linux/arch/s390/include/asm/timex.h
Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00

253 lines
6.1 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* S390 version
* Copyright IBM Corp. 1999
*
* Derived from "include/asm-i386/timex.h"
* Copyright (C) 1992, Linus Torvalds
*/
#ifndef _ASM_S390_TIMEX_H
#define _ASM_S390_TIMEX_H
#include <asm/lowcore.h>
#include <linux/time64.h>
/* The value of the TOD clock for 1.1.1970. */
#define TOD_UNIX_EPOCH 0x7d91048bca000000ULL
extern u64 clock_comparator_max;
/* Inline functions for clock register access. */
static inline int set_tod_clock(__u64 time)
{
int cc;
asm volatile(
" sck %1\n"
" ipm %0\n"
" srl %0,28\n"
: "=d" (cc) : "Q" (time) : "cc");
return cc;
}
static inline int store_tod_clock(__u64 *time)
{
int cc;
asm volatile(
" stck %1\n"
" ipm %0\n"
" srl %0,28\n"
: "=d" (cc), "=Q" (*time) : : "cc");
return cc;
}
static inline void set_clock_comparator(__u64 time)
{
asm volatile("sckc %0" : : "Q" (time));
}
static inline void store_clock_comparator(__u64 *time)
{
asm volatile("stckc %0" : "=Q" (*time));
}
void clock_comparator_work(void);
void __init time_early_init(void);
extern unsigned char ptff_function_mask[16];
/* Function codes for the ptff instruction. */
#define PTFF_QAF 0x00 /* query available functions */
#define PTFF_QTO 0x01 /* query tod offset */
#define PTFF_QSI 0x02 /* query steering information */
#define PTFF_QUI 0x04 /* query UTC information */
#define PTFF_ATO 0x40 /* adjust tod offset */
#define PTFF_STO 0x41 /* set tod offset */
#define PTFF_SFS 0x42 /* set fine steering rate */
#define PTFF_SGS 0x43 /* set gross steering rate */
/* Query TOD offset result */
struct ptff_qto {
unsigned long long physical_clock;
unsigned long long tod_offset;
unsigned long long logical_tod_offset;
unsigned long long tod_epoch_difference;
} __packed;
static inline int ptff_query(unsigned int nr)
{
unsigned char *ptr;
ptr = ptff_function_mask + (nr >> 3);
return (*ptr & (0x80 >> (nr & 7))) != 0;
}
/* Query UTC information result */
struct ptff_qui {
unsigned int tm : 2;
unsigned int ts : 2;
unsigned int : 28;
unsigned int pad_0x04;
unsigned long leap_event;
short old_leap;
short new_leap;
unsigned int pad_0x14;
unsigned long prt[5];
unsigned long cst[3];
unsigned int skew;
unsigned int pad_0x5c[41];
} __packed;
/*
* ptff - Perform timing facility function
* @ptff_block: Pointer to ptff parameter block
* @len: Length of parameter block
* @func: Function code
* Returns: Condition code (0 on success)
*/
#define ptff(ptff_block, len, func) \
({ \
struct addrtype { char _[len]; }; \
register unsigned int reg0 asm("0") = func; \
register unsigned long reg1 asm("1") = (unsigned long) (ptff_block);\
int rc; \
\
asm volatile( \
" .word 0x0104\n" \
" ipm %0\n" \
" srl %0,28\n" \
: "=d" (rc), "+m" (*(struct addrtype *) reg1) \
: "d" (reg0), "d" (reg1) : "cc"); \
rc; \
})
static inline unsigned long long local_tick_disable(void)
{
unsigned long long old;
old = S390_lowcore.clock_comparator;
S390_lowcore.clock_comparator = clock_comparator_max;
set_clock_comparator(S390_lowcore.clock_comparator);
return old;
}
static inline void local_tick_enable(unsigned long long comp)
{
S390_lowcore.clock_comparator = comp;
set_clock_comparator(S390_lowcore.clock_comparator);
}
#define CLOCK_TICK_RATE 1193180 /* Underlying HZ */
#define STORE_CLOCK_EXT_SIZE 16 /* stcke writes 16 bytes */
typedef unsigned long long cycles_t;
static inline void get_tod_clock_ext(char *clk)
{
typedef struct { char _[STORE_CLOCK_EXT_SIZE]; } addrtype;
asm volatile("stcke %0" : "=Q" (*(addrtype *) clk) : : "cc");
}
static inline unsigned long long get_tod_clock(void)
{
unsigned char clk[STORE_CLOCK_EXT_SIZE];
get_tod_clock_ext(clk);
return *((unsigned long long *)&clk[1]);
}
static inline unsigned long long get_tod_clock_fast(void)
{
#ifdef CONFIG_HAVE_MARCH_Z9_109_FEATURES
unsigned long long clk;
asm volatile("stckf %0" : "=Q" (clk) : : "cc");
return clk;
#else
return get_tod_clock();
#endif
}
static inline cycles_t get_cycles(void)
{
return (cycles_t) get_tod_clock() >> 2;
}
int get_phys_clock(unsigned long *clock);
void init_cpu_timer(void);
unsigned long long monotonic_clock(void);
extern unsigned char tod_clock_base[16] __aligned(8);
/**
* get_clock_monotonic - returns current time in clock rate units
*
* The caller must ensure that preemption is disabled.
* The clock and tod_clock_base get changed via stop_machine.
* Therefore preemption must be disabled when calling this
* function, otherwise the returned value is not guaranteed to
* be monotonic.
*/
static inline unsigned long long get_tod_clock_monotonic(void)
{
return get_tod_clock() - *(unsigned long long *) &tod_clock_base[1];
}
/**
* tod_to_ns - convert a TOD format value to nanoseconds
* @todval: to be converted TOD format value
* Returns: number of nanoseconds that correspond to the TOD format value
*
* Converting a 64 Bit TOD format value to nanoseconds means that the value
* must be divided by 4.096. In order to achieve that we multiply with 125
* and divide by 512:
*
* ns = (todval * 125) >> 9;
*
* In order to avoid an overflow with the multiplication we can rewrite this.
* With a split todval == 2^9 * th + tl (th upper 55 bits, tl lower 9 bits)
* we end up with
*
* ns = ((2^9 * th + tl) * 125 ) >> 9;
* -> ns = (th * 125) + ((tl * 125) >> 9);
*
*/
static inline unsigned long long tod_to_ns(unsigned long long todval)
{
return ((todval >> 9) * 125) + (((todval & 0x1ff) * 125) >> 9);
}
/**
* tod_after - compare two 64 bit TOD values
* @a: first 64 bit TOD timestamp
* @b: second 64 bit TOD timestamp
*
* Returns: true if a is later than b
*/
static inline int tod_after(unsigned long long a, unsigned long long b)
{
if (MACHINE_HAS_SCC)
return (long long) a > (long long) b;
return a > b;
}
/**
* tod_after_eq - compare two 64 bit TOD values
* @a: first 64 bit TOD timestamp
* @b: second 64 bit TOD timestamp
*
* Returns: true if a is later than b
*/
static inline int tod_after_eq(unsigned long long a, unsigned long long b)
{
if (MACHINE_HAS_SCC)
return (long long) a >= (long long) b;
return a >= b;
}
#endif