linux/drivers/iio/accel/kxcjk-1013.c
Thomas Gleixner 2025cf9e19 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 288
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms and conditions of the gnu general public license
  version 2 as published by the free software foundation this program
  is distributed in the hope it will be useful but without any
  warranty without even the implied warranty of merchantability or
  fitness for a particular purpose see the gnu general public license
  for more details

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-only

has been chosen to replace the boilerplate/reference in 263 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190529141901.208660670@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-05 17:36:37 +02:00

1533 lines
36 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* KXCJK-1013 3-axis accelerometer driver
* Copyright (c) 2014, Intel Corporation.
*/
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/acpi.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/buffer.h>
#include <linux/iio/trigger.h>
#include <linux/iio/events.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/iio/accel/kxcjk_1013.h>
#define KXCJK1013_DRV_NAME "kxcjk1013"
#define KXCJK1013_IRQ_NAME "kxcjk1013_event"
#define KXTF9_REG_HP_XOUT_L 0x00
#define KXTF9_REG_HP_XOUT_H 0x01
#define KXTF9_REG_HP_YOUT_L 0x02
#define KXTF9_REG_HP_YOUT_H 0x03
#define KXTF9_REG_HP_ZOUT_L 0x04
#define KXTF9_REG_HP_ZOUT_H 0x05
#define KXCJK1013_REG_XOUT_L 0x06
/*
* From low byte X axis register, all the other addresses of Y and Z can be
* obtained by just applying axis offset. The following axis defines are just
* provide clarity, but not used.
*/
#define KXCJK1013_REG_XOUT_H 0x07
#define KXCJK1013_REG_YOUT_L 0x08
#define KXCJK1013_REG_YOUT_H 0x09
#define KXCJK1013_REG_ZOUT_L 0x0A
#define KXCJK1013_REG_ZOUT_H 0x0B
#define KXCJK1013_REG_DCST_RESP 0x0C
#define KXCJK1013_REG_WHO_AM_I 0x0F
#define KXTF9_REG_TILT_POS_CUR 0x10
#define KXTF9_REG_TILT_POS_PREV 0x11
#define KXTF9_REG_INT_SRC1 0x15
#define KXCJK1013_REG_INT_SRC1 0x16 /* compatible, but called INT_SRC2 in KXTF9 ds */
#define KXCJK1013_REG_INT_SRC2 0x17
#define KXCJK1013_REG_STATUS_REG 0x18
#define KXCJK1013_REG_INT_REL 0x1A
#define KXCJK1013_REG_CTRL1 0x1B
#define KXTF9_REG_CTRL2 0x1C
#define KXCJK1013_REG_CTRL2 0x1D /* mostly compatible, CTRL_REG3 in KTXF9 ds */
#define KXCJK1013_REG_INT_CTRL1 0x1E
#define KXCJK1013_REG_INT_CTRL2 0x1F
#define KXTF9_REG_INT_CTRL3 0x20
#define KXCJK1013_REG_DATA_CTRL 0x21
#define KXTF9_REG_TILT_TIMER 0x28
#define KXCJK1013_REG_WAKE_TIMER 0x29
#define KXTF9_REG_TDT_TIMER 0x2B
#define KXTF9_REG_TDT_THRESH_H 0x2C
#define KXTF9_REG_TDT_THRESH_L 0x2D
#define KXTF9_REG_TDT_TAP_TIMER 0x2E
#define KXTF9_REG_TDT_TOTAL_TIMER 0x2F
#define KXTF9_REG_TDT_LATENCY_TIMER 0x30
#define KXTF9_REG_TDT_WINDOW_TIMER 0x31
#define KXCJK1013_REG_SELF_TEST 0x3A
#define KXTF9_REG_WAKE_THRESH 0x5A
#define KXTF9_REG_TILT_ANGLE 0x5C
#define KXTF9_REG_HYST_SET 0x5F
#define KXCJK1013_REG_WAKE_THRES 0x6A
#define KXCJK1013_REG_CTRL1_BIT_PC1 BIT(7)
#define KXCJK1013_REG_CTRL1_BIT_RES BIT(6)
#define KXCJK1013_REG_CTRL1_BIT_DRDY BIT(5)
#define KXCJK1013_REG_CTRL1_BIT_GSEL1 BIT(4)
#define KXCJK1013_REG_CTRL1_BIT_GSEL0 BIT(3)
#define KXCJK1013_REG_CTRL1_BIT_WUFE BIT(1)
#define KXCJK1013_REG_INT_CTRL1_BIT_IEU BIT(2) /* KXTF9 */
#define KXCJK1013_REG_INT_CTRL1_BIT_IEL BIT(3)
#define KXCJK1013_REG_INT_CTRL1_BIT_IEA BIT(4)
#define KXCJK1013_REG_INT_CTRL1_BIT_IEN BIT(5)
#define KXTF9_REG_TILT_BIT_LEFT_EDGE BIT(5)
#define KXTF9_REG_TILT_BIT_RIGHT_EDGE BIT(4)
#define KXTF9_REG_TILT_BIT_LOWER_EDGE BIT(3)
#define KXTF9_REG_TILT_BIT_UPPER_EDGE BIT(2)
#define KXTF9_REG_TILT_BIT_FACE_DOWN BIT(1)
#define KXTF9_REG_TILT_BIT_FACE_UP BIT(0)
#define KXCJK1013_DATA_MASK_12_BIT 0x0FFF
#define KXCJK1013_MAX_STARTUP_TIME_US 100000
#define KXCJK1013_SLEEP_DELAY_MS 2000
#define KXCJK1013_REG_INT_SRC1_BIT_TPS BIT(0) /* KXTF9 */
#define KXCJK1013_REG_INT_SRC1_BIT_WUFS BIT(1)
#define KXCJK1013_REG_INT_SRC1_MASK_TDTS (BIT(2) | BIT(3)) /* KXTF9 */
#define KXCJK1013_REG_INT_SRC1_TAP_NONE 0
#define KXCJK1013_REG_INT_SRC1_TAP_SINGLE BIT(2)
#define KXCJK1013_REG_INT_SRC1_TAP_DOUBLE BIT(3)
#define KXCJK1013_REG_INT_SRC1_BIT_DRDY BIT(4)
/* KXCJK: INT_SOURCE2: motion detect, KXTF9: INT_SRC_REG1: tap detect */
#define KXCJK1013_REG_INT_SRC2_BIT_ZP BIT(0)
#define KXCJK1013_REG_INT_SRC2_BIT_ZN BIT(1)
#define KXCJK1013_REG_INT_SRC2_BIT_YP BIT(2)
#define KXCJK1013_REG_INT_SRC2_BIT_YN BIT(3)
#define KXCJK1013_REG_INT_SRC2_BIT_XP BIT(4)
#define KXCJK1013_REG_INT_SRC2_BIT_XN BIT(5)
#define KXCJK1013_DEFAULT_WAKE_THRES 1
enum kx_chipset {
KXCJK1013,
KXCJ91008,
KXTJ21009,
KXTF9,
KX_MAX_CHIPS /* this must be last */
};
struct kxcjk1013_data {
struct i2c_client *client;
struct iio_trigger *dready_trig;
struct iio_trigger *motion_trig;
struct mutex mutex;
s16 buffer[8];
u8 odr_bits;
u8 range;
int wake_thres;
int wake_dur;
bool active_high_intr;
bool dready_trigger_on;
int ev_enable_state;
bool motion_trigger_on;
int64_t timestamp;
enum kx_chipset chipset;
bool is_smo8500_device;
};
enum kxcjk1013_axis {
AXIS_X,
AXIS_Y,
AXIS_Z,
AXIS_MAX,
};
enum kxcjk1013_mode {
STANDBY,
OPERATION,
};
enum kxcjk1013_range {
KXCJK1013_RANGE_2G,
KXCJK1013_RANGE_4G,
KXCJK1013_RANGE_8G,
};
struct kx_odr_map {
int val;
int val2;
int odr_bits;
int wuf_bits;
};
static const struct kx_odr_map samp_freq_table[] = {
{ 0, 781000, 0x08, 0x00 },
{ 1, 563000, 0x09, 0x01 },
{ 3, 125000, 0x0A, 0x02 },
{ 6, 250000, 0x0B, 0x03 },
{ 12, 500000, 0x00, 0x04 },
{ 25, 0, 0x01, 0x05 },
{ 50, 0, 0x02, 0x06 },
{ 100, 0, 0x03, 0x06 },
{ 200, 0, 0x04, 0x06 },
{ 400, 0, 0x05, 0x06 },
{ 800, 0, 0x06, 0x06 },
{ 1600, 0, 0x07, 0x06 },
};
static const char *const kxcjk1013_samp_freq_avail =
"0.781000 1.563000 3.125000 6.250000 12.500000 25 50 100 200 400 800 1600";
static const struct kx_odr_map kxtf9_samp_freq_table[] = {
{ 25, 0, 0x01, 0x00 },
{ 50, 0, 0x02, 0x01 },
{ 100, 0, 0x03, 0x01 },
{ 200, 0, 0x04, 0x01 },
{ 400, 0, 0x05, 0x01 },
{ 800, 0, 0x06, 0x01 },
};
static const char *const kxtf9_samp_freq_avail =
"25 50 100 200 400 800";
/* Refer to section 4 of the specification */
static const struct {
int odr_bits;
int usec;
} odr_start_up_times[KX_MAX_CHIPS][12] = {
/* KXCJK-1013 */
{
{0x08, 100000},
{0x09, 100000},
{0x0A, 100000},
{0x0B, 100000},
{0, 80000},
{0x01, 41000},
{0x02, 21000},
{0x03, 11000},
{0x04, 6400},
{0x05, 3900},
{0x06, 2700},
{0x07, 2100},
},
/* KXCJ9-1008 */
{
{0x08, 100000},
{0x09, 100000},
{0x0A, 100000},
{0x0B, 100000},
{0, 80000},
{0x01, 41000},
{0x02, 21000},
{0x03, 11000},
{0x04, 6400},
{0x05, 3900},
{0x06, 2700},
{0x07, 2100},
},
/* KXCTJ2-1009 */
{
{0x08, 1240000},
{0x09, 621000},
{0x0A, 309000},
{0x0B, 151000},
{0, 80000},
{0x01, 41000},
{0x02, 21000},
{0x03, 11000},
{0x04, 6000},
{0x05, 4000},
{0x06, 3000},
{0x07, 2000},
},
/* KXTF9 */
{
{0x01, 81000},
{0x02, 41000},
{0x03, 21000},
{0x04, 11000},
{0x05, 5100},
{0x06, 2700},
},
};
static const struct {
u16 scale;
u8 gsel_0;
u8 gsel_1;
} KXCJK1013_scale_table[] = { {9582, 0, 0},
{19163, 1, 0},
{38326, 0, 1} };
static int kxcjk1013_set_mode(struct kxcjk1013_data *data,
enum kxcjk1013_mode mode)
{
int ret;
ret = i2c_smbus_read_byte_data(data->client, KXCJK1013_REG_CTRL1);
if (ret < 0) {
dev_err(&data->client->dev, "Error reading reg_ctrl1\n");
return ret;
}
if (mode == STANDBY)
ret &= ~KXCJK1013_REG_CTRL1_BIT_PC1;
else
ret |= KXCJK1013_REG_CTRL1_BIT_PC1;
ret = i2c_smbus_write_byte_data(data->client,
KXCJK1013_REG_CTRL1, ret);
if (ret < 0) {
dev_err(&data->client->dev, "Error writing reg_ctrl1\n");
return ret;
}
return 0;
}
static int kxcjk1013_get_mode(struct kxcjk1013_data *data,
enum kxcjk1013_mode *mode)
{
int ret;
ret = i2c_smbus_read_byte_data(data->client, KXCJK1013_REG_CTRL1);
if (ret < 0) {
dev_err(&data->client->dev, "Error reading reg_ctrl1\n");
return ret;
}
if (ret & KXCJK1013_REG_CTRL1_BIT_PC1)
*mode = OPERATION;
else
*mode = STANDBY;
return 0;
}
static int kxcjk1013_set_range(struct kxcjk1013_data *data, int range_index)
{
int ret;
ret = i2c_smbus_read_byte_data(data->client, KXCJK1013_REG_CTRL1);
if (ret < 0) {
dev_err(&data->client->dev, "Error reading reg_ctrl1\n");
return ret;
}
ret &= ~(KXCJK1013_REG_CTRL1_BIT_GSEL0 |
KXCJK1013_REG_CTRL1_BIT_GSEL1);
ret |= (KXCJK1013_scale_table[range_index].gsel_0 << 3);
ret |= (KXCJK1013_scale_table[range_index].gsel_1 << 4);
ret = i2c_smbus_write_byte_data(data->client,
KXCJK1013_REG_CTRL1,
ret);
if (ret < 0) {
dev_err(&data->client->dev, "Error writing reg_ctrl1\n");
return ret;
}
data->range = range_index;
return 0;
}
static int kxcjk1013_chip_init(struct kxcjk1013_data *data)
{
int ret;
ret = i2c_smbus_read_byte_data(data->client, KXCJK1013_REG_WHO_AM_I);
if (ret < 0) {
dev_err(&data->client->dev, "Error reading who_am_i\n");
return ret;
}
dev_dbg(&data->client->dev, "KXCJK1013 Chip Id %x\n", ret);
ret = kxcjk1013_set_mode(data, STANDBY);
if (ret < 0)
return ret;
ret = i2c_smbus_read_byte_data(data->client, KXCJK1013_REG_CTRL1);
if (ret < 0) {
dev_err(&data->client->dev, "Error reading reg_ctrl1\n");
return ret;
}
/* Set 12 bit mode */
ret |= KXCJK1013_REG_CTRL1_BIT_RES;
ret = i2c_smbus_write_byte_data(data->client, KXCJK1013_REG_CTRL1,
ret);
if (ret < 0) {
dev_err(&data->client->dev, "Error reading reg_ctrl\n");
return ret;
}
/* Setting range to 4G */
ret = kxcjk1013_set_range(data, KXCJK1013_RANGE_4G);
if (ret < 0)
return ret;
ret = i2c_smbus_read_byte_data(data->client, KXCJK1013_REG_DATA_CTRL);
if (ret < 0) {
dev_err(&data->client->dev, "Error reading reg_data_ctrl\n");
return ret;
}
data->odr_bits = ret;
/* Set up INT polarity */
ret = i2c_smbus_read_byte_data(data->client, KXCJK1013_REG_INT_CTRL1);
if (ret < 0) {
dev_err(&data->client->dev, "Error reading reg_int_ctrl1\n");
return ret;
}
if (data->active_high_intr)
ret |= KXCJK1013_REG_INT_CTRL1_BIT_IEA;
else
ret &= ~KXCJK1013_REG_INT_CTRL1_BIT_IEA;
ret = i2c_smbus_write_byte_data(data->client, KXCJK1013_REG_INT_CTRL1,
ret);
if (ret < 0) {
dev_err(&data->client->dev, "Error writing reg_int_ctrl1\n");
return ret;
}
ret = kxcjk1013_set_mode(data, OPERATION);
if (ret < 0)
return ret;
data->wake_thres = KXCJK1013_DEFAULT_WAKE_THRES;
return 0;
}
#ifdef CONFIG_PM
static int kxcjk1013_get_startup_times(struct kxcjk1013_data *data)
{
int i;
int idx = data->chipset;
for (i = 0; i < ARRAY_SIZE(odr_start_up_times[idx]); ++i) {
if (odr_start_up_times[idx][i].odr_bits == data->odr_bits)
return odr_start_up_times[idx][i].usec;
}
return KXCJK1013_MAX_STARTUP_TIME_US;
}
#endif
static int kxcjk1013_set_power_state(struct kxcjk1013_data *data, bool on)
{
#ifdef CONFIG_PM
int ret;
if (on)
ret = pm_runtime_get_sync(&data->client->dev);
else {
pm_runtime_mark_last_busy(&data->client->dev);
ret = pm_runtime_put_autosuspend(&data->client->dev);
}
if (ret < 0) {
dev_err(&data->client->dev,
"Failed: %s for %d\n", __func__, on);
if (on)
pm_runtime_put_noidle(&data->client->dev);
return ret;
}
#endif
return 0;
}
static int kxcjk1013_chip_update_thresholds(struct kxcjk1013_data *data)
{
int waketh_reg, ret;
ret = i2c_smbus_write_byte_data(data->client,
KXCJK1013_REG_WAKE_TIMER,
data->wake_dur);
if (ret < 0) {
dev_err(&data->client->dev,
"Error writing reg_wake_timer\n");
return ret;
}
waketh_reg = data->chipset == KXTF9 ?
KXTF9_REG_WAKE_THRESH : KXCJK1013_REG_WAKE_THRES;
ret = i2c_smbus_write_byte_data(data->client, waketh_reg,
data->wake_thres);
if (ret < 0) {
dev_err(&data->client->dev, "Error writing reg_wake_thres\n");
return ret;
}
return 0;
}
static int kxcjk1013_setup_any_motion_interrupt(struct kxcjk1013_data *data,
bool status)
{
int ret;
enum kxcjk1013_mode store_mode;
ret = kxcjk1013_get_mode(data, &store_mode);
if (ret < 0)
return ret;
/* This is requirement by spec to change state to STANDBY */
ret = kxcjk1013_set_mode(data, STANDBY);
if (ret < 0)
return ret;
ret = kxcjk1013_chip_update_thresholds(data);
if (ret < 0)
return ret;
ret = i2c_smbus_read_byte_data(data->client, KXCJK1013_REG_INT_CTRL1);
if (ret < 0) {
dev_err(&data->client->dev, "Error reading reg_int_ctrl1\n");
return ret;
}
if (status)
ret |= KXCJK1013_REG_INT_CTRL1_BIT_IEN;
else
ret &= ~KXCJK1013_REG_INT_CTRL1_BIT_IEN;
ret = i2c_smbus_write_byte_data(data->client, KXCJK1013_REG_INT_CTRL1,
ret);
if (ret < 0) {
dev_err(&data->client->dev, "Error writing reg_int_ctrl1\n");
return ret;
}
ret = i2c_smbus_read_byte_data(data->client, KXCJK1013_REG_CTRL1);
if (ret < 0) {
dev_err(&data->client->dev, "Error reading reg_ctrl1\n");
return ret;
}
if (status)
ret |= KXCJK1013_REG_CTRL1_BIT_WUFE;
else
ret &= ~KXCJK1013_REG_CTRL1_BIT_WUFE;
ret = i2c_smbus_write_byte_data(data->client,
KXCJK1013_REG_CTRL1, ret);
if (ret < 0) {
dev_err(&data->client->dev, "Error writing reg_ctrl1\n");
return ret;
}
if (store_mode == OPERATION) {
ret = kxcjk1013_set_mode(data, OPERATION);
if (ret < 0)
return ret;
}
return 0;
}
static int kxcjk1013_setup_new_data_interrupt(struct kxcjk1013_data *data,
bool status)
{
int ret;
enum kxcjk1013_mode store_mode;
ret = kxcjk1013_get_mode(data, &store_mode);
if (ret < 0)
return ret;
/* This is requirement by spec to change state to STANDBY */
ret = kxcjk1013_set_mode(data, STANDBY);
if (ret < 0)
return ret;
ret = i2c_smbus_read_byte_data(data->client, KXCJK1013_REG_INT_CTRL1);
if (ret < 0) {
dev_err(&data->client->dev, "Error reading reg_int_ctrl1\n");
return ret;
}
if (status)
ret |= KXCJK1013_REG_INT_CTRL1_BIT_IEN;
else
ret &= ~KXCJK1013_REG_INT_CTRL1_BIT_IEN;
ret = i2c_smbus_write_byte_data(data->client, KXCJK1013_REG_INT_CTRL1,
ret);
if (ret < 0) {
dev_err(&data->client->dev, "Error writing reg_int_ctrl1\n");
return ret;
}
ret = i2c_smbus_read_byte_data(data->client, KXCJK1013_REG_CTRL1);
if (ret < 0) {
dev_err(&data->client->dev, "Error reading reg_ctrl1\n");
return ret;
}
if (status)
ret |= KXCJK1013_REG_CTRL1_BIT_DRDY;
else
ret &= ~KXCJK1013_REG_CTRL1_BIT_DRDY;
ret = i2c_smbus_write_byte_data(data->client,
KXCJK1013_REG_CTRL1, ret);
if (ret < 0) {
dev_err(&data->client->dev, "Error writing reg_ctrl1\n");
return ret;
}
if (store_mode == OPERATION) {
ret = kxcjk1013_set_mode(data, OPERATION);
if (ret < 0)
return ret;
}
return 0;
}
static const struct kx_odr_map *kxcjk1013_find_odr_value(
const struct kx_odr_map *map, size_t map_size, int val, int val2)
{
int i;
for (i = 0; i < map_size; ++i) {
if (map[i].val == val && map[i].val2 == val2)
return &map[i];
}
return ERR_PTR(-EINVAL);
}
static int kxcjk1013_convert_odr_value(const struct kx_odr_map *map,
size_t map_size, int odr_bits,
int *val, int *val2)
{
int i;
for (i = 0; i < map_size; ++i) {
if (map[i].odr_bits == odr_bits) {
*val = map[i].val;
*val2 = map[i].val2;
return IIO_VAL_INT_PLUS_MICRO;
}
}
return -EINVAL;
}
static int kxcjk1013_set_odr(struct kxcjk1013_data *data, int val, int val2)
{
int ret;
enum kxcjk1013_mode store_mode;
const struct kx_odr_map *odr_setting;
ret = kxcjk1013_get_mode(data, &store_mode);
if (ret < 0)
return ret;
if (data->chipset == KXTF9)
odr_setting = kxcjk1013_find_odr_value(kxtf9_samp_freq_table,
ARRAY_SIZE(kxtf9_samp_freq_table),
val, val2);
else
odr_setting = kxcjk1013_find_odr_value(samp_freq_table,
ARRAY_SIZE(samp_freq_table),
val, val2);
if (IS_ERR(odr_setting))
return PTR_ERR(odr_setting);
/* To change ODR, the chip must be set to STANDBY as per spec */
ret = kxcjk1013_set_mode(data, STANDBY);
if (ret < 0)
return ret;
ret = i2c_smbus_write_byte_data(data->client, KXCJK1013_REG_DATA_CTRL,
odr_setting->odr_bits);
if (ret < 0) {
dev_err(&data->client->dev, "Error writing data_ctrl\n");
return ret;
}
data->odr_bits = odr_setting->odr_bits;
ret = i2c_smbus_write_byte_data(data->client, KXCJK1013_REG_CTRL2,
odr_setting->wuf_bits);
if (ret < 0) {
dev_err(&data->client->dev, "Error writing reg_ctrl2\n");
return ret;
}
if (store_mode == OPERATION) {
ret = kxcjk1013_set_mode(data, OPERATION);
if (ret < 0)
return ret;
}
return 0;
}
static int kxcjk1013_get_odr(struct kxcjk1013_data *data, int *val, int *val2)
{
if (data->chipset == KXTF9)
return kxcjk1013_convert_odr_value(kxtf9_samp_freq_table,
ARRAY_SIZE(kxtf9_samp_freq_table),
data->odr_bits, val, val2);
else
return kxcjk1013_convert_odr_value(samp_freq_table,
ARRAY_SIZE(samp_freq_table),
data->odr_bits, val, val2);
}
static int kxcjk1013_get_acc_reg(struct kxcjk1013_data *data, int axis)
{
u8 reg = KXCJK1013_REG_XOUT_L + axis * 2;
int ret;
ret = i2c_smbus_read_word_data(data->client, reg);
if (ret < 0) {
dev_err(&data->client->dev,
"failed to read accel_%c registers\n", 'x' + axis);
return ret;
}
return ret;
}
static int kxcjk1013_set_scale(struct kxcjk1013_data *data, int val)
{
int ret, i;
enum kxcjk1013_mode store_mode;
for (i = 0; i < ARRAY_SIZE(KXCJK1013_scale_table); ++i) {
if (KXCJK1013_scale_table[i].scale == val) {
ret = kxcjk1013_get_mode(data, &store_mode);
if (ret < 0)
return ret;
ret = kxcjk1013_set_mode(data, STANDBY);
if (ret < 0)
return ret;
ret = kxcjk1013_set_range(data, i);
if (ret < 0)
return ret;
if (store_mode == OPERATION) {
ret = kxcjk1013_set_mode(data, OPERATION);
if (ret)
return ret;
}
return 0;
}
}
return -EINVAL;
}
static int kxcjk1013_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val,
int *val2, long mask)
{
struct kxcjk1013_data *data = iio_priv(indio_dev);
int ret;
switch (mask) {
case IIO_CHAN_INFO_RAW:
mutex_lock(&data->mutex);
if (iio_buffer_enabled(indio_dev))
ret = -EBUSY;
else {
ret = kxcjk1013_set_power_state(data, true);
if (ret < 0) {
mutex_unlock(&data->mutex);
return ret;
}
ret = kxcjk1013_get_acc_reg(data, chan->scan_index);
if (ret < 0) {
kxcjk1013_set_power_state(data, false);
mutex_unlock(&data->mutex);
return ret;
}
*val = sign_extend32(ret >> 4, 11);
ret = kxcjk1013_set_power_state(data, false);
}
mutex_unlock(&data->mutex);
if (ret < 0)
return ret;
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
*val = 0;
*val2 = KXCJK1013_scale_table[data->range].scale;
return IIO_VAL_INT_PLUS_MICRO;
case IIO_CHAN_INFO_SAMP_FREQ:
mutex_lock(&data->mutex);
ret = kxcjk1013_get_odr(data, val, val2);
mutex_unlock(&data->mutex);
return ret;
default:
return -EINVAL;
}
}
static int kxcjk1013_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int val,
int val2, long mask)
{
struct kxcjk1013_data *data = iio_priv(indio_dev);
int ret;
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
mutex_lock(&data->mutex);
ret = kxcjk1013_set_odr(data, val, val2);
mutex_unlock(&data->mutex);
break;
case IIO_CHAN_INFO_SCALE:
if (val)
return -EINVAL;
mutex_lock(&data->mutex);
ret = kxcjk1013_set_scale(data, val2);
mutex_unlock(&data->mutex);
break;
default:
ret = -EINVAL;
}
return ret;
}
static int kxcjk1013_read_event(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info,
int *val, int *val2)
{
struct kxcjk1013_data *data = iio_priv(indio_dev);
*val2 = 0;
switch (info) {
case IIO_EV_INFO_VALUE:
*val = data->wake_thres;
break;
case IIO_EV_INFO_PERIOD:
*val = data->wake_dur;
break;
default:
return -EINVAL;
}
return IIO_VAL_INT;
}
static int kxcjk1013_write_event(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info,
int val, int val2)
{
struct kxcjk1013_data *data = iio_priv(indio_dev);
if (data->ev_enable_state)
return -EBUSY;
switch (info) {
case IIO_EV_INFO_VALUE:
data->wake_thres = val;
break;
case IIO_EV_INFO_PERIOD:
data->wake_dur = val;
break;
default:
return -EINVAL;
}
return 0;
}
static int kxcjk1013_read_event_config(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir)
{
struct kxcjk1013_data *data = iio_priv(indio_dev);
return data->ev_enable_state;
}
static int kxcjk1013_write_event_config(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
int state)
{
struct kxcjk1013_data *data = iio_priv(indio_dev);
int ret;
if (state && data->ev_enable_state)
return 0;
mutex_lock(&data->mutex);
if (!state && data->motion_trigger_on) {
data->ev_enable_state = 0;
mutex_unlock(&data->mutex);
return 0;
}
/*
* We will expect the enable and disable to do operation in
* in reverse order. This will happen here anyway as our
* resume operation uses sync mode runtime pm calls, the
* suspend operation will be delayed by autosuspend delay
* So the disable operation will still happen in reverse of
* enable operation. When runtime pm is disabled the mode
* is always on so sequence doesn't matter
*/
ret = kxcjk1013_set_power_state(data, state);
if (ret < 0) {
mutex_unlock(&data->mutex);
return ret;
}
ret = kxcjk1013_setup_any_motion_interrupt(data, state);
if (ret < 0) {
kxcjk1013_set_power_state(data, false);
data->ev_enable_state = 0;
mutex_unlock(&data->mutex);
return ret;
}
data->ev_enable_state = state;
mutex_unlock(&data->mutex);
return 0;
}
static int kxcjk1013_buffer_preenable(struct iio_dev *indio_dev)
{
struct kxcjk1013_data *data = iio_priv(indio_dev);
return kxcjk1013_set_power_state(data, true);
}
static int kxcjk1013_buffer_postdisable(struct iio_dev *indio_dev)
{
struct kxcjk1013_data *data = iio_priv(indio_dev);
return kxcjk1013_set_power_state(data, false);
}
static ssize_t kxcjk1013_get_samp_freq_avail(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct kxcjk1013_data *data = iio_priv(indio_dev);
const char *str;
if (data->chipset == KXTF9)
str = kxtf9_samp_freq_avail;
else
str = kxcjk1013_samp_freq_avail;
return sprintf(buf, "%s\n", str);
}
static IIO_DEVICE_ATTR(in_accel_sampling_frequency_available, S_IRUGO,
kxcjk1013_get_samp_freq_avail, NULL, 0);
static IIO_CONST_ATTR(in_accel_scale_available, "0.009582 0.019163 0.038326");
static struct attribute *kxcjk1013_attributes[] = {
&iio_dev_attr_in_accel_sampling_frequency_available.dev_attr.attr,
&iio_const_attr_in_accel_scale_available.dev_attr.attr,
NULL,
};
static const struct attribute_group kxcjk1013_attrs_group = {
.attrs = kxcjk1013_attributes,
};
static const struct iio_event_spec kxcjk1013_event = {
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_EITHER,
.mask_separate = BIT(IIO_EV_INFO_VALUE) |
BIT(IIO_EV_INFO_ENABLE) |
BIT(IIO_EV_INFO_PERIOD)
};
#define KXCJK1013_CHANNEL(_axis) { \
.type = IIO_ACCEL, \
.modified = 1, \
.channel2 = IIO_MOD_##_axis, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_SAMP_FREQ), \
.scan_index = AXIS_##_axis, \
.scan_type = { \
.sign = 's', \
.realbits = 12, \
.storagebits = 16, \
.shift = 4, \
.endianness = IIO_LE, \
}, \
.event_spec = &kxcjk1013_event, \
.num_event_specs = 1 \
}
static const struct iio_chan_spec kxcjk1013_channels[] = {
KXCJK1013_CHANNEL(X),
KXCJK1013_CHANNEL(Y),
KXCJK1013_CHANNEL(Z),
IIO_CHAN_SOFT_TIMESTAMP(3),
};
static const struct iio_buffer_setup_ops kxcjk1013_buffer_setup_ops = {
.preenable = kxcjk1013_buffer_preenable,
.postenable = iio_triggered_buffer_postenable,
.postdisable = kxcjk1013_buffer_postdisable,
.predisable = iio_triggered_buffer_predisable,
};
static const struct iio_info kxcjk1013_info = {
.attrs = &kxcjk1013_attrs_group,
.read_raw = kxcjk1013_read_raw,
.write_raw = kxcjk1013_write_raw,
.read_event_value = kxcjk1013_read_event,
.write_event_value = kxcjk1013_write_event,
.write_event_config = kxcjk1013_write_event_config,
.read_event_config = kxcjk1013_read_event_config,
};
static const unsigned long kxcjk1013_scan_masks[] = {0x7, 0};
static irqreturn_t kxcjk1013_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct kxcjk1013_data *data = iio_priv(indio_dev);
int ret;
mutex_lock(&data->mutex);
ret = i2c_smbus_read_i2c_block_data_or_emulated(data->client,
KXCJK1013_REG_XOUT_L,
AXIS_MAX * 2,
(u8 *)data->buffer);
mutex_unlock(&data->mutex);
if (ret < 0)
goto err;
iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
data->timestamp);
err:
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static int kxcjk1013_trig_try_reen(struct iio_trigger *trig)
{
struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
struct kxcjk1013_data *data = iio_priv(indio_dev);
int ret;
ret = i2c_smbus_read_byte_data(data->client, KXCJK1013_REG_INT_REL);
if (ret < 0) {
dev_err(&data->client->dev, "Error reading reg_int_rel\n");
return ret;
}
return 0;
}
static int kxcjk1013_data_rdy_trigger_set_state(struct iio_trigger *trig,
bool state)
{
struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
struct kxcjk1013_data *data = iio_priv(indio_dev);
int ret;
mutex_lock(&data->mutex);
if (!state && data->ev_enable_state && data->motion_trigger_on) {
data->motion_trigger_on = false;
mutex_unlock(&data->mutex);
return 0;
}
ret = kxcjk1013_set_power_state(data, state);
if (ret < 0) {
mutex_unlock(&data->mutex);
return ret;
}
if (data->motion_trig == trig)
ret = kxcjk1013_setup_any_motion_interrupt(data, state);
else
ret = kxcjk1013_setup_new_data_interrupt(data, state);
if (ret < 0) {
kxcjk1013_set_power_state(data, false);
mutex_unlock(&data->mutex);
return ret;
}
if (data->motion_trig == trig)
data->motion_trigger_on = state;
else
data->dready_trigger_on = state;
mutex_unlock(&data->mutex);
return 0;
}
static const struct iio_trigger_ops kxcjk1013_trigger_ops = {
.set_trigger_state = kxcjk1013_data_rdy_trigger_set_state,
.try_reenable = kxcjk1013_trig_try_reen,
};
static void kxcjk1013_report_motion_event(struct iio_dev *indio_dev)
{
struct kxcjk1013_data *data = iio_priv(indio_dev);
int ret = i2c_smbus_read_byte_data(data->client,
KXCJK1013_REG_INT_SRC2);
if (ret < 0) {
dev_err(&data->client->dev, "Error reading reg_int_src2\n");
return;
}
if (ret & KXCJK1013_REG_INT_SRC2_BIT_XN)
iio_push_event(indio_dev,
IIO_MOD_EVENT_CODE(IIO_ACCEL,
0,
IIO_MOD_X,
IIO_EV_TYPE_THRESH,
IIO_EV_DIR_FALLING),
data->timestamp);
if (ret & KXCJK1013_REG_INT_SRC2_BIT_XP)
iio_push_event(indio_dev,
IIO_MOD_EVENT_CODE(IIO_ACCEL,
0,
IIO_MOD_X,
IIO_EV_TYPE_THRESH,
IIO_EV_DIR_RISING),
data->timestamp);
if (ret & KXCJK1013_REG_INT_SRC2_BIT_YN)
iio_push_event(indio_dev,
IIO_MOD_EVENT_CODE(IIO_ACCEL,
0,
IIO_MOD_Y,
IIO_EV_TYPE_THRESH,
IIO_EV_DIR_FALLING),
data->timestamp);
if (ret & KXCJK1013_REG_INT_SRC2_BIT_YP)
iio_push_event(indio_dev,
IIO_MOD_EVENT_CODE(IIO_ACCEL,
0,
IIO_MOD_Y,
IIO_EV_TYPE_THRESH,
IIO_EV_DIR_RISING),
data->timestamp);
if (ret & KXCJK1013_REG_INT_SRC2_BIT_ZN)
iio_push_event(indio_dev,
IIO_MOD_EVENT_CODE(IIO_ACCEL,
0,
IIO_MOD_Z,
IIO_EV_TYPE_THRESH,
IIO_EV_DIR_FALLING),
data->timestamp);
if (ret & KXCJK1013_REG_INT_SRC2_BIT_ZP)
iio_push_event(indio_dev,
IIO_MOD_EVENT_CODE(IIO_ACCEL,
0,
IIO_MOD_Z,
IIO_EV_TYPE_THRESH,
IIO_EV_DIR_RISING),
data->timestamp);
}
static irqreturn_t kxcjk1013_event_handler(int irq, void *private)
{
struct iio_dev *indio_dev = private;
struct kxcjk1013_data *data = iio_priv(indio_dev);
int ret;
ret = i2c_smbus_read_byte_data(data->client, KXCJK1013_REG_INT_SRC1);
if (ret < 0) {
dev_err(&data->client->dev, "Error reading reg_int_src1\n");
goto ack_intr;
}
if (ret & KXCJK1013_REG_INT_SRC1_BIT_WUFS) {
if (data->chipset == KXTF9)
iio_push_event(indio_dev,
IIO_MOD_EVENT_CODE(IIO_ACCEL,
0,
IIO_MOD_X_AND_Y_AND_Z,
IIO_EV_TYPE_THRESH,
IIO_EV_DIR_RISING),
data->timestamp);
else
kxcjk1013_report_motion_event(indio_dev);
}
ack_intr:
if (data->dready_trigger_on)
return IRQ_HANDLED;
ret = i2c_smbus_read_byte_data(data->client, KXCJK1013_REG_INT_REL);
if (ret < 0)
dev_err(&data->client->dev, "Error reading reg_int_rel\n");
return IRQ_HANDLED;
}
static irqreturn_t kxcjk1013_data_rdy_trig_poll(int irq, void *private)
{
struct iio_dev *indio_dev = private;
struct kxcjk1013_data *data = iio_priv(indio_dev);
data->timestamp = iio_get_time_ns(indio_dev);
if (data->dready_trigger_on)
iio_trigger_poll(data->dready_trig);
else if (data->motion_trigger_on)
iio_trigger_poll(data->motion_trig);
if (data->ev_enable_state)
return IRQ_WAKE_THREAD;
else
return IRQ_HANDLED;
}
static const char *kxcjk1013_match_acpi_device(struct device *dev,
enum kx_chipset *chipset,
bool *is_smo8500_device)
{
const struct acpi_device_id *id;
id = acpi_match_device(dev->driver->acpi_match_table, dev);
if (!id)
return NULL;
if (strcmp(id->id, "SMO8500") == 0)
*is_smo8500_device = true;
*chipset = (enum kx_chipset)id->driver_data;
return dev_name(dev);
}
static int kxcjk1013_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct kxcjk1013_data *data;
struct iio_dev *indio_dev;
struct kxcjk_1013_platform_data *pdata;
const char *name;
int ret;
indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
if (!indio_dev)
return -ENOMEM;
data = iio_priv(indio_dev);
i2c_set_clientdata(client, indio_dev);
data->client = client;
pdata = dev_get_platdata(&client->dev);
if (pdata)
data->active_high_intr = pdata->active_high_intr;
else
data->active_high_intr = true; /* default polarity */
if (id) {
data->chipset = (enum kx_chipset)(id->driver_data);
name = id->name;
} else if (ACPI_HANDLE(&client->dev)) {
name = kxcjk1013_match_acpi_device(&client->dev,
&data->chipset,
&data->is_smo8500_device);
} else
return -ENODEV;
ret = kxcjk1013_chip_init(data);
if (ret < 0)
return ret;
mutex_init(&data->mutex);
indio_dev->dev.parent = &client->dev;
indio_dev->channels = kxcjk1013_channels;
indio_dev->num_channels = ARRAY_SIZE(kxcjk1013_channels);
indio_dev->available_scan_masks = kxcjk1013_scan_masks;
indio_dev->name = name;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->info = &kxcjk1013_info;
if (client->irq > 0 && !data->is_smo8500_device) {
ret = devm_request_threaded_irq(&client->dev, client->irq,
kxcjk1013_data_rdy_trig_poll,
kxcjk1013_event_handler,
IRQF_TRIGGER_RISING,
KXCJK1013_IRQ_NAME,
indio_dev);
if (ret)
goto err_poweroff;
data->dready_trig = devm_iio_trigger_alloc(&client->dev,
"%s-dev%d",
indio_dev->name,
indio_dev->id);
if (!data->dready_trig) {
ret = -ENOMEM;
goto err_poweroff;
}
data->motion_trig = devm_iio_trigger_alloc(&client->dev,
"%s-any-motion-dev%d",
indio_dev->name,
indio_dev->id);
if (!data->motion_trig) {
ret = -ENOMEM;
goto err_poweroff;
}
data->dready_trig->dev.parent = &client->dev;
data->dready_trig->ops = &kxcjk1013_trigger_ops;
iio_trigger_set_drvdata(data->dready_trig, indio_dev);
indio_dev->trig = data->dready_trig;
iio_trigger_get(indio_dev->trig);
ret = iio_trigger_register(data->dready_trig);
if (ret)
goto err_poweroff;
data->motion_trig->dev.parent = &client->dev;
data->motion_trig->ops = &kxcjk1013_trigger_ops;
iio_trigger_set_drvdata(data->motion_trig, indio_dev);
ret = iio_trigger_register(data->motion_trig);
if (ret) {
data->motion_trig = NULL;
goto err_trigger_unregister;
}
}
ret = iio_triggered_buffer_setup(indio_dev,
&iio_pollfunc_store_time,
kxcjk1013_trigger_handler,
&kxcjk1013_buffer_setup_ops);
if (ret < 0) {
dev_err(&client->dev, "iio triggered buffer setup failed\n");
goto err_trigger_unregister;
}
ret = pm_runtime_set_active(&client->dev);
if (ret)
goto err_buffer_cleanup;
pm_runtime_enable(&client->dev);
pm_runtime_set_autosuspend_delay(&client->dev,
KXCJK1013_SLEEP_DELAY_MS);
pm_runtime_use_autosuspend(&client->dev);
ret = iio_device_register(indio_dev);
if (ret < 0) {
dev_err(&client->dev, "unable to register iio device\n");
goto err_buffer_cleanup;
}
return 0;
err_buffer_cleanup:
if (data->dready_trig)
iio_triggered_buffer_cleanup(indio_dev);
err_trigger_unregister:
if (data->dready_trig)
iio_trigger_unregister(data->dready_trig);
if (data->motion_trig)
iio_trigger_unregister(data->motion_trig);
err_poweroff:
kxcjk1013_set_mode(data, STANDBY);
return ret;
}
static int kxcjk1013_remove(struct i2c_client *client)
{
struct iio_dev *indio_dev = i2c_get_clientdata(client);
struct kxcjk1013_data *data = iio_priv(indio_dev);
iio_device_unregister(indio_dev);
pm_runtime_disable(&client->dev);
pm_runtime_set_suspended(&client->dev);
pm_runtime_put_noidle(&client->dev);
if (data->dready_trig) {
iio_triggered_buffer_cleanup(indio_dev);
iio_trigger_unregister(data->dready_trig);
iio_trigger_unregister(data->motion_trig);
}
mutex_lock(&data->mutex);
kxcjk1013_set_mode(data, STANDBY);
mutex_unlock(&data->mutex);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int kxcjk1013_suspend(struct device *dev)
{
struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
struct kxcjk1013_data *data = iio_priv(indio_dev);
int ret;
mutex_lock(&data->mutex);
ret = kxcjk1013_set_mode(data, STANDBY);
mutex_unlock(&data->mutex);
return ret;
}
static int kxcjk1013_resume(struct device *dev)
{
struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
struct kxcjk1013_data *data = iio_priv(indio_dev);
int ret = 0;
mutex_lock(&data->mutex);
ret = kxcjk1013_set_mode(data, OPERATION);
if (ret == 0)
ret = kxcjk1013_set_range(data, data->range);
mutex_unlock(&data->mutex);
return ret;
}
#endif
#ifdef CONFIG_PM
static int kxcjk1013_runtime_suspend(struct device *dev)
{
struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
struct kxcjk1013_data *data = iio_priv(indio_dev);
int ret;
ret = kxcjk1013_set_mode(data, STANDBY);
if (ret < 0) {
dev_err(&data->client->dev, "powering off device failed\n");
return -EAGAIN;
}
return 0;
}
static int kxcjk1013_runtime_resume(struct device *dev)
{
struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
struct kxcjk1013_data *data = iio_priv(indio_dev);
int ret;
int sleep_val;
ret = kxcjk1013_set_mode(data, OPERATION);
if (ret < 0)
return ret;
sleep_val = kxcjk1013_get_startup_times(data);
if (sleep_val < 20000)
usleep_range(sleep_val, 20000);
else
msleep_interruptible(sleep_val/1000);
return 0;
}
#endif
static const struct dev_pm_ops kxcjk1013_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(kxcjk1013_suspend, kxcjk1013_resume)
SET_RUNTIME_PM_OPS(kxcjk1013_runtime_suspend,
kxcjk1013_runtime_resume, NULL)
};
static const struct acpi_device_id kx_acpi_match[] = {
{"KXCJ1013", KXCJK1013},
{"KXCJ1008", KXCJ91008},
{"KXCJ9000", KXCJ91008},
{"KIOX0008", KXCJ91008},
{"KIOX0009", KXTJ21009},
{"KIOX000A", KXCJ91008},
{"KIOX010A", KXCJ91008}, /* KXCJ91008 inside the display of a 2-in-1 */
{"KXTJ1009", KXTJ21009},
{"KXJ2109", KXTJ21009},
{"SMO8500", KXCJ91008},
{ },
};
MODULE_DEVICE_TABLE(acpi, kx_acpi_match);
static const struct i2c_device_id kxcjk1013_id[] = {
{"kxcjk1013", KXCJK1013},
{"kxcj91008", KXCJ91008},
{"kxtj21009", KXTJ21009},
{"kxtf9", KXTF9},
{"SMO8500", KXCJ91008},
{}
};
MODULE_DEVICE_TABLE(i2c, kxcjk1013_id);
static const struct of_device_id kxcjk1013_of_match[] = {
{ .compatible = "kionix,kxcjk1013", },
{ .compatible = "kionix,kxcj91008", },
{ .compatible = "kionix,kxtj21009", },
{ .compatible = "kionix,kxtf9", },
{ }
};
MODULE_DEVICE_TABLE(of, kxcjk1013_of_match);
static struct i2c_driver kxcjk1013_driver = {
.driver = {
.name = KXCJK1013_DRV_NAME,
.acpi_match_table = ACPI_PTR(kx_acpi_match),
.of_match_table = kxcjk1013_of_match,
.pm = &kxcjk1013_pm_ops,
},
.probe = kxcjk1013_probe,
.remove = kxcjk1013_remove,
.id_table = kxcjk1013_id,
};
module_i2c_driver(kxcjk1013_driver);
MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("KXCJK1013 accelerometer driver");