linux/drivers/net/wireless/ath/ath6kl/init.c
Vasanthakumar Thiagarajan 6f2a73f9e5 ath6kl: Move key information to vif structure
Signed-off-by: Vasanthakumar Thiagarajan <vthiagar@qca.qualcomm.com>
Signed-off-by: Kalle Valo <kvalo@qca.qualcomm.com>
2011-11-11 12:58:47 +02:00

1651 lines
40 KiB
C

/*
* Copyright (c) 2011 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/moduleparam.h>
#include <linux/of.h>
#include <linux/mmc/sdio_func.h>
#include "core.h"
#include "cfg80211.h"
#include "target.h"
#include "debug.h"
#include "hif-ops.h"
unsigned int debug_mask;
static unsigned int testmode;
module_param(debug_mask, uint, 0644);
module_param(testmode, uint, 0644);
/*
* Include definitions here that can be used to tune the WLAN module
* behavior. Different customers can tune the behavior as per their needs,
* here.
*/
/*
* This configuration item enable/disable keepalive support.
* Keepalive support: In the absence of any data traffic to AP, null
* frames will be sent to the AP at periodic interval, to keep the association
* active. This configuration item defines the periodic interval.
* Use value of zero to disable keepalive support
* Default: 60 seconds
*/
#define WLAN_CONFIG_KEEP_ALIVE_INTERVAL 60
/*
* This configuration item sets the value of disconnect timeout
* Firmware delays sending the disconnec event to the host for this
* timeout after is gets disconnected from the current AP.
* If the firmware successly roams within the disconnect timeout
* it sends a new connect event
*/
#define WLAN_CONFIG_DISCONNECT_TIMEOUT 10
#define CONFIG_AR600x_DEBUG_UART_TX_PIN 8
#define ATH6KL_DATA_OFFSET 64
struct sk_buff *ath6kl_buf_alloc(int size)
{
struct sk_buff *skb;
u16 reserved;
/* Add chacheline space at front and back of buffer */
reserved = (2 * L1_CACHE_BYTES) + ATH6KL_DATA_OFFSET +
sizeof(struct htc_packet) + ATH6KL_HTC_ALIGN_BYTES;
skb = dev_alloc_skb(size + reserved);
if (skb)
skb_reserve(skb, reserved - L1_CACHE_BYTES);
return skb;
}
void ath6kl_init_profile_info(struct ath6kl *ar)
{
/* TODO: Findout vif */
struct ath6kl_vif *vif = ar->vif;
vif->ssid_len = 0;
memset(vif->ssid, 0, sizeof(vif->ssid));
vif->dot11_auth_mode = OPEN_AUTH;
vif->auth_mode = NONE_AUTH;
vif->prwise_crypto = NONE_CRYPT;
vif->prwise_crypto_len = 0;
vif->grp_crypto = NONE_CRYPT;
vif->grp_crypto_len = 0;
memset(vif->wep_key_list, 0, sizeof(vif->wep_key_list));
memset(vif->req_bssid, 0, sizeof(vif->req_bssid));
memset(vif->bssid, 0, sizeof(vif->bssid));
vif->bss_ch = 0;
vif->nw_type = vif->next_mode = INFRA_NETWORK;
}
static int ath6kl_set_host_app_area(struct ath6kl *ar)
{
u32 address, data;
struct host_app_area host_app_area;
/* Fetch the address of the host_app_area_s
* instance in the host interest area */
address = ath6kl_get_hi_item_addr(ar, HI_ITEM(hi_app_host_interest));
address = TARG_VTOP(ar->target_type, address);
if (ath6kl_diag_read32(ar, address, &data))
return -EIO;
address = TARG_VTOP(ar->target_type, data);
host_app_area.wmi_protocol_ver = cpu_to_le32(WMI_PROTOCOL_VERSION);
if (ath6kl_diag_write(ar, address, (u8 *) &host_app_area,
sizeof(struct host_app_area)))
return -EIO;
return 0;
}
static inline void set_ac2_ep_map(struct ath6kl *ar,
u8 ac,
enum htc_endpoint_id ep)
{
ar->ac2ep_map[ac] = ep;
ar->ep2ac_map[ep] = ac;
}
/* connect to a service */
static int ath6kl_connectservice(struct ath6kl *ar,
struct htc_service_connect_req *con_req,
char *desc)
{
int status;
struct htc_service_connect_resp response;
memset(&response, 0, sizeof(response));
status = ath6kl_htc_conn_service(ar->htc_target, con_req, &response);
if (status) {
ath6kl_err("failed to connect to %s service status:%d\n",
desc, status);
return status;
}
switch (con_req->svc_id) {
case WMI_CONTROL_SVC:
if (test_bit(WMI_ENABLED, &ar->flag))
ath6kl_wmi_set_control_ep(ar->wmi, response.endpoint);
ar->ctrl_ep = response.endpoint;
break;
case WMI_DATA_BE_SVC:
set_ac2_ep_map(ar, WMM_AC_BE, response.endpoint);
break;
case WMI_DATA_BK_SVC:
set_ac2_ep_map(ar, WMM_AC_BK, response.endpoint);
break;
case WMI_DATA_VI_SVC:
set_ac2_ep_map(ar, WMM_AC_VI, response.endpoint);
break;
case WMI_DATA_VO_SVC:
set_ac2_ep_map(ar, WMM_AC_VO, response.endpoint);
break;
default:
ath6kl_err("service id is not mapped %d\n", con_req->svc_id);
return -EINVAL;
}
return 0;
}
static int ath6kl_init_service_ep(struct ath6kl *ar)
{
struct htc_service_connect_req connect;
memset(&connect, 0, sizeof(connect));
/* these fields are the same for all service endpoints */
connect.ep_cb.rx = ath6kl_rx;
connect.ep_cb.rx_refill = ath6kl_rx_refill;
connect.ep_cb.tx_full = ath6kl_tx_queue_full;
/*
* Set the max queue depth so that our ath6kl_tx_queue_full handler
* gets called.
*/
connect.max_txq_depth = MAX_DEFAULT_SEND_QUEUE_DEPTH;
connect.ep_cb.rx_refill_thresh = ATH6KL_MAX_RX_BUFFERS / 4;
if (!connect.ep_cb.rx_refill_thresh)
connect.ep_cb.rx_refill_thresh++;
/* connect to control service */
connect.svc_id = WMI_CONTROL_SVC;
if (ath6kl_connectservice(ar, &connect, "WMI CONTROL"))
return -EIO;
connect.flags |= HTC_FLGS_TX_BNDL_PAD_EN;
/*
* Limit the HTC message size on the send path, although e can
* receive A-MSDU frames of 4K, we will only send ethernet-sized
* (802.3) frames on the send path.
*/
connect.max_rxmsg_sz = WMI_MAX_TX_DATA_FRAME_LENGTH;
/*
* To reduce the amount of committed memory for larger A_MSDU
* frames, use the recv-alloc threshold mechanism for larger
* packets.
*/
connect.ep_cb.rx_alloc_thresh = ATH6KL_BUFFER_SIZE;
connect.ep_cb.rx_allocthresh = ath6kl_alloc_amsdu_rxbuf;
/*
* For the remaining data services set the connection flag to
* reduce dribbling, if configured to do so.
*/
connect.conn_flags |= HTC_CONN_FLGS_REDUCE_CRED_DRIB;
connect.conn_flags &= ~HTC_CONN_FLGS_THRESH_MASK;
connect.conn_flags |= HTC_CONN_FLGS_THRESH_LVL_HALF;
connect.svc_id = WMI_DATA_BE_SVC;
if (ath6kl_connectservice(ar, &connect, "WMI DATA BE"))
return -EIO;
/* connect to back-ground map this to WMI LOW_PRI */
connect.svc_id = WMI_DATA_BK_SVC;
if (ath6kl_connectservice(ar, &connect, "WMI DATA BK"))
return -EIO;
/* connect to Video service, map this to to HI PRI */
connect.svc_id = WMI_DATA_VI_SVC;
if (ath6kl_connectservice(ar, &connect, "WMI DATA VI"))
return -EIO;
/*
* Connect to VO service, this is currently not mapped to a WMI
* priority stream due to historical reasons. WMI originally
* defined 3 priorities over 3 mailboxes We can change this when
* WMI is reworked so that priorities are not dependent on
* mailboxes.
*/
connect.svc_id = WMI_DATA_VO_SVC;
if (ath6kl_connectservice(ar, &connect, "WMI DATA VO"))
return -EIO;
return 0;
}
void ath6kl_init_control_info(struct ath6kl *ar)
{
/* TODO: Findout vif */
struct ath6kl_vif *vif = ar->vif;
ath6kl_init_profile_info(ar);
vif->def_txkey_index = 0;
memset(vif->wep_key_list, 0, sizeof(vif->wep_key_list));
vif->ch_hint = 0;
}
/*
* Set HTC/Mbox operational parameters, this can only be called when the
* target is in the BMI phase.
*/
static int ath6kl_set_htc_params(struct ath6kl *ar, u32 mbox_isr_yield_val,
u8 htc_ctrl_buf)
{
int status;
u32 blk_size;
blk_size = ar->mbox_info.block_size;
if (htc_ctrl_buf)
blk_size |= ((u32)htc_ctrl_buf) << 16;
/* set the host interest area for the block size */
status = ath6kl_bmi_write(ar,
ath6kl_get_hi_item_addr(ar,
HI_ITEM(hi_mbox_io_block_sz)),
(u8 *)&blk_size,
4);
if (status) {
ath6kl_err("bmi_write_memory for IO block size failed\n");
goto out;
}
ath6kl_dbg(ATH6KL_DBG_TRC, "block size set: %d (target addr:0x%X)\n",
blk_size,
ath6kl_get_hi_item_addr(ar, HI_ITEM(hi_mbox_io_block_sz)));
if (mbox_isr_yield_val) {
/* set the host interest area for the mbox ISR yield limit */
status = ath6kl_bmi_write(ar,
ath6kl_get_hi_item_addr(ar,
HI_ITEM(hi_mbox_isr_yield_limit)),
(u8 *)&mbox_isr_yield_val,
4);
if (status) {
ath6kl_err("bmi_write_memory for yield limit failed\n");
goto out;
}
}
out:
return status;
}
#define REG_DUMP_COUNT_AR6003 60
#define REGISTER_DUMP_LEN_MAX 60
static void ath6kl_dump_target_assert_info(struct ath6kl *ar)
{
u32 address;
u32 regdump_loc = 0;
int status;
u32 regdump_val[REGISTER_DUMP_LEN_MAX];
u32 i;
if (ar->target_type != TARGET_TYPE_AR6003)
return;
/* the reg dump pointer is copied to the host interest area */
address = ath6kl_get_hi_item_addr(ar, HI_ITEM(hi_failure_state));
address = TARG_VTOP(ar->target_type, address);
/* read RAM location through diagnostic window */
status = ath6kl_diag_read32(ar, address, &regdump_loc);
if (status || !regdump_loc) {
ath6kl_err("failed to get ptr to register dump area\n");
return;
}
ath6kl_dbg(ATH6KL_DBG_TRC, "location of register dump data: 0x%X\n",
regdump_loc);
regdump_loc = TARG_VTOP(ar->target_type, regdump_loc);
/* fetch register dump data */
status = ath6kl_diag_read(ar, regdump_loc, (u8 *)&regdump_val[0],
REG_DUMP_COUNT_AR6003 * (sizeof(u32)));
if (status) {
ath6kl_err("failed to get register dump\n");
return;
}
ath6kl_dbg(ATH6KL_DBG_TRC, "Register Dump:\n");
for (i = 0; i < REG_DUMP_COUNT_AR6003; i++)
ath6kl_dbg(ATH6KL_DBG_TRC, " %d : 0x%8.8X\n",
i, regdump_val[i]);
}
void ath6kl_target_failure(struct ath6kl *ar)
{
ath6kl_err("target asserted\n");
/* try dumping target assertion information (if any) */
ath6kl_dump_target_assert_info(ar);
}
static int ath6kl_target_config_wlan_params(struct ath6kl *ar)
{
int status = 0;
int ret;
/*
* Configure the device for rx dot11 header rules. "0,0" are the
* default values. Required if checksum offload is needed. Set
* RxMetaVersion to 2.
*/
if (ath6kl_wmi_set_rx_frame_format_cmd(ar->wmi,
ar->rx_meta_ver, 0, 0)) {
ath6kl_err("unable to set the rx frame format\n");
status = -EIO;
}
if (ar->conf_flags & ATH6KL_CONF_IGNORE_PS_FAIL_EVT_IN_SCAN)
if ((ath6kl_wmi_pmparams_cmd(ar->wmi, 0, 1, 0, 0, 1,
IGNORE_POWER_SAVE_FAIL_EVENT_DURING_SCAN)) != 0) {
ath6kl_err("unable to set power save fail event policy\n");
status = -EIO;
}
if (!(ar->conf_flags & ATH6KL_CONF_IGNORE_ERP_BARKER))
if ((ath6kl_wmi_set_lpreamble_cmd(ar->wmi, 0,
WMI_DONOT_IGNORE_BARKER_IN_ERP)) != 0) {
ath6kl_err("unable to set barker preamble policy\n");
status = -EIO;
}
if (ath6kl_wmi_set_keepalive_cmd(ar->wmi,
WLAN_CONFIG_KEEP_ALIVE_INTERVAL)) {
ath6kl_err("unable to set keep alive interval\n");
status = -EIO;
}
if (ath6kl_wmi_disctimeout_cmd(ar->wmi,
WLAN_CONFIG_DISCONNECT_TIMEOUT)) {
ath6kl_err("unable to set disconnect timeout\n");
status = -EIO;
}
if (!(ar->conf_flags & ATH6KL_CONF_ENABLE_TX_BURST))
if (ath6kl_wmi_set_wmm_txop(ar->wmi, WMI_TXOP_DISABLED)) {
ath6kl_err("unable to set txop bursting\n");
status = -EIO;
}
if (ar->p2p) {
ret = ath6kl_wmi_info_req_cmd(ar->wmi,
P2P_FLAG_CAPABILITIES_REQ |
P2P_FLAG_MACADDR_REQ |
P2P_FLAG_HMODEL_REQ);
if (ret) {
ath6kl_dbg(ATH6KL_DBG_TRC, "failed to request P2P "
"capabilities (%d) - assuming P2P not "
"supported\n", ret);
ar->p2p = 0;
}
}
if (ar->p2p) {
/* Enable Probe Request reporting for P2P */
ret = ath6kl_wmi_probe_report_req_cmd(ar->wmi, true);
if (ret) {
ath6kl_dbg(ATH6KL_DBG_TRC, "failed to enable Probe "
"Request reporting (%d)\n", ret);
}
}
return status;
}
int ath6kl_configure_target(struct ath6kl *ar)
{
u32 param, ram_reserved_size;
u8 fw_iftype;
fw_iftype = HI_OPTION_FW_MODE_BSS_STA;
/* Tell target which HTC version it is used*/
param = HTC_PROTOCOL_VERSION;
if (ath6kl_bmi_write(ar,
ath6kl_get_hi_item_addr(ar,
HI_ITEM(hi_app_host_interest)),
(u8 *)&param, 4) != 0) {
ath6kl_err("bmi_write_memory for htc version failed\n");
return -EIO;
}
/* set the firmware mode to STA/IBSS/AP */
param = 0;
if (ath6kl_bmi_read(ar,
ath6kl_get_hi_item_addr(ar,
HI_ITEM(hi_option_flag)),
(u8 *)&param, 4) != 0) {
ath6kl_err("bmi_read_memory for setting fwmode failed\n");
return -EIO;
}
param |= (1 << HI_OPTION_NUM_DEV_SHIFT);
param |= (fw_iftype << HI_OPTION_FW_MODE_SHIFT);
if (ar->p2p && fw_iftype == HI_OPTION_FW_MODE_BSS_STA) {
param |= HI_OPTION_FW_SUBMODE_P2PDEV <<
HI_OPTION_FW_SUBMODE_SHIFT;
}
param |= (0 << HI_OPTION_MAC_ADDR_METHOD_SHIFT);
param |= (0 << HI_OPTION_FW_BRIDGE_SHIFT);
if (ath6kl_bmi_write(ar,
ath6kl_get_hi_item_addr(ar,
HI_ITEM(hi_option_flag)),
(u8 *)&param,
4) != 0) {
ath6kl_err("bmi_write_memory for setting fwmode failed\n");
return -EIO;
}
ath6kl_dbg(ATH6KL_DBG_TRC, "firmware mode set\n");
/*
* Hardcode the address use for the extended board data
* Ideally this should be pre-allocate by the OS at boot time
* But since it is a new feature and board data is loaded
* at init time, we have to workaround this from host.
* It is difficult to patch the firmware boot code,
* but possible in theory.
*/
param = ar->hw.board_ext_data_addr;
ram_reserved_size = ar->hw.reserved_ram_size;
if (ath6kl_bmi_write(ar, ath6kl_get_hi_item_addr(ar,
HI_ITEM(hi_board_ext_data)),
(u8 *)&param, 4) != 0) {
ath6kl_err("bmi_write_memory for hi_board_ext_data failed\n");
return -EIO;
}
if (ath6kl_bmi_write(ar, ath6kl_get_hi_item_addr(ar,
HI_ITEM(hi_end_ram_reserve_sz)),
(u8 *)&ram_reserved_size, 4) != 0) {
ath6kl_err("bmi_write_memory for hi_end_ram_reserve_sz failed\n");
return -EIO;
}
/* set the block size for the target */
if (ath6kl_set_htc_params(ar, MBOX_YIELD_LIMIT, 0))
/* use default number of control buffers */
return -EIO;
return 0;
}
void ath6kl_core_free(struct ath6kl *ar)
{
wiphy_free(ar->wiphy);
}
int ath6kl_unavail_ev(struct ath6kl *ar)
{
ath6kl_destroy(ar->net_dev, 1);
return 0;
}
/* firmware upload */
static int ath6kl_get_fw(struct ath6kl *ar, const char *filename,
u8 **fw, size_t *fw_len)
{
const struct firmware *fw_entry;
int ret;
ret = request_firmware(&fw_entry, filename, ar->dev);
if (ret)
return ret;
*fw_len = fw_entry->size;
*fw = kmemdup(fw_entry->data, fw_entry->size, GFP_KERNEL);
if (*fw == NULL)
ret = -ENOMEM;
release_firmware(fw_entry);
return ret;
}
#ifdef CONFIG_OF
static const char *get_target_ver_dir(const struct ath6kl *ar)
{
switch (ar->version.target_ver) {
case AR6003_REV1_VERSION:
return "ath6k/AR6003/hw1.0";
case AR6003_REV2_VERSION:
return "ath6k/AR6003/hw2.0";
case AR6003_REV3_VERSION:
return "ath6k/AR6003/hw2.1.1";
}
ath6kl_warn("%s: unsupported target version 0x%x.\n", __func__,
ar->version.target_ver);
return NULL;
}
/*
* Check the device tree for a board-id and use it to construct
* the pathname to the firmware file. Used (for now) to find a
* fallback to the "bdata.bin" file--typically a symlink to the
* appropriate board-specific file.
*/
static bool check_device_tree(struct ath6kl *ar)
{
static const char *board_id_prop = "atheros,board-id";
struct device_node *node;
char board_filename[64];
const char *board_id;
int ret;
for_each_compatible_node(node, NULL, "atheros,ath6kl") {
board_id = of_get_property(node, board_id_prop, NULL);
if (board_id == NULL) {
ath6kl_warn("No \"%s\" property on %s node.\n",
board_id_prop, node->name);
continue;
}
snprintf(board_filename, sizeof(board_filename),
"%s/bdata.%s.bin", get_target_ver_dir(ar), board_id);
ret = ath6kl_get_fw(ar, board_filename, &ar->fw_board,
&ar->fw_board_len);
if (ret) {
ath6kl_err("Failed to get DT board file %s: %d\n",
board_filename, ret);
continue;
}
return true;
}
return false;
}
#else
static bool check_device_tree(struct ath6kl *ar)
{
return false;
}
#endif /* CONFIG_OF */
static int ath6kl_fetch_board_file(struct ath6kl *ar)
{
const char *filename;
int ret;
if (ar->fw_board != NULL)
return 0;
switch (ar->version.target_ver) {
case AR6003_REV2_VERSION:
filename = AR6003_REV2_BOARD_DATA_FILE;
break;
case AR6004_REV1_VERSION:
filename = AR6004_REV1_BOARD_DATA_FILE;
break;
default:
filename = AR6003_REV3_BOARD_DATA_FILE;
break;
}
ret = ath6kl_get_fw(ar, filename, &ar->fw_board,
&ar->fw_board_len);
if (ret == 0) {
/* managed to get proper board file */
return 0;
}
if (check_device_tree(ar)) {
/* got board file from device tree */
return 0;
}
/* there was no proper board file, try to use default instead */
ath6kl_warn("Failed to get board file %s (%d), trying to find default board file.\n",
filename, ret);
switch (ar->version.target_ver) {
case AR6003_REV2_VERSION:
filename = AR6003_REV2_DEFAULT_BOARD_DATA_FILE;
break;
case AR6004_REV1_VERSION:
filename = AR6004_REV1_DEFAULT_BOARD_DATA_FILE;
break;
default:
filename = AR6003_REV3_DEFAULT_BOARD_DATA_FILE;
break;
}
ret = ath6kl_get_fw(ar, filename, &ar->fw_board,
&ar->fw_board_len);
if (ret) {
ath6kl_err("Failed to get default board file %s: %d\n",
filename, ret);
return ret;
}
ath6kl_warn("WARNING! No proper board file was not found, instead using a default board file.\n");
ath6kl_warn("Most likely your hardware won't work as specified. Install correct board file!\n");
return 0;
}
static int ath6kl_fetch_otp_file(struct ath6kl *ar)
{
const char *filename;
int ret;
if (ar->fw_otp != NULL)
return 0;
switch (ar->version.target_ver) {
case AR6003_REV2_VERSION:
filename = AR6003_REV2_OTP_FILE;
break;
case AR6004_REV1_VERSION:
ath6kl_dbg(ATH6KL_DBG_TRC, "AR6004 doesn't need OTP file\n");
return 0;
break;
default:
filename = AR6003_REV3_OTP_FILE;
break;
}
ret = ath6kl_get_fw(ar, filename, &ar->fw_otp,
&ar->fw_otp_len);
if (ret) {
ath6kl_err("Failed to get OTP file %s: %d\n",
filename, ret);
return ret;
}
return 0;
}
static int ath6kl_fetch_fw_file(struct ath6kl *ar)
{
const char *filename;
int ret;
if (ar->fw != NULL)
return 0;
if (testmode) {
switch (ar->version.target_ver) {
case AR6003_REV2_VERSION:
filename = AR6003_REV2_TCMD_FIRMWARE_FILE;
break;
case AR6003_REV3_VERSION:
filename = AR6003_REV3_TCMD_FIRMWARE_FILE;
break;
case AR6004_REV1_VERSION:
ath6kl_warn("testmode not supported with ar6004\n");
return -EOPNOTSUPP;
default:
ath6kl_warn("unknown target version: 0x%x\n",
ar->version.target_ver);
return -EINVAL;
}
set_bit(TESTMODE, &ar->flag);
goto get_fw;
}
switch (ar->version.target_ver) {
case AR6003_REV2_VERSION:
filename = AR6003_REV2_FIRMWARE_FILE;
break;
case AR6004_REV1_VERSION:
filename = AR6004_REV1_FIRMWARE_FILE;
break;
default:
filename = AR6003_REV3_FIRMWARE_FILE;
break;
}
get_fw:
ret = ath6kl_get_fw(ar, filename, &ar->fw, &ar->fw_len);
if (ret) {
ath6kl_err("Failed to get firmware file %s: %d\n",
filename, ret);
return ret;
}
return 0;
}
static int ath6kl_fetch_patch_file(struct ath6kl *ar)
{
const char *filename;
int ret;
switch (ar->version.target_ver) {
case AR6003_REV2_VERSION:
filename = AR6003_REV2_PATCH_FILE;
break;
case AR6004_REV1_VERSION:
/* FIXME: implement for AR6004 */
return 0;
break;
default:
filename = AR6003_REV3_PATCH_FILE;
break;
}
if (ar->fw_patch == NULL) {
ret = ath6kl_get_fw(ar, filename, &ar->fw_patch,
&ar->fw_patch_len);
if (ret) {
ath6kl_err("Failed to get patch file %s: %d\n",
filename, ret);
return ret;
}
}
return 0;
}
static int ath6kl_fetch_fw_api1(struct ath6kl *ar)
{
int ret;
ret = ath6kl_fetch_otp_file(ar);
if (ret)
return ret;
ret = ath6kl_fetch_fw_file(ar);
if (ret)
return ret;
ret = ath6kl_fetch_patch_file(ar);
if (ret)
return ret;
return 0;
}
static int ath6kl_fetch_fw_api2(struct ath6kl *ar)
{
size_t magic_len, len, ie_len;
const struct firmware *fw;
struct ath6kl_fw_ie *hdr;
const char *filename;
const u8 *data;
int ret, ie_id, i, index, bit;
__le32 *val;
switch (ar->version.target_ver) {
case AR6003_REV2_VERSION:
filename = AR6003_REV2_FIRMWARE_2_FILE;
break;
case AR6003_REV3_VERSION:
filename = AR6003_REV3_FIRMWARE_2_FILE;
break;
case AR6004_REV1_VERSION:
filename = AR6004_REV1_FIRMWARE_2_FILE;
break;
default:
return -EOPNOTSUPP;
}
ret = request_firmware(&fw, filename, ar->dev);
if (ret)
return ret;
data = fw->data;
len = fw->size;
/* magic also includes the null byte, check that as well */
magic_len = strlen(ATH6KL_FIRMWARE_MAGIC) + 1;
if (len < magic_len) {
ret = -EINVAL;
goto out;
}
if (memcmp(data, ATH6KL_FIRMWARE_MAGIC, magic_len) != 0) {
ret = -EINVAL;
goto out;
}
len -= magic_len;
data += magic_len;
/* loop elements */
while (len > sizeof(struct ath6kl_fw_ie)) {
/* hdr is unaligned! */
hdr = (struct ath6kl_fw_ie *) data;
ie_id = le32_to_cpup(&hdr->id);
ie_len = le32_to_cpup(&hdr->len);
len -= sizeof(*hdr);
data += sizeof(*hdr);
if (len < ie_len) {
ret = -EINVAL;
goto out;
}
switch (ie_id) {
case ATH6KL_FW_IE_OTP_IMAGE:
ath6kl_dbg(ATH6KL_DBG_BOOT, "found otp image ie (%zd B)\n",
ie_len);
ar->fw_otp = kmemdup(data, ie_len, GFP_KERNEL);
if (ar->fw_otp == NULL) {
ret = -ENOMEM;
goto out;
}
ar->fw_otp_len = ie_len;
break;
case ATH6KL_FW_IE_FW_IMAGE:
ath6kl_dbg(ATH6KL_DBG_BOOT, "found fw image ie (%zd B)\n",
ie_len);
ar->fw = kmemdup(data, ie_len, GFP_KERNEL);
if (ar->fw == NULL) {
ret = -ENOMEM;
goto out;
}
ar->fw_len = ie_len;
break;
case ATH6KL_FW_IE_PATCH_IMAGE:
ath6kl_dbg(ATH6KL_DBG_BOOT, "found patch image ie (%zd B)\n",
ie_len);
ar->fw_patch = kmemdup(data, ie_len, GFP_KERNEL);
if (ar->fw_patch == NULL) {
ret = -ENOMEM;
goto out;
}
ar->fw_patch_len = ie_len;
break;
case ATH6KL_FW_IE_RESERVED_RAM_SIZE:
val = (__le32 *) data;
ar->hw.reserved_ram_size = le32_to_cpup(val);
ath6kl_dbg(ATH6KL_DBG_BOOT,
"found reserved ram size ie 0x%d\n",
ar->hw.reserved_ram_size);
break;
case ATH6KL_FW_IE_CAPABILITIES:
ath6kl_dbg(ATH6KL_DBG_BOOT,
"found firmware capabilities ie (%zd B)\n",
ie_len);
for (i = 0; i < ATH6KL_FW_CAPABILITY_MAX; i++) {
index = ALIGN(i, 8) / 8;
bit = i % 8;
if (data[index] & (1 << bit))
__set_bit(i, ar->fw_capabilities);
}
ath6kl_dbg_dump(ATH6KL_DBG_BOOT, "capabilities", "",
ar->fw_capabilities,
sizeof(ar->fw_capabilities));
break;
case ATH6KL_FW_IE_PATCH_ADDR:
if (ie_len != sizeof(*val))
break;
val = (__le32 *) data;
ar->hw.dataset_patch_addr = le32_to_cpup(val);
ath6kl_dbg(ATH6KL_DBG_BOOT,
"found patch address ie 0x%d\n",
ar->hw.dataset_patch_addr);
break;
default:
ath6kl_dbg(ATH6KL_DBG_BOOT, "Unknown fw ie: %u\n",
le32_to_cpup(&hdr->id));
break;
}
len -= ie_len;
data += ie_len;
};
ret = 0;
out:
release_firmware(fw);
return ret;
}
static int ath6kl_fetch_firmwares(struct ath6kl *ar)
{
int ret;
ret = ath6kl_fetch_board_file(ar);
if (ret)
return ret;
ret = ath6kl_fetch_fw_api2(ar);
if (ret == 0) {
ath6kl_dbg(ATH6KL_DBG_BOOT, "using fw api 2\n");
return 0;
}
ret = ath6kl_fetch_fw_api1(ar);
if (ret)
return ret;
ath6kl_dbg(ATH6KL_DBG_BOOT, "using fw api 1\n");
return 0;
}
static int ath6kl_upload_board_file(struct ath6kl *ar)
{
u32 board_address, board_ext_address, param;
u32 board_data_size, board_ext_data_size;
int ret;
if (WARN_ON(ar->fw_board == NULL))
return -ENOENT;
/*
* Determine where in Target RAM to write Board Data.
* For AR6004, host determine Target RAM address for
* writing board data.
*/
if (ar->target_type == TARGET_TYPE_AR6004) {
board_address = AR6004_REV1_BOARD_DATA_ADDRESS;
ath6kl_bmi_write(ar,
ath6kl_get_hi_item_addr(ar,
HI_ITEM(hi_board_data)),
(u8 *) &board_address, 4);
} else {
ath6kl_bmi_read(ar,
ath6kl_get_hi_item_addr(ar,
HI_ITEM(hi_board_data)),
(u8 *) &board_address, 4);
}
/* determine where in target ram to write extended board data */
ath6kl_bmi_read(ar,
ath6kl_get_hi_item_addr(ar,
HI_ITEM(hi_board_ext_data)),
(u8 *) &board_ext_address, 4);
if (board_ext_address == 0) {
ath6kl_err("Failed to get board file target address.\n");
return -EINVAL;
}
switch (ar->target_type) {
case TARGET_TYPE_AR6003:
board_data_size = AR6003_BOARD_DATA_SZ;
board_ext_data_size = AR6003_BOARD_EXT_DATA_SZ;
break;
case TARGET_TYPE_AR6004:
board_data_size = AR6004_BOARD_DATA_SZ;
board_ext_data_size = AR6004_BOARD_EXT_DATA_SZ;
break;
default:
WARN_ON(1);
return -EINVAL;
break;
}
if (ar->fw_board_len == (board_data_size +
board_ext_data_size)) {
/* write extended board data */
ath6kl_dbg(ATH6KL_DBG_BOOT,
"writing extended board data to 0x%x (%d B)\n",
board_ext_address, board_ext_data_size);
ret = ath6kl_bmi_write(ar, board_ext_address,
ar->fw_board + board_data_size,
board_ext_data_size);
if (ret) {
ath6kl_err("Failed to write extended board data: %d\n",
ret);
return ret;
}
/* record that extended board data is initialized */
param = (board_ext_data_size << 16) | 1;
ath6kl_bmi_write(ar,
ath6kl_get_hi_item_addr(ar,
HI_ITEM(hi_board_ext_data_config)),
(unsigned char *) &param, 4);
}
if (ar->fw_board_len < board_data_size) {
ath6kl_err("Too small board file: %zu\n", ar->fw_board_len);
ret = -EINVAL;
return ret;
}
ath6kl_dbg(ATH6KL_DBG_BOOT, "writing board file to 0x%x (%d B)\n",
board_address, board_data_size);
ret = ath6kl_bmi_write(ar, board_address, ar->fw_board,
board_data_size);
if (ret) {
ath6kl_err("Board file bmi write failed: %d\n", ret);
return ret;
}
/* record the fact that Board Data IS initialized */
param = 1;
ath6kl_bmi_write(ar,
ath6kl_get_hi_item_addr(ar,
HI_ITEM(hi_board_data_initialized)),
(u8 *)&param, 4);
return ret;
}
static int ath6kl_upload_otp(struct ath6kl *ar)
{
u32 address, param;
bool from_hw = false;
int ret;
if (WARN_ON(ar->fw_otp == NULL))
return -ENOENT;
address = ar->hw.app_load_addr;
ath6kl_dbg(ATH6KL_DBG_BOOT, "writing otp to 0x%x (%zd B)\n", address,
ar->fw_otp_len);
ret = ath6kl_bmi_fast_download(ar, address, ar->fw_otp,
ar->fw_otp_len);
if (ret) {
ath6kl_err("Failed to upload OTP file: %d\n", ret);
return ret;
}
/* read firmware start address */
ret = ath6kl_bmi_read(ar,
ath6kl_get_hi_item_addr(ar,
HI_ITEM(hi_app_start)),
(u8 *) &address, sizeof(address));
if (ret) {
ath6kl_err("Failed to read hi_app_start: %d\n", ret);
return ret;
}
if (ar->hw.app_start_override_addr == 0) {
ar->hw.app_start_override_addr = address;
from_hw = true;
}
ath6kl_dbg(ATH6KL_DBG_BOOT, "app_start_override_addr%s 0x%x\n",
from_hw ? " (from hw)" : "",
ar->hw.app_start_override_addr);
/* execute the OTP code */
ath6kl_dbg(ATH6KL_DBG_BOOT, "executing OTP at 0x%x\n",
ar->hw.app_start_override_addr);
param = 0;
ath6kl_bmi_execute(ar, ar->hw.app_start_override_addr, &param);
return ret;
}
static int ath6kl_upload_firmware(struct ath6kl *ar)
{
u32 address;
int ret;
if (WARN_ON(ar->fw == NULL))
return -ENOENT;
address = ar->hw.app_load_addr;
ath6kl_dbg(ATH6KL_DBG_BOOT, "writing firmware to 0x%x (%zd B)\n",
address, ar->fw_len);
ret = ath6kl_bmi_fast_download(ar, address, ar->fw, ar->fw_len);
if (ret) {
ath6kl_err("Failed to write firmware: %d\n", ret);
return ret;
}
/*
* Set starting address for firmware
* Don't need to setup app_start override addr on AR6004
*/
if (ar->target_type != TARGET_TYPE_AR6004) {
address = ar->hw.app_start_override_addr;
ath6kl_bmi_set_app_start(ar, address);
}
return ret;
}
static int ath6kl_upload_patch(struct ath6kl *ar)
{
u32 address, param;
int ret;
if (WARN_ON(ar->fw_patch == NULL))
return -ENOENT;
address = ar->hw.dataset_patch_addr;
ath6kl_dbg(ATH6KL_DBG_BOOT, "writing patch to 0x%x (%zd B)\n",
address, ar->fw_patch_len);
ret = ath6kl_bmi_write(ar, address, ar->fw_patch, ar->fw_patch_len);
if (ret) {
ath6kl_err("Failed to write patch file: %d\n", ret);
return ret;
}
param = address;
ath6kl_bmi_write(ar,
ath6kl_get_hi_item_addr(ar,
HI_ITEM(hi_dset_list_head)),
(unsigned char *) &param, 4);
return 0;
}
static int ath6kl_init_upload(struct ath6kl *ar)
{
u32 param, options, sleep, address;
int status = 0;
if (ar->target_type != TARGET_TYPE_AR6003 &&
ar->target_type != TARGET_TYPE_AR6004)
return -EINVAL;
/* temporarily disable system sleep */
address = MBOX_BASE_ADDRESS + LOCAL_SCRATCH_ADDRESS;
status = ath6kl_bmi_reg_read(ar, address, &param);
if (status)
return status;
options = param;
param |= ATH6KL_OPTION_SLEEP_DISABLE;
status = ath6kl_bmi_reg_write(ar, address, param);
if (status)
return status;
address = RTC_BASE_ADDRESS + SYSTEM_SLEEP_ADDRESS;
status = ath6kl_bmi_reg_read(ar, address, &param);
if (status)
return status;
sleep = param;
param |= SM(SYSTEM_SLEEP_DISABLE, 1);
status = ath6kl_bmi_reg_write(ar, address, param);
if (status)
return status;
ath6kl_dbg(ATH6KL_DBG_TRC, "old options: %d, old sleep: %d\n",
options, sleep);
/* program analog PLL register */
/* no need to control 40/44MHz clock on AR6004 */
if (ar->target_type != TARGET_TYPE_AR6004) {
status = ath6kl_bmi_reg_write(ar, ATH6KL_ANALOG_PLL_REGISTER,
0xF9104001);
if (status)
return status;
/* Run at 80/88MHz by default */
param = SM(CPU_CLOCK_STANDARD, 1);
address = RTC_BASE_ADDRESS + CPU_CLOCK_ADDRESS;
status = ath6kl_bmi_reg_write(ar, address, param);
if (status)
return status;
}
param = 0;
address = RTC_BASE_ADDRESS + LPO_CAL_ADDRESS;
param = SM(LPO_CAL_ENABLE, 1);
status = ath6kl_bmi_reg_write(ar, address, param);
if (status)
return status;
/* WAR to avoid SDIO CRC err */
if (ar->version.target_ver == AR6003_REV2_VERSION) {
ath6kl_err("temporary war to avoid sdio crc error\n");
param = 0x20;
address = GPIO_BASE_ADDRESS + GPIO_PIN10_ADDRESS;
status = ath6kl_bmi_reg_write(ar, address, param);
if (status)
return status;
address = GPIO_BASE_ADDRESS + GPIO_PIN11_ADDRESS;
status = ath6kl_bmi_reg_write(ar, address, param);
if (status)
return status;
address = GPIO_BASE_ADDRESS + GPIO_PIN12_ADDRESS;
status = ath6kl_bmi_reg_write(ar, address, param);
if (status)
return status;
address = GPIO_BASE_ADDRESS + GPIO_PIN13_ADDRESS;
status = ath6kl_bmi_reg_write(ar, address, param);
if (status)
return status;
}
/* write EEPROM data to Target RAM */
status = ath6kl_upload_board_file(ar);
if (status)
return status;
/* transfer One time Programmable data */
status = ath6kl_upload_otp(ar);
if (status)
return status;
/* Download Target firmware */
status = ath6kl_upload_firmware(ar);
if (status)
return status;
status = ath6kl_upload_patch(ar);
if (status)
return status;
/* Restore system sleep */
address = RTC_BASE_ADDRESS + SYSTEM_SLEEP_ADDRESS;
status = ath6kl_bmi_reg_write(ar, address, sleep);
if (status)
return status;
address = MBOX_BASE_ADDRESS + LOCAL_SCRATCH_ADDRESS;
param = options | 0x20;
status = ath6kl_bmi_reg_write(ar, address, param);
if (status)
return status;
/* Configure GPIO AR6003 UART */
param = CONFIG_AR600x_DEBUG_UART_TX_PIN;
status = ath6kl_bmi_write(ar,
ath6kl_get_hi_item_addr(ar,
HI_ITEM(hi_dbg_uart_txpin)),
(u8 *)&param, 4);
return status;
}
static int ath6kl_init_hw_params(struct ath6kl *ar)
{
switch (ar->version.target_ver) {
case AR6003_REV2_VERSION:
ar->hw.dataset_patch_addr = AR6003_REV2_DATASET_PATCH_ADDRESS;
ar->hw.app_load_addr = AR6003_REV2_APP_LOAD_ADDRESS;
ar->hw.board_ext_data_addr = AR6003_REV2_BOARD_EXT_DATA_ADDRESS;
ar->hw.reserved_ram_size = AR6003_REV2_RAM_RESERVE_SIZE;
/* hw2.0 needs override address hardcoded */
ar->hw.app_start_override_addr = 0x944C00;
break;
case AR6003_REV3_VERSION:
ar->hw.dataset_patch_addr = AR6003_REV3_DATASET_PATCH_ADDRESS;
ar->hw.app_load_addr = 0x1234;
ar->hw.board_ext_data_addr = AR6003_REV3_BOARD_EXT_DATA_ADDRESS;
ar->hw.reserved_ram_size = AR6003_REV3_RAM_RESERVE_SIZE;
break;
case AR6004_REV1_VERSION:
ar->hw.dataset_patch_addr = AR6003_REV2_DATASET_PATCH_ADDRESS;
ar->hw.app_load_addr = AR6003_REV3_APP_LOAD_ADDRESS;
ar->hw.board_ext_data_addr = AR6004_REV1_BOARD_EXT_DATA_ADDRESS;
ar->hw.reserved_ram_size = AR6004_REV1_RAM_RESERVE_SIZE;
break;
default:
ath6kl_err("Unsupported hardware version: 0x%x\n",
ar->version.target_ver);
return -EINVAL;
}
ath6kl_dbg(ATH6KL_DBG_BOOT,
"target_ver 0x%x target_type 0x%x dataset_patch 0x%x app_load_addr 0x%x\n",
ar->version.target_ver, ar->target_type,
ar->hw.dataset_patch_addr, ar->hw.app_load_addr);
ath6kl_dbg(ATH6KL_DBG_BOOT,
"app_start_override_addr 0x%x board_ext_data_addr 0x%x reserved_ram_size 0x%x",
ar->hw.app_start_override_addr, ar->hw.board_ext_data_addr,
ar->hw.reserved_ram_size);
return 0;
}
static int ath6kl_init(struct ath6kl *ar)
{
int status = 0;
s32 timeleft;
struct net_device *ndev;
if (!ar)
return -EIO;
/* Do we need to finish the BMI phase */
if (ath6kl_bmi_done(ar)) {
status = -EIO;
goto ath6kl_init_done;
}
/* Indicate that WMI is enabled (although not ready yet) */
set_bit(WMI_ENABLED, &ar->flag);
ar->wmi = ath6kl_wmi_init(ar);
if (!ar->wmi) {
ath6kl_err("failed to initialize wmi\n");
status = -EIO;
goto ath6kl_init_done;
}
ath6kl_dbg(ATH6KL_DBG_TRC, "%s: got wmi @ 0x%p.\n", __func__, ar->wmi);
status = ath6kl_register_ieee80211_hw(ar);
if (status)
goto err_node_cleanup;
status = ath6kl_debug_init(ar);
if (status) {
wiphy_unregister(ar->wiphy);
goto err_node_cleanup;
}
/* Add an initial station interface */
ndev = ath6kl_interface_add(ar, "wlan%d", NL80211_IFTYPE_STATION);
if (!ndev) {
ath6kl_err("Failed to instantiate a network device\n");
status = -ENOMEM;
wiphy_unregister(ar->wiphy);
goto err_debug_init;
}
ath6kl_dbg(ATH6KL_DBG_TRC, "%s: name=%s dev=0x%p, ar=0x%p\n",
__func__, ar->net_dev->name, ar->net_dev, ar);
/*
* The reason we have to wait for the target here is that the
* driver layer has to init BMI in order to set the host block
* size.
*/
if (ath6kl_htc_wait_target(ar->htc_target)) {
status = -EIO;
goto err_if_deinit;
}
if (ath6kl_init_service_ep(ar)) {
status = -EIO;
goto err_cleanup_scatter;
}
/* setup access class priority mappings */
ar->ac_stream_pri_map[WMM_AC_BK] = 0; /* lowest */
ar->ac_stream_pri_map[WMM_AC_BE] = 1;
ar->ac_stream_pri_map[WMM_AC_VI] = 2;
ar->ac_stream_pri_map[WMM_AC_VO] = 3; /* highest */
/* give our connected endpoints some buffers */
ath6kl_rx_refill(ar->htc_target, ar->ctrl_ep);
ath6kl_rx_refill(ar->htc_target, ar->ac2ep_map[WMM_AC_BE]);
/* allocate some buffers that handle larger AMSDU frames */
ath6kl_refill_amsdu_rxbufs(ar, ATH6KL_MAX_AMSDU_RX_BUFFERS);
/* setup credit distribution */
ath6k_setup_credit_dist(ar->htc_target, &ar->credit_state_info);
ath6kl_cookie_init(ar);
/* start HTC */
status = ath6kl_htc_start(ar->htc_target);
if (status) {
ath6kl_cookie_cleanup(ar);
goto err_rxbuf_cleanup;
}
/* Wait for Wmi event to be ready */
timeleft = wait_event_interruptible_timeout(ar->event_wq,
test_bit(WMI_READY,
&ar->flag),
WMI_TIMEOUT);
ath6kl_dbg(ATH6KL_DBG_BOOT, "firmware booted\n");
if (ar->version.abi_ver != ATH6KL_ABI_VERSION) {
ath6kl_err("abi version mismatch: host(0x%x), target(0x%x)\n",
ATH6KL_ABI_VERSION, ar->version.abi_ver);
status = -EIO;
goto err_htc_stop;
}
if (!timeleft || signal_pending(current)) {
ath6kl_err("wmi is not ready or wait was interrupted\n");
status = -EIO;
goto err_htc_stop;
}
ath6kl_dbg(ATH6KL_DBG_TRC, "%s: wmi is ready\n", __func__);
/* communicate the wmi protocol verision to the target */
if ((ath6kl_set_host_app_area(ar)) != 0)
ath6kl_err("unable to set the host app area\n");
ar->conf_flags = ATH6KL_CONF_IGNORE_ERP_BARKER |
ATH6KL_CONF_ENABLE_11N | ATH6KL_CONF_ENABLE_TX_BURST;
ar->wiphy->flags |= WIPHY_FLAG_SUPPORTS_FW_ROAM |
WIPHY_FLAG_HAVE_AP_SME;
status = ath6kl_target_config_wlan_params(ar);
if (!status)
goto ath6kl_init_done;
err_htc_stop:
ath6kl_htc_stop(ar->htc_target);
err_rxbuf_cleanup:
ath6kl_htc_flush_rx_buf(ar->htc_target);
ath6kl_cleanup_amsdu_rxbufs(ar);
err_cleanup_scatter:
ath6kl_hif_cleanup_scatter(ar);
err_if_deinit:
ath6kl_deinit_if_data(netdev_priv(ndev));
wiphy_unregister(ar->wiphy);
err_debug_init:
ath6kl_debug_cleanup(ar);
err_node_cleanup:
ath6kl_wmi_shutdown(ar->wmi);
clear_bit(WMI_ENABLED, &ar->flag);
ar->wmi = NULL;
ath6kl_init_done:
return status;
}
int ath6kl_core_init(struct ath6kl *ar)
{
int ret = 0;
struct ath6kl_bmi_target_info targ_info;
ar->ath6kl_wq = create_singlethread_workqueue("ath6kl");
if (!ar->ath6kl_wq)
return -ENOMEM;
ret = ath6kl_bmi_init(ar);
if (ret)
goto err_wq;
ret = ath6kl_bmi_get_target_info(ar, &targ_info);
if (ret)
goto err_bmi_cleanup;
ar->version.target_ver = le32_to_cpu(targ_info.version);
ar->target_type = le32_to_cpu(targ_info.type);
ar->wiphy->hw_version = le32_to_cpu(targ_info.version);
ret = ath6kl_init_hw_params(ar);
if (ret)
goto err_bmi_cleanup;
ret = ath6kl_configure_target(ar);
if (ret)
goto err_bmi_cleanup;
ar->htc_target = ath6kl_htc_create(ar);
if (!ar->htc_target) {
ret = -ENOMEM;
goto err_bmi_cleanup;
}
ret = ath6kl_fetch_firmwares(ar);
if (ret)
goto err_htc_cleanup;
ret = ath6kl_init_upload(ar);
if (ret)
goto err_htc_cleanup;
ret = ath6kl_init(ar);
if (ret)
goto err_htc_cleanup;
return ret;
err_htc_cleanup:
ath6kl_htc_cleanup(ar->htc_target);
err_bmi_cleanup:
ath6kl_bmi_cleanup(ar);
err_wq:
destroy_workqueue(ar->ath6kl_wq);
return ret;
}
void ath6kl_stop_txrx(struct ath6kl *ar)
{
struct net_device *ndev = ar->net_dev;
struct ath6kl_vif *vif = ar->vif;
if (!ndev)
return;
set_bit(DESTROY_IN_PROGRESS, &ar->flag);
if (down_interruptible(&ar->sem)) {
ath6kl_err("down_interruptible failed\n");
return;
}
if (ar->wlan_pwr_state != WLAN_POWER_STATE_CUT_PWR)
ath6kl_stop_endpoint(ndev, false, true);
clear_bit(WLAN_ENABLED, &vif->flags);
}
/*
* We need to differentiate between the surprise and planned removal of the
* device because of the following consideration:
*
* - In case of surprise removal, the hcd already frees up the pending
* for the device and hence there is no need to unregister the function
* driver inorder to get these requests. For planned removal, the function
* driver has to explicitly unregister itself to have the hcd return all the
* pending requests before the data structures for the devices are freed up.
* Note that as per the current implementation, the function driver will
* end up releasing all the devices since there is no API to selectively
* release a particular device.
*
* - Certain commands issued to the target can be skipped for surprise
* removal since they will anyway not go through.
*/
void ath6kl_destroy(struct net_device *dev, unsigned int unregister)
{
struct ath6kl *ar;
if (!dev || !ath6kl_priv(dev)) {
ath6kl_err("failed to get device structure\n");
return;
}
ar = ath6kl_priv(dev);
destroy_workqueue(ar->ath6kl_wq);
if (ar->htc_target)
ath6kl_htc_cleanup(ar->htc_target);
ath6kl_cookie_cleanup(ar);
ath6kl_cleanup_amsdu_rxbufs(ar);
ath6kl_bmi_cleanup(ar);
ath6kl_debug_cleanup(ar);
ath6kl_deinit_if_data(netdev_priv(dev));
kfree(ar->fw_board);
kfree(ar->fw_otp);
kfree(ar->fw);
kfree(ar->fw_patch);
ath6kl_deinit_ieee80211_hw(ar);
}