Signed-off-by: Carolyn Wyborny <carolyn.wyborny@intel.com> Tested-by: Aaron Brown <aaron.f.brown@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			1484 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1484 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*******************************************************************************
 | |
| 
 | |
|   Intel(R) Gigabit Ethernet Linux driver
 | |
|   Copyright(c) 2007-2012 Intel Corporation.
 | |
| 
 | |
|   This program is free software; you can redistribute it and/or modify it
 | |
|   under the terms and conditions of the GNU General Public License,
 | |
|   version 2, as published by the Free Software Foundation.
 | |
| 
 | |
|   This program is distributed in the hope it will be useful, but WITHOUT
 | |
|   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | |
|   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | |
|   more details.
 | |
| 
 | |
|   You should have received a copy of the GNU General Public License along with
 | |
|   this program; if not, write to the Free Software Foundation, Inc.,
 | |
|   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 | |
| 
 | |
|   The full GNU General Public License is included in this distribution in
 | |
|   the file called "COPYING".
 | |
| 
 | |
|   Contact Information:
 | |
|   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 | |
|   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 | |
| 
 | |
| *******************************************************************************/
 | |
| 
 | |
| #include <linux/if_ether.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/netdevice.h>
 | |
| #include <linux/etherdevice.h>
 | |
| 
 | |
| #include "e1000_mac.h"
 | |
| 
 | |
| #include "igb.h"
 | |
| 
 | |
| static s32 igb_set_default_fc(struct e1000_hw *hw);
 | |
| static s32 igb_set_fc_watermarks(struct e1000_hw *hw);
 | |
| 
 | |
| /**
 | |
|  *  igb_get_bus_info_pcie - Get PCIe bus information
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  Determines and stores the system bus information for a particular
 | |
|  *  network interface.  The following bus information is determined and stored:
 | |
|  *  bus speed, bus width, type (PCIe), and PCIe function.
 | |
|  **/
 | |
| s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
 | |
| {
 | |
| 	struct e1000_bus_info *bus = &hw->bus;
 | |
| 	s32 ret_val;
 | |
| 	u32 reg;
 | |
| 	u16 pcie_link_status;
 | |
| 
 | |
| 	bus->type = e1000_bus_type_pci_express;
 | |
| 
 | |
| 	ret_val = igb_read_pcie_cap_reg(hw,
 | |
| 					PCI_EXP_LNKSTA,
 | |
| 					&pcie_link_status);
 | |
| 	if (ret_val) {
 | |
| 		bus->width = e1000_bus_width_unknown;
 | |
| 		bus->speed = e1000_bus_speed_unknown;
 | |
| 	} else {
 | |
| 		switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) {
 | |
| 		case PCI_EXP_LNKSTA_CLS_2_5GB:
 | |
| 			bus->speed = e1000_bus_speed_2500;
 | |
| 			break;
 | |
| 		case PCI_EXP_LNKSTA_CLS_5_0GB:
 | |
| 			bus->speed = e1000_bus_speed_5000;
 | |
| 			break;
 | |
| 		default:
 | |
| 			bus->speed = e1000_bus_speed_unknown;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		bus->width = (enum e1000_bus_width)((pcie_link_status &
 | |
| 						     PCI_EXP_LNKSTA_NLW) >>
 | |
| 						     PCI_EXP_LNKSTA_NLW_SHIFT);
 | |
| 	}
 | |
| 
 | |
| 	reg = rd32(E1000_STATUS);
 | |
| 	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_clear_vfta - Clear VLAN filter table
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  Clears the register array which contains the VLAN filter table by
 | |
|  *  setting all the values to 0.
 | |
|  **/
 | |
| void igb_clear_vfta(struct e1000_hw *hw)
 | |
| {
 | |
| 	u32 offset;
 | |
| 
 | |
| 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
 | |
| 		array_wr32(E1000_VFTA, offset, 0);
 | |
| 		wrfl();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_write_vfta - Write value to VLAN filter table
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *  @offset: register offset in VLAN filter table
 | |
|  *  @value: register value written to VLAN filter table
 | |
|  *
 | |
|  *  Writes value at the given offset in the register array which stores
 | |
|  *  the VLAN filter table.
 | |
|  **/
 | |
| static void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
 | |
| {
 | |
| 	array_wr32(E1000_VFTA, offset, value);
 | |
| 	wrfl();
 | |
| }
 | |
| 
 | |
| /* Due to a hw errata, if the host tries to  configure the VFTA register
 | |
|  * while performing queries from the BMC or DMA, then the VFTA in some
 | |
|  * cases won't be written.
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  *  igb_clear_vfta_i350 - Clear VLAN filter table
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  Clears the register array which contains the VLAN filter table by
 | |
|  *  setting all the values to 0.
 | |
|  **/
 | |
| void igb_clear_vfta_i350(struct e1000_hw *hw)
 | |
| {
 | |
| 	u32 offset;
 | |
| 	int i;
 | |
| 
 | |
| 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
 | |
| 		for (i = 0; i < 10; i++)
 | |
| 			array_wr32(E1000_VFTA, offset, 0);
 | |
| 
 | |
| 		wrfl();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_write_vfta_i350 - Write value to VLAN filter table
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *  @offset: register offset in VLAN filter table
 | |
|  *  @value: register value written to VLAN filter table
 | |
|  *
 | |
|  *  Writes value at the given offset in the register array which stores
 | |
|  *  the VLAN filter table.
 | |
|  **/
 | |
| static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < 10; i++)
 | |
| 		array_wr32(E1000_VFTA, offset, value);
 | |
| 
 | |
| 	wrfl();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_init_rx_addrs - Initialize receive address's
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *  @rar_count: receive address registers
 | |
|  *
 | |
|  *  Setups the receive address registers by setting the base receive address
 | |
|  *  register to the devices MAC address and clearing all the other receive
 | |
|  *  address registers to 0.
 | |
|  **/
 | |
| void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
 | |
| {
 | |
| 	u32 i;
 | |
| 	u8 mac_addr[ETH_ALEN] = {0};
 | |
| 
 | |
| 	/* Setup the receive address */
 | |
| 	hw_dbg("Programming MAC Address into RAR[0]\n");
 | |
| 
 | |
| 	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
 | |
| 
 | |
| 	/* Zero out the other (rar_entry_count - 1) receive addresses */
 | |
| 	hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
 | |
| 	for (i = 1; i < rar_count; i++)
 | |
| 		hw->mac.ops.rar_set(hw, mac_addr, i);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_vfta_set - enable or disable vlan in VLAN filter table
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *  @vid: VLAN id to add or remove
 | |
|  *  @add: if true add filter, if false remove
 | |
|  *
 | |
|  *  Sets or clears a bit in the VLAN filter table array based on VLAN id
 | |
|  *  and if we are adding or removing the filter
 | |
|  **/
 | |
| s32 igb_vfta_set(struct e1000_hw *hw, u32 vid, bool add)
 | |
| {
 | |
| 	u32 index = (vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK;
 | |
| 	u32 mask = 1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
 | |
| 	u32 vfta;
 | |
| 	struct igb_adapter *adapter = hw->back;
 | |
| 	s32 ret_val = 0;
 | |
| 
 | |
| 	vfta = adapter->shadow_vfta[index];
 | |
| 
 | |
| 	/* bit was set/cleared before we started */
 | |
| 	if ((!!(vfta & mask)) == add) {
 | |
| 		ret_val = -E1000_ERR_CONFIG;
 | |
| 	} else {
 | |
| 		if (add)
 | |
| 			vfta |= mask;
 | |
| 		else
 | |
| 			vfta &= ~mask;
 | |
| 	}
 | |
| 	if (hw->mac.type == e1000_i350)
 | |
| 		igb_write_vfta_i350(hw, index, vfta);
 | |
| 	else
 | |
| 		igb_write_vfta(hw, index, vfta);
 | |
| 	adapter->shadow_vfta[index] = vfta;
 | |
| 
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_check_alt_mac_addr - Check for alternate MAC addr
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  Checks the nvm for an alternate MAC address.  An alternate MAC address
 | |
|  *  can be setup by pre-boot software and must be treated like a permanent
 | |
|  *  address and must override the actual permanent MAC address.  If an
 | |
|  *  alternate MAC address is fopund it is saved in the hw struct and
 | |
|  *  prgrammed into RAR0 and the cuntion returns success, otherwise the
 | |
|  *  function returns an error.
 | |
|  **/
 | |
| s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
 | |
| {
 | |
| 	u32 i;
 | |
| 	s32 ret_val = 0;
 | |
| 	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
 | |
| 	u8 alt_mac_addr[ETH_ALEN];
 | |
| 
 | |
| 	/*
 | |
| 	 * Alternate MAC address is handled by the option ROM for 82580
 | |
| 	 * and newer. SW support not required.
 | |
| 	 */
 | |
| 	if (hw->mac.type >= e1000_82580)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
 | |
| 				 &nvm_alt_mac_addr_offset);
 | |
| 	if (ret_val) {
 | |
| 		hw_dbg("NVM Read Error\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
 | |
| 	    (nvm_alt_mac_addr_offset == 0x0000))
 | |
| 		/* There is no Alternate MAC Address */
 | |
| 		goto out;
 | |
| 
 | |
| 	if (hw->bus.func == E1000_FUNC_1)
 | |
| 		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
 | |
| 	if (hw->bus.func == E1000_FUNC_2)
 | |
| 		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
 | |
| 
 | |
| 	if (hw->bus.func == E1000_FUNC_3)
 | |
| 		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
 | |
| 	for (i = 0; i < ETH_ALEN; i += 2) {
 | |
| 		offset = nvm_alt_mac_addr_offset + (i >> 1);
 | |
| 		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
 | |
| 		if (ret_val) {
 | |
| 			hw_dbg("NVM Read Error\n");
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
 | |
| 		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
 | |
| 	}
 | |
| 
 | |
| 	/* if multicast bit is set, the alternate address will not be used */
 | |
| 	if (is_multicast_ether_addr(alt_mac_addr)) {
 | |
| 		hw_dbg("Ignoring Alternate Mac Address with MC bit set\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We have a valid alternate MAC address, and we want to treat it the
 | |
| 	 * same as the normal permanent MAC address stored by the HW into the
 | |
| 	 * RAR. Do this by mapping this address into RAR0.
 | |
| 	 */
 | |
| 	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
 | |
| 
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_rar_set - Set receive address register
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *  @addr: pointer to the receive address
 | |
|  *  @index: receive address array register
 | |
|  *
 | |
|  *  Sets the receive address array register at index to the address passed
 | |
|  *  in by addr.
 | |
|  **/
 | |
| void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
 | |
| {
 | |
| 	u32 rar_low, rar_high;
 | |
| 
 | |
| 	/*
 | |
| 	 * HW expects these in little endian so we reverse the byte order
 | |
| 	 * from network order (big endian) to little endian
 | |
| 	 */
 | |
| 	rar_low = ((u32) addr[0] |
 | |
| 		   ((u32) addr[1] << 8) |
 | |
| 		    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
 | |
| 
 | |
| 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
 | |
| 
 | |
| 	/* If MAC address zero, no need to set the AV bit */
 | |
| 	if (rar_low || rar_high)
 | |
| 		rar_high |= E1000_RAH_AV;
 | |
| 
 | |
| 	/*
 | |
| 	 * Some bridges will combine consecutive 32-bit writes into
 | |
| 	 * a single burst write, which will malfunction on some parts.
 | |
| 	 * The flushes avoid this.
 | |
| 	 */
 | |
| 	wr32(E1000_RAL(index), rar_low);
 | |
| 	wrfl();
 | |
| 	wr32(E1000_RAH(index), rar_high);
 | |
| 	wrfl();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_mta_set - Set multicast filter table address
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *  @hash_value: determines the MTA register and bit to set
 | |
|  *
 | |
|  *  The multicast table address is a register array of 32-bit registers.
 | |
|  *  The hash_value is used to determine what register the bit is in, the
 | |
|  *  current value is read, the new bit is OR'd in and the new value is
 | |
|  *  written back into the register.
 | |
|  **/
 | |
| void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
 | |
| {
 | |
| 	u32 hash_bit, hash_reg, mta;
 | |
| 
 | |
| 	/*
 | |
| 	 * The MTA is a register array of 32-bit registers. It is
 | |
| 	 * treated like an array of (32*mta_reg_count) bits.  We want to
 | |
| 	 * set bit BitArray[hash_value]. So we figure out what register
 | |
| 	 * the bit is in, read it, OR in the new bit, then write
 | |
| 	 * back the new value.  The (hw->mac.mta_reg_count - 1) serves as a
 | |
| 	 * mask to bits 31:5 of the hash value which gives us the
 | |
| 	 * register we're modifying.  The hash bit within that register
 | |
| 	 * is determined by the lower 5 bits of the hash value.
 | |
| 	 */
 | |
| 	hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
 | |
| 	hash_bit = hash_value & 0x1F;
 | |
| 
 | |
| 	mta = array_rd32(E1000_MTA, hash_reg);
 | |
| 
 | |
| 	mta |= (1 << hash_bit);
 | |
| 
 | |
| 	array_wr32(E1000_MTA, hash_reg, mta);
 | |
| 	wrfl();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_hash_mc_addr - Generate a multicast hash value
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *  @mc_addr: pointer to a multicast address
 | |
|  *
 | |
|  *  Generates a multicast address hash value which is used to determine
 | |
|  *  the multicast filter table array address and new table value.  See
 | |
|  *  igb_mta_set()
 | |
|  **/
 | |
| static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
 | |
| {
 | |
| 	u32 hash_value, hash_mask;
 | |
| 	u8 bit_shift = 0;
 | |
| 
 | |
| 	/* Register count multiplied by bits per register */
 | |
| 	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
 | |
| 	 * where 0xFF would still fall within the hash mask.
 | |
| 	 */
 | |
| 	while (hash_mask >> bit_shift != 0xFF)
 | |
| 		bit_shift++;
 | |
| 
 | |
| 	/*
 | |
| 	 * The portion of the address that is used for the hash table
 | |
| 	 * is determined by the mc_filter_type setting.
 | |
| 	 * The algorithm is such that there is a total of 8 bits of shifting.
 | |
| 	 * The bit_shift for a mc_filter_type of 0 represents the number of
 | |
| 	 * left-shifts where the MSB of mc_addr[5] would still fall within
 | |
| 	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
 | |
| 	 * of 8 bits of shifting, then mc_addr[4] will shift right the
 | |
| 	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
 | |
| 	 * cases are a variation of this algorithm...essentially raising the
 | |
| 	 * number of bits to shift mc_addr[5] left, while still keeping the
 | |
| 	 * 8-bit shifting total.
 | |
| 	 *
 | |
| 	 * For example, given the following Destination MAC Address and an
 | |
| 	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
 | |
| 	 * we can see that the bit_shift for case 0 is 4.  These are the hash
 | |
| 	 * values resulting from each mc_filter_type...
 | |
| 	 * [0] [1] [2] [3] [4] [5]
 | |
| 	 * 01  AA  00  12  34  56
 | |
| 	 * LSB                 MSB
 | |
| 	 *
 | |
| 	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
 | |
| 	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
 | |
| 	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
 | |
| 	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
 | |
| 	 */
 | |
| 	switch (hw->mac.mc_filter_type) {
 | |
| 	default:
 | |
| 	case 0:
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		bit_shift += 1;
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		bit_shift += 2;
 | |
| 		break;
 | |
| 	case 3:
 | |
| 		bit_shift += 4;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
 | |
| 				  (((u16) mc_addr[5]) << bit_shift)));
 | |
| 
 | |
| 	return hash_value;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_update_mc_addr_list - Update Multicast addresses
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *  @mc_addr_list: array of multicast addresses to program
 | |
|  *  @mc_addr_count: number of multicast addresses to program
 | |
|  *
 | |
|  *  Updates entire Multicast Table Array.
 | |
|  *  The caller must have a packed mc_addr_list of multicast addresses.
 | |
|  **/
 | |
| void igb_update_mc_addr_list(struct e1000_hw *hw,
 | |
|                              u8 *mc_addr_list, u32 mc_addr_count)
 | |
| {
 | |
| 	u32 hash_value, hash_bit, hash_reg;
 | |
| 	int i;
 | |
| 
 | |
| 	/* clear mta_shadow */
 | |
| 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
 | |
| 
 | |
| 	/* update mta_shadow from mc_addr_list */
 | |
| 	for (i = 0; (u32) i < mc_addr_count; i++) {
 | |
| 		hash_value = igb_hash_mc_addr(hw, mc_addr_list);
 | |
| 
 | |
| 		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
 | |
| 		hash_bit = hash_value & 0x1F;
 | |
| 
 | |
| 		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
 | |
| 		mc_addr_list += (ETH_ALEN);
 | |
| 	}
 | |
| 
 | |
| 	/* replace the entire MTA table */
 | |
| 	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
 | |
| 		array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
 | |
| 	wrfl();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_clear_hw_cntrs_base - Clear base hardware counters
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  Clears the base hardware counters by reading the counter registers.
 | |
|  **/
 | |
| void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
 | |
| {
 | |
| 	rd32(E1000_CRCERRS);
 | |
| 	rd32(E1000_SYMERRS);
 | |
| 	rd32(E1000_MPC);
 | |
| 	rd32(E1000_SCC);
 | |
| 	rd32(E1000_ECOL);
 | |
| 	rd32(E1000_MCC);
 | |
| 	rd32(E1000_LATECOL);
 | |
| 	rd32(E1000_COLC);
 | |
| 	rd32(E1000_DC);
 | |
| 	rd32(E1000_SEC);
 | |
| 	rd32(E1000_RLEC);
 | |
| 	rd32(E1000_XONRXC);
 | |
| 	rd32(E1000_XONTXC);
 | |
| 	rd32(E1000_XOFFRXC);
 | |
| 	rd32(E1000_XOFFTXC);
 | |
| 	rd32(E1000_FCRUC);
 | |
| 	rd32(E1000_GPRC);
 | |
| 	rd32(E1000_BPRC);
 | |
| 	rd32(E1000_MPRC);
 | |
| 	rd32(E1000_GPTC);
 | |
| 	rd32(E1000_GORCL);
 | |
| 	rd32(E1000_GORCH);
 | |
| 	rd32(E1000_GOTCL);
 | |
| 	rd32(E1000_GOTCH);
 | |
| 	rd32(E1000_RNBC);
 | |
| 	rd32(E1000_RUC);
 | |
| 	rd32(E1000_RFC);
 | |
| 	rd32(E1000_ROC);
 | |
| 	rd32(E1000_RJC);
 | |
| 	rd32(E1000_TORL);
 | |
| 	rd32(E1000_TORH);
 | |
| 	rd32(E1000_TOTL);
 | |
| 	rd32(E1000_TOTH);
 | |
| 	rd32(E1000_TPR);
 | |
| 	rd32(E1000_TPT);
 | |
| 	rd32(E1000_MPTC);
 | |
| 	rd32(E1000_BPTC);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_check_for_copper_link - Check for link (Copper)
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  Checks to see of the link status of the hardware has changed.  If a
 | |
|  *  change in link status has been detected, then we read the PHY registers
 | |
|  *  to get the current speed/duplex if link exists.
 | |
|  **/
 | |
| s32 igb_check_for_copper_link(struct e1000_hw *hw)
 | |
| {
 | |
| 	struct e1000_mac_info *mac = &hw->mac;
 | |
| 	s32 ret_val;
 | |
| 	bool link;
 | |
| 
 | |
| 	/*
 | |
| 	 * We only want to go out to the PHY registers to see if Auto-Neg
 | |
| 	 * has completed and/or if our link status has changed.  The
 | |
| 	 * get_link_status flag is set upon receiving a Link Status
 | |
| 	 * Change or Rx Sequence Error interrupt.
 | |
| 	 */
 | |
| 	if (!mac->get_link_status) {
 | |
| 		ret_val = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * First we want to see if the MII Status Register reports
 | |
| 	 * link.  If so, then we want to get the current speed/duplex
 | |
| 	 * of the PHY.
 | |
| 	 */
 | |
| 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
 | |
| 	if (ret_val)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (!link)
 | |
| 		goto out; /* No link detected */
 | |
| 
 | |
| 	mac->get_link_status = false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if there was DownShift, must be checked
 | |
| 	 * immediately after link-up
 | |
| 	 */
 | |
| 	igb_check_downshift(hw);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are forcing speed/duplex, then we simply return since
 | |
| 	 * we have already determined whether we have link or not.
 | |
| 	 */
 | |
| 	if (!mac->autoneg) {
 | |
| 		ret_val = -E1000_ERR_CONFIG;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Auto-Neg is enabled.  Auto Speed Detection takes care
 | |
| 	 * of MAC speed/duplex configuration.  So we only need to
 | |
| 	 * configure Collision Distance in the MAC.
 | |
| 	 */
 | |
| 	igb_config_collision_dist(hw);
 | |
| 
 | |
| 	/*
 | |
| 	 * Configure Flow Control now that Auto-Neg has completed.
 | |
| 	 * First, we need to restore the desired flow control
 | |
| 	 * settings because we may have had to re-autoneg with a
 | |
| 	 * different link partner.
 | |
| 	 */
 | |
| 	ret_val = igb_config_fc_after_link_up(hw);
 | |
| 	if (ret_val)
 | |
| 		hw_dbg("Error configuring flow control\n");
 | |
| 
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_setup_link - Setup flow control and link settings
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  Determines which flow control settings to use, then configures flow
 | |
|  *  control.  Calls the appropriate media-specific link configuration
 | |
|  *  function.  Assuming the adapter has a valid link partner, a valid link
 | |
|  *  should be established.  Assumes the hardware has previously been reset
 | |
|  *  and the transmitter and receiver are not enabled.
 | |
|  **/
 | |
| s32 igb_setup_link(struct e1000_hw *hw)
 | |
| {
 | |
| 	s32 ret_val = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * In the case of the phy reset being blocked, we already have a link.
 | |
| 	 * We do not need to set it up again.
 | |
| 	 */
 | |
| 	if (igb_check_reset_block(hw))
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * If requested flow control is set to default, set flow control
 | |
| 	 * based on the EEPROM flow control settings.
 | |
| 	 */
 | |
| 	if (hw->fc.requested_mode == e1000_fc_default) {
 | |
| 		ret_val = igb_set_default_fc(hw);
 | |
| 		if (ret_val)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We want to save off the original Flow Control configuration just
 | |
| 	 * in case we get disconnected and then reconnected into a different
 | |
| 	 * hub or switch with different Flow Control capabilities.
 | |
| 	 */
 | |
| 	hw->fc.current_mode = hw->fc.requested_mode;
 | |
| 
 | |
| 	hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
 | |
| 
 | |
| 	/* Call the necessary media_type subroutine to configure the link. */
 | |
| 	ret_val = hw->mac.ops.setup_physical_interface(hw);
 | |
| 	if (ret_val)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize the flow control address, type, and PAUSE timer
 | |
| 	 * registers to their default values.  This is done even if flow
 | |
| 	 * control is disabled, because it does not hurt anything to
 | |
| 	 * initialize these registers.
 | |
| 	 */
 | |
| 	hw_dbg("Initializing the Flow Control address, type and timer regs\n");
 | |
| 	wr32(E1000_FCT, FLOW_CONTROL_TYPE);
 | |
| 	wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
 | |
| 	wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
 | |
| 
 | |
| 	wr32(E1000_FCTTV, hw->fc.pause_time);
 | |
| 
 | |
| 	ret_val = igb_set_fc_watermarks(hw);
 | |
| 
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_config_collision_dist - Configure collision distance
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  Configures the collision distance to the default value and is used
 | |
|  *  during link setup. Currently no func pointer exists and all
 | |
|  *  implementations are handled in the generic version of this function.
 | |
|  **/
 | |
| void igb_config_collision_dist(struct e1000_hw *hw)
 | |
| {
 | |
| 	u32 tctl;
 | |
| 
 | |
| 	tctl = rd32(E1000_TCTL);
 | |
| 
 | |
| 	tctl &= ~E1000_TCTL_COLD;
 | |
| 	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
 | |
| 
 | |
| 	wr32(E1000_TCTL, tctl);
 | |
| 	wrfl();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_set_fc_watermarks - Set flow control high/low watermarks
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  Sets the flow control high/low threshold (watermark) registers.  If
 | |
|  *  flow control XON frame transmission is enabled, then set XON frame
 | |
|  *  tansmission as well.
 | |
|  **/
 | |
| static s32 igb_set_fc_watermarks(struct e1000_hw *hw)
 | |
| {
 | |
| 	s32 ret_val = 0;
 | |
| 	u32 fcrtl = 0, fcrth = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the flow control receive threshold registers.  Normally,
 | |
| 	 * these registers will be set to a default threshold that may be
 | |
| 	 * adjusted later by the driver's runtime code.  However, if the
 | |
| 	 * ability to transmit pause frames is not enabled, then these
 | |
| 	 * registers will be set to 0.
 | |
| 	 */
 | |
| 	if (hw->fc.current_mode & e1000_fc_tx_pause) {
 | |
| 		/*
 | |
| 		 * We need to set up the Receive Threshold high and low water
 | |
| 		 * marks as well as (optionally) enabling the transmission of
 | |
| 		 * XON frames.
 | |
| 		 */
 | |
| 		fcrtl = hw->fc.low_water;
 | |
| 		if (hw->fc.send_xon)
 | |
| 			fcrtl |= E1000_FCRTL_XONE;
 | |
| 
 | |
| 		fcrth = hw->fc.high_water;
 | |
| 	}
 | |
| 	wr32(E1000_FCRTL, fcrtl);
 | |
| 	wr32(E1000_FCRTH, fcrth);
 | |
| 
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_set_default_fc - Set flow control default values
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  Read the EEPROM for the default values for flow control and store the
 | |
|  *  values.
 | |
|  **/
 | |
| static s32 igb_set_default_fc(struct e1000_hw *hw)
 | |
| {
 | |
| 	s32 ret_val = 0;
 | |
| 	u16 nvm_data;
 | |
| 
 | |
| 	/*
 | |
| 	 * Read and store word 0x0F of the EEPROM. This word contains bits
 | |
| 	 * that determine the hardware's default PAUSE (flow control) mode,
 | |
| 	 * a bit that determines whether the HW defaults to enabling or
 | |
| 	 * disabling auto-negotiation, and the direction of the
 | |
| 	 * SW defined pins. If there is no SW over-ride of the flow
 | |
| 	 * control setting, then the variable hw->fc will
 | |
| 	 * be initialized based on a value in the EEPROM.
 | |
| 	 */
 | |
| 	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
 | |
| 
 | |
| 	if (ret_val) {
 | |
| 		hw_dbg("NVM Read Error\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
 | |
| 		hw->fc.requested_mode = e1000_fc_none;
 | |
| 	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
 | |
| 		 NVM_WORD0F_ASM_DIR)
 | |
| 		hw->fc.requested_mode = e1000_fc_tx_pause;
 | |
| 	else
 | |
| 		hw->fc.requested_mode = e1000_fc_full;
 | |
| 
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_force_mac_fc - Force the MAC's flow control settings
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
 | |
|  *  device control register to reflect the adapter settings.  TFCE and RFCE
 | |
|  *  need to be explicitly set by software when a copper PHY is used because
 | |
|  *  autonegotiation is managed by the PHY rather than the MAC.  Software must
 | |
|  *  also configure these bits when link is forced on a fiber connection.
 | |
|  **/
 | |
| s32 igb_force_mac_fc(struct e1000_hw *hw)
 | |
| {
 | |
| 	u32 ctrl;
 | |
| 	s32 ret_val = 0;
 | |
| 
 | |
| 	ctrl = rd32(E1000_CTRL);
 | |
| 
 | |
| 	/*
 | |
| 	 * Because we didn't get link via the internal auto-negotiation
 | |
| 	 * mechanism (we either forced link or we got link via PHY
 | |
| 	 * auto-neg), we have to manually enable/disable transmit an
 | |
| 	 * receive flow control.
 | |
| 	 *
 | |
| 	 * The "Case" statement below enables/disable flow control
 | |
| 	 * according to the "hw->fc.current_mode" parameter.
 | |
| 	 *
 | |
| 	 * The possible values of the "fc" parameter are:
 | |
| 	 *      0:  Flow control is completely disabled
 | |
| 	 *      1:  Rx flow control is enabled (we can receive pause
 | |
| 	 *          frames but not send pause frames).
 | |
| 	 *      2:  Tx flow control is enabled (we can send pause frames
 | |
| 	 *          frames but we do not receive pause frames).
 | |
| 	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
 | |
| 	 *  other:  No other values should be possible at this point.
 | |
| 	 */
 | |
| 	hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
 | |
| 
 | |
| 	switch (hw->fc.current_mode) {
 | |
| 	case e1000_fc_none:
 | |
| 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
 | |
| 		break;
 | |
| 	case e1000_fc_rx_pause:
 | |
| 		ctrl &= (~E1000_CTRL_TFCE);
 | |
| 		ctrl |= E1000_CTRL_RFCE;
 | |
| 		break;
 | |
| 	case e1000_fc_tx_pause:
 | |
| 		ctrl &= (~E1000_CTRL_RFCE);
 | |
| 		ctrl |= E1000_CTRL_TFCE;
 | |
| 		break;
 | |
| 	case e1000_fc_full:
 | |
| 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
 | |
| 		break;
 | |
| 	default:
 | |
| 		hw_dbg("Flow control param set incorrectly\n");
 | |
| 		ret_val = -E1000_ERR_CONFIG;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	wr32(E1000_CTRL, ctrl);
 | |
| 
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_config_fc_after_link_up - Configures flow control after link
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  Checks the status of auto-negotiation after link up to ensure that the
 | |
|  *  speed and duplex were not forced.  If the link needed to be forced, then
 | |
|  *  flow control needs to be forced also.  If auto-negotiation is enabled
 | |
|  *  and did not fail, then we configure flow control based on our link
 | |
|  *  partner.
 | |
|  **/
 | |
| s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
 | |
| {
 | |
| 	struct e1000_mac_info *mac = &hw->mac;
 | |
| 	s32 ret_val = 0;
 | |
| 	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
 | |
| 	u16 speed, duplex;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check for the case where we have fiber media and auto-neg failed
 | |
| 	 * so we had to force link.  In this case, we need to force the
 | |
| 	 * configuration of the MAC to match the "fc" parameter.
 | |
| 	 */
 | |
| 	if (mac->autoneg_failed) {
 | |
| 		if (hw->phy.media_type == e1000_media_type_internal_serdes)
 | |
| 			ret_val = igb_force_mac_fc(hw);
 | |
| 	} else {
 | |
| 		if (hw->phy.media_type == e1000_media_type_copper)
 | |
| 			ret_val = igb_force_mac_fc(hw);
 | |
| 	}
 | |
| 
 | |
| 	if (ret_val) {
 | |
| 		hw_dbg("Error forcing flow control settings\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check for the case where we have copper media and auto-neg is
 | |
| 	 * enabled.  In this case, we need to check and see if Auto-Neg
 | |
| 	 * has completed, and if so, how the PHY and link partner has
 | |
| 	 * flow control configured.
 | |
| 	 */
 | |
| 	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
 | |
| 		/*
 | |
| 		 * Read the MII Status Register and check to see if AutoNeg
 | |
| 		 * has completed.  We read this twice because this reg has
 | |
| 		 * some "sticky" (latched) bits.
 | |
| 		 */
 | |
| 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
 | |
| 						   &mii_status_reg);
 | |
| 		if (ret_val)
 | |
| 			goto out;
 | |
| 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
 | |
| 						   &mii_status_reg);
 | |
| 		if (ret_val)
 | |
| 			goto out;
 | |
| 
 | |
| 		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
 | |
| 			hw_dbg("Copper PHY and Auto Neg "
 | |
| 				 "has not completed.\n");
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * The AutoNeg process has completed, so we now need to
 | |
| 		 * read both the Auto Negotiation Advertisement
 | |
| 		 * Register (Address 4) and the Auto_Negotiation Base
 | |
| 		 * Page Ability Register (Address 5) to determine how
 | |
| 		 * flow control was negotiated.
 | |
| 		 */
 | |
| 		ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
 | |
| 					    &mii_nway_adv_reg);
 | |
| 		if (ret_val)
 | |
| 			goto out;
 | |
| 		ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
 | |
| 					    &mii_nway_lp_ability_reg);
 | |
| 		if (ret_val)
 | |
| 			goto out;
 | |
| 
 | |
| 		/*
 | |
| 		 * Two bits in the Auto Negotiation Advertisement Register
 | |
| 		 * (Address 4) and two bits in the Auto Negotiation Base
 | |
| 		 * Page Ability Register (Address 5) determine flow control
 | |
| 		 * for both the PHY and the link partner.  The following
 | |
| 		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
 | |
| 		 * 1999, describes these PAUSE resolution bits and how flow
 | |
| 		 * control is determined based upon these settings.
 | |
| 		 * NOTE:  DC = Don't Care
 | |
| 		 *
 | |
| 		 *   LOCAL DEVICE  |   LINK PARTNER
 | |
| 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
 | |
| 		 *-------|---------|-------|---------|--------------------
 | |
| 		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
 | |
| 		 *   0   |    1    |   0   |   DC    | e1000_fc_none
 | |
| 		 *   0   |    1    |   1   |    0    | e1000_fc_none
 | |
| 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
 | |
| 		 *   1   |    0    |   0   |   DC    | e1000_fc_none
 | |
| 		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
 | |
| 		 *   1   |    1    |   0   |    0    | e1000_fc_none
 | |
| 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
 | |
| 		 *
 | |
| 		 * Are both PAUSE bits set to 1?  If so, this implies
 | |
| 		 * Symmetric Flow Control is enabled at both ends.  The
 | |
| 		 * ASM_DIR bits are irrelevant per the spec.
 | |
| 		 *
 | |
| 		 * For Symmetric Flow Control:
 | |
| 		 *
 | |
| 		 *   LOCAL DEVICE  |   LINK PARTNER
 | |
| 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
 | |
| 		 *-------|---------|-------|---------|--------------------
 | |
| 		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
 | |
| 		 *
 | |
| 		 */
 | |
| 		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
 | |
| 		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
 | |
| 			/*
 | |
| 			 * Now we need to check if the user selected RX ONLY
 | |
| 			 * of pause frames.  In this case, we had to advertise
 | |
| 			 * FULL flow control because we could not advertise RX
 | |
| 			 * ONLY. Hence, we must now check to see if we need to
 | |
| 			 * turn OFF  the TRANSMISSION of PAUSE frames.
 | |
| 			 */
 | |
| 			if (hw->fc.requested_mode == e1000_fc_full) {
 | |
| 				hw->fc.current_mode = e1000_fc_full;
 | |
| 				hw_dbg("Flow Control = FULL.\r\n");
 | |
| 			} else {
 | |
| 				hw->fc.current_mode = e1000_fc_rx_pause;
 | |
| 				hw_dbg("Flow Control = "
 | |
| 				       "RX PAUSE frames only.\r\n");
 | |
| 			}
 | |
| 		}
 | |
| 		/*
 | |
| 		 * For receiving PAUSE frames ONLY.
 | |
| 		 *
 | |
| 		 *   LOCAL DEVICE  |   LINK PARTNER
 | |
| 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
 | |
| 		 *-------|---------|-------|---------|--------------------
 | |
| 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
 | |
| 		 */
 | |
| 		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
 | |
| 			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
 | |
| 			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
 | |
| 			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
 | |
| 			hw->fc.current_mode = e1000_fc_tx_pause;
 | |
| 			hw_dbg("Flow Control = TX PAUSE frames only.\r\n");
 | |
| 		}
 | |
| 		/*
 | |
| 		 * For transmitting PAUSE frames ONLY.
 | |
| 		 *
 | |
| 		 *   LOCAL DEVICE  |   LINK PARTNER
 | |
| 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
 | |
| 		 *-------|---------|-------|---------|--------------------
 | |
| 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
 | |
| 		 */
 | |
| 		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
 | |
| 			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
 | |
| 			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
 | |
| 			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
 | |
| 			hw->fc.current_mode = e1000_fc_rx_pause;
 | |
| 			hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Per the IEEE spec, at this point flow control should be
 | |
| 		 * disabled.  However, we want to consider that we could
 | |
| 		 * be connected to a legacy switch that doesn't advertise
 | |
| 		 * desired flow control, but can be forced on the link
 | |
| 		 * partner.  So if we advertised no flow control, that is
 | |
| 		 * what we will resolve to.  If we advertised some kind of
 | |
| 		 * receive capability (Rx Pause Only or Full Flow Control)
 | |
| 		 * and the link partner advertised none, we will configure
 | |
| 		 * ourselves to enable Rx Flow Control only.  We can do
 | |
| 		 * this safely for two reasons:  If the link partner really
 | |
| 		 * didn't want flow control enabled, and we enable Rx, no
 | |
| 		 * harm done since we won't be receiving any PAUSE frames
 | |
| 		 * anyway.  If the intent on the link partner was to have
 | |
| 		 * flow control enabled, then by us enabling RX only, we
 | |
| 		 * can at least receive pause frames and process them.
 | |
| 		 * This is a good idea because in most cases, since we are
 | |
| 		 * predominantly a server NIC, more times than not we will
 | |
| 		 * be asked to delay transmission of packets than asking
 | |
| 		 * our link partner to pause transmission of frames.
 | |
| 		 */
 | |
| 		else if ((hw->fc.requested_mode == e1000_fc_none ||
 | |
| 			  hw->fc.requested_mode == e1000_fc_tx_pause) ||
 | |
| 			 hw->fc.strict_ieee) {
 | |
| 			hw->fc.current_mode = e1000_fc_none;
 | |
| 			hw_dbg("Flow Control = NONE.\r\n");
 | |
| 		} else {
 | |
| 			hw->fc.current_mode = e1000_fc_rx_pause;
 | |
| 			hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Now we need to do one last check...  If we auto-
 | |
| 		 * negotiated to HALF DUPLEX, flow control should not be
 | |
| 		 * enabled per IEEE 802.3 spec.
 | |
| 		 */
 | |
| 		ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
 | |
| 		if (ret_val) {
 | |
| 			hw_dbg("Error getting link speed and duplex\n");
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (duplex == HALF_DUPLEX)
 | |
| 			hw->fc.current_mode = e1000_fc_none;
 | |
| 
 | |
| 		/*
 | |
| 		 * Now we call a subroutine to actually force the MAC
 | |
| 		 * controller to use the correct flow control settings.
 | |
| 		 */
 | |
| 		ret_val = igb_force_mac_fc(hw);
 | |
| 		if (ret_val) {
 | |
| 			hw_dbg("Error forcing flow control settings\n");
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_get_speed_and_duplex_copper - Retrieve current speed/duplex
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *  @speed: stores the current speed
 | |
|  *  @duplex: stores the current duplex
 | |
|  *
 | |
|  *  Read the status register for the current speed/duplex and store the current
 | |
|  *  speed and duplex for copper connections.
 | |
|  **/
 | |
| s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
 | |
| 				      u16 *duplex)
 | |
| {
 | |
| 	u32 status;
 | |
| 
 | |
| 	status = rd32(E1000_STATUS);
 | |
| 	if (status & E1000_STATUS_SPEED_1000) {
 | |
| 		*speed = SPEED_1000;
 | |
| 		hw_dbg("1000 Mbs, ");
 | |
| 	} else if (status & E1000_STATUS_SPEED_100) {
 | |
| 		*speed = SPEED_100;
 | |
| 		hw_dbg("100 Mbs, ");
 | |
| 	} else {
 | |
| 		*speed = SPEED_10;
 | |
| 		hw_dbg("10 Mbs, ");
 | |
| 	}
 | |
| 
 | |
| 	if (status & E1000_STATUS_FD) {
 | |
| 		*duplex = FULL_DUPLEX;
 | |
| 		hw_dbg("Full Duplex\n");
 | |
| 	} else {
 | |
| 		*duplex = HALF_DUPLEX;
 | |
| 		hw_dbg("Half Duplex\n");
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_get_hw_semaphore - Acquire hardware semaphore
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  Acquire the HW semaphore to access the PHY or NVM
 | |
|  **/
 | |
| s32 igb_get_hw_semaphore(struct e1000_hw *hw)
 | |
| {
 | |
| 	u32 swsm;
 | |
| 	s32 ret_val = 0;
 | |
| 	s32 timeout = hw->nvm.word_size + 1;
 | |
| 	s32 i = 0;
 | |
| 
 | |
| 	/* Get the SW semaphore */
 | |
| 	while (i < timeout) {
 | |
| 		swsm = rd32(E1000_SWSM);
 | |
| 		if (!(swsm & E1000_SWSM_SMBI))
 | |
| 			break;
 | |
| 
 | |
| 		udelay(50);
 | |
| 		i++;
 | |
| 	}
 | |
| 
 | |
| 	if (i == timeout) {
 | |
| 		hw_dbg("Driver can't access device - SMBI bit is set.\n");
 | |
| 		ret_val = -E1000_ERR_NVM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Get the FW semaphore. */
 | |
| 	for (i = 0; i < timeout; i++) {
 | |
| 		swsm = rd32(E1000_SWSM);
 | |
| 		wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
 | |
| 
 | |
| 		/* Semaphore acquired if bit latched */
 | |
| 		if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
 | |
| 			break;
 | |
| 
 | |
| 		udelay(50);
 | |
| 	}
 | |
| 
 | |
| 	if (i == timeout) {
 | |
| 		/* Release semaphores */
 | |
| 		igb_put_hw_semaphore(hw);
 | |
| 		hw_dbg("Driver can't access the NVM\n");
 | |
| 		ret_val = -E1000_ERR_NVM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_put_hw_semaphore - Release hardware semaphore
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  Release hardware semaphore used to access the PHY or NVM
 | |
|  **/
 | |
| void igb_put_hw_semaphore(struct e1000_hw *hw)
 | |
| {
 | |
| 	u32 swsm;
 | |
| 
 | |
| 	swsm = rd32(E1000_SWSM);
 | |
| 
 | |
| 	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
 | |
| 
 | |
| 	wr32(E1000_SWSM, swsm);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_get_auto_rd_done - Check for auto read completion
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  Check EEPROM for Auto Read done bit.
 | |
|  **/
 | |
| s32 igb_get_auto_rd_done(struct e1000_hw *hw)
 | |
| {
 | |
| 	s32 i = 0;
 | |
| 	s32 ret_val = 0;
 | |
| 
 | |
| 
 | |
| 	while (i < AUTO_READ_DONE_TIMEOUT) {
 | |
| 		if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
 | |
| 			break;
 | |
| 		msleep(1);
 | |
| 		i++;
 | |
| 	}
 | |
| 
 | |
| 	if (i == AUTO_READ_DONE_TIMEOUT) {
 | |
| 		hw_dbg("Auto read by HW from NVM has not completed.\n");
 | |
| 		ret_val = -E1000_ERR_RESET;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_valid_led_default - Verify a valid default LED config
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *  @data: pointer to the NVM (EEPROM)
 | |
|  *
 | |
|  *  Read the EEPROM for the current default LED configuration.  If the
 | |
|  *  LED configuration is not valid, set to a valid LED configuration.
 | |
|  **/
 | |
| static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
 | |
| {
 | |
| 	s32 ret_val;
 | |
| 
 | |
| 	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
 | |
| 	if (ret_val) {
 | |
| 		hw_dbg("NVM Read Error\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
 | |
| 		switch(hw->phy.media_type) {
 | |
| 		case e1000_media_type_internal_serdes:
 | |
| 			*data = ID_LED_DEFAULT_82575_SERDES;
 | |
| 			break;
 | |
| 		case e1000_media_type_copper:
 | |
| 		default:
 | |
| 			*data = ID_LED_DEFAULT;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_id_led_init -
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  **/
 | |
| s32 igb_id_led_init(struct e1000_hw *hw)
 | |
| {
 | |
| 	struct e1000_mac_info *mac = &hw->mac;
 | |
| 	s32 ret_val;
 | |
| 	const u32 ledctl_mask = 0x000000FF;
 | |
| 	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
 | |
| 	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
 | |
| 	u16 data, i, temp;
 | |
| 	const u16 led_mask = 0x0F;
 | |
| 
 | |
| 	ret_val = igb_valid_led_default(hw, &data);
 | |
| 	if (ret_val)
 | |
| 		goto out;
 | |
| 
 | |
| 	mac->ledctl_default = rd32(E1000_LEDCTL);
 | |
| 	mac->ledctl_mode1 = mac->ledctl_default;
 | |
| 	mac->ledctl_mode2 = mac->ledctl_default;
 | |
| 
 | |
| 	for (i = 0; i < 4; i++) {
 | |
| 		temp = (data >> (i << 2)) & led_mask;
 | |
| 		switch (temp) {
 | |
| 		case ID_LED_ON1_DEF2:
 | |
| 		case ID_LED_ON1_ON2:
 | |
| 		case ID_LED_ON1_OFF2:
 | |
| 			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
 | |
| 			mac->ledctl_mode1 |= ledctl_on << (i << 3);
 | |
| 			break;
 | |
| 		case ID_LED_OFF1_DEF2:
 | |
| 		case ID_LED_OFF1_ON2:
 | |
| 		case ID_LED_OFF1_OFF2:
 | |
| 			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
 | |
| 			mac->ledctl_mode1 |= ledctl_off << (i << 3);
 | |
| 			break;
 | |
| 		default:
 | |
| 			/* Do nothing */
 | |
| 			break;
 | |
| 		}
 | |
| 		switch (temp) {
 | |
| 		case ID_LED_DEF1_ON2:
 | |
| 		case ID_LED_ON1_ON2:
 | |
| 		case ID_LED_OFF1_ON2:
 | |
| 			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
 | |
| 			mac->ledctl_mode2 |= ledctl_on << (i << 3);
 | |
| 			break;
 | |
| 		case ID_LED_DEF1_OFF2:
 | |
| 		case ID_LED_ON1_OFF2:
 | |
| 		case ID_LED_OFF1_OFF2:
 | |
| 			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
 | |
| 			mac->ledctl_mode2 |= ledctl_off << (i << 3);
 | |
| 			break;
 | |
| 		default:
 | |
| 			/* Do nothing */
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_cleanup_led - Set LED config to default operation
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  Remove the current LED configuration and set the LED configuration
 | |
|  *  to the default value, saved from the EEPROM.
 | |
|  **/
 | |
| s32 igb_cleanup_led(struct e1000_hw *hw)
 | |
| {
 | |
| 	wr32(E1000_LEDCTL, hw->mac.ledctl_default);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_blink_led - Blink LED
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  Blink the led's which are set to be on.
 | |
|  **/
 | |
| s32 igb_blink_led(struct e1000_hw *hw)
 | |
| {
 | |
| 	u32 ledctl_blink = 0;
 | |
| 	u32 i;
 | |
| 
 | |
| 	/*
 | |
| 	 * set the blink bit for each LED that's "on" (0x0E)
 | |
| 	 * in ledctl_mode2
 | |
| 	 */
 | |
| 	ledctl_blink = hw->mac.ledctl_mode2;
 | |
| 	for (i = 0; i < 4; i++)
 | |
| 		if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
 | |
| 		    E1000_LEDCTL_MODE_LED_ON)
 | |
| 			ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
 | |
| 					 (i * 8));
 | |
| 
 | |
| 	wr32(E1000_LEDCTL, ledctl_blink);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_led_off - Turn LED off
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  Turn LED off.
 | |
|  **/
 | |
| s32 igb_led_off(struct e1000_hw *hw)
 | |
| {
 | |
| 	switch (hw->phy.media_type) {
 | |
| 	case e1000_media_type_copper:
 | |
| 		wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_disable_pcie_master - Disables PCI-express master access
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  Returns 0 (0) if successful, else returns -10
 | |
|  *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued
 | |
|  *  the master requests to be disabled.
 | |
|  *
 | |
|  *  Disables PCI-Express master access and verifies there are no pending
 | |
|  *  requests.
 | |
|  **/
 | |
| s32 igb_disable_pcie_master(struct e1000_hw *hw)
 | |
| {
 | |
| 	u32 ctrl;
 | |
| 	s32 timeout = MASTER_DISABLE_TIMEOUT;
 | |
| 	s32 ret_val = 0;
 | |
| 
 | |
| 	if (hw->bus.type != e1000_bus_type_pci_express)
 | |
| 		goto out;
 | |
| 
 | |
| 	ctrl = rd32(E1000_CTRL);
 | |
| 	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
 | |
| 	wr32(E1000_CTRL, ctrl);
 | |
| 
 | |
| 	while (timeout) {
 | |
| 		if (!(rd32(E1000_STATUS) &
 | |
| 		      E1000_STATUS_GIO_MASTER_ENABLE))
 | |
| 			break;
 | |
| 		udelay(100);
 | |
| 		timeout--;
 | |
| 	}
 | |
| 
 | |
| 	if (!timeout) {
 | |
| 		hw_dbg("Master requests are pending.\n");
 | |
| 		ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_validate_mdi_setting - Verify MDI/MDIx settings
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  Verify that when not using auto-negotitation that MDI/MDIx is correctly
 | |
|  *  set, which is forced to MDI mode only.
 | |
|  **/
 | |
| s32 igb_validate_mdi_setting(struct e1000_hw *hw)
 | |
| {
 | |
| 	s32 ret_val = 0;
 | |
| 
 | |
| 	if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
 | |
| 		hw_dbg("Invalid MDI setting detected\n");
 | |
| 		hw->phy.mdix = 1;
 | |
| 		ret_val = -E1000_ERR_CONFIG;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *  @reg: 32bit register offset such as E1000_SCTL
 | |
|  *  @offset: register offset to write to
 | |
|  *  @data: data to write at register offset
 | |
|  *
 | |
|  *  Writes an address/data control type register.  There are several of these
 | |
|  *  and they all have the format address << 8 | data and bit 31 is polled for
 | |
|  *  completion.
 | |
|  **/
 | |
| s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
 | |
| 			      u32 offset, u8 data)
 | |
| {
 | |
| 	u32 i, regvalue = 0;
 | |
| 	s32 ret_val = 0;
 | |
| 
 | |
| 	/* Set up the address and data */
 | |
| 	regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
 | |
| 	wr32(reg, regvalue);
 | |
| 
 | |
| 	/* Poll the ready bit to see if the MDI read completed */
 | |
| 	for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
 | |
| 		udelay(5);
 | |
| 		regvalue = rd32(reg);
 | |
| 		if (regvalue & E1000_GEN_CTL_READY)
 | |
| 			break;
 | |
| 	}
 | |
| 	if (!(regvalue & E1000_GEN_CTL_READY)) {
 | |
| 		hw_dbg("Reg %08x did not indicate ready\n", reg);
 | |
| 		ret_val = -E1000_ERR_PHY;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igb_enable_mng_pass_thru - Enable processing of ARP's
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  Verifies the hardware needs to leave interface enabled so that frames can
 | |
|  *  be directed to and from the management interface.
 | |
|  **/
 | |
| bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
 | |
| {
 | |
| 	u32 manc;
 | |
| 	u32 fwsm, factps;
 | |
| 	bool ret_val = false;
 | |
| 
 | |
| 	if (!hw->mac.asf_firmware_present)
 | |
| 		goto out;
 | |
| 
 | |
| 	manc = rd32(E1000_MANC);
 | |
| 
 | |
| 	if (!(manc & E1000_MANC_RCV_TCO_EN))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (hw->mac.arc_subsystem_valid) {
 | |
| 		fwsm = rd32(E1000_FWSM);
 | |
| 		factps = rd32(E1000_FACTPS);
 | |
| 
 | |
| 		if (!(factps & E1000_FACTPS_MNGCG) &&
 | |
| 		    ((fwsm & E1000_FWSM_MODE_MASK) ==
 | |
| 		     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
 | |
| 			ret_val = true;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if ((manc & E1000_MANC_SMBUS_EN) &&
 | |
| 		    !(manc & E1000_MANC_ASF_EN)) {
 | |
| 			ret_val = true;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 |