binning_horizontal = 1;
sensor->binning_vertical = 1;
}
}
/* Fall through */
case V4L2_SEL_TGT_COMPOSE:
*crops[SMIAPP_PAD_SRC] = *comp;
break;
default:
BUG();
}
}
static const struct smiapp_csi_data_format
*smiapp_validate_csi_data_format(struct smiapp_sensor *sensor, u32 code)
{
const struct smiapp_csi_data_format *csi_format = sensor->csi_format;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
if (sensor->mbus_frame_fmts & (1 << i)
&& smiapp_csi_data_formats[i].code == code)
return &smiapp_csi_data_formats[i];
}
return csi_format;
}
static int smiapp_set_format_source(struct v4l2_subdev *subdev,
struct v4l2_subdev_fh *fh,
struct v4l2_subdev_format *fmt)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
const struct smiapp_csi_data_format *csi_format,
*old_csi_format = sensor->csi_format;
unsigned long *valid_link_freqs;
u32 code = fmt->format.code;
unsigned int i;
int rval;
rval = __smiapp_get_format(subdev, fh, fmt);
if (rval)
return rval;
/*
* Media bus code is changeable on src subdev's source pad. On
* other source pads we just get format here.
*/
if (subdev != &sensor->src->sd)
return 0;
csi_format = smiapp_validate_csi_data_format(sensor, code);
fmt->format.code = csi_format->code;
if (fmt->which != V4L2_SUBDEV_FORMAT_ACTIVE)
return 0;
sensor->csi_format = csi_format;
if (csi_format->width != old_csi_format->width)
for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
__v4l2_ctrl_modify_range(
sensor->test_data[i], 0,
(1 << csi_format->width) - 1, 1, 0);
if (csi_format->compressed == old_csi_format->compressed)
return 0;
valid_link_freqs =
&sensor->valid_link_freqs[sensor->csi_format->compressed
- SMIAPP_COMPRESSED_BASE];
__v4l2_ctrl_modify_range(
sensor->link_freq, 0,
__fls(*valid_link_freqs), ~*valid_link_freqs,
__ffs(*valid_link_freqs));
return smiapp_pll_update(sensor);
}
static int smiapp_set_format(struct v4l2_subdev *subdev,
struct v4l2_subdev_fh *fh,
struct v4l2_subdev_format *fmt)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
struct v4l2_rect *crops[SMIAPP_PADS];
mutex_lock(&sensor->mutex);
if (fmt->pad == ssd->source_pad) {
int rval;
rval = smiapp_set_format_source(subdev, fh, fmt);
mutex_unlock(&sensor->mutex);
return rval;
}
/* Sink pad. Width and height are changeable here. */
fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
fmt->format.width &= ~1;
fmt->format.height &= ~1;
fmt->format.field = V4L2_FIELD_NONE;
fmt->format.width =
clamp(fmt->format.width,
sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE],
sensor->limits[SMIAPP_LIMIT_MAX_X_OUTPUT_SIZE]);
fmt->format.height =
clamp(fmt->format.height,
sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE],
sensor->limits[SMIAPP_LIMIT_MAX_Y_OUTPUT_SIZE]);
smiapp_get_crop_compose(subdev, fh, crops, NULL, fmt->which);
crops[ssd->sink_pad]->left = 0;
crops[ssd->sink_pad]->top = 0;
crops[ssd->sink_pad]->width = fmt->format.width;
crops[ssd->sink_pad]->height = fmt->format.height;
if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE)
ssd->sink_fmt = *crops[ssd->sink_pad];
smiapp_propagate(subdev, fh, fmt->which,
V4L2_SEL_TGT_CROP);
mutex_unlock(&sensor->mutex);
return 0;
}
/*
* Calculate goodness of scaled image size compared to expected image
* size and flags provided.
*/
#define SCALING_GOODNESS 100000
#define SCALING_GOODNESS_EXTREME 100000000
static int scaling_goodness(struct v4l2_subdev *subdev, int w, int ask_w,
int h, int ask_h, u32 flags)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
struct i2c_client *client = v4l2_get_subdevdata(subdev);
int val = 0;
w &= ~1;
ask_w &= ~1;
h &= ~1;
ask_h &= ~1;
if (flags & V4L2_SEL_FLAG_GE) {
if (w < ask_w)
val -= SCALING_GOODNESS;
if (h < ask_h)
val -= SCALING_GOODNESS;
}
if (flags & V4L2_SEL_FLAG_LE) {
if (w > ask_w)
val -= SCALING_GOODNESS;
if (h > ask_h)
val -= SCALING_GOODNESS;
}
val -= abs(w - ask_w);
val -= abs(h - ask_h);
if (w < sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE])
val -= SCALING_GOODNESS_EXTREME;
dev_dbg(&client->dev, "w %d ask_w %d h %d ask_h %d goodness %d\n",
w, ask_h, h, ask_h, val);
return val;
}
static void smiapp_set_compose_binner(struct v4l2_subdev *subdev,
struct v4l2_subdev_fh *fh,
struct v4l2_subdev_selection *sel,
struct v4l2_rect **crops,
struct v4l2_rect *comp)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
unsigned int i;
unsigned int binh = 1, binv = 1;
int best = scaling_goodness(
subdev,
crops[SMIAPP_PAD_SINK]->width, sel->r.width,
crops[SMIAPP_PAD_SINK]->height, sel->r.height, sel->flags);
for (i = 0; i < sensor->nbinning_subtypes; i++) {
int this = scaling_goodness(
subdev,
crops[SMIAPP_PAD_SINK]->width
/ sensor->binning_subtypes[i].horizontal,
sel->r.width,
crops[SMIAPP_PAD_SINK]->height
/ sensor->binning_subtypes[i].vertical,
sel->r.height, sel->flags);
if (this > best) {
binh = sensor->binning_subtypes[i].horizontal;
binv = sensor->binning_subtypes[i].vertical;
best = this;
}
}
if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
sensor->binning_vertical = binv;
sensor->binning_horizontal = binh;
}
sel->r.width = (crops[SMIAPP_PAD_SINK]->width / binh) & ~1;
sel->r.height = (crops[SMIAPP_PAD_SINK]->height / binv) & ~1;
}
/*
* Calculate best scaling ratio and mode for given output resolution.
*
* Try all of these: horizontal ratio, vertical ratio and smallest
* size possible (horizontally).
*
* Also try whether horizontal scaler or full scaler gives a better
* result.
*/
static void smiapp_set_compose_scaler(struct v4l2_subdev *subdev,
struct v4l2_subdev_fh *fh,
struct v4l2_subdev_selection *sel,
struct v4l2_rect **crops,
struct v4l2_rect *comp)
{
struct i2c_client *client = v4l2_get_subdevdata(subdev);
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
u32 min, max, a, b, max_m;
u32 scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
int mode = SMIAPP_SCALING_MODE_HORIZONTAL;
u32 try[4];
u32 ntry = 0;
unsigned int i;
int best = INT_MIN;
sel->r.width = min_t(unsigned int, sel->r.width,
crops[SMIAPP_PAD_SINK]->width);
sel->r.height = min_t(unsigned int, sel->r.height,
crops[SMIAPP_PAD_SINK]->height);
a = crops[SMIAPP_PAD_SINK]->width
* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.width;
b = crops[SMIAPP_PAD_SINK]->height
* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.height;
max_m = crops[SMIAPP_PAD_SINK]->width
* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]
/ sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE];
a = clamp(a, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN],
sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]);
b = clamp(b, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN],
sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]);
max_m = clamp(max_m, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN],
sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]);
dev_dbg(&client->dev, "scaling: a %d b %d max_m %d\n", a, b, max_m);
min = min(max_m, min(a, b));
max = min(max_m, max(a, b));
try[ntry] = min;
ntry++;
if (min != max) {
try[ntry] = max;
ntry++;
}
if (max != max_m) {
try[ntry] = min + 1;
ntry++;
if (min != max) {
try[ntry] = max + 1;
ntry++;
}
}
for (i = 0; i < ntry; i++) {
int this = scaling_goodness(
subdev,
crops[SMIAPP_PAD_SINK]->width
/ try[i]
* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
sel->r.width,
crops[SMIAPP_PAD_SINK]->height,
sel->r.height,
sel->flags);
dev_dbg(&client->dev, "trying factor %d (%d)\n", try[i], i);
if (this > best) {
scale_m = try[i];
mode = SMIAPP_SCALING_MODE_HORIZONTAL;
best = this;
}
if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
== SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
continue;
this = scaling_goodness(
subdev, crops[SMIAPP_PAD_SINK]->width
/ try[i]
* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
sel->r.width,
crops[SMIAPP_PAD_SINK]->height
/ try[i]
* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
sel->r.height,
sel->flags);
if (this > best) {
scale_m = try[i];
mode = SMIAPP_SCALING_MODE_BOTH;
best = this;
}
}
sel->r.width =
(crops[SMIAPP_PAD_SINK]->width
/ scale_m
* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]) & ~1;
if (mode == SMIAPP_SCALING_MODE_BOTH)
sel->r.height =
(crops[SMIAPP_PAD_SINK]->height
/ scale_m
* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN])
& ~1;
else
sel->r.height = crops[SMIAPP_PAD_SINK]->height;
if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
sensor->scale_m = scale_m;
sensor->scaling_mode = mode;
}
}
/* We're only called on source pads. This function sets scaling. */
static int smiapp_set_compose(struct v4l2_subdev *subdev,
struct v4l2_subdev_fh *fh,
struct v4l2_subdev_selection *sel)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
struct v4l2_rect *comp, *crops[SMIAPP_PADS];
smiapp_get_crop_compose(subdev, fh, crops, &comp, sel->which);
sel->r.top = 0;
sel->r.left = 0;
if (ssd == sensor->binner)
smiapp_set_compose_binner(subdev, fh, sel, crops, comp);
else
smiapp_set_compose_scaler(subdev, fh, sel, crops, comp);
*comp = sel->r;
smiapp_propagate(subdev, fh, sel->which,
V4L2_SEL_TGT_COMPOSE);
if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE)
return smiapp_update_mode(sensor);
return 0;
}
static int __smiapp_sel_supported(struct v4l2_subdev *subdev,
struct v4l2_subdev_selection *sel)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
/* We only implement crop in three places. */
switch (sel->target) {
case V4L2_SEL_TGT_CROP:
case V4L2_SEL_TGT_CROP_BOUNDS:
if (ssd == sensor->pixel_array
&& sel->pad == SMIAPP_PA_PAD_SRC)
return 0;
if (ssd == sensor->src
&& sel->pad == SMIAPP_PAD_SRC)
return 0;
if (ssd == sensor->scaler
&& sel->pad == SMIAPP_PAD_SINK
&& sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
== SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP)
return 0;
return -EINVAL;
case V4L2_SEL_TGT_COMPOSE:
case V4L2_SEL_TGT_COMPOSE_BOUNDS:
if (sel->pad == ssd->source_pad)
return -EINVAL;
if (ssd == sensor->binner)
return 0;
if (ssd == sensor->scaler
&& sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
!= SMIAPP_SCALING_CAPABILITY_NONE)
return 0;
/* Fall through */
default:
return -EINVAL;
}
}
static int smiapp_set_crop(struct v4l2_subdev *subdev,
struct v4l2_subdev_fh *fh,
struct v4l2_subdev_selection *sel)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
struct v4l2_rect *src_size, *crops[SMIAPP_PADS];
struct v4l2_rect _r;
smiapp_get_crop_compose(subdev, fh, crops, NULL, sel->which);
if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
if (sel->pad == ssd->sink_pad)
src_size = &ssd->sink_fmt;
else
src_size = &ssd->compose;
} else {
if (sel->pad == ssd->sink_pad) {
_r.left = 0;
_r.top = 0;
_r.width = v4l2_subdev_get_try_format(fh, sel->pad)
->width;
_r.height = v4l2_subdev_get_try_format(fh, sel->pad)
->height;
src_size = &_r;
} else {
src_size =
v4l2_subdev_get_try_compose(
fh, ssd->sink_pad);
}
}
if (ssd == sensor->src && sel->pad == SMIAPP_PAD_SRC) {
sel->r.left = 0;
sel->r.top = 0;
}
sel->r.width = min(sel->r.width, src_size->width);
sel->r.height = min(sel->r.height, src_size->height);
sel->r.left = min_t(int, sel->r.left, src_size->width - sel->r.width);
sel->r.top = min_t(int, sel->r.top, src_size->height - sel->r.height);
*crops[sel->pad] = sel->r;
if (ssd != sensor->pixel_array && sel->pad == SMIAPP_PAD_SINK)
smiapp_propagate(subdev, fh, sel->which,
V4L2_SEL_TGT_CROP);
return 0;
}
static int __smiapp_get_selection(struct v4l2_subdev *subdev,
struct v4l2_subdev_fh *fh,
struct v4l2_subdev_selection *sel)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
struct v4l2_rect *comp, *crops[SMIAPP_PADS];
struct v4l2_rect sink_fmt;
int ret;
ret = __smiapp_sel_supported(subdev, sel);
if (ret)
return ret;
smiapp_get_crop_compose(subdev, fh, crops, &comp, sel->which);
if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
sink_fmt = ssd->sink_fmt;
} else {
struct v4l2_mbus_framefmt *fmt =
v4l2_subdev_get_try_format(fh, ssd->sink_pad);
sink_fmt.left = 0;
sink_fmt.top = 0;
sink_fmt.width = fmt->width;
sink_fmt.height = fmt->height;
}
switch (sel->target) {
case V4L2_SEL_TGT_CROP_BOUNDS:
if (ssd == sensor->pixel_array) {
sel->r.left = sel->r.top = 0;
sel->r.width =
sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
sel->r.height =
sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
} else if (sel->pad == ssd->sink_pad) {
sel->r = sink_fmt;
} else {
sel->r = *comp;
}
break;
case V4L2_SEL_TGT_CROP:
case V4L2_SEL_TGT_COMPOSE_BOUNDS:
sel->r = *crops[sel->pad];
break;
case V4L2_SEL_TGT_COMPOSE:
sel->r = *comp;
break;
}
return 0;
}
static int smiapp_get_selection(struct v4l2_subdev *subdev,
struct v4l2_subdev_fh *fh,
struct v4l2_subdev_selection *sel)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
int rval;
mutex_lock(&sensor->mutex);
rval = __smiapp_get_selection(subdev, fh, sel);
mutex_unlock(&sensor->mutex);
return rval;
}
static int smiapp_set_selection(struct v4l2_subdev *subdev,
struct v4l2_subdev_fh *fh,
struct v4l2_subdev_selection *sel)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
int ret;
ret = __smiapp_sel_supported(subdev, sel);
if (ret)
return ret;
mutex_lock(&sensor->mutex);
sel->r.left = max(0, sel->r.left & ~1);
sel->r.top = max(0, sel->r.top & ~1);
sel->r.width = SMIAPP_ALIGN_DIM(sel->r.width, sel->flags);
sel->r.height = SMIAPP_ALIGN_DIM(sel->r.height, sel->flags);
sel->r.width = max_t(unsigned int,
sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE],
sel->r.width);
sel->r.height = max_t(unsigned int,
sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE],
sel->r.height);
switch (sel->target) {
case V4L2_SEL_TGT_CROP:
ret = smiapp_set_crop(subdev, fh, sel);
break;
case V4L2_SEL_TGT_COMPOSE:
ret = smiapp_set_compose(subdev, fh, sel);
break;
default:
BUG();
}
mutex_unlock(&sensor->mutex);
return ret;
}
static int smiapp_get_skip_frames(struct v4l2_subdev *subdev, u32 *frames)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
*frames = sensor->frame_skip;
return 0;
}
/* -----------------------------------------------------------------------------
* sysfs attributes
*/
static ssize_t
smiapp_sysfs_nvm_read(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
struct i2c_client *client = v4l2_get_subdevdata(subdev);
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
unsigned int nbytes;
if (!sensor->dev_init_done)
return -EBUSY;
if (!sensor->nvm_size) {
/* NVM not read yet - read it now */
sensor->nvm_size = sensor->platform_data->nvm_size;
if (smiapp_set_power(subdev, 1) < 0)
return -ENODEV;
if (smiapp_read_nvm(sensor, sensor->nvm)) {
dev_err(&client->dev, "nvm read failed\n");
return -ENODEV;
}
smiapp_set_power(subdev, 0);
}
/*
* NVM is still way below a PAGE_SIZE, so we can safely
* assume this for now.
*/
nbytes = min_t(unsigned int, sensor->nvm_size, PAGE_SIZE);
memcpy(buf, sensor->nvm, nbytes);
return nbytes;
}
static DEVICE_ATTR(nvm, S_IRUGO, smiapp_sysfs_nvm_read, NULL);
static ssize_t
smiapp_sysfs_ident_read(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
struct smiapp_module_info *minfo = &sensor->minfo;
return snprintf(buf, PAGE_SIZE, "%2.2x%4.4x%2.2x\n",
minfo->manufacturer_id, minfo->model_id,
minfo->revision_number_major) + 1;
}
static DEVICE_ATTR(ident, S_IRUGO, smiapp_sysfs_ident_read, NULL);
/* -----------------------------------------------------------------------------
* V4L2 subdev core operations
*/
static int smiapp_identify_module(struct v4l2_subdev *subdev)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
struct i2c_client *client = v4l2_get_subdevdata(subdev);
struct smiapp_module_info *minfo = &sensor->minfo;
unsigned int i;
int rval = 0;
minfo->name = SMIAPP_NAME;
/* Module info */
rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MANUFACTURER_ID,
&minfo->manufacturer_id);
if (!rval)
rval = smiapp_read_8only(sensor, SMIAPP_REG_U16_MODEL_ID,
&minfo->model_id);
if (!rval)
rval = smiapp_read_8only(sensor,
SMIAPP_REG_U8_REVISION_NUMBER_MAJOR,
&minfo->revision_number_major);
if (!rval)
rval = smiapp_read_8only(sensor,
SMIAPP_REG_U8_REVISION_NUMBER_MINOR,
&minfo->revision_number_minor);
if (!rval)
rval = smiapp_read_8only(sensor,
SMIAPP_REG_U8_MODULE_DATE_YEAR,
&minfo->module_year);
if (!rval)
rval = smiapp_read_8only(sensor,
SMIAPP_REG_U8_MODULE_DATE_MONTH,
&minfo->module_month);
if (!rval)
rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MODULE_DATE_DAY,
&minfo->module_day);
/* Sensor info */
if (!rval)
rval = smiapp_read_8only(sensor,
SMIAPP_REG_U8_SENSOR_MANUFACTURER_ID,
&minfo->sensor_manufacturer_id);
if (!rval)
rval = smiapp_read_8only(sensor,
SMIAPP_REG_U16_SENSOR_MODEL_ID,
&minfo->sensor_model_id);
if (!rval)
rval = smiapp_read_8only(sensor,
SMIAPP_REG_U8_SENSOR_REVISION_NUMBER,
&minfo->sensor_revision_number);
if (!rval)
rval = smiapp_read_8only(sensor,
SMIAPP_REG_U8_SENSOR_FIRMWARE_VERSION,
&minfo->sensor_firmware_version);
/* SMIA */
if (!rval)
rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIA_VERSION,
&minfo->smia_version);
if (!rval)
rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIAPP_VERSION,
&minfo->smiapp_version);
if (rval) {
dev_err(&client->dev, "sensor detection failed\n");
return -ENODEV;
}
dev_dbg(&client->dev, "module 0x%2.2x-0x%4.4x\n",
minfo->manufacturer_id, minfo->model_id);
dev_dbg(&client->dev,
"module revision 0x%2.2x-0x%2.2x date %2.2d-%2.2d-%2.2d\n",
minfo->revision_number_major, minfo->revision_number_minor,
minfo->module_year, minfo->module_month, minfo->module_day);
dev_dbg(&client->dev, "sensor 0x%2.2x-0x%4.4x\n",
minfo->sensor_manufacturer_id, minfo->sensor_model_id);
dev_dbg(&client->dev,
"sensor revision 0x%2.2x firmware version 0x%2.2x\n",
minfo->sensor_revision_number, minfo->sensor_firmware_version);
dev_dbg(&client->dev, "smia version %2.2d smiapp version %2.2d\n",
minfo->smia_version, minfo->smiapp_version);
/*
* Some modules have bad data in the lvalues below. Hope the
* rvalues have better stuff. The lvalues are module
* parameters whereas the rvalues are sensor parameters.
*/
if (!minfo->manufacturer_id && !minfo->model_id) {
minfo->manufacturer_id = minfo->sensor_manufacturer_id;
minfo->model_id = minfo->sensor_model_id;
minfo->revision_number_major = minfo->sensor_revision_number;
}
for (i = 0; i < ARRAY_SIZE(smiapp_module_idents); i++) {
if (smiapp_module_idents[i].manufacturer_id
!= minfo->manufacturer_id)
continue;
if (smiapp_module_idents[i].model_id != minfo->model_id)
continue;
if (smiapp_module_idents[i].flags
& SMIAPP_MODULE_IDENT_FLAG_REV_LE) {
if (smiapp_module_idents[i].revision_number_major
< minfo->revision_number_major)
continue;
} else {
if (smiapp_module_idents[i].revision_number_major
!= minfo->revision_number_major)
continue;
}
minfo->name = smiapp_module_idents[i].name;
minfo->quirk = smiapp_module_idents[i].quirk;
break;
}
if (i >= ARRAY_SIZE(smiapp_module_idents))
dev_warn(&client->dev,
"no quirks for this module; let's hope it's fully compliant\n");
dev_dbg(&client->dev, "the sensor is called %s, ident %2.2x%4.4x%2.2x\n",
minfo->name, minfo->manufacturer_id, minfo->model_id,
minfo->revision_number_major);
strlcpy(subdev->name, sensor->minfo.name, sizeof(subdev->name));
return 0;
}
static const struct v4l2_subdev_ops smiapp_ops;
static const struct v4l2_subdev_internal_ops smiapp_internal_ops;
static const struct media_entity_operations smiapp_entity_ops;
static int smiapp_registered(struct v4l2_subdev *subdev)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
struct i2c_client *client = v4l2_get_subdevdata(subdev);
struct smiapp_pll *pll = &sensor->pll;
struct smiapp_subdev *last = NULL;
u32 tmp;
unsigned int i;
int rval;
sensor->vana = devm_regulator_get(&client->dev, "vana");
if (IS_ERR(sensor->vana)) {
dev_err(&client->dev, "could not get regulator for vana\n");
return PTR_ERR(sensor->vana);
}
if (!sensor->platform_data->set_xclk) {
sensor->ext_clk = devm_clk_get(&client->dev, "ext_clk");
if (IS_ERR(sensor->ext_clk)) {
dev_err(&client->dev, "could not get clock\n");
return PTR_ERR(sensor->ext_clk);
}
rval = clk_set_rate(sensor->ext_clk,
sensor->platform_data->ext_clk);
if (rval < 0) {
dev_err(&client->dev,
"unable to set clock freq to %u\n",
sensor->platform_data->ext_clk);
return rval;
}
}
if (gpio_is_valid(sensor->platform_data->xshutdown)) {
rval = devm_gpio_request_one(
&client->dev, sensor->platform_data->xshutdown, 0,
"SMIA++ xshutdown");
if (rval < 0) {
dev_err(&client->dev,
"unable to acquire reset gpio %d\n",
sensor->platform_data->xshutdown);
return rval;
}
}
rval = smiapp_power_on(sensor);
if (rval)
return -ENODEV;
rval = smiapp_identify_module(subdev);
if (rval) {
rval = -ENODEV;
goto out_power_off;
}
rval = smiapp_get_all_limits(sensor);
if (rval) {
rval = -ENODEV;
goto out_power_off;
}
/*
* Handle Sensor Module orientation on the board.
*
* The application of H-FLIP and V-FLIP on the sensor is modified by
* the sensor orientation on the board.
*
* For SMIAPP_BOARD_SENSOR_ORIENT_180 the default behaviour is to set
* both H-FLIP and V-FLIP for normal operation which also implies
* that a set/unset operation for user space HFLIP and VFLIP v4l2
* controls will need to be internally inverted.
*
* Rotation also changes the bayer pattern.
*/
if (sensor->platform_data->module_board_orient ==
SMIAPP_MODULE_BOARD_ORIENT_180)
sensor->hvflip_inv_mask = SMIAPP_IMAGE_ORIENTATION_HFLIP |
SMIAPP_IMAGE_ORIENTATION_VFLIP;
rval = smiapp_call_quirk(sensor, limits);
if (rval) {
dev_err(&client->dev, "limits quirks failed\n");
goto out_power_off;
}
if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY]) {
u32 val;
rval = smiapp_read(sensor,
SMIAPP_REG_U8_BINNING_SUBTYPES, &val);
if (rval < 0) {
rval = -ENODEV;
goto out_power_off;
}
sensor->nbinning_subtypes = min_t(u8, val,
SMIAPP_BINNING_SUBTYPES);
for (i = 0; i < sensor->nbinning_subtypes; i++) {
rval = smiapp_read(
sensor, SMIAPP_REG_U8_BINNING_TYPE_n(i), &val);
if (rval < 0) {
rval = -ENODEV;
goto out_power_off;
}
sensor->binning_subtypes[i] =
*(struct smiapp_binning_subtype *)&val;
dev_dbg(&client->dev, "binning %xx%x\n",
sensor->binning_subtypes[i].horizontal,
sensor->binning_subtypes[i].vertical);
}
}
sensor->binning_horizontal = 1;
sensor->binning_vertical = 1;
if (device_create_file(&client->dev, &dev_attr_ident) != 0) {
dev_err(&client->dev, "sysfs ident entry creation failed\n");
rval = -ENOENT;
goto out_power_off;
}
/* SMIA++ NVM initialization - it will be read from the sensor
* when it is first requested by userspace.
*/
if (sensor->minfo.smiapp_version && sensor->platform_data->nvm_size) {
sensor->nvm = devm_kzalloc(&client->dev,
sensor->platform_data->nvm_size, GFP_KERNEL);
if (sensor->nvm == NULL) {
dev_err(&client->dev, "nvm buf allocation failed\n");
rval = -ENOMEM;
goto out_ident_release;
}
if (device_create_file(&client->dev, &dev_attr_nvm) != 0) {
dev_err(&client->dev, "sysfs nvm entry failed\n");
rval = -EBUSY;
goto out_ident_release;
}
}
/* We consider this as profile 0 sensor if any of these are zero. */
if (!sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV] ||
!sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV] ||
!sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV] ||
!sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV]) {
sensor->minfo.smiapp_profile = SMIAPP_PROFILE_0;
} else if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
!= SMIAPP_SCALING_CAPABILITY_NONE) {
if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
== SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
sensor->minfo.smiapp_profile = SMIAPP_PROFILE_1;
else
sensor->minfo.smiapp_profile = SMIAPP_PROFILE_2;
sensor->scaler = &sensor->ssds[sensor->ssds_used];
sensor->ssds_used++;
} else if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
== SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
sensor->scaler = &sensor->ssds[sensor->ssds_used];
sensor->ssds_used++;
}
sensor->binner = &sensor->ssds[sensor->ssds_used];
sensor->ssds_used++;
sensor->pixel_array = &sensor->ssds[sensor->ssds_used];
sensor->ssds_used++;
sensor->scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
/* prepare PLL configuration input values */
pll->bus_type = SMIAPP_PLL_BUS_TYPE_CSI2;
pll->csi2.lanes = sensor->platform_data->lanes;
pll->ext_clk_freq_hz = sensor->platform_data->ext_clk;
pll->flags = smiapp_call_quirk(sensor, pll_flags);
pll->scale_n = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
/* Profile 0 sensors have no separate OP clock branch. */
if (sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0)
pll->flags |= SMIAPP_PLL_FLAG_NO_OP_CLOCKS;
rval = smiapp_get_mbus_formats(sensor);
if (rval) {
rval = -ENODEV;
goto out_nvm_release;
}
for (i = 0; i < SMIAPP_SUBDEVS; i++) {
struct {
struct smiapp_subdev *ssd;
char *name;
} const __this[] = {
{ sensor->scaler, "scaler", },
{ sensor->binner, "binner", },
{ sensor->pixel_array, "pixel array", },
}, *_this = &__this[i];
struct smiapp_subdev *this = _this->ssd;
if (!this)
continue;
if (this != sensor->src)
v4l2_subdev_init(&this->sd, &smiapp_ops);
this->sensor = sensor;
if (this == sensor->pixel_array) {
this->npads = 1;
} else {
this->npads = 2;
this->source_pad = 1;
}
snprintf(this->sd.name,
sizeof(this->sd.name), "%s %s %d-%4.4x",
sensor->minfo.name, _this->name,
i2c_adapter_id(client->adapter), client->addr);
this->sink_fmt.width =
sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
this->sink_fmt.height =
sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
this->compose.width = this->sink_fmt.width;
this->compose.height = this->sink_fmt.height;
this->crop[this->source_pad] = this->compose;
this->pads[this->source_pad].flags = MEDIA_PAD_FL_SOURCE;
if (this != sensor->pixel_array) {
this->crop[this->sink_pad] = this->compose;
this->pads[this->sink_pad].flags = MEDIA_PAD_FL_SINK;
}
this->sd.entity.ops = &smiapp_entity_ops;
if (last == NULL) {
last = this;
continue;
}
this->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
this->sd.internal_ops = &smiapp_internal_ops;
this->sd.owner = THIS_MODULE;
v4l2_set_subdevdata(&this->sd, client);
rval = media_entity_init(&this->sd.entity,
this->npads, this->pads, 0);
if (rval) {
dev_err(&client->dev,
"media_entity_init failed\n");
goto out_nvm_release;
}
rval = media_entity_create_link(&this->sd.entity,
this->source_pad,
&last->sd.entity,
last->sink_pad,
MEDIA_LNK_FL_ENABLED |
MEDIA_LNK_FL_IMMUTABLE);
if (rval) {
dev_err(&client->dev,
"media_entity_create_link failed\n");
goto out_nvm_release;
}
rval = v4l2_device_register_subdev(sensor->src->sd.v4l2_dev,
&this->sd);
if (rval) {
dev_err(&client->dev,
"v4l2_device_register_subdev failed\n");
goto out_nvm_release;
}
last = this;
}
dev_dbg(&client->dev, "profile %d\n", sensor->minfo.smiapp_profile);
sensor->pixel_array->sd.entity.type = MEDIA_ENT_T_V4L2_SUBDEV_SENSOR;
/* final steps */
smiapp_read_frame_fmt(sensor);
rval = smiapp_init_controls(sensor);
if (rval < 0)
goto out_nvm_release;
mutex_lock(&sensor->mutex);
rval = smiapp_update_mode(sensor);
mutex_unlock(&sensor->mutex);
if (rval) {
dev_err(&client->dev, "update mode failed\n");
goto out_nvm_release;
}
sensor->streaming = false;
sensor->dev_init_done = true;
/* check flash capability */
rval = smiapp_read(sensor, SMIAPP_REG_U8_FLASH_MODE_CAPABILITY, &tmp);
sensor->flash_capability = tmp;
if (rval)
goto out_nvm_release;
smiapp_power_off(sensor);
return 0;
out_nvm_release:
device_remove_file(&client->dev, &dev_attr_nvm);
out_ident_release:
device_remove_file(&client->dev, &dev_attr_ident);
out_power_off:
smiapp_power_off(sensor);
return rval;
}
static int smiapp_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
{
struct smiapp_subdev *ssd = to_smiapp_subdev(sd);
struct smiapp_sensor *sensor = ssd->sensor;
u32 mbus_code =
smiapp_csi_data_formats[smiapp_pixel_order(sensor)].code;
unsigned int i;
mutex_lock(&sensor->mutex);
for (i = 0; i < ssd->npads; i++) {
struct v4l2_mbus_framefmt *try_fmt =
v4l2_subdev_get_try_format(fh, i);
struct v4l2_rect *try_crop = v4l2_subdev_get_try_crop(fh, i);
struct v4l2_rect *try_comp;
try_fmt->width = sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
try_fmt->height = sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
try_fmt->code = mbus_code;
try_fmt->field = V4L2_FIELD_NONE;
try_crop->top = 0;
try_crop->left = 0;
try_crop->width = try_fmt->width;
try_crop->height = try_fmt->height;
if (ssd != sensor->pixel_array)
continue;
try_comp = v4l2_subdev_get_try_compose(fh, i);
*try_comp = *try_crop;
}
mutex_unlock(&sensor->mutex);
return smiapp_set_power(sd, 1);
}
static int smiapp_close(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
{
return smiapp_set_power(sd, 0);
}
static const struct v4l2_subdev_video_ops smiapp_video_ops = {
.s_stream = smiapp_set_stream,
};
static const struct v4l2_subdev_core_ops smiapp_core_ops = {
.s_power = smiapp_set_power,
};
static const struct v4l2_subdev_pad_ops smiapp_pad_ops = {
.enum_mbus_code = smiapp_enum_mbus_code,
.get_fmt = smiapp_get_format,
.set_fmt = smiapp_set_format,
.get_selection = smiapp_get_selection,
.set_selection = smiapp_set_selection,
};
static const struct v4l2_subdev_sensor_ops smiapp_sensor_ops = {
.g_skip_frames = smiapp_get_skip_frames,
};
static const struct v4l2_subdev_ops smiapp_ops = {
.core = &smiapp_core_ops,
.video = &smiapp_video_ops,
.pad = &smiapp_pad_ops,
.sensor = &smiapp_sensor_ops,
};
static const struct media_entity_operations smiapp_entity_ops = {
.link_validate = v4l2_subdev_link_validate,
};
static const struct v4l2_subdev_internal_ops smiapp_internal_src_ops = {
.registered = smiapp_registered,
.open = smiapp_open,
.close = smiapp_close,
};
static const struct v4l2_subdev_internal_ops smiapp_internal_ops = {
.open = smiapp_open,
.close = smiapp_close,
};
/* -----------------------------------------------------------------------------
* I2C Driver
*/
#ifdef CONFIG_PM
static int smiapp_suspend(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct v4l2_subdev *subdev = i2c_get_clientdata(client);
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
bool streaming;
BUG_ON(mutex_is_locked(&sensor->mutex));
if (sensor->power_count == 0)
return 0;
if (sensor->streaming)
smiapp_stop_streaming(sensor);
streaming = sensor->streaming;
smiapp_power_off(sensor);
/* save state for resume */
sensor->streaming = streaming;
return 0;
}
static int smiapp_resume(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct v4l2_subdev *subdev = i2c_get_clientdata(client);
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
int rval;
if (sensor->power_count == 0)
return 0;
rval = smiapp_power_on(sensor);
if (rval)
return rval;
if (sensor->streaming)
rval = smiapp_start_streaming(sensor);
return rval;
}
#else
#define smiapp_suspend NULL
#define smiapp_resume NULL
#endif /* CONFIG_PM */
static int smiapp_probe(struct i2c_client *client,
const struct i2c_device_id *devid)
{
struct smiapp_sensor *sensor;
if (client->dev.platform_data == NULL)
return -ENODEV;
sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL);
if (sensor == NULL)
return -ENOMEM;
sensor->platform_data = client->dev.platform_data;
mutex_init(&sensor->mutex);
mutex_init(&sensor->power_mutex);
sensor->src = &sensor->ssds[sensor->ssds_used];
v4l2_i2c_subdev_init(&sensor->src->sd, client, &smiapp_ops);
sensor->src->sd.internal_ops = &smiapp_internal_src_ops;
sensor->src->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
sensor->src->sensor = sensor;
sensor->src->pads[0].flags = MEDIA_PAD_FL_SOURCE;
return media_entity_init(&sensor->src->sd.entity, 2,
sensor->src->pads, 0);
}
static int smiapp_remove(struct i2c_client *client)
{
struct v4l2_subdev *subdev = i2c_get_clientdata(client);
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
unsigned int i;
if (sensor->power_count) {
if (gpio_is_valid(sensor->platform_data->xshutdown))
gpio_set_value(sensor->platform_data->xshutdown, 0);
if (sensor->platform_data->set_xclk)
sensor->platform_data->set_xclk(&sensor->src->sd, 0);
else
clk_disable_unprepare(sensor->ext_clk);
sensor->power_count = 0;
}
device_remove_file(&client->dev, &dev_attr_ident);
if (sensor->nvm)
device_remove_file(&client->dev, &dev_attr_nvm);
for (i = 0; i < sensor->ssds_used; i++) {
v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
media_entity_cleanup(&sensor->ssds[i].sd.entity);
}
smiapp_free_controls(sensor);
return 0;
}
static const struct i2c_device_id smiapp_id_table[] = {
{ SMIAPP_NAME, 0 },
{ },
};
MODULE_DEVICE_TABLE(i2c, smiapp_id_table);
static const struct dev_pm_ops smiapp_pm_ops = {
.suspend = smiapp_suspend,
.resume = smiapp_resume,
};
static struct i2c_driver smiapp_i2c_driver = {
.driver = {
.name = SMIAPP_NAME,
.pm = &smiapp_pm_ops,
},
.probe = smiapp_probe,
.remove = smiapp_remove,
.id_table = smiapp_id_table,
};
module_i2c_driver(smiapp_i2c_driver);
MODULE_AUTHOR("Sakari Ailus <sakari.ailus@iki.fi>");
MODULE_DESCRIPTION("Generic SMIA/SMIA++ camera module driver");
MODULE_LICENSE("GPL");