linux/arch/arm/mach-versatile/core.c
Catalin Marinas 90ef713b63 [PATCH] ARM: 2712/1: Fix the RGB order for the Versatile CLCD
Patch from Catalin Marinas

The current red and blue colours on the Versatile CLCD are
reversed when the 5:6:5 mode is used. The patch sets the proper
bit in the SYS_CLCD register value.

Signed-off-by: Catalin Marinas
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2005-06-16 18:01:11 +01:00

919 lines
23 KiB
C

/*
* linux/arch/arm/mach-versatile/core.c
*
* Copyright (C) 1999 - 2003 ARM Limited
* Copyright (C) 2000 Deep Blue Solutions Ltd
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/config.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/sysdev.h>
#include <linux/interrupt.h>
#include <asm/system.h>
#include <asm/hardware.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/leds.h>
#include <asm/mach-types.h>
#include <asm/hardware/amba.h>
#include <asm/hardware/amba_clcd.h>
#include <asm/hardware/icst307.h>
#include <asm/mach/arch.h>
#include <asm/mach/flash.h>
#include <asm/mach/irq.h>
#include <asm/mach/time.h>
#include <asm/mach/map.h>
#include <asm/mach/mmc.h>
#include "core.h"
#include "clock.h"
/*
* All IO addresses are mapped onto VA 0xFFFx.xxxx, where x.xxxx
* is the (PA >> 12).
*
* Setup a VA for the Versatile Vectored Interrupt Controller.
*/
#define VA_VIC_BASE IO_ADDRESS(VERSATILE_VIC_BASE)
#define VA_SIC_BASE IO_ADDRESS(VERSATILE_SIC_BASE)
static void vic_mask_irq(unsigned int irq)
{
irq -= IRQ_VIC_START;
writel(1 << irq, VA_VIC_BASE + VIC_IRQ_ENABLE_CLEAR);
}
static void vic_unmask_irq(unsigned int irq)
{
irq -= IRQ_VIC_START;
writel(1 << irq, VA_VIC_BASE + VIC_IRQ_ENABLE);
}
static struct irqchip vic_chip = {
.ack = vic_mask_irq,
.mask = vic_mask_irq,
.unmask = vic_unmask_irq,
};
static void sic_mask_irq(unsigned int irq)
{
irq -= IRQ_SIC_START;
writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
}
static void sic_unmask_irq(unsigned int irq)
{
irq -= IRQ_SIC_START;
writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_SET);
}
static struct irqchip sic_chip = {
.ack = sic_mask_irq,
.mask = sic_mask_irq,
.unmask = sic_unmask_irq,
};
static void
sic_handle_irq(unsigned int irq, struct irqdesc *desc, struct pt_regs *regs)
{
unsigned long status = readl(VA_SIC_BASE + SIC_IRQ_STATUS);
if (status == 0) {
do_bad_IRQ(irq, desc, regs);
return;
}
do {
irq = ffs(status) - 1;
status &= ~(1 << irq);
irq += IRQ_SIC_START;
desc = irq_desc + irq;
desc->handle(irq, desc, regs);
} while (status);
}
#if 1
#define IRQ_MMCI0A IRQ_VICSOURCE22
#define IRQ_AACI IRQ_VICSOURCE24
#define IRQ_ETH IRQ_VICSOURCE25
#define PIC_MASK 0xFFD00000
#else
#define IRQ_MMCI0A IRQ_SIC_MMCI0A
#define IRQ_AACI IRQ_SIC_AACI
#define IRQ_ETH IRQ_SIC_ETH
#define PIC_MASK 0
#endif
void __init versatile_init_irq(void)
{
unsigned int i, value;
/* Disable all interrupts initially. */
writel(0, VA_VIC_BASE + VIC_INT_SELECT);
writel(0, VA_VIC_BASE + VIC_IRQ_ENABLE);
writel(~0, VA_VIC_BASE + VIC_IRQ_ENABLE_CLEAR);
writel(0, VA_VIC_BASE + VIC_IRQ_STATUS);
writel(0, VA_VIC_BASE + VIC_ITCR);
writel(~0, VA_VIC_BASE + VIC_IRQ_SOFT_CLEAR);
/*
* Make sure we clear all existing interrupts
*/
writel(0, VA_VIC_BASE + VIC_VECT_ADDR);
for (i = 0; i < 19; i++) {
value = readl(VA_VIC_BASE + VIC_VECT_ADDR);
writel(value, VA_VIC_BASE + VIC_VECT_ADDR);
}
for (i = 0; i < 16; i++) {
value = readl(VA_VIC_BASE + VIC_VECT_CNTL0 + (i * 4));
writel(value | VICVectCntl_Enable | i, VA_VIC_BASE + VIC_VECT_CNTL0 + (i * 4));
}
writel(32, VA_VIC_BASE + VIC_DEF_VECT_ADDR);
for (i = IRQ_VIC_START; i <= IRQ_VIC_END; i++) {
if (i != IRQ_VICSOURCE31) {
set_irq_chip(i, &vic_chip);
set_irq_handler(i, do_level_IRQ);
set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
}
}
set_irq_handler(IRQ_VICSOURCE31, sic_handle_irq);
vic_unmask_irq(IRQ_VICSOURCE31);
/* Do second interrupt controller */
writel(~0, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
for (i = IRQ_SIC_START; i <= IRQ_SIC_END; i++) {
if ((PIC_MASK & (1 << (i - IRQ_SIC_START))) == 0) {
set_irq_chip(i, &sic_chip);
set_irq_handler(i, do_level_IRQ);
set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
}
}
/*
* Interrupts on secondary controller from 0 to 8 are routed to
* source 31 on PIC.
* Interrupts from 21 to 31 are routed directly to the VIC on
* the corresponding number on primary controller. This is controlled
* by setting PIC_ENABLEx.
*/
writel(PIC_MASK, VA_SIC_BASE + SIC_INT_PIC_ENABLE);
}
static struct map_desc versatile_io_desc[] __initdata = {
{ IO_ADDRESS(VERSATILE_SYS_BASE), VERSATILE_SYS_BASE, SZ_4K, MT_DEVICE },
{ IO_ADDRESS(VERSATILE_SIC_BASE), VERSATILE_SIC_BASE, SZ_4K, MT_DEVICE },
{ IO_ADDRESS(VERSATILE_VIC_BASE), VERSATILE_VIC_BASE, SZ_4K, MT_DEVICE },
{ IO_ADDRESS(VERSATILE_SCTL_BASE), VERSATILE_SCTL_BASE, SZ_4K * 9, MT_DEVICE },
#ifdef CONFIG_MACH_VERSATILE_AB
{ IO_ADDRESS(VERSATILE_GPIO0_BASE), VERSATILE_GPIO0_BASE, SZ_4K, MT_DEVICE },
{ IO_ADDRESS(VERSATILE_IB2_BASE), VERSATILE_IB2_BASE, SZ_64M, MT_DEVICE },
#endif
#ifdef CONFIG_DEBUG_LL
{ IO_ADDRESS(VERSATILE_UART0_BASE), VERSATILE_UART0_BASE, SZ_4K, MT_DEVICE },
#endif
#ifdef FIXME
{ PCI_MEMORY_VADDR, PHYS_PCI_MEM_BASE, SZ_16M, MT_DEVICE },
{ PCI_CONFIG_VADDR, PHYS_PCI_CONFIG_BASE, SZ_16M, MT_DEVICE },
{ PCI_V3_VADDR, PHYS_PCI_V3_BASE, SZ_512K, MT_DEVICE },
{ PCI_IO_VADDR, PHYS_PCI_IO_BASE, SZ_64K, MT_DEVICE },
#endif
};
void __init versatile_map_io(void)
{
iotable_init(versatile_io_desc, ARRAY_SIZE(versatile_io_desc));
}
#define VERSATILE_REFCOUNTER (IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_24MHz_OFFSET)
/*
* This is the Versatile sched_clock implementation. This has
* a resolution of 41.7ns, and a maximum value of about 179s.
*/
unsigned long long sched_clock(void)
{
unsigned long long v;
v = (unsigned long long)readl(VERSATILE_REFCOUNTER) * 125;
do_div(v, 3);
return v;
}
#define VERSATILE_FLASHCTRL (IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_FLASH_OFFSET)
static int versatile_flash_init(void)
{
u32 val;
val = __raw_readl(VERSATILE_FLASHCTRL);
val &= ~VERSATILE_FLASHPROG_FLVPPEN;
__raw_writel(val, VERSATILE_FLASHCTRL);
return 0;
}
static void versatile_flash_exit(void)
{
u32 val;
val = __raw_readl(VERSATILE_FLASHCTRL);
val &= ~VERSATILE_FLASHPROG_FLVPPEN;
__raw_writel(val, VERSATILE_FLASHCTRL);
}
static void versatile_flash_set_vpp(int on)
{
u32 val;
val = __raw_readl(VERSATILE_FLASHCTRL);
if (on)
val |= VERSATILE_FLASHPROG_FLVPPEN;
else
val &= ~VERSATILE_FLASHPROG_FLVPPEN;
__raw_writel(val, VERSATILE_FLASHCTRL);
}
static struct flash_platform_data versatile_flash_data = {
.map_name = "cfi_probe",
.width = 4,
.init = versatile_flash_init,
.exit = versatile_flash_exit,
.set_vpp = versatile_flash_set_vpp,
};
static struct resource versatile_flash_resource = {
.start = VERSATILE_FLASH_BASE,
.end = VERSATILE_FLASH_BASE + VERSATILE_FLASH_SIZE,
.flags = IORESOURCE_MEM,
};
static struct platform_device versatile_flash_device = {
.name = "armflash",
.id = 0,
.dev = {
.platform_data = &versatile_flash_data,
},
.num_resources = 1,
.resource = &versatile_flash_resource,
};
static struct resource smc91x_resources[] = {
[0] = {
.start = VERSATILE_ETH_BASE,
.end = VERSATILE_ETH_BASE + SZ_64K - 1,
.flags = IORESOURCE_MEM,
},
[1] = {
.start = IRQ_ETH,
.end = IRQ_ETH,
.flags = IORESOURCE_IRQ,
},
};
static struct platform_device smc91x_device = {
.name = "smc91x",
.id = 0,
.num_resources = ARRAY_SIZE(smc91x_resources),
.resource = smc91x_resources,
};
#define VERSATILE_SYSMCI (IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_MCI_OFFSET)
unsigned int mmc_status(struct device *dev)
{
struct amba_device *adev = container_of(dev, struct amba_device, dev);
u32 mask;
if (adev->res.start == VERSATILE_MMCI0_BASE)
mask = 1;
else
mask = 2;
return readl(VERSATILE_SYSMCI) & mask;
}
static struct mmc_platform_data mmc0_plat_data = {
.ocr_mask = MMC_VDD_32_33|MMC_VDD_33_34,
.status = mmc_status,
};
/*
* Clock handling
*/
static const struct icst307_params versatile_oscvco_params = {
.ref = 24000,
.vco_max = 200000,
.vd_min = 4 + 8,
.vd_max = 511 + 8,
.rd_min = 1 + 2,
.rd_max = 127 + 2,
};
static void versatile_oscvco_set(struct clk *clk, struct icst307_vco vco)
{
unsigned long sys_lock = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_LOCK_OFFSET;
#if defined(CONFIG_ARCH_VERSATILE_PB)
unsigned long sys_osc = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_OSC4_OFFSET;
#elif defined(CONFIG_MACH_VERSATILE_AB)
unsigned long sys_osc = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_OSC1_OFFSET;
#endif
u32 val;
val = readl(sys_osc) & ~0x7ffff;
val |= vco.v | (vco.r << 9) | (vco.s << 16);
writel(0xa05f, sys_lock);
writel(val, sys_osc);
writel(0, sys_lock);
}
static struct clk versatile_clcd_clk = {
.name = "CLCDCLK",
.params = &versatile_oscvco_params,
.setvco = versatile_oscvco_set,
};
/*
* CLCD support.
*/
#define SYS_CLCD_MODE_MASK (3 << 0)
#define SYS_CLCD_MODE_888 (0 << 0)
#define SYS_CLCD_MODE_5551 (1 << 0)
#define SYS_CLCD_MODE_565_RLSB (2 << 0)
#define SYS_CLCD_MODE_565_BLSB (3 << 0)
#define SYS_CLCD_NLCDIOON (1 << 2)
#define SYS_CLCD_VDDPOSSWITCH (1 << 3)
#define SYS_CLCD_PWR3V5SWITCH (1 << 4)
#define SYS_CLCD_ID_MASK (0x1f << 8)
#define SYS_CLCD_ID_SANYO_3_8 (0x00 << 8)
#define SYS_CLCD_ID_UNKNOWN_8_4 (0x01 << 8)
#define SYS_CLCD_ID_EPSON_2_2 (0x02 << 8)
#define SYS_CLCD_ID_SANYO_2_5 (0x07 << 8)
#define SYS_CLCD_ID_VGA (0x1f << 8)
static struct clcd_panel vga = {
.mode = {
.name = "VGA",
.refresh = 60,
.xres = 640,
.yres = 480,
.pixclock = 39721,
.left_margin = 40,
.right_margin = 24,
.upper_margin = 32,
.lower_margin = 11,
.hsync_len = 96,
.vsync_len = 2,
.sync = 0,
.vmode = FB_VMODE_NONINTERLACED,
},
.width = -1,
.height = -1,
.tim2 = TIM2_BCD | TIM2_IPC,
.cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
.bpp = 16,
};
static struct clcd_panel sanyo_3_8_in = {
.mode = {
.name = "Sanyo QVGA",
.refresh = 116,
.xres = 320,
.yres = 240,
.pixclock = 100000,
.left_margin = 6,
.right_margin = 6,
.upper_margin = 5,
.lower_margin = 5,
.hsync_len = 6,
.vsync_len = 6,
.sync = 0,
.vmode = FB_VMODE_NONINTERLACED,
},
.width = -1,
.height = -1,
.tim2 = TIM2_BCD,
.cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
.bpp = 16,
};
static struct clcd_panel sanyo_2_5_in = {
.mode = {
.name = "Sanyo QVGA Portrait",
.refresh = 116,
.xres = 240,
.yres = 320,
.pixclock = 100000,
.left_margin = 20,
.right_margin = 10,
.upper_margin = 2,
.lower_margin = 2,
.hsync_len = 10,
.vsync_len = 2,
.sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
.vmode = FB_VMODE_NONINTERLACED,
},
.width = -1,
.height = -1,
.tim2 = TIM2_IVS | TIM2_IHS | TIM2_IPC,
.cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
.bpp = 16,
};
static struct clcd_panel epson_2_2_in = {
.mode = {
.name = "Epson QCIF",
.refresh = 390,
.xres = 176,
.yres = 220,
.pixclock = 62500,
.left_margin = 3,
.right_margin = 2,
.upper_margin = 1,
.lower_margin = 0,
.hsync_len = 3,
.vsync_len = 2,
.sync = 0,
.vmode = FB_VMODE_NONINTERLACED,
},
.width = -1,
.height = -1,
.tim2 = TIM2_BCD | TIM2_IPC,
.cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
.bpp = 16,
};
/*
* Detect which LCD panel is connected, and return the appropriate
* clcd_panel structure. Note: we do not have any information on
* the required timings for the 8.4in panel, so we presently assume
* VGA timings.
*/
static struct clcd_panel *versatile_clcd_panel(void)
{
unsigned long sys_clcd = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
struct clcd_panel *panel = &vga;
u32 val;
val = readl(sys_clcd) & SYS_CLCD_ID_MASK;
if (val == SYS_CLCD_ID_SANYO_3_8)
panel = &sanyo_3_8_in;
else if (val == SYS_CLCD_ID_SANYO_2_5)
panel = &sanyo_2_5_in;
else if (val == SYS_CLCD_ID_EPSON_2_2)
panel = &epson_2_2_in;
else if (val == SYS_CLCD_ID_VGA)
panel = &vga;
else {
printk(KERN_ERR "CLCD: unknown LCD panel ID 0x%08x, using VGA\n",
val);
panel = &vga;
}
return panel;
}
/*
* Disable all display connectors on the interface module.
*/
static void versatile_clcd_disable(struct clcd_fb *fb)
{
unsigned long sys_clcd = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
u32 val;
val = readl(sys_clcd);
val &= ~SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
writel(val, sys_clcd);
#ifdef CONFIG_MACH_VERSATILE_AB
/*
* If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light off
*/
if (fb->panel == &sanyo_2_5_in) {
unsigned long versatile_ib2_ctrl = IO_ADDRESS(VERSATILE_IB2_CTRL);
unsigned long ctrl;
ctrl = readl(versatile_ib2_ctrl);
ctrl &= ~0x01;
writel(ctrl, versatile_ib2_ctrl);
}
#endif
}
/*
* Enable the relevant connector on the interface module.
*/
static void versatile_clcd_enable(struct clcd_fb *fb)
{
unsigned long sys_clcd = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
u32 val;
val = readl(sys_clcd);
val &= ~SYS_CLCD_MODE_MASK;
switch (fb->fb.var.green.length) {
case 5:
val |= SYS_CLCD_MODE_5551;
break;
case 6:
val |= SYS_CLCD_MODE_565_RLSB;
break;
case 8:
val |= SYS_CLCD_MODE_888;
break;
}
/*
* Set the MUX
*/
writel(val, sys_clcd);
/*
* And now enable the PSUs
*/
val |= SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
writel(val, sys_clcd);
#ifdef CONFIG_MACH_VERSATILE_AB
/*
* If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light on
*/
if (fb->panel == &sanyo_2_5_in) {
unsigned long versatile_ib2_ctrl = IO_ADDRESS(VERSATILE_IB2_CTRL);
unsigned long ctrl;
ctrl = readl(versatile_ib2_ctrl);
ctrl |= 0x01;
writel(ctrl, versatile_ib2_ctrl);
}
#endif
}
static unsigned long framesize = SZ_1M;
static int versatile_clcd_setup(struct clcd_fb *fb)
{
dma_addr_t dma;
fb->panel = versatile_clcd_panel();
fb->fb.screen_base = dma_alloc_writecombine(&fb->dev->dev, framesize,
&dma, GFP_KERNEL);
if (!fb->fb.screen_base) {
printk(KERN_ERR "CLCD: unable to map framebuffer\n");
return -ENOMEM;
}
fb->fb.fix.smem_start = dma;
fb->fb.fix.smem_len = framesize;
return 0;
}
static int versatile_clcd_mmap(struct clcd_fb *fb, struct vm_area_struct *vma)
{
return dma_mmap_writecombine(&fb->dev->dev, vma,
fb->fb.screen_base,
fb->fb.fix.smem_start,
fb->fb.fix.smem_len);
}
static void versatile_clcd_remove(struct clcd_fb *fb)
{
dma_free_writecombine(&fb->dev->dev, fb->fb.fix.smem_len,
fb->fb.screen_base, fb->fb.fix.smem_start);
}
static struct clcd_board clcd_plat_data = {
.name = "Versatile",
.check = clcdfb_check,
.decode = clcdfb_decode,
.disable = versatile_clcd_disable,
.enable = versatile_clcd_enable,
.setup = versatile_clcd_setup,
.mmap = versatile_clcd_mmap,
.remove = versatile_clcd_remove,
};
#define AACI_IRQ { IRQ_AACI, NO_IRQ }
#define AACI_DMA { 0x80, 0x81 }
#define MMCI0_IRQ { IRQ_MMCI0A,IRQ_SIC_MMCI0B }
#define MMCI0_DMA { 0x84, 0 }
#define KMI0_IRQ { IRQ_SIC_KMI0, NO_IRQ }
#define KMI0_DMA { 0, 0 }
#define KMI1_IRQ { IRQ_SIC_KMI1, NO_IRQ }
#define KMI1_DMA { 0, 0 }
/*
* These devices are connected directly to the multi-layer AHB switch
*/
#define SMC_IRQ { NO_IRQ, NO_IRQ }
#define SMC_DMA { 0, 0 }
#define MPMC_IRQ { NO_IRQ, NO_IRQ }
#define MPMC_DMA { 0, 0 }
#define CLCD_IRQ { IRQ_CLCDINT, NO_IRQ }
#define CLCD_DMA { 0, 0 }
#define DMAC_IRQ { IRQ_DMAINT, NO_IRQ }
#define DMAC_DMA { 0, 0 }
/*
* These devices are connected via the core APB bridge
*/
#define SCTL_IRQ { NO_IRQ, NO_IRQ }
#define SCTL_DMA { 0, 0 }
#define WATCHDOG_IRQ { IRQ_WDOGINT, NO_IRQ }
#define WATCHDOG_DMA { 0, 0 }
#define GPIO0_IRQ { IRQ_GPIOINT0, NO_IRQ }
#define GPIO0_DMA { 0, 0 }
#define GPIO1_IRQ { IRQ_GPIOINT1, NO_IRQ }
#define GPIO1_DMA { 0, 0 }
#define RTC_IRQ { IRQ_RTCINT, NO_IRQ }
#define RTC_DMA { 0, 0 }
/*
* These devices are connected via the DMA APB bridge
*/
#define SCI_IRQ { IRQ_SCIINT, NO_IRQ }
#define SCI_DMA { 7, 6 }
#define UART0_IRQ { IRQ_UARTINT0, NO_IRQ }
#define UART0_DMA { 15, 14 }
#define UART1_IRQ { IRQ_UARTINT1, NO_IRQ }
#define UART1_DMA { 13, 12 }
#define UART2_IRQ { IRQ_UARTINT2, NO_IRQ }
#define UART2_DMA { 11, 10 }
#define SSP_IRQ { IRQ_SSPINT, NO_IRQ }
#define SSP_DMA { 9, 8 }
/* FPGA Primecells */
AMBA_DEVICE(aaci, "fpga:04", AACI, NULL);
AMBA_DEVICE(mmc0, "fpga:05", MMCI0, &mmc0_plat_data);
AMBA_DEVICE(kmi0, "fpga:06", KMI0, NULL);
AMBA_DEVICE(kmi1, "fpga:07", KMI1, NULL);
/* DevChip Primecells */
AMBA_DEVICE(smc, "dev:00", SMC, NULL);
AMBA_DEVICE(mpmc, "dev:10", MPMC, NULL);
AMBA_DEVICE(clcd, "dev:20", CLCD, &clcd_plat_data);
AMBA_DEVICE(dmac, "dev:30", DMAC, NULL);
AMBA_DEVICE(sctl, "dev:e0", SCTL, NULL);
AMBA_DEVICE(wdog, "dev:e1", WATCHDOG, NULL);
AMBA_DEVICE(gpio0, "dev:e4", GPIO0, NULL);
AMBA_DEVICE(gpio1, "dev:e5", GPIO1, NULL);
AMBA_DEVICE(rtc, "dev:e8", RTC, NULL);
AMBA_DEVICE(sci0, "dev:f0", SCI, NULL);
AMBA_DEVICE(uart0, "dev:f1", UART0, NULL);
AMBA_DEVICE(uart1, "dev:f2", UART1, NULL);
AMBA_DEVICE(uart2, "dev:f3", UART2, NULL);
AMBA_DEVICE(ssp0, "dev:f4", SSP, NULL);
static struct amba_device *amba_devs[] __initdata = {
&dmac_device,
&uart0_device,
&uart1_device,
&uart2_device,
&smc_device,
&mpmc_device,
&clcd_device,
&sctl_device,
&wdog_device,
&gpio0_device,
&gpio1_device,
&rtc_device,
&sci0_device,
&ssp0_device,
&aaci_device,
&mmc0_device,
&kmi0_device,
&kmi1_device,
};
#ifdef CONFIG_LEDS
#define VA_LEDS_BASE (IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_LED_OFFSET)
static void versatile_leds_event(led_event_t ledevt)
{
unsigned long flags;
u32 val;
local_irq_save(flags);
val = readl(VA_LEDS_BASE);
switch (ledevt) {
case led_idle_start:
val = val & ~VERSATILE_SYS_LED0;
break;
case led_idle_end:
val = val | VERSATILE_SYS_LED0;
break;
case led_timer:
val = val ^ VERSATILE_SYS_LED1;
break;
case led_halted:
val = 0;
break;
default:
break;
}
writel(val, VA_LEDS_BASE);
local_irq_restore(flags);
}
#endif /* CONFIG_LEDS */
void __init versatile_init(void)
{
int i;
clk_register(&versatile_clcd_clk);
platform_device_register(&versatile_flash_device);
platform_device_register(&smc91x_device);
for (i = 0; i < ARRAY_SIZE(amba_devs); i++) {
struct amba_device *d = amba_devs[i];
amba_device_register(d, &iomem_resource);
}
#ifdef CONFIG_LEDS
leds_event = versatile_leds_event;
#endif
}
/*
* Where is the timer (VA)?
*/
#define TIMER0_VA_BASE IO_ADDRESS(VERSATILE_TIMER0_1_BASE)
#define TIMER1_VA_BASE (IO_ADDRESS(VERSATILE_TIMER0_1_BASE) + 0x20)
#define TIMER2_VA_BASE IO_ADDRESS(VERSATILE_TIMER2_3_BASE)
#define TIMER3_VA_BASE (IO_ADDRESS(VERSATILE_TIMER2_3_BASE) + 0x20)
#define VA_IC_BASE IO_ADDRESS(VERSATILE_VIC_BASE)
/*
* How long is the timer interval?
*/
#define TIMER_INTERVAL (TICKS_PER_uSEC * mSEC_10)
#if TIMER_INTERVAL >= 0x100000
#define TIMER_RELOAD (TIMER_INTERVAL >> 8) /* Divide by 256 */
#define TIMER_CTRL 0x88 /* Enable, Clock / 256 */
#define TICKS2USECS(x) (256 * (x) / TICKS_PER_uSEC)
#elif TIMER_INTERVAL >= 0x10000
#define TIMER_RELOAD (TIMER_INTERVAL >> 4) /* Divide by 16 */
#define TIMER_CTRL 0x84 /* Enable, Clock / 16 */
#define TICKS2USECS(x) (16 * (x) / TICKS_PER_uSEC)
#else
#define TIMER_RELOAD (TIMER_INTERVAL)
#define TIMER_CTRL 0x80 /* Enable */
#define TICKS2USECS(x) ((x) / TICKS_PER_uSEC)
#endif
#define TIMER_CTRL_IE (1 << 5) /* Interrupt Enable */
/*
* What does it look like?
*/
typedef struct TimerStruct {
unsigned long TimerLoad;
unsigned long TimerValue;
unsigned long TimerControl;
unsigned long TimerClear;
} TimerStruct_t;
/*
* Returns number of ms since last clock interrupt. Note that interrupts
* will have been disabled by do_gettimeoffset()
*/
static unsigned long versatile_gettimeoffset(void)
{
volatile TimerStruct_t *timer0 = (TimerStruct_t *)TIMER0_VA_BASE;
unsigned long ticks1, ticks2, status;
/*
* Get the current number of ticks. Note that there is a race
* condition between us reading the timer and checking for
* an interrupt. We get around this by ensuring that the
* counter has not reloaded between our two reads.
*/
ticks2 = timer0->TimerValue & 0xffff;
do {
ticks1 = ticks2;
status = __raw_readl(VA_IC_BASE + VIC_IRQ_RAW_STATUS);
ticks2 = timer0->TimerValue & 0xffff;
} while (ticks2 > ticks1);
/*
* Number of ticks since last interrupt.
*/
ticks1 = TIMER_RELOAD - ticks2;
/*
* Interrupt pending? If so, we've reloaded once already.
*
* FIXME: Need to check this is effectively timer 0 that expires
*/
if (status & IRQMASK_TIMERINT0_1)
ticks1 += TIMER_RELOAD;
/*
* Convert the ticks to usecs
*/
return TICKS2USECS(ticks1);
}
/*
* IRQ handler for the timer
*/
static irqreturn_t versatile_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
volatile TimerStruct_t *timer0 = (volatile TimerStruct_t *)TIMER0_VA_BASE;
write_seqlock(&xtime_lock);
// ...clear the interrupt
timer0->TimerClear = 1;
timer_tick(regs);
write_sequnlock(&xtime_lock);
return IRQ_HANDLED;
}
static struct irqaction versatile_timer_irq = {
.name = "Versatile Timer Tick",
.flags = SA_INTERRUPT,
.handler = versatile_timer_interrupt
};
/*
* Set up timer interrupt, and return the current time in seconds.
*/
static void __init versatile_timer_init(void)
{
volatile TimerStruct_t *timer0 = (volatile TimerStruct_t *)TIMER0_VA_BASE;
volatile TimerStruct_t *timer1 = (volatile TimerStruct_t *)TIMER1_VA_BASE;
volatile TimerStruct_t *timer2 = (volatile TimerStruct_t *)TIMER2_VA_BASE;
volatile TimerStruct_t *timer3 = (volatile TimerStruct_t *)TIMER3_VA_BASE;
/*
* set clock frequency:
* VERSATILE_REFCLK is 32KHz
* VERSATILE_TIMCLK is 1MHz
*/
*(volatile unsigned int *)IO_ADDRESS(VERSATILE_SCTL_BASE) |=
((VERSATILE_TIMCLK << VERSATILE_TIMER1_EnSel) | (VERSATILE_TIMCLK << VERSATILE_TIMER2_EnSel) |
(VERSATILE_TIMCLK << VERSATILE_TIMER3_EnSel) | (VERSATILE_TIMCLK << VERSATILE_TIMER4_EnSel));
/*
* Initialise to a known state (all timers off)
*/
timer0->TimerControl = 0;
timer1->TimerControl = 0;
timer2->TimerControl = 0;
timer3->TimerControl = 0;
timer0->TimerLoad = TIMER_RELOAD;
timer0->TimerValue = TIMER_RELOAD;
timer0->TimerControl = TIMER_CTRL | 0x40 | TIMER_CTRL_IE; /* periodic + IE */
/*
* Make irqs happen for the system timer
*/
setup_irq(IRQ_TIMERINT0_1, &versatile_timer_irq);
}
struct sys_timer versatile_timer = {
.init = versatile_timer_init,
.offset = versatile_gettimeoffset,
};