linux/arch/arm64/kernel/sleep.S
Dmitry Vyukov 9f7d416c36 kprobes: Unpoison stack in jprobe_return() for KASAN
I observed false KSAN positives in the sctp code, when
sctp uses jprobe_return() in jsctp_sf_eat_sack().

The stray 0xf4 in shadow memory are stack redzones:

[     ] ==================================================================
[     ] BUG: KASAN: stack-out-of-bounds in memcmp+0xe9/0x150 at addr ffff88005e48f480
[     ] Read of size 1 by task syz-executor/18535
[     ] page:ffffea00017923c0 count:0 mapcount:0 mapping:          (null) index:0x0
[     ] flags: 0x1fffc0000000000()
[     ] page dumped because: kasan: bad access detected
[     ] CPU: 1 PID: 18535 Comm: syz-executor Not tainted 4.8.0+ #28
[     ] Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
[     ]  ffff88005e48f2d0 ffffffff82d2b849 ffffffff0bc91e90 fffffbfff10971e8
[     ]  ffffed000bc91e90 ffffed000bc91e90 0000000000000001 0000000000000000
[     ]  ffff88005e48f480 ffff88005e48f350 ffffffff817d3169 ffff88005e48f370
[     ] Call Trace:
[     ]  [<ffffffff82d2b849>] dump_stack+0x12e/0x185
[     ]  [<ffffffff817d3169>] kasan_report+0x489/0x4b0
[     ]  [<ffffffff817d31a9>] __asan_report_load1_noabort+0x19/0x20
[     ]  [<ffffffff82d49529>] memcmp+0xe9/0x150
[     ]  [<ffffffff82df7486>] depot_save_stack+0x176/0x5c0
[     ]  [<ffffffff817d2031>] save_stack+0xb1/0xd0
[     ]  [<ffffffff817d27f2>] kasan_slab_free+0x72/0xc0
[     ]  [<ffffffff817d05b8>] kfree+0xc8/0x2a0
[     ]  [<ffffffff85b03f19>] skb_free_head+0x79/0xb0
[     ]  [<ffffffff85b0900a>] skb_release_data+0x37a/0x420
[     ]  [<ffffffff85b090ff>] skb_release_all+0x4f/0x60
[     ]  [<ffffffff85b11348>] consume_skb+0x138/0x370
[     ]  [<ffffffff8676ad7b>] sctp_chunk_put+0xcb/0x180
[     ]  [<ffffffff8676ae88>] sctp_chunk_free+0x58/0x70
[     ]  [<ffffffff8677fa5f>] sctp_inq_pop+0x68f/0xef0
[     ]  [<ffffffff8675ee36>] sctp_assoc_bh_rcv+0xd6/0x4b0
[     ]  [<ffffffff8677f2c1>] sctp_inq_push+0x131/0x190
[     ]  [<ffffffff867bad69>] sctp_backlog_rcv+0xe9/0xa20
[ ... ]
[     ] Memory state around the buggy address:
[     ]  ffff88005e48f380: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[     ]  ffff88005e48f400: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[     ] >ffff88005e48f480: f4 f4 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[     ]                    ^
[     ]  ffff88005e48f500: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[     ]  ffff88005e48f580: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[     ] ==================================================================

KASAN stack instrumentation poisons stack redzones on function entry
and unpoisons them on function exit. If a function exits abnormally
(e.g. with a longjmp like jprobe_return()), stack redzones are left
poisoned. Later this leads to random KASAN false reports.

Unpoison stack redzones in the frames we are going to jump over
before doing actual longjmp in jprobe_return().

Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ananth N Mavinakayanahalli <ananth@linux.vnet.ibm.com>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: kasan-dev@googlegroups.com
Cc: surovegin@google.com
Cc: rostedt@goodmis.org
Link: http://lkml.kernel.org/r/1476454043-101898-1-git-send-email-dvyukov@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-10-16 11:02:31 +02:00

150 lines
4.4 KiB
ArmAsm

#include <linux/errno.h>
#include <linux/linkage.h>
#include <asm/asm-offsets.h>
#include <asm/assembler.h>
.text
/*
* Implementation of MPIDR_EL1 hash algorithm through shifting
* and OR'ing.
*
* @dst: register containing hash result
* @rs0: register containing affinity level 0 bit shift
* @rs1: register containing affinity level 1 bit shift
* @rs2: register containing affinity level 2 bit shift
* @rs3: register containing affinity level 3 bit shift
* @mpidr: register containing MPIDR_EL1 value
* @mask: register containing MPIDR mask
*
* Pseudo C-code:
*
*u32 dst;
*
*compute_mpidr_hash(u32 rs0, u32 rs1, u32 rs2, u32 rs3, u64 mpidr, u64 mask) {
* u32 aff0, aff1, aff2, aff3;
* u64 mpidr_masked = mpidr & mask;
* aff0 = mpidr_masked & 0xff;
* aff1 = mpidr_masked & 0xff00;
* aff2 = mpidr_masked & 0xff0000;
* aff2 = mpidr_masked & 0xff00000000;
* dst = (aff0 >> rs0 | aff1 >> rs1 | aff2 >> rs2 | aff3 >> rs3);
*}
* Input registers: rs0, rs1, rs2, rs3, mpidr, mask
* Output register: dst
* Note: input and output registers must be disjoint register sets
(eg: a macro instance with mpidr = x1 and dst = x1 is invalid)
*/
.macro compute_mpidr_hash dst, rs0, rs1, rs2, rs3, mpidr, mask
and \mpidr, \mpidr, \mask // mask out MPIDR bits
and \dst, \mpidr, #0xff // mask=aff0
lsr \dst ,\dst, \rs0 // dst=aff0>>rs0
and \mask, \mpidr, #0xff00 // mask = aff1
lsr \mask ,\mask, \rs1
orr \dst, \dst, \mask // dst|=(aff1>>rs1)
and \mask, \mpidr, #0xff0000 // mask = aff2
lsr \mask ,\mask, \rs2
orr \dst, \dst, \mask // dst|=(aff2>>rs2)
and \mask, \mpidr, #0xff00000000 // mask = aff3
lsr \mask ,\mask, \rs3
orr \dst, \dst, \mask // dst|=(aff3>>rs3)
.endm
/*
* Save CPU state in the provided sleep_stack_data area, and publish its
* location for cpu_resume()'s use in sleep_save_stash.
*
* cpu_resume() will restore this saved state, and return. Because the
* link-register is saved and restored, it will appear to return from this
* function. So that the caller can tell the suspend/resume paths apart,
* __cpu_suspend_enter() will always return a non-zero value, whereas the
* path through cpu_resume() will return 0.
*
* x0 = struct sleep_stack_data area
*/
ENTRY(__cpu_suspend_enter)
stp x29, lr, [x0, #SLEEP_STACK_DATA_CALLEE_REGS]
stp x19, x20, [x0,#SLEEP_STACK_DATA_CALLEE_REGS+16]
stp x21, x22, [x0,#SLEEP_STACK_DATA_CALLEE_REGS+32]
stp x23, x24, [x0,#SLEEP_STACK_DATA_CALLEE_REGS+48]
stp x25, x26, [x0,#SLEEP_STACK_DATA_CALLEE_REGS+64]
stp x27, x28, [x0,#SLEEP_STACK_DATA_CALLEE_REGS+80]
/* save the sp in cpu_suspend_ctx */
mov x2, sp
str x2, [x0, #SLEEP_STACK_DATA_SYSTEM_REGS + CPU_CTX_SP]
/* find the mpidr_hash */
ldr_l x1, sleep_save_stash
mrs x7, mpidr_el1
adr_l x9, mpidr_hash
ldr x10, [x9, #MPIDR_HASH_MASK]
/*
* Following code relies on the struct mpidr_hash
* members size.
*/
ldp w3, w4, [x9, #MPIDR_HASH_SHIFTS]
ldp w5, w6, [x9, #(MPIDR_HASH_SHIFTS + 8)]
compute_mpidr_hash x8, x3, x4, x5, x6, x7, x10
add x1, x1, x8, lsl #3
str x0, [x1]
add x0, x0, #SLEEP_STACK_DATA_SYSTEM_REGS
stp x29, lr, [sp, #-16]!
bl cpu_do_suspend
ldp x29, lr, [sp], #16
mov x0, #1
ret
ENDPROC(__cpu_suspend_enter)
.pushsection ".idmap.text", "ax"
ENTRY(cpu_resume)
bl el2_setup // if in EL2 drop to EL1 cleanly
bl __cpu_setup
/* enable the MMU early - so we can access sleep_save_stash by va */
bl __enable_mmu
ldr x8, =_cpu_resume
br x8
ENDPROC(cpu_resume)
.ltorg
.popsection
ENTRY(_cpu_resume)
mrs x1, mpidr_el1
adr_l x8, mpidr_hash // x8 = struct mpidr_hash virt address
/* retrieve mpidr_hash members to compute the hash */
ldr x2, [x8, #MPIDR_HASH_MASK]
ldp w3, w4, [x8, #MPIDR_HASH_SHIFTS]
ldp w5, w6, [x8, #(MPIDR_HASH_SHIFTS + 8)]
compute_mpidr_hash x7, x3, x4, x5, x6, x1, x2
/* x7 contains hash index, let's use it to grab context pointer */
ldr_l x0, sleep_save_stash
ldr x0, [x0, x7, lsl #3]
add x29, x0, #SLEEP_STACK_DATA_CALLEE_REGS
add x0, x0, #SLEEP_STACK_DATA_SYSTEM_REGS
/* load sp from context */
ldr x2, [x0, #CPU_CTX_SP]
mov sp, x2
/* save thread_info */
and x2, x2, #~(THREAD_SIZE - 1)
msr sp_el0, x2
/*
* cpu_do_resume expects x0 to contain context address pointer
*/
bl cpu_do_resume
#ifdef CONFIG_KASAN
mov x0, sp
bl kasan_unpoison_task_stack_below
#endif
ldp x19, x20, [x29, #16]
ldp x21, x22, [x29, #32]
ldp x23, x24, [x29, #48]
ldp x25, x26, [x29, #64]
ldp x27, x28, [x29, #80]
ldp x29, lr, [x29]
mov x0, #0
ret
ENDPROC(_cpu_resume)