forked from Minki/linux
19f6d2a660
This patch adds the process module and three helper modules: - kfd_process, which handles process which open /dev/kfd - kfd_doorbell, which provides helper functions for doorbell allocation, release and mapping to userspace - kfd_pasid, which provides helper functions for pasid allocation and release - kfd_aperture, which provides helper functions for managing the LDS, Local GPU memory and Scratch memory apertures of the process This patch only contains the basic kfd_process module, which doesn't contain the reference to the queue scheduler. This was done to allow easier code review. Also, this patch doesn't contain the calls to the IOMMU driver for binding the pasid to the device. Again, this was done to allow easier code review The kfd_process object is created when a process opens /dev/kfd and is closed when the mm_struct of that process is teared-down. v3: Removed kfd_vidmem.c file Replaced direct mmput call to mmu_notifier release Removed typedefs Moved bool field to end of the structure Added new kernel params for gart usage limitation Added initialization of sa manager Fixed debug messages Remove support for LDS in 32 bit Changed code to support mmap of doorbell pages from userspace Added documentation for apertures v4: Replaced RCU by SRCU for kfd_process list management v5: Move amdkfd from drm/radeon/ to drm/amd/ Rename kfd_aperture.c to kfd_flat_memory.c Protect against multiple init calls MQD size is H/W dependent so moved it to device info structure Rename kfd_mem_obj structure's members Use delayed function for process tear-down Signed-off-by: Oded Gabbay <oded.gabbay@amd.com>
256 lines
7.9 KiB
C
256 lines
7.9 KiB
C
/*
|
|
* Copyright 2014 Advanced Micro Devices, Inc.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
#include "kfd_priv.h"
|
|
#include <linux/mm.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/slab.h>
|
|
|
|
/*
|
|
* This extension supports a kernel level doorbells management for
|
|
* the kernel queues.
|
|
* Basically the last doorbells page is devoted to kernel queues
|
|
* and that's assures that any user process won't get access to the
|
|
* kernel doorbells page
|
|
*/
|
|
static DEFINE_MUTEX(doorbell_mutex);
|
|
static unsigned long doorbell_available_index[
|
|
DIV_ROUND_UP(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS, BITS_PER_LONG)] = { 0 };
|
|
|
|
#define KERNEL_DOORBELL_PASID 1
|
|
#define KFD_SIZE_OF_DOORBELL_IN_BYTES 4
|
|
|
|
/*
|
|
* Each device exposes a doorbell aperture, a PCI MMIO aperture that
|
|
* receives 32-bit writes that are passed to queues as wptr values.
|
|
* The doorbells are intended to be written by applications as part
|
|
* of queueing work on user-mode queues.
|
|
* We assign doorbells to applications in PAGE_SIZE-sized and aligned chunks.
|
|
* We map the doorbell address space into user-mode when a process creates
|
|
* its first queue on each device.
|
|
* Although the mapping is done by KFD, it is equivalent to an mmap of
|
|
* the /dev/kfd with the particular device encoded in the mmap offset.
|
|
* There will be other uses for mmap of /dev/kfd, so only a range of
|
|
* offsets (KFD_MMAP_DOORBELL_START-END) is used for doorbells.
|
|
*/
|
|
|
|
/* # of doorbell bytes allocated for each process. */
|
|
static inline size_t doorbell_process_allocation(void)
|
|
{
|
|
return roundup(KFD_SIZE_OF_DOORBELL_IN_BYTES *
|
|
KFD_MAX_NUM_OF_QUEUES_PER_PROCESS,
|
|
PAGE_SIZE);
|
|
}
|
|
|
|
/* Doorbell calculations for device init. */
|
|
void kfd_doorbell_init(struct kfd_dev *kfd)
|
|
{
|
|
size_t doorbell_start_offset;
|
|
size_t doorbell_aperture_size;
|
|
size_t doorbell_process_limit;
|
|
|
|
/*
|
|
* We start with calculations in bytes because the input data might
|
|
* only be byte-aligned.
|
|
* Only after we have done the rounding can we assume any alignment.
|
|
*/
|
|
|
|
doorbell_start_offset =
|
|
roundup(kfd->shared_resources.doorbell_start_offset,
|
|
doorbell_process_allocation());
|
|
|
|
doorbell_aperture_size =
|
|
rounddown(kfd->shared_resources.doorbell_aperture_size,
|
|
doorbell_process_allocation());
|
|
|
|
if (doorbell_aperture_size > doorbell_start_offset)
|
|
doorbell_process_limit =
|
|
(doorbell_aperture_size - doorbell_start_offset) /
|
|
doorbell_process_allocation();
|
|
else
|
|
doorbell_process_limit = 0;
|
|
|
|
kfd->doorbell_base = kfd->shared_resources.doorbell_physical_address +
|
|
doorbell_start_offset;
|
|
|
|
kfd->doorbell_id_offset = doorbell_start_offset / sizeof(u32);
|
|
kfd->doorbell_process_limit = doorbell_process_limit - 1;
|
|
|
|
kfd->doorbell_kernel_ptr = ioremap(kfd->doorbell_base,
|
|
doorbell_process_allocation());
|
|
|
|
BUG_ON(!kfd->doorbell_kernel_ptr);
|
|
|
|
pr_debug("kfd: doorbell initialization:\n");
|
|
pr_debug("kfd: doorbell base == 0x%08lX\n",
|
|
(uintptr_t)kfd->doorbell_base);
|
|
|
|
pr_debug("kfd: doorbell_id_offset == 0x%08lX\n",
|
|
kfd->doorbell_id_offset);
|
|
|
|
pr_debug("kfd: doorbell_process_limit == 0x%08lX\n",
|
|
doorbell_process_limit);
|
|
|
|
pr_debug("kfd: doorbell_kernel_offset == 0x%08lX\n",
|
|
(uintptr_t)kfd->doorbell_base);
|
|
|
|
pr_debug("kfd: doorbell aperture size == 0x%08lX\n",
|
|
kfd->shared_resources.doorbell_aperture_size);
|
|
|
|
pr_debug("kfd: doorbell kernel address == 0x%08lX\n",
|
|
(uintptr_t)kfd->doorbell_kernel_ptr);
|
|
}
|
|
|
|
int kfd_doorbell_mmap(struct kfd_process *process, struct vm_area_struct *vma)
|
|
{
|
|
phys_addr_t address;
|
|
struct kfd_dev *dev;
|
|
|
|
/*
|
|
* For simplicitly we only allow mapping of the entire doorbell
|
|
* allocation of a single device & process.
|
|
*/
|
|
if (vma->vm_end - vma->vm_start != doorbell_process_allocation())
|
|
return -EINVAL;
|
|
|
|
/* Find kfd device according to gpu id */
|
|
dev = kfd_device_by_id(vma->vm_pgoff);
|
|
if (dev == NULL)
|
|
return -EINVAL;
|
|
|
|
/* Find if pdd exists for combination of process and gpu id */
|
|
if (!kfd_get_process_device_data(dev, process, 0))
|
|
return -EINVAL;
|
|
|
|
/* Calculate physical address of doorbell */
|
|
address = kfd_get_process_doorbells(dev, process);
|
|
|
|
vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE |
|
|
VM_DONTDUMP | VM_PFNMAP;
|
|
|
|
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
|
|
|
|
pr_debug("kfd: mapping doorbell page in kfd_doorbell_mmap\n"
|
|
" target user address == 0x%08llX\n"
|
|
" physical address == 0x%08llX\n"
|
|
" vm_flags == 0x%04lX\n"
|
|
" size == 0x%04lX\n",
|
|
(unsigned long long) vma->vm_start, address, vma->vm_flags,
|
|
doorbell_process_allocation());
|
|
|
|
|
|
return io_remap_pfn_range(vma,
|
|
vma->vm_start,
|
|
address >> PAGE_SHIFT,
|
|
doorbell_process_allocation(),
|
|
vma->vm_page_prot);
|
|
}
|
|
|
|
|
|
/* get kernel iomem pointer for a doorbell */
|
|
u32 __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
|
|
unsigned int *doorbell_off)
|
|
{
|
|
u32 inx;
|
|
|
|
BUG_ON(!kfd || !doorbell_off);
|
|
|
|
mutex_lock(&doorbell_mutex);
|
|
inx = find_first_zero_bit(doorbell_available_index,
|
|
KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
|
|
|
|
__set_bit(inx, doorbell_available_index);
|
|
mutex_unlock(&doorbell_mutex);
|
|
|
|
if (inx >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
|
|
return NULL;
|
|
|
|
/*
|
|
* Calculating the kernel doorbell offset using "faked" kernel
|
|
* pasid that allocated for kernel queues only
|
|
*/
|
|
*doorbell_off = KERNEL_DOORBELL_PASID * (doorbell_process_allocation() /
|
|
sizeof(u32)) + inx;
|
|
|
|
pr_debug("kfd: get kernel queue doorbell\n"
|
|
" doorbell offset == 0x%08d\n"
|
|
" kernel address == 0x%08lX\n",
|
|
*doorbell_off, (uintptr_t)(kfd->doorbell_kernel_ptr + inx));
|
|
|
|
return kfd->doorbell_kernel_ptr + inx;
|
|
}
|
|
|
|
void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr)
|
|
{
|
|
unsigned int inx;
|
|
|
|
BUG_ON(!kfd || !db_addr);
|
|
|
|
inx = (unsigned int)(db_addr - kfd->doorbell_kernel_ptr);
|
|
|
|
mutex_lock(&doorbell_mutex);
|
|
__clear_bit(inx, doorbell_available_index);
|
|
mutex_unlock(&doorbell_mutex);
|
|
}
|
|
|
|
inline void write_kernel_doorbell(u32 __iomem *db, u32 value)
|
|
{
|
|
if (db) {
|
|
writel(value, db);
|
|
pr_debug("writing %d to doorbell address 0x%p\n", value, db);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* queue_ids are in the range [0,MAX_PROCESS_QUEUES) and are mapped 1:1
|
|
* to doorbells with the process's doorbell page
|
|
*/
|
|
unsigned int kfd_queue_id_to_doorbell(struct kfd_dev *kfd,
|
|
struct kfd_process *process,
|
|
unsigned int queue_id)
|
|
{
|
|
/*
|
|
* doorbell_id_offset accounts for doorbells taken by KGD.
|
|
* pasid * doorbell_process_allocation/sizeof(u32) adjusts
|
|
* to the process's doorbells
|
|
*/
|
|
return kfd->doorbell_id_offset +
|
|
process->pasid * (doorbell_process_allocation()/sizeof(u32)) +
|
|
queue_id;
|
|
}
|
|
|
|
uint64_t kfd_get_number_elems(struct kfd_dev *kfd)
|
|
{
|
|
uint64_t num_of_elems = (kfd->shared_resources.doorbell_aperture_size -
|
|
kfd->shared_resources.doorbell_start_offset) /
|
|
doorbell_process_allocation() + 1;
|
|
|
|
return num_of_elems;
|
|
|
|
}
|
|
|
|
phys_addr_t kfd_get_process_doorbells(struct kfd_dev *dev,
|
|
struct kfd_process *process)
|
|
{
|
|
return dev->doorbell_base +
|
|
process->pasid * doorbell_process_allocation();
|
|
}
|