009bd55dfc
A smaller set of patches, nothing stands out as being particularly major this cycle: - Driver bug fixes and updates: bnxt_re, cxgb4, rxe, hns, i40iw, cxgb4, mlx4 and mlx5 - Bug fixes and polishing for the new rts ULP - Cleanup of uverbs checking for allowed driver operations - Use sysfs_emit all over the place - Lots of bug fixes and clarity improvements for hns - hip09 support for hns - NDR and 50/100Gb signaling rates - Remove dma_virt_ops and go back to using the IB DMA wrappers - mlx5 optimizations for contiguous DMA regions -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEfB7FMLh+8QxL+6i3OG33FX4gmxoFAl/aNXUACgkQOG33FX4g mxqlMQ/+O6UhxKnDAnMB+HzDGvOm+KXNHOQBuzxz4ZWXqtUrW8WU5ca3PhXovc4z /QX0HhMhQmVsva5mjp1OGVATxQ2E+yasqFLg4QXAFWFR3N7s0u/sikE9i1DoPvOC lsmLTeRauCFaE4mJD5nvYwm+riECX0GmyVVW7v6V05xwAp0hwdhyU7Kb6Yh3lxsE umTz+onPNJcD6Tc4snziyC5QEp5ebEjAaj4dVI1YPR5X0c2RwC5E1CIDI6u4OQ2k j7/+Kvo8LNdYNERGiR169x6c1L7WS6dYnGMMeXRgyy0BVbVdRGDnvCV9VRmF66w5 99fHfDjNMNmqbGNt/4/gwNdVrR9aI4jMZWCh7SmsguX6XwNOlhYldy3x3WnlkfkQ e4O0huJceJqcB2Uya70GqufnAetRXsbjzcvWxpR5YAwRmcRkm1f6aGK3BxPjWEbr BbYRpiKMxxT4yTe65BuuThzx6g4pNQHe0z3BM/dzMJQAX+PZcs1CPQR8F8PbCrZR Ad7qw4HJ587PoSxPi3toVMpYZRP6cISh1zx9q/JCj8cxH9Ri4MovUCS3cF63Ny3B 1LJ2q0x8FuLLjgZJogKUyEkS8OO6q7NL8WumjvrYWWx19+jcYsV81jTRGSkH3bfY F7Esv5K2T1F2gVsCe1ZFFplQg6ja1afIcc+LEl8cMJSyTdoSub4= =9t8b -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma Pull rdma updates from Jason Gunthorpe: "A smaller set of patches, nothing stands out as being particularly major this cycle. The biggest item would be the new HIP09 HW support from HNS, otherwise it was pretty quiet for new work here: - Driver bug fixes and updates: bnxt_re, cxgb4, rxe, hns, i40iw, cxgb4, mlx4 and mlx5 - Bug fixes and polishing for the new rts ULP - Cleanup of uverbs checking for allowed driver operations - Use sysfs_emit all over the place - Lots of bug fixes and clarity improvements for hns - hip09 support for hns - NDR and 50/100Gb signaling rates - Remove dma_virt_ops and go back to using the IB DMA wrappers - mlx5 optimizations for contiguous DMA regions" * tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma: (147 commits) RDMA/cma: Don't overwrite sgid_attr after device is released RDMA/mlx5: Fix MR cache memory leak RDMA/rxe: Use acquire/release for memory ordering RDMA/hns: Simplify AEQE process for different types of queue RDMA/hns: Fix inaccurate prints RDMA/hns: Fix incorrect symbol types RDMA/hns: Clear redundant variable initialization RDMA/hns: Fix coding style issues RDMA/hns: Remove unnecessary access right set during INIT2INIT RDMA/hns: WARN_ON if get a reserved sl from users RDMA/hns: Avoid filling sl in high 3 bits of vlan_id RDMA/hns: Do shift on traffic class when using RoCEv2 RDMA/hns: Normalization the judgment of some features RDMA/hns: Limit the length of data copied between kernel and userspace RDMA/mlx4: Remove bogus dev_base_lock usage RDMA/uverbs: Fix incorrect variable type RDMA/core: Do not indicate device ready when device enablement fails RDMA/core: Clean up cq pool mechanism RDMA/core: Update kernel documentation for ib_create_named_qp() MAINTAINERS: SOFT-ROCE: Change Zhu Yanjun's email address ...
2483 lines
64 KiB
C
2483 lines
64 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* NVMe over Fabrics RDMA host code.
|
|
* Copyright (c) 2015-2016 HGST, a Western Digital Company.
|
|
*/
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/slab.h>
|
|
#include <rdma/mr_pool.h>
|
|
#include <linux/err.h>
|
|
#include <linux/string.h>
|
|
#include <linux/atomic.h>
|
|
#include <linux/blk-mq.h>
|
|
#include <linux/blk-mq-rdma.h>
|
|
#include <linux/types.h>
|
|
#include <linux/list.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/nvme.h>
|
|
#include <asm/unaligned.h>
|
|
|
|
#include <rdma/ib_verbs.h>
|
|
#include <rdma/rdma_cm.h>
|
|
#include <linux/nvme-rdma.h>
|
|
|
|
#include "nvme.h"
|
|
#include "fabrics.h"
|
|
|
|
|
|
#define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */
|
|
|
|
#define NVME_RDMA_MAX_SEGMENTS 256
|
|
|
|
#define NVME_RDMA_MAX_INLINE_SEGMENTS 4
|
|
|
|
#define NVME_RDMA_DATA_SGL_SIZE \
|
|
(sizeof(struct scatterlist) * NVME_INLINE_SG_CNT)
|
|
#define NVME_RDMA_METADATA_SGL_SIZE \
|
|
(sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT)
|
|
|
|
struct nvme_rdma_device {
|
|
struct ib_device *dev;
|
|
struct ib_pd *pd;
|
|
struct kref ref;
|
|
struct list_head entry;
|
|
unsigned int num_inline_segments;
|
|
};
|
|
|
|
struct nvme_rdma_qe {
|
|
struct ib_cqe cqe;
|
|
void *data;
|
|
u64 dma;
|
|
};
|
|
|
|
struct nvme_rdma_sgl {
|
|
int nents;
|
|
struct sg_table sg_table;
|
|
};
|
|
|
|
struct nvme_rdma_queue;
|
|
struct nvme_rdma_request {
|
|
struct nvme_request req;
|
|
struct ib_mr *mr;
|
|
struct nvme_rdma_qe sqe;
|
|
union nvme_result result;
|
|
__le16 status;
|
|
refcount_t ref;
|
|
struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
|
|
u32 num_sge;
|
|
struct ib_reg_wr reg_wr;
|
|
struct ib_cqe reg_cqe;
|
|
struct nvme_rdma_queue *queue;
|
|
struct nvme_rdma_sgl data_sgl;
|
|
struct nvme_rdma_sgl *metadata_sgl;
|
|
bool use_sig_mr;
|
|
};
|
|
|
|
enum nvme_rdma_queue_flags {
|
|
NVME_RDMA_Q_ALLOCATED = 0,
|
|
NVME_RDMA_Q_LIVE = 1,
|
|
NVME_RDMA_Q_TR_READY = 2,
|
|
};
|
|
|
|
struct nvme_rdma_queue {
|
|
struct nvme_rdma_qe *rsp_ring;
|
|
int queue_size;
|
|
size_t cmnd_capsule_len;
|
|
struct nvme_rdma_ctrl *ctrl;
|
|
struct nvme_rdma_device *device;
|
|
struct ib_cq *ib_cq;
|
|
struct ib_qp *qp;
|
|
|
|
unsigned long flags;
|
|
struct rdma_cm_id *cm_id;
|
|
int cm_error;
|
|
struct completion cm_done;
|
|
bool pi_support;
|
|
int cq_size;
|
|
};
|
|
|
|
struct nvme_rdma_ctrl {
|
|
/* read only in the hot path */
|
|
struct nvme_rdma_queue *queues;
|
|
|
|
/* other member variables */
|
|
struct blk_mq_tag_set tag_set;
|
|
struct work_struct err_work;
|
|
|
|
struct nvme_rdma_qe async_event_sqe;
|
|
|
|
struct delayed_work reconnect_work;
|
|
|
|
struct list_head list;
|
|
|
|
struct blk_mq_tag_set admin_tag_set;
|
|
struct nvme_rdma_device *device;
|
|
|
|
u32 max_fr_pages;
|
|
|
|
struct sockaddr_storage addr;
|
|
struct sockaddr_storage src_addr;
|
|
|
|
struct nvme_ctrl ctrl;
|
|
bool use_inline_data;
|
|
u32 io_queues[HCTX_MAX_TYPES];
|
|
};
|
|
|
|
static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
|
|
{
|
|
return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
|
|
}
|
|
|
|
static LIST_HEAD(device_list);
|
|
static DEFINE_MUTEX(device_list_mutex);
|
|
|
|
static LIST_HEAD(nvme_rdma_ctrl_list);
|
|
static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
|
|
|
|
/*
|
|
* Disabling this option makes small I/O goes faster, but is fundamentally
|
|
* unsafe. With it turned off we will have to register a global rkey that
|
|
* allows read and write access to all physical memory.
|
|
*/
|
|
static bool register_always = true;
|
|
module_param(register_always, bool, 0444);
|
|
MODULE_PARM_DESC(register_always,
|
|
"Use memory registration even for contiguous memory regions");
|
|
|
|
static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
|
|
struct rdma_cm_event *event);
|
|
static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
|
|
static void nvme_rdma_complete_rq(struct request *rq);
|
|
|
|
static const struct blk_mq_ops nvme_rdma_mq_ops;
|
|
static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
|
|
|
|
static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
|
|
{
|
|
return queue - queue->ctrl->queues;
|
|
}
|
|
|
|
static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
|
|
{
|
|
return nvme_rdma_queue_idx(queue) >
|
|
queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
|
|
queue->ctrl->io_queues[HCTX_TYPE_READ];
|
|
}
|
|
|
|
static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
|
|
{
|
|
return queue->cmnd_capsule_len - sizeof(struct nvme_command);
|
|
}
|
|
|
|
static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
|
|
size_t capsule_size, enum dma_data_direction dir)
|
|
{
|
|
ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
|
|
kfree(qe->data);
|
|
}
|
|
|
|
static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
|
|
size_t capsule_size, enum dma_data_direction dir)
|
|
{
|
|
qe->data = kzalloc(capsule_size, GFP_KERNEL);
|
|
if (!qe->data)
|
|
return -ENOMEM;
|
|
|
|
qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
|
|
if (ib_dma_mapping_error(ibdev, qe->dma)) {
|
|
kfree(qe->data);
|
|
qe->data = NULL;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void nvme_rdma_free_ring(struct ib_device *ibdev,
|
|
struct nvme_rdma_qe *ring, size_t ib_queue_size,
|
|
size_t capsule_size, enum dma_data_direction dir)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ib_queue_size; i++)
|
|
nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
|
|
kfree(ring);
|
|
}
|
|
|
|
static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
|
|
size_t ib_queue_size, size_t capsule_size,
|
|
enum dma_data_direction dir)
|
|
{
|
|
struct nvme_rdma_qe *ring;
|
|
int i;
|
|
|
|
ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
|
|
if (!ring)
|
|
return NULL;
|
|
|
|
/*
|
|
* Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
|
|
* lifetime. It's safe, since any chage in the underlying RDMA device
|
|
* will issue error recovery and queue re-creation.
|
|
*/
|
|
for (i = 0; i < ib_queue_size; i++) {
|
|
if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
|
|
goto out_free_ring;
|
|
}
|
|
|
|
return ring;
|
|
|
|
out_free_ring:
|
|
nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
|
|
return NULL;
|
|
}
|
|
|
|
static void nvme_rdma_qp_event(struct ib_event *event, void *context)
|
|
{
|
|
pr_debug("QP event %s (%d)\n",
|
|
ib_event_msg(event->event), event->event);
|
|
|
|
}
|
|
|
|
static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
|
|
{
|
|
int ret;
|
|
|
|
ret = wait_for_completion_interruptible_timeout(&queue->cm_done,
|
|
msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (ret == 0)
|
|
return -ETIMEDOUT;
|
|
WARN_ON_ONCE(queue->cm_error > 0);
|
|
return queue->cm_error;
|
|
}
|
|
|
|
static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
|
|
{
|
|
struct nvme_rdma_device *dev = queue->device;
|
|
struct ib_qp_init_attr init_attr;
|
|
int ret;
|
|
|
|
memset(&init_attr, 0, sizeof(init_attr));
|
|
init_attr.event_handler = nvme_rdma_qp_event;
|
|
/* +1 for drain */
|
|
init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
|
|
/* +1 for drain */
|
|
init_attr.cap.max_recv_wr = queue->queue_size + 1;
|
|
init_attr.cap.max_recv_sge = 1;
|
|
init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
|
|
init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
|
|
init_attr.qp_type = IB_QPT_RC;
|
|
init_attr.send_cq = queue->ib_cq;
|
|
init_attr.recv_cq = queue->ib_cq;
|
|
if (queue->pi_support)
|
|
init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
|
|
init_attr.qp_context = queue;
|
|
|
|
ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
|
|
|
|
queue->qp = queue->cm_id->qp;
|
|
return ret;
|
|
}
|
|
|
|
static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
|
|
struct request *rq, unsigned int hctx_idx)
|
|
{
|
|
struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
|
|
|
|
kfree(req->sqe.data);
|
|
}
|
|
|
|
static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
|
|
struct request *rq, unsigned int hctx_idx,
|
|
unsigned int numa_node)
|
|
{
|
|
struct nvme_rdma_ctrl *ctrl = set->driver_data;
|
|
struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
|
|
int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
|
|
struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
|
|
|
|
nvme_req(rq)->ctrl = &ctrl->ctrl;
|
|
req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
|
|
if (!req->sqe.data)
|
|
return -ENOMEM;
|
|
|
|
/* metadata nvme_rdma_sgl struct is located after command's data SGL */
|
|
if (queue->pi_support)
|
|
req->metadata_sgl = (void *)nvme_req(rq) +
|
|
sizeof(struct nvme_rdma_request) +
|
|
NVME_RDMA_DATA_SGL_SIZE;
|
|
|
|
req->queue = queue;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
|
|
unsigned int hctx_idx)
|
|
{
|
|
struct nvme_rdma_ctrl *ctrl = data;
|
|
struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
|
|
|
|
BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
|
|
|
|
hctx->driver_data = queue;
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
|
|
unsigned int hctx_idx)
|
|
{
|
|
struct nvme_rdma_ctrl *ctrl = data;
|
|
struct nvme_rdma_queue *queue = &ctrl->queues[0];
|
|
|
|
BUG_ON(hctx_idx != 0);
|
|
|
|
hctx->driver_data = queue;
|
|
return 0;
|
|
}
|
|
|
|
static void nvme_rdma_free_dev(struct kref *ref)
|
|
{
|
|
struct nvme_rdma_device *ndev =
|
|
container_of(ref, struct nvme_rdma_device, ref);
|
|
|
|
mutex_lock(&device_list_mutex);
|
|
list_del(&ndev->entry);
|
|
mutex_unlock(&device_list_mutex);
|
|
|
|
ib_dealloc_pd(ndev->pd);
|
|
kfree(ndev);
|
|
}
|
|
|
|
static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
|
|
{
|
|
kref_put(&dev->ref, nvme_rdma_free_dev);
|
|
}
|
|
|
|
static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
|
|
{
|
|
return kref_get_unless_zero(&dev->ref);
|
|
}
|
|
|
|
static struct nvme_rdma_device *
|
|
nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
|
|
{
|
|
struct nvme_rdma_device *ndev;
|
|
|
|
mutex_lock(&device_list_mutex);
|
|
list_for_each_entry(ndev, &device_list, entry) {
|
|
if (ndev->dev->node_guid == cm_id->device->node_guid &&
|
|
nvme_rdma_dev_get(ndev))
|
|
goto out_unlock;
|
|
}
|
|
|
|
ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
|
|
if (!ndev)
|
|
goto out_err;
|
|
|
|
ndev->dev = cm_id->device;
|
|
kref_init(&ndev->ref);
|
|
|
|
ndev->pd = ib_alloc_pd(ndev->dev,
|
|
register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
|
|
if (IS_ERR(ndev->pd))
|
|
goto out_free_dev;
|
|
|
|
if (!(ndev->dev->attrs.device_cap_flags &
|
|
IB_DEVICE_MEM_MGT_EXTENSIONS)) {
|
|
dev_err(&ndev->dev->dev,
|
|
"Memory registrations not supported.\n");
|
|
goto out_free_pd;
|
|
}
|
|
|
|
ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
|
|
ndev->dev->attrs.max_send_sge - 1);
|
|
list_add(&ndev->entry, &device_list);
|
|
out_unlock:
|
|
mutex_unlock(&device_list_mutex);
|
|
return ndev;
|
|
|
|
out_free_pd:
|
|
ib_dealloc_pd(ndev->pd);
|
|
out_free_dev:
|
|
kfree(ndev);
|
|
out_err:
|
|
mutex_unlock(&device_list_mutex);
|
|
return NULL;
|
|
}
|
|
|
|
static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue)
|
|
{
|
|
if (nvme_rdma_poll_queue(queue))
|
|
ib_free_cq(queue->ib_cq);
|
|
else
|
|
ib_cq_pool_put(queue->ib_cq, queue->cq_size);
|
|
}
|
|
|
|
static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
|
|
{
|
|
struct nvme_rdma_device *dev;
|
|
struct ib_device *ibdev;
|
|
|
|
if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
|
|
return;
|
|
|
|
dev = queue->device;
|
|
ibdev = dev->dev;
|
|
|
|
if (queue->pi_support)
|
|
ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs);
|
|
ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
|
|
|
|
/*
|
|
* The cm_id object might have been destroyed during RDMA connection
|
|
* establishment error flow to avoid getting other cma events, thus
|
|
* the destruction of the QP shouldn't use rdma_cm API.
|
|
*/
|
|
ib_destroy_qp(queue->qp);
|
|
nvme_rdma_free_cq(queue);
|
|
|
|
nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
|
|
sizeof(struct nvme_completion), DMA_FROM_DEVICE);
|
|
|
|
nvme_rdma_dev_put(dev);
|
|
}
|
|
|
|
static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support)
|
|
{
|
|
u32 max_page_list_len;
|
|
|
|
if (pi_support)
|
|
max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len;
|
|
else
|
|
max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len;
|
|
|
|
return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1);
|
|
}
|
|
|
|
static int nvme_rdma_create_cq(struct ib_device *ibdev,
|
|
struct nvme_rdma_queue *queue)
|
|
{
|
|
int ret, comp_vector, idx = nvme_rdma_queue_idx(queue);
|
|
enum ib_poll_context poll_ctx;
|
|
|
|
/*
|
|
* Spread I/O queues completion vectors according their queue index.
|
|
* Admin queues can always go on completion vector 0.
|
|
*/
|
|
comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors;
|
|
|
|
/* Polling queues need direct cq polling context */
|
|
if (nvme_rdma_poll_queue(queue)) {
|
|
poll_ctx = IB_POLL_DIRECT;
|
|
queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size,
|
|
comp_vector, poll_ctx);
|
|
} else {
|
|
poll_ctx = IB_POLL_SOFTIRQ;
|
|
queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size,
|
|
comp_vector, poll_ctx);
|
|
}
|
|
|
|
if (IS_ERR(queue->ib_cq)) {
|
|
ret = PTR_ERR(queue->ib_cq);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
|
|
{
|
|
struct ib_device *ibdev;
|
|
const int send_wr_factor = 3; /* MR, SEND, INV */
|
|
const int cq_factor = send_wr_factor + 1; /* + RECV */
|
|
int ret, pages_per_mr;
|
|
|
|
queue->device = nvme_rdma_find_get_device(queue->cm_id);
|
|
if (!queue->device) {
|
|
dev_err(queue->cm_id->device->dev.parent,
|
|
"no client data found!\n");
|
|
return -ECONNREFUSED;
|
|
}
|
|
ibdev = queue->device->dev;
|
|
|
|
/* +1 for ib_stop_cq */
|
|
queue->cq_size = cq_factor * queue->queue_size + 1;
|
|
|
|
ret = nvme_rdma_create_cq(ibdev, queue);
|
|
if (ret)
|
|
goto out_put_dev;
|
|
|
|
ret = nvme_rdma_create_qp(queue, send_wr_factor);
|
|
if (ret)
|
|
goto out_destroy_ib_cq;
|
|
|
|
queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
|
|
sizeof(struct nvme_completion), DMA_FROM_DEVICE);
|
|
if (!queue->rsp_ring) {
|
|
ret = -ENOMEM;
|
|
goto out_destroy_qp;
|
|
}
|
|
|
|
/*
|
|
* Currently we don't use SG_GAPS MR's so if the first entry is
|
|
* misaligned we'll end up using two entries for a single data page,
|
|
* so one additional entry is required.
|
|
*/
|
|
pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1;
|
|
ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
|
|
queue->queue_size,
|
|
IB_MR_TYPE_MEM_REG,
|
|
pages_per_mr, 0);
|
|
if (ret) {
|
|
dev_err(queue->ctrl->ctrl.device,
|
|
"failed to initialize MR pool sized %d for QID %d\n",
|
|
queue->queue_size, nvme_rdma_queue_idx(queue));
|
|
goto out_destroy_ring;
|
|
}
|
|
|
|
if (queue->pi_support) {
|
|
ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs,
|
|
queue->queue_size, IB_MR_TYPE_INTEGRITY,
|
|
pages_per_mr, pages_per_mr);
|
|
if (ret) {
|
|
dev_err(queue->ctrl->ctrl.device,
|
|
"failed to initialize PI MR pool sized %d for QID %d\n",
|
|
queue->queue_size, nvme_rdma_queue_idx(queue));
|
|
goto out_destroy_mr_pool;
|
|
}
|
|
}
|
|
|
|
set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
|
|
|
|
return 0;
|
|
|
|
out_destroy_mr_pool:
|
|
ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
|
|
out_destroy_ring:
|
|
nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
|
|
sizeof(struct nvme_completion), DMA_FROM_DEVICE);
|
|
out_destroy_qp:
|
|
rdma_destroy_qp(queue->cm_id);
|
|
out_destroy_ib_cq:
|
|
nvme_rdma_free_cq(queue);
|
|
out_put_dev:
|
|
nvme_rdma_dev_put(queue->device);
|
|
return ret;
|
|
}
|
|
|
|
static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
|
|
int idx, size_t queue_size)
|
|
{
|
|
struct nvme_rdma_queue *queue;
|
|
struct sockaddr *src_addr = NULL;
|
|
int ret;
|
|
|
|
queue = &ctrl->queues[idx];
|
|
queue->ctrl = ctrl;
|
|
if (idx && ctrl->ctrl.max_integrity_segments)
|
|
queue->pi_support = true;
|
|
else
|
|
queue->pi_support = false;
|
|
init_completion(&queue->cm_done);
|
|
|
|
if (idx > 0)
|
|
queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
|
|
else
|
|
queue->cmnd_capsule_len = sizeof(struct nvme_command);
|
|
|
|
queue->queue_size = queue_size;
|
|
|
|
queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
|
|
RDMA_PS_TCP, IB_QPT_RC);
|
|
if (IS_ERR(queue->cm_id)) {
|
|
dev_info(ctrl->ctrl.device,
|
|
"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
|
|
return PTR_ERR(queue->cm_id);
|
|
}
|
|
|
|
if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
|
|
src_addr = (struct sockaddr *)&ctrl->src_addr;
|
|
|
|
queue->cm_error = -ETIMEDOUT;
|
|
ret = rdma_resolve_addr(queue->cm_id, src_addr,
|
|
(struct sockaddr *)&ctrl->addr,
|
|
NVME_RDMA_CONNECT_TIMEOUT_MS);
|
|
if (ret) {
|
|
dev_info(ctrl->ctrl.device,
|
|
"rdma_resolve_addr failed (%d).\n", ret);
|
|
goto out_destroy_cm_id;
|
|
}
|
|
|
|
ret = nvme_rdma_wait_for_cm(queue);
|
|
if (ret) {
|
|
dev_info(ctrl->ctrl.device,
|
|
"rdma connection establishment failed (%d)\n", ret);
|
|
goto out_destroy_cm_id;
|
|
}
|
|
|
|
set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
|
|
|
|
return 0;
|
|
|
|
out_destroy_cm_id:
|
|
rdma_destroy_id(queue->cm_id);
|
|
nvme_rdma_destroy_queue_ib(queue);
|
|
return ret;
|
|
}
|
|
|
|
static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
|
|
{
|
|
rdma_disconnect(queue->cm_id);
|
|
ib_drain_qp(queue->qp);
|
|
}
|
|
|
|
static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
|
|
{
|
|
if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
|
|
return;
|
|
__nvme_rdma_stop_queue(queue);
|
|
}
|
|
|
|
static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
|
|
{
|
|
if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
|
|
return;
|
|
|
|
nvme_rdma_destroy_queue_ib(queue);
|
|
rdma_destroy_id(queue->cm_id);
|
|
}
|
|
|
|
static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
|
|
{
|
|
int i;
|
|
|
|
for (i = 1; i < ctrl->ctrl.queue_count; i++)
|
|
nvme_rdma_free_queue(&ctrl->queues[i]);
|
|
}
|
|
|
|
static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
|
|
{
|
|
int i;
|
|
|
|
for (i = 1; i < ctrl->ctrl.queue_count; i++)
|
|
nvme_rdma_stop_queue(&ctrl->queues[i]);
|
|
}
|
|
|
|
static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
|
|
{
|
|
struct nvme_rdma_queue *queue = &ctrl->queues[idx];
|
|
bool poll = nvme_rdma_poll_queue(queue);
|
|
int ret;
|
|
|
|
if (idx)
|
|
ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll);
|
|
else
|
|
ret = nvmf_connect_admin_queue(&ctrl->ctrl);
|
|
|
|
if (!ret) {
|
|
set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
|
|
} else {
|
|
if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
|
|
__nvme_rdma_stop_queue(queue);
|
|
dev_info(ctrl->ctrl.device,
|
|
"failed to connect queue: %d ret=%d\n", idx, ret);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
|
|
{
|
|
int i, ret = 0;
|
|
|
|
for (i = 1; i < ctrl->ctrl.queue_count; i++) {
|
|
ret = nvme_rdma_start_queue(ctrl, i);
|
|
if (ret)
|
|
goto out_stop_queues;
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_stop_queues:
|
|
for (i--; i >= 1; i--)
|
|
nvme_rdma_stop_queue(&ctrl->queues[i]);
|
|
return ret;
|
|
}
|
|
|
|
static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
|
|
{
|
|
struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
|
|
struct ib_device *ibdev = ctrl->device->dev;
|
|
unsigned int nr_io_queues, nr_default_queues;
|
|
unsigned int nr_read_queues, nr_poll_queues;
|
|
int i, ret;
|
|
|
|
nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors,
|
|
min(opts->nr_io_queues, num_online_cpus()));
|
|
nr_default_queues = min_t(unsigned int, ibdev->num_comp_vectors,
|
|
min(opts->nr_write_queues, num_online_cpus()));
|
|
nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus());
|
|
nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues;
|
|
|
|
ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ctrl->ctrl.queue_count = nr_io_queues + 1;
|
|
if (ctrl->ctrl.queue_count < 2)
|
|
return 0;
|
|
|
|
dev_info(ctrl->ctrl.device,
|
|
"creating %d I/O queues.\n", nr_io_queues);
|
|
|
|
if (opts->nr_write_queues && nr_read_queues < nr_io_queues) {
|
|
/*
|
|
* separate read/write queues
|
|
* hand out dedicated default queues only after we have
|
|
* sufficient read queues.
|
|
*/
|
|
ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues;
|
|
nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
|
|
ctrl->io_queues[HCTX_TYPE_DEFAULT] =
|
|
min(nr_default_queues, nr_io_queues);
|
|
nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
|
|
} else {
|
|
/*
|
|
* shared read/write queues
|
|
* either no write queues were requested, or we don't have
|
|
* sufficient queue count to have dedicated default queues.
|
|
*/
|
|
ctrl->io_queues[HCTX_TYPE_DEFAULT] =
|
|
min(nr_read_queues, nr_io_queues);
|
|
nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
|
|
}
|
|
|
|
if (opts->nr_poll_queues && nr_io_queues) {
|
|
/* map dedicated poll queues only if we have queues left */
|
|
ctrl->io_queues[HCTX_TYPE_POLL] =
|
|
min(nr_poll_queues, nr_io_queues);
|
|
}
|
|
|
|
for (i = 1; i < ctrl->ctrl.queue_count; i++) {
|
|
ret = nvme_rdma_alloc_queue(ctrl, i,
|
|
ctrl->ctrl.sqsize + 1);
|
|
if (ret)
|
|
goto out_free_queues;
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_free_queues:
|
|
for (i--; i >= 1; i--)
|
|
nvme_rdma_free_queue(&ctrl->queues[i]);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
|
|
bool admin)
|
|
{
|
|
struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
|
|
struct blk_mq_tag_set *set;
|
|
int ret;
|
|
|
|
if (admin) {
|
|
set = &ctrl->admin_tag_set;
|
|
memset(set, 0, sizeof(*set));
|
|
set->ops = &nvme_rdma_admin_mq_ops;
|
|
set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
|
|
set->reserved_tags = 2; /* connect + keep-alive */
|
|
set->numa_node = nctrl->numa_node;
|
|
set->cmd_size = sizeof(struct nvme_rdma_request) +
|
|
NVME_RDMA_DATA_SGL_SIZE;
|
|
set->driver_data = ctrl;
|
|
set->nr_hw_queues = 1;
|
|
set->timeout = NVME_ADMIN_TIMEOUT;
|
|
set->flags = BLK_MQ_F_NO_SCHED;
|
|
} else {
|
|
set = &ctrl->tag_set;
|
|
memset(set, 0, sizeof(*set));
|
|
set->ops = &nvme_rdma_mq_ops;
|
|
set->queue_depth = nctrl->sqsize + 1;
|
|
set->reserved_tags = 1; /* fabric connect */
|
|
set->numa_node = nctrl->numa_node;
|
|
set->flags = BLK_MQ_F_SHOULD_MERGE;
|
|
set->cmd_size = sizeof(struct nvme_rdma_request) +
|
|
NVME_RDMA_DATA_SGL_SIZE;
|
|
if (nctrl->max_integrity_segments)
|
|
set->cmd_size += sizeof(struct nvme_rdma_sgl) +
|
|
NVME_RDMA_METADATA_SGL_SIZE;
|
|
set->driver_data = ctrl;
|
|
set->nr_hw_queues = nctrl->queue_count - 1;
|
|
set->timeout = NVME_IO_TIMEOUT;
|
|
set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
|
|
}
|
|
|
|
ret = blk_mq_alloc_tag_set(set);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
|
|
return set;
|
|
}
|
|
|
|
static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
|
|
bool remove)
|
|
{
|
|
if (remove) {
|
|
blk_cleanup_queue(ctrl->ctrl.admin_q);
|
|
blk_cleanup_queue(ctrl->ctrl.fabrics_q);
|
|
blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
|
|
}
|
|
if (ctrl->async_event_sqe.data) {
|
|
cancel_work_sync(&ctrl->ctrl.async_event_work);
|
|
nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
|
|
sizeof(struct nvme_command), DMA_TO_DEVICE);
|
|
ctrl->async_event_sqe.data = NULL;
|
|
}
|
|
nvme_rdma_free_queue(&ctrl->queues[0]);
|
|
}
|
|
|
|
static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
|
|
bool new)
|
|
{
|
|
bool pi_capable = false;
|
|
int error;
|
|
|
|
error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
|
|
if (error)
|
|
return error;
|
|
|
|
ctrl->device = ctrl->queues[0].device;
|
|
ctrl->ctrl.numa_node = ibdev_to_node(ctrl->device->dev);
|
|
|
|
/* T10-PI support */
|
|
if (ctrl->device->dev->attrs.device_cap_flags &
|
|
IB_DEVICE_INTEGRITY_HANDOVER)
|
|
pi_capable = true;
|
|
|
|
ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev,
|
|
pi_capable);
|
|
|
|
/*
|
|
* Bind the async event SQE DMA mapping to the admin queue lifetime.
|
|
* It's safe, since any chage in the underlying RDMA device will issue
|
|
* error recovery and queue re-creation.
|
|
*/
|
|
error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
|
|
sizeof(struct nvme_command), DMA_TO_DEVICE);
|
|
if (error)
|
|
goto out_free_queue;
|
|
|
|
if (new) {
|
|
ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
|
|
if (IS_ERR(ctrl->ctrl.admin_tagset)) {
|
|
error = PTR_ERR(ctrl->ctrl.admin_tagset);
|
|
goto out_free_async_qe;
|
|
}
|
|
|
|
ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
|
|
if (IS_ERR(ctrl->ctrl.fabrics_q)) {
|
|
error = PTR_ERR(ctrl->ctrl.fabrics_q);
|
|
goto out_free_tagset;
|
|
}
|
|
|
|
ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
|
|
if (IS_ERR(ctrl->ctrl.admin_q)) {
|
|
error = PTR_ERR(ctrl->ctrl.admin_q);
|
|
goto out_cleanup_fabrics_q;
|
|
}
|
|
}
|
|
|
|
error = nvme_rdma_start_queue(ctrl, 0);
|
|
if (error)
|
|
goto out_cleanup_queue;
|
|
|
|
error = nvme_enable_ctrl(&ctrl->ctrl);
|
|
if (error)
|
|
goto out_stop_queue;
|
|
|
|
ctrl->ctrl.max_segments = ctrl->max_fr_pages;
|
|
ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
|
|
if (pi_capable)
|
|
ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages;
|
|
else
|
|
ctrl->ctrl.max_integrity_segments = 0;
|
|
|
|
blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
|
|
|
|
error = nvme_init_identify(&ctrl->ctrl);
|
|
if (error)
|
|
goto out_stop_queue;
|
|
|
|
return 0;
|
|
|
|
out_stop_queue:
|
|
nvme_rdma_stop_queue(&ctrl->queues[0]);
|
|
out_cleanup_queue:
|
|
if (new)
|
|
blk_cleanup_queue(ctrl->ctrl.admin_q);
|
|
out_cleanup_fabrics_q:
|
|
if (new)
|
|
blk_cleanup_queue(ctrl->ctrl.fabrics_q);
|
|
out_free_tagset:
|
|
if (new)
|
|
blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
|
|
out_free_async_qe:
|
|
if (ctrl->async_event_sqe.data) {
|
|
nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
|
|
sizeof(struct nvme_command), DMA_TO_DEVICE);
|
|
ctrl->async_event_sqe.data = NULL;
|
|
}
|
|
out_free_queue:
|
|
nvme_rdma_free_queue(&ctrl->queues[0]);
|
|
return error;
|
|
}
|
|
|
|
static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
|
|
bool remove)
|
|
{
|
|
if (remove) {
|
|
blk_cleanup_queue(ctrl->ctrl.connect_q);
|
|
blk_mq_free_tag_set(ctrl->ctrl.tagset);
|
|
}
|
|
nvme_rdma_free_io_queues(ctrl);
|
|
}
|
|
|
|
static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
|
|
{
|
|
int ret;
|
|
|
|
ret = nvme_rdma_alloc_io_queues(ctrl);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (new) {
|
|
ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
|
|
if (IS_ERR(ctrl->ctrl.tagset)) {
|
|
ret = PTR_ERR(ctrl->ctrl.tagset);
|
|
goto out_free_io_queues;
|
|
}
|
|
|
|
ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
|
|
if (IS_ERR(ctrl->ctrl.connect_q)) {
|
|
ret = PTR_ERR(ctrl->ctrl.connect_q);
|
|
goto out_free_tag_set;
|
|
}
|
|
}
|
|
|
|
ret = nvme_rdma_start_io_queues(ctrl);
|
|
if (ret)
|
|
goto out_cleanup_connect_q;
|
|
|
|
if (!new) {
|
|
nvme_start_queues(&ctrl->ctrl);
|
|
if (!nvme_wait_freeze_timeout(&ctrl->ctrl, NVME_IO_TIMEOUT)) {
|
|
/*
|
|
* If we timed out waiting for freeze we are likely to
|
|
* be stuck. Fail the controller initialization just
|
|
* to be safe.
|
|
*/
|
|
ret = -ENODEV;
|
|
goto out_wait_freeze_timed_out;
|
|
}
|
|
blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset,
|
|
ctrl->ctrl.queue_count - 1);
|
|
nvme_unfreeze(&ctrl->ctrl);
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_wait_freeze_timed_out:
|
|
nvme_stop_queues(&ctrl->ctrl);
|
|
nvme_rdma_stop_io_queues(ctrl);
|
|
out_cleanup_connect_q:
|
|
if (new)
|
|
blk_cleanup_queue(ctrl->ctrl.connect_q);
|
|
out_free_tag_set:
|
|
if (new)
|
|
blk_mq_free_tag_set(ctrl->ctrl.tagset);
|
|
out_free_io_queues:
|
|
nvme_rdma_free_io_queues(ctrl);
|
|
return ret;
|
|
}
|
|
|
|
static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
|
|
bool remove)
|
|
{
|
|
blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
|
|
blk_sync_queue(ctrl->ctrl.admin_q);
|
|
nvme_rdma_stop_queue(&ctrl->queues[0]);
|
|
if (ctrl->ctrl.admin_tagset) {
|
|
blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset,
|
|
nvme_cancel_request, &ctrl->ctrl);
|
|
blk_mq_tagset_wait_completed_request(ctrl->ctrl.admin_tagset);
|
|
}
|
|
if (remove)
|
|
blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
|
|
nvme_rdma_destroy_admin_queue(ctrl, remove);
|
|
}
|
|
|
|
static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
|
|
bool remove)
|
|
{
|
|
if (ctrl->ctrl.queue_count > 1) {
|
|
nvme_start_freeze(&ctrl->ctrl);
|
|
nvme_stop_queues(&ctrl->ctrl);
|
|
nvme_sync_io_queues(&ctrl->ctrl);
|
|
nvme_rdma_stop_io_queues(ctrl);
|
|
if (ctrl->ctrl.tagset) {
|
|
blk_mq_tagset_busy_iter(ctrl->ctrl.tagset,
|
|
nvme_cancel_request, &ctrl->ctrl);
|
|
blk_mq_tagset_wait_completed_request(ctrl->ctrl.tagset);
|
|
}
|
|
if (remove)
|
|
nvme_start_queues(&ctrl->ctrl);
|
|
nvme_rdma_destroy_io_queues(ctrl, remove);
|
|
}
|
|
}
|
|
|
|
static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
|
|
{
|
|
struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
|
|
|
|
if (list_empty(&ctrl->list))
|
|
goto free_ctrl;
|
|
|
|
mutex_lock(&nvme_rdma_ctrl_mutex);
|
|
list_del(&ctrl->list);
|
|
mutex_unlock(&nvme_rdma_ctrl_mutex);
|
|
|
|
nvmf_free_options(nctrl->opts);
|
|
free_ctrl:
|
|
kfree(ctrl->queues);
|
|
kfree(ctrl);
|
|
}
|
|
|
|
static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
|
|
{
|
|
/* If we are resetting/deleting then do nothing */
|
|
if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
|
|
WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
|
|
ctrl->ctrl.state == NVME_CTRL_LIVE);
|
|
return;
|
|
}
|
|
|
|
if (nvmf_should_reconnect(&ctrl->ctrl)) {
|
|
dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
|
|
ctrl->ctrl.opts->reconnect_delay);
|
|
queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
|
|
ctrl->ctrl.opts->reconnect_delay * HZ);
|
|
} else {
|
|
nvme_delete_ctrl(&ctrl->ctrl);
|
|
}
|
|
}
|
|
|
|
static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
|
|
{
|
|
int ret = -EINVAL;
|
|
bool changed;
|
|
|
|
ret = nvme_rdma_configure_admin_queue(ctrl, new);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (ctrl->ctrl.icdoff) {
|
|
dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
|
|
goto destroy_admin;
|
|
}
|
|
|
|
if (!(ctrl->ctrl.sgls & (1 << 2))) {
|
|
dev_err(ctrl->ctrl.device,
|
|
"Mandatory keyed sgls are not supported!\n");
|
|
goto destroy_admin;
|
|
}
|
|
|
|
if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
|
|
dev_warn(ctrl->ctrl.device,
|
|
"queue_size %zu > ctrl sqsize %u, clamping down\n",
|
|
ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
|
|
}
|
|
|
|
if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
|
|
dev_warn(ctrl->ctrl.device,
|
|
"sqsize %u > ctrl maxcmd %u, clamping down\n",
|
|
ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
|
|
ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
|
|
}
|
|
|
|
if (ctrl->ctrl.sgls & (1 << 20))
|
|
ctrl->use_inline_data = true;
|
|
|
|
if (ctrl->ctrl.queue_count > 1) {
|
|
ret = nvme_rdma_configure_io_queues(ctrl, new);
|
|
if (ret)
|
|
goto destroy_admin;
|
|
}
|
|
|
|
changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
|
|
if (!changed) {
|
|
/*
|
|
* state change failure is ok if we started ctrl delete,
|
|
* unless we're during creation of a new controller to
|
|
* avoid races with teardown flow.
|
|
*/
|
|
WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
|
|
ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
|
|
WARN_ON_ONCE(new);
|
|
ret = -EINVAL;
|
|
goto destroy_io;
|
|
}
|
|
|
|
nvme_start_ctrl(&ctrl->ctrl);
|
|
return 0;
|
|
|
|
destroy_io:
|
|
if (ctrl->ctrl.queue_count > 1)
|
|
nvme_rdma_destroy_io_queues(ctrl, new);
|
|
destroy_admin:
|
|
nvme_rdma_stop_queue(&ctrl->queues[0]);
|
|
nvme_rdma_destroy_admin_queue(ctrl, new);
|
|
return ret;
|
|
}
|
|
|
|
static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
|
|
{
|
|
struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
|
|
struct nvme_rdma_ctrl, reconnect_work);
|
|
|
|
++ctrl->ctrl.nr_reconnects;
|
|
|
|
if (nvme_rdma_setup_ctrl(ctrl, false))
|
|
goto requeue;
|
|
|
|
dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
|
|
ctrl->ctrl.nr_reconnects);
|
|
|
|
ctrl->ctrl.nr_reconnects = 0;
|
|
|
|
return;
|
|
|
|
requeue:
|
|
dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
|
|
ctrl->ctrl.nr_reconnects);
|
|
nvme_rdma_reconnect_or_remove(ctrl);
|
|
}
|
|
|
|
static void nvme_rdma_error_recovery_work(struct work_struct *work)
|
|
{
|
|
struct nvme_rdma_ctrl *ctrl = container_of(work,
|
|
struct nvme_rdma_ctrl, err_work);
|
|
|
|
nvme_stop_keep_alive(&ctrl->ctrl);
|
|
nvme_rdma_teardown_io_queues(ctrl, false);
|
|
nvme_start_queues(&ctrl->ctrl);
|
|
nvme_rdma_teardown_admin_queue(ctrl, false);
|
|
blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
|
|
|
|
if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
|
|
/* state change failure is ok if we started ctrl delete */
|
|
WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
|
|
ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
|
|
return;
|
|
}
|
|
|
|
nvme_rdma_reconnect_or_remove(ctrl);
|
|
}
|
|
|
|
static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
|
|
{
|
|
if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
|
|
return;
|
|
|
|
dev_warn(ctrl->ctrl.device, "starting error recovery\n");
|
|
queue_work(nvme_reset_wq, &ctrl->err_work);
|
|
}
|
|
|
|
static void nvme_rdma_end_request(struct nvme_rdma_request *req)
|
|
{
|
|
struct request *rq = blk_mq_rq_from_pdu(req);
|
|
|
|
if (!refcount_dec_and_test(&req->ref))
|
|
return;
|
|
if (!nvme_try_complete_req(rq, req->status, req->result))
|
|
nvme_rdma_complete_rq(rq);
|
|
}
|
|
|
|
static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
|
|
const char *op)
|
|
{
|
|
struct nvme_rdma_queue *queue = wc->qp->qp_context;
|
|
struct nvme_rdma_ctrl *ctrl = queue->ctrl;
|
|
|
|
if (ctrl->ctrl.state == NVME_CTRL_LIVE)
|
|
dev_info(ctrl->ctrl.device,
|
|
"%s for CQE 0x%p failed with status %s (%d)\n",
|
|
op, wc->wr_cqe,
|
|
ib_wc_status_msg(wc->status), wc->status);
|
|
nvme_rdma_error_recovery(ctrl);
|
|
}
|
|
|
|
static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
|
|
{
|
|
if (unlikely(wc->status != IB_WC_SUCCESS))
|
|
nvme_rdma_wr_error(cq, wc, "MEMREG");
|
|
}
|
|
|
|
static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
|
|
{
|
|
struct nvme_rdma_request *req =
|
|
container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
|
|
|
|
if (unlikely(wc->status != IB_WC_SUCCESS))
|
|
nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
|
|
else
|
|
nvme_rdma_end_request(req);
|
|
}
|
|
|
|
static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
|
|
struct nvme_rdma_request *req)
|
|
{
|
|
struct ib_send_wr wr = {
|
|
.opcode = IB_WR_LOCAL_INV,
|
|
.next = NULL,
|
|
.num_sge = 0,
|
|
.send_flags = IB_SEND_SIGNALED,
|
|
.ex.invalidate_rkey = req->mr->rkey,
|
|
};
|
|
|
|
req->reg_cqe.done = nvme_rdma_inv_rkey_done;
|
|
wr.wr_cqe = &req->reg_cqe;
|
|
|
|
return ib_post_send(queue->qp, &wr, NULL);
|
|
}
|
|
|
|
static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
|
|
struct request *rq)
|
|
{
|
|
struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
|
|
struct nvme_rdma_device *dev = queue->device;
|
|
struct ib_device *ibdev = dev->dev;
|
|
struct list_head *pool = &queue->qp->rdma_mrs;
|
|
|
|
if (!blk_rq_nr_phys_segments(rq))
|
|
return;
|
|
|
|
if (blk_integrity_rq(rq)) {
|
|
ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
|
|
req->metadata_sgl->nents, rq_dma_dir(rq));
|
|
sg_free_table_chained(&req->metadata_sgl->sg_table,
|
|
NVME_INLINE_METADATA_SG_CNT);
|
|
}
|
|
|
|
if (req->use_sig_mr)
|
|
pool = &queue->qp->sig_mrs;
|
|
|
|
if (req->mr) {
|
|
ib_mr_pool_put(queue->qp, pool, req->mr);
|
|
req->mr = NULL;
|
|
}
|
|
|
|
ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
|
|
rq_dma_dir(rq));
|
|
sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
|
|
}
|
|
|
|
static int nvme_rdma_set_sg_null(struct nvme_command *c)
|
|
{
|
|
struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
|
|
|
|
sg->addr = 0;
|
|
put_unaligned_le24(0, sg->length);
|
|
put_unaligned_le32(0, sg->key);
|
|
sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
|
|
struct nvme_rdma_request *req, struct nvme_command *c,
|
|
int count)
|
|
{
|
|
struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
|
|
struct scatterlist *sgl = req->data_sgl.sg_table.sgl;
|
|
struct ib_sge *sge = &req->sge[1];
|
|
u32 len = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < count; i++, sgl++, sge++) {
|
|
sge->addr = sg_dma_address(sgl);
|
|
sge->length = sg_dma_len(sgl);
|
|
sge->lkey = queue->device->pd->local_dma_lkey;
|
|
len += sge->length;
|
|
}
|
|
|
|
sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
|
|
sg->length = cpu_to_le32(len);
|
|
sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
|
|
|
|
req->num_sge += count;
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
|
|
struct nvme_rdma_request *req, struct nvme_command *c)
|
|
{
|
|
struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
|
|
|
|
sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl));
|
|
put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length);
|
|
put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
|
|
sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
|
|
struct nvme_rdma_request *req, struct nvme_command *c,
|
|
int count)
|
|
{
|
|
struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
|
|
int nr;
|
|
|
|
req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
|
|
if (WARN_ON_ONCE(!req->mr))
|
|
return -EAGAIN;
|
|
|
|
/*
|
|
* Align the MR to a 4K page size to match the ctrl page size and
|
|
* the block virtual boundary.
|
|
*/
|
|
nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL,
|
|
SZ_4K);
|
|
if (unlikely(nr < count)) {
|
|
ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
|
|
req->mr = NULL;
|
|
if (nr < 0)
|
|
return nr;
|
|
return -EINVAL;
|
|
}
|
|
|
|
ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
|
|
|
|
req->reg_cqe.done = nvme_rdma_memreg_done;
|
|
memset(&req->reg_wr, 0, sizeof(req->reg_wr));
|
|
req->reg_wr.wr.opcode = IB_WR_REG_MR;
|
|
req->reg_wr.wr.wr_cqe = &req->reg_cqe;
|
|
req->reg_wr.wr.num_sge = 0;
|
|
req->reg_wr.mr = req->mr;
|
|
req->reg_wr.key = req->mr->rkey;
|
|
req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
|
|
IB_ACCESS_REMOTE_READ |
|
|
IB_ACCESS_REMOTE_WRITE;
|
|
|
|
sg->addr = cpu_to_le64(req->mr->iova);
|
|
put_unaligned_le24(req->mr->length, sg->length);
|
|
put_unaligned_le32(req->mr->rkey, sg->key);
|
|
sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
|
|
NVME_SGL_FMT_INVALIDATE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void nvme_rdma_set_sig_domain(struct blk_integrity *bi,
|
|
struct nvme_command *cmd, struct ib_sig_domain *domain,
|
|
u16 control, u8 pi_type)
|
|
{
|
|
domain->sig_type = IB_SIG_TYPE_T10_DIF;
|
|
domain->sig.dif.bg_type = IB_T10DIF_CRC;
|
|
domain->sig.dif.pi_interval = 1 << bi->interval_exp;
|
|
domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
|
|
if (control & NVME_RW_PRINFO_PRCHK_REF)
|
|
domain->sig.dif.ref_remap = true;
|
|
|
|
domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
|
|
domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
|
|
domain->sig.dif.app_escape = true;
|
|
if (pi_type == NVME_NS_DPS_PI_TYPE3)
|
|
domain->sig.dif.ref_escape = true;
|
|
}
|
|
|
|
static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi,
|
|
struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs,
|
|
u8 pi_type)
|
|
{
|
|
u16 control = le16_to_cpu(cmd->rw.control);
|
|
|
|
memset(sig_attrs, 0, sizeof(*sig_attrs));
|
|
if (control & NVME_RW_PRINFO_PRACT) {
|
|
/* for WRITE_INSERT/READ_STRIP no memory domain */
|
|
sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE;
|
|
nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
|
|
pi_type);
|
|
/* Clear the PRACT bit since HCA will generate/verify the PI */
|
|
control &= ~NVME_RW_PRINFO_PRACT;
|
|
cmd->rw.control = cpu_to_le16(control);
|
|
} else {
|
|
/* for WRITE_PASS/READ_PASS both wire/memory domains exist */
|
|
nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
|
|
pi_type);
|
|
nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
|
|
pi_type);
|
|
}
|
|
}
|
|
|
|
static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask)
|
|
{
|
|
*mask = 0;
|
|
if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF)
|
|
*mask |= IB_SIG_CHECK_REFTAG;
|
|
if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD)
|
|
*mask |= IB_SIG_CHECK_GUARD;
|
|
}
|
|
|
|
static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc)
|
|
{
|
|
if (unlikely(wc->status != IB_WC_SUCCESS))
|
|
nvme_rdma_wr_error(cq, wc, "SIG");
|
|
}
|
|
|
|
static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue,
|
|
struct nvme_rdma_request *req, struct nvme_command *c,
|
|
int count, int pi_count)
|
|
{
|
|
struct nvme_rdma_sgl *sgl = &req->data_sgl;
|
|
struct ib_reg_wr *wr = &req->reg_wr;
|
|
struct request *rq = blk_mq_rq_from_pdu(req);
|
|
struct nvme_ns *ns = rq->q->queuedata;
|
|
struct bio *bio = rq->bio;
|
|
struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
|
|
int nr;
|
|
|
|
req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs);
|
|
if (WARN_ON_ONCE(!req->mr))
|
|
return -EAGAIN;
|
|
|
|
nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL,
|
|
req->metadata_sgl->sg_table.sgl, pi_count, NULL,
|
|
SZ_4K);
|
|
if (unlikely(nr))
|
|
goto mr_put;
|
|
|
|
nvme_rdma_set_sig_attrs(blk_get_integrity(bio->bi_disk), c,
|
|
req->mr->sig_attrs, ns->pi_type);
|
|
nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask);
|
|
|
|
ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
|
|
|
|
req->reg_cqe.done = nvme_rdma_sig_done;
|
|
memset(wr, 0, sizeof(*wr));
|
|
wr->wr.opcode = IB_WR_REG_MR_INTEGRITY;
|
|
wr->wr.wr_cqe = &req->reg_cqe;
|
|
wr->wr.num_sge = 0;
|
|
wr->wr.send_flags = 0;
|
|
wr->mr = req->mr;
|
|
wr->key = req->mr->rkey;
|
|
wr->access = IB_ACCESS_LOCAL_WRITE |
|
|
IB_ACCESS_REMOTE_READ |
|
|
IB_ACCESS_REMOTE_WRITE;
|
|
|
|
sg->addr = cpu_to_le64(req->mr->iova);
|
|
put_unaligned_le24(req->mr->length, sg->length);
|
|
put_unaligned_le32(req->mr->rkey, sg->key);
|
|
sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
|
|
|
|
return 0;
|
|
|
|
mr_put:
|
|
ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr);
|
|
req->mr = NULL;
|
|
if (nr < 0)
|
|
return nr;
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
|
|
struct request *rq, struct nvme_command *c)
|
|
{
|
|
struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
|
|
struct nvme_rdma_device *dev = queue->device;
|
|
struct ib_device *ibdev = dev->dev;
|
|
int pi_count = 0;
|
|
int count, ret;
|
|
|
|
req->num_sge = 1;
|
|
refcount_set(&req->ref, 2); /* send and recv completions */
|
|
|
|
c->common.flags |= NVME_CMD_SGL_METABUF;
|
|
|
|
if (!blk_rq_nr_phys_segments(rq))
|
|
return nvme_rdma_set_sg_null(c);
|
|
|
|
req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1);
|
|
ret = sg_alloc_table_chained(&req->data_sgl.sg_table,
|
|
blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl,
|
|
NVME_INLINE_SG_CNT);
|
|
if (ret)
|
|
return -ENOMEM;
|
|
|
|
req->data_sgl.nents = blk_rq_map_sg(rq->q, rq,
|
|
req->data_sgl.sg_table.sgl);
|
|
|
|
count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl,
|
|
req->data_sgl.nents, rq_dma_dir(rq));
|
|
if (unlikely(count <= 0)) {
|
|
ret = -EIO;
|
|
goto out_free_table;
|
|
}
|
|
|
|
if (blk_integrity_rq(rq)) {
|
|
req->metadata_sgl->sg_table.sgl =
|
|
(struct scatterlist *)(req->metadata_sgl + 1);
|
|
ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table,
|
|
blk_rq_count_integrity_sg(rq->q, rq->bio),
|
|
req->metadata_sgl->sg_table.sgl,
|
|
NVME_INLINE_METADATA_SG_CNT);
|
|
if (unlikely(ret)) {
|
|
ret = -ENOMEM;
|
|
goto out_unmap_sg;
|
|
}
|
|
|
|
req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q,
|
|
rq->bio, req->metadata_sgl->sg_table.sgl);
|
|
pi_count = ib_dma_map_sg(ibdev,
|
|
req->metadata_sgl->sg_table.sgl,
|
|
req->metadata_sgl->nents,
|
|
rq_dma_dir(rq));
|
|
if (unlikely(pi_count <= 0)) {
|
|
ret = -EIO;
|
|
goto out_free_pi_table;
|
|
}
|
|
}
|
|
|
|
if (req->use_sig_mr) {
|
|
ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count);
|
|
goto out;
|
|
}
|
|
|
|
if (count <= dev->num_inline_segments) {
|
|
if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
|
|
queue->ctrl->use_inline_data &&
|
|
blk_rq_payload_bytes(rq) <=
|
|
nvme_rdma_inline_data_size(queue)) {
|
|
ret = nvme_rdma_map_sg_inline(queue, req, c, count);
|
|
goto out;
|
|
}
|
|
|
|
if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
|
|
ret = nvme_rdma_map_sg_single(queue, req, c);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
ret = nvme_rdma_map_sg_fr(queue, req, c, count);
|
|
out:
|
|
if (unlikely(ret))
|
|
goto out_unmap_pi_sg;
|
|
|
|
return 0;
|
|
|
|
out_unmap_pi_sg:
|
|
if (blk_integrity_rq(rq))
|
|
ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
|
|
req->metadata_sgl->nents, rq_dma_dir(rq));
|
|
out_free_pi_table:
|
|
if (blk_integrity_rq(rq))
|
|
sg_free_table_chained(&req->metadata_sgl->sg_table,
|
|
NVME_INLINE_METADATA_SG_CNT);
|
|
out_unmap_sg:
|
|
ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
|
|
rq_dma_dir(rq));
|
|
out_free_table:
|
|
sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
|
|
return ret;
|
|
}
|
|
|
|
static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
|
|
{
|
|
struct nvme_rdma_qe *qe =
|
|
container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
|
|
struct nvme_rdma_request *req =
|
|
container_of(qe, struct nvme_rdma_request, sqe);
|
|
|
|
if (unlikely(wc->status != IB_WC_SUCCESS))
|
|
nvme_rdma_wr_error(cq, wc, "SEND");
|
|
else
|
|
nvme_rdma_end_request(req);
|
|
}
|
|
|
|
static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
|
|
struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
|
|
struct ib_send_wr *first)
|
|
{
|
|
struct ib_send_wr wr;
|
|
int ret;
|
|
|
|
sge->addr = qe->dma;
|
|
sge->length = sizeof(struct nvme_command);
|
|
sge->lkey = queue->device->pd->local_dma_lkey;
|
|
|
|
wr.next = NULL;
|
|
wr.wr_cqe = &qe->cqe;
|
|
wr.sg_list = sge;
|
|
wr.num_sge = num_sge;
|
|
wr.opcode = IB_WR_SEND;
|
|
wr.send_flags = IB_SEND_SIGNALED;
|
|
|
|
if (first)
|
|
first->next = ≀
|
|
else
|
|
first = ≀
|
|
|
|
ret = ib_post_send(queue->qp, first, NULL);
|
|
if (unlikely(ret)) {
|
|
dev_err(queue->ctrl->ctrl.device,
|
|
"%s failed with error code %d\n", __func__, ret);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
|
|
struct nvme_rdma_qe *qe)
|
|
{
|
|
struct ib_recv_wr wr;
|
|
struct ib_sge list;
|
|
int ret;
|
|
|
|
list.addr = qe->dma;
|
|
list.length = sizeof(struct nvme_completion);
|
|
list.lkey = queue->device->pd->local_dma_lkey;
|
|
|
|
qe->cqe.done = nvme_rdma_recv_done;
|
|
|
|
wr.next = NULL;
|
|
wr.wr_cqe = &qe->cqe;
|
|
wr.sg_list = &list;
|
|
wr.num_sge = 1;
|
|
|
|
ret = ib_post_recv(queue->qp, &wr, NULL);
|
|
if (unlikely(ret)) {
|
|
dev_err(queue->ctrl->ctrl.device,
|
|
"%s failed with error code %d\n", __func__, ret);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
|
|
{
|
|
u32 queue_idx = nvme_rdma_queue_idx(queue);
|
|
|
|
if (queue_idx == 0)
|
|
return queue->ctrl->admin_tag_set.tags[queue_idx];
|
|
return queue->ctrl->tag_set.tags[queue_idx - 1];
|
|
}
|
|
|
|
static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
|
|
{
|
|
if (unlikely(wc->status != IB_WC_SUCCESS))
|
|
nvme_rdma_wr_error(cq, wc, "ASYNC");
|
|
}
|
|
|
|
static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
|
|
{
|
|
struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
|
|
struct nvme_rdma_queue *queue = &ctrl->queues[0];
|
|
struct ib_device *dev = queue->device->dev;
|
|
struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
|
|
struct nvme_command *cmd = sqe->data;
|
|
struct ib_sge sge;
|
|
int ret;
|
|
|
|
ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
|
|
|
|
memset(cmd, 0, sizeof(*cmd));
|
|
cmd->common.opcode = nvme_admin_async_event;
|
|
cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
|
|
cmd->common.flags |= NVME_CMD_SGL_METABUF;
|
|
nvme_rdma_set_sg_null(cmd);
|
|
|
|
sqe->cqe.done = nvme_rdma_async_done;
|
|
|
|
ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
|
|
DMA_TO_DEVICE);
|
|
|
|
ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
|
|
WARN_ON_ONCE(ret);
|
|
}
|
|
|
|
static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
|
|
struct nvme_completion *cqe, struct ib_wc *wc)
|
|
{
|
|
struct request *rq;
|
|
struct nvme_rdma_request *req;
|
|
|
|
rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
|
|
if (!rq) {
|
|
dev_err(queue->ctrl->ctrl.device,
|
|
"tag 0x%x on QP %#x not found\n",
|
|
cqe->command_id, queue->qp->qp_num);
|
|
nvme_rdma_error_recovery(queue->ctrl);
|
|
return;
|
|
}
|
|
req = blk_mq_rq_to_pdu(rq);
|
|
|
|
req->status = cqe->status;
|
|
req->result = cqe->result;
|
|
|
|
if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
|
|
if (unlikely(!req->mr ||
|
|
wc->ex.invalidate_rkey != req->mr->rkey)) {
|
|
dev_err(queue->ctrl->ctrl.device,
|
|
"Bogus remote invalidation for rkey %#x\n",
|
|
req->mr ? req->mr->rkey : 0);
|
|
nvme_rdma_error_recovery(queue->ctrl);
|
|
}
|
|
} else if (req->mr) {
|
|
int ret;
|
|
|
|
ret = nvme_rdma_inv_rkey(queue, req);
|
|
if (unlikely(ret < 0)) {
|
|
dev_err(queue->ctrl->ctrl.device,
|
|
"Queueing INV WR for rkey %#x failed (%d)\n",
|
|
req->mr->rkey, ret);
|
|
nvme_rdma_error_recovery(queue->ctrl);
|
|
}
|
|
/* the local invalidation completion will end the request */
|
|
return;
|
|
}
|
|
|
|
nvme_rdma_end_request(req);
|
|
}
|
|
|
|
static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
|
|
{
|
|
struct nvme_rdma_qe *qe =
|
|
container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
|
|
struct nvme_rdma_queue *queue = wc->qp->qp_context;
|
|
struct ib_device *ibdev = queue->device->dev;
|
|
struct nvme_completion *cqe = qe->data;
|
|
const size_t len = sizeof(struct nvme_completion);
|
|
|
|
if (unlikely(wc->status != IB_WC_SUCCESS)) {
|
|
nvme_rdma_wr_error(cq, wc, "RECV");
|
|
return;
|
|
}
|
|
|
|
/* sanity checking for received data length */
|
|
if (unlikely(wc->byte_len < len)) {
|
|
dev_err(queue->ctrl->ctrl.device,
|
|
"Unexpected nvme completion length(%d)\n", wc->byte_len);
|
|
nvme_rdma_error_recovery(queue->ctrl);
|
|
return;
|
|
}
|
|
|
|
ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
|
|
/*
|
|
* AEN requests are special as they don't time out and can
|
|
* survive any kind of queue freeze and often don't respond to
|
|
* aborts. We don't even bother to allocate a struct request
|
|
* for them but rather special case them here.
|
|
*/
|
|
if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue),
|
|
cqe->command_id)))
|
|
nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
|
|
&cqe->result);
|
|
else
|
|
nvme_rdma_process_nvme_rsp(queue, cqe, wc);
|
|
ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
|
|
|
|
nvme_rdma_post_recv(queue, qe);
|
|
}
|
|
|
|
static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
|
|
{
|
|
int ret, i;
|
|
|
|
for (i = 0; i < queue->queue_size; i++) {
|
|
ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
|
|
if (ret)
|
|
goto out_destroy_queue_ib;
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_destroy_queue_ib:
|
|
nvme_rdma_destroy_queue_ib(queue);
|
|
return ret;
|
|
}
|
|
|
|
static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
|
|
struct rdma_cm_event *ev)
|
|
{
|
|
struct rdma_cm_id *cm_id = queue->cm_id;
|
|
int status = ev->status;
|
|
const char *rej_msg;
|
|
const struct nvme_rdma_cm_rej *rej_data;
|
|
u8 rej_data_len;
|
|
|
|
rej_msg = rdma_reject_msg(cm_id, status);
|
|
rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
|
|
|
|
if (rej_data && rej_data_len >= sizeof(u16)) {
|
|
u16 sts = le16_to_cpu(rej_data->sts);
|
|
|
|
dev_err(queue->ctrl->ctrl.device,
|
|
"Connect rejected: status %d (%s) nvme status %d (%s).\n",
|
|
status, rej_msg, sts, nvme_rdma_cm_msg(sts));
|
|
} else {
|
|
dev_err(queue->ctrl->ctrl.device,
|
|
"Connect rejected: status %d (%s).\n", status, rej_msg);
|
|
}
|
|
|
|
return -ECONNRESET;
|
|
}
|
|
|
|
static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
|
|
{
|
|
struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
|
|
int ret;
|
|
|
|
ret = nvme_rdma_create_queue_ib(queue);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (ctrl->opts->tos >= 0)
|
|
rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
|
|
ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
|
|
if (ret) {
|
|
dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
|
|
queue->cm_error);
|
|
goto out_destroy_queue;
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_destroy_queue:
|
|
nvme_rdma_destroy_queue_ib(queue);
|
|
return ret;
|
|
}
|
|
|
|
static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
|
|
{
|
|
struct nvme_rdma_ctrl *ctrl = queue->ctrl;
|
|
struct rdma_conn_param param = { };
|
|
struct nvme_rdma_cm_req priv = { };
|
|
int ret;
|
|
|
|
param.qp_num = queue->qp->qp_num;
|
|
param.flow_control = 1;
|
|
|
|
param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
|
|
/* maximum retry count */
|
|
param.retry_count = 7;
|
|
param.rnr_retry_count = 7;
|
|
param.private_data = &priv;
|
|
param.private_data_len = sizeof(priv);
|
|
|
|
priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
|
|
priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
|
|
/*
|
|
* set the admin queue depth to the minimum size
|
|
* specified by the Fabrics standard.
|
|
*/
|
|
if (priv.qid == 0) {
|
|
priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
|
|
priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
|
|
} else {
|
|
/*
|
|
* current interpretation of the fabrics spec
|
|
* is at minimum you make hrqsize sqsize+1, or a
|
|
* 1's based representation of sqsize.
|
|
*/
|
|
priv.hrqsize = cpu_to_le16(queue->queue_size);
|
|
priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
|
|
}
|
|
|
|
ret = rdma_connect_locked(queue->cm_id, ¶m);
|
|
if (ret) {
|
|
dev_err(ctrl->ctrl.device,
|
|
"rdma_connect_locked failed (%d).\n", ret);
|
|
goto out_destroy_queue_ib;
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_destroy_queue_ib:
|
|
nvme_rdma_destroy_queue_ib(queue);
|
|
return ret;
|
|
}
|
|
|
|
static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
|
|
struct rdma_cm_event *ev)
|
|
{
|
|
struct nvme_rdma_queue *queue = cm_id->context;
|
|
int cm_error = 0;
|
|
|
|
dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
|
|
rdma_event_msg(ev->event), ev->event,
|
|
ev->status, cm_id);
|
|
|
|
switch (ev->event) {
|
|
case RDMA_CM_EVENT_ADDR_RESOLVED:
|
|
cm_error = nvme_rdma_addr_resolved(queue);
|
|
break;
|
|
case RDMA_CM_EVENT_ROUTE_RESOLVED:
|
|
cm_error = nvme_rdma_route_resolved(queue);
|
|
break;
|
|
case RDMA_CM_EVENT_ESTABLISHED:
|
|
queue->cm_error = nvme_rdma_conn_established(queue);
|
|
/* complete cm_done regardless of success/failure */
|
|
complete(&queue->cm_done);
|
|
return 0;
|
|
case RDMA_CM_EVENT_REJECTED:
|
|
cm_error = nvme_rdma_conn_rejected(queue, ev);
|
|
break;
|
|
case RDMA_CM_EVENT_ROUTE_ERROR:
|
|
case RDMA_CM_EVENT_CONNECT_ERROR:
|
|
case RDMA_CM_EVENT_UNREACHABLE:
|
|
nvme_rdma_destroy_queue_ib(queue);
|
|
fallthrough;
|
|
case RDMA_CM_EVENT_ADDR_ERROR:
|
|
dev_dbg(queue->ctrl->ctrl.device,
|
|
"CM error event %d\n", ev->event);
|
|
cm_error = -ECONNRESET;
|
|
break;
|
|
case RDMA_CM_EVENT_DISCONNECTED:
|
|
case RDMA_CM_EVENT_ADDR_CHANGE:
|
|
case RDMA_CM_EVENT_TIMEWAIT_EXIT:
|
|
dev_dbg(queue->ctrl->ctrl.device,
|
|
"disconnect received - connection closed\n");
|
|
nvme_rdma_error_recovery(queue->ctrl);
|
|
break;
|
|
case RDMA_CM_EVENT_DEVICE_REMOVAL:
|
|
/* device removal is handled via the ib_client API */
|
|
break;
|
|
default:
|
|
dev_err(queue->ctrl->ctrl.device,
|
|
"Unexpected RDMA CM event (%d)\n", ev->event);
|
|
nvme_rdma_error_recovery(queue->ctrl);
|
|
break;
|
|
}
|
|
|
|
if (cm_error) {
|
|
queue->cm_error = cm_error;
|
|
complete(&queue->cm_done);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void nvme_rdma_complete_timed_out(struct request *rq)
|
|
{
|
|
struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
|
|
struct nvme_rdma_queue *queue = req->queue;
|
|
|
|
nvme_rdma_stop_queue(queue);
|
|
if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) {
|
|
nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD;
|
|
blk_mq_complete_request(rq);
|
|
}
|
|
}
|
|
|
|
static enum blk_eh_timer_return
|
|
nvme_rdma_timeout(struct request *rq, bool reserved)
|
|
{
|
|
struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
|
|
struct nvme_rdma_queue *queue = req->queue;
|
|
struct nvme_rdma_ctrl *ctrl = queue->ctrl;
|
|
|
|
dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
|
|
rq->tag, nvme_rdma_queue_idx(queue));
|
|
|
|
if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
|
|
/*
|
|
* If we are resetting, connecting or deleting we should
|
|
* complete immediately because we may block controller
|
|
* teardown or setup sequence
|
|
* - ctrl disable/shutdown fabrics requests
|
|
* - connect requests
|
|
* - initialization admin requests
|
|
* - I/O requests that entered after unquiescing and
|
|
* the controller stopped responding
|
|
*
|
|
* All other requests should be cancelled by the error
|
|
* recovery work, so it's fine that we fail it here.
|
|
*/
|
|
nvme_rdma_complete_timed_out(rq);
|
|
return BLK_EH_DONE;
|
|
}
|
|
|
|
/*
|
|
* LIVE state should trigger the normal error recovery which will
|
|
* handle completing this request.
|
|
*/
|
|
nvme_rdma_error_recovery(ctrl);
|
|
return BLK_EH_RESET_TIMER;
|
|
}
|
|
|
|
static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
|
|
const struct blk_mq_queue_data *bd)
|
|
{
|
|
struct nvme_ns *ns = hctx->queue->queuedata;
|
|
struct nvme_rdma_queue *queue = hctx->driver_data;
|
|
struct request *rq = bd->rq;
|
|
struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
|
|
struct nvme_rdma_qe *sqe = &req->sqe;
|
|
struct nvme_command *c = sqe->data;
|
|
struct ib_device *dev;
|
|
bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
|
|
blk_status_t ret;
|
|
int err;
|
|
|
|
WARN_ON_ONCE(rq->tag < 0);
|
|
|
|
if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
|
|
return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
|
|
|
|
dev = queue->device->dev;
|
|
|
|
req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
|
|
sizeof(struct nvme_command),
|
|
DMA_TO_DEVICE);
|
|
err = ib_dma_mapping_error(dev, req->sqe.dma);
|
|
if (unlikely(err))
|
|
return BLK_STS_RESOURCE;
|
|
|
|
ib_dma_sync_single_for_cpu(dev, sqe->dma,
|
|
sizeof(struct nvme_command), DMA_TO_DEVICE);
|
|
|
|
ret = nvme_setup_cmd(ns, rq, c);
|
|
if (ret)
|
|
goto unmap_qe;
|
|
|
|
blk_mq_start_request(rq);
|
|
|
|
if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
|
|
queue->pi_support &&
|
|
(c->common.opcode == nvme_cmd_write ||
|
|
c->common.opcode == nvme_cmd_read) &&
|
|
nvme_ns_has_pi(ns))
|
|
req->use_sig_mr = true;
|
|
else
|
|
req->use_sig_mr = false;
|
|
|
|
err = nvme_rdma_map_data(queue, rq, c);
|
|
if (unlikely(err < 0)) {
|
|
dev_err(queue->ctrl->ctrl.device,
|
|
"Failed to map data (%d)\n", err);
|
|
goto err;
|
|
}
|
|
|
|
sqe->cqe.done = nvme_rdma_send_done;
|
|
|
|
ib_dma_sync_single_for_device(dev, sqe->dma,
|
|
sizeof(struct nvme_command), DMA_TO_DEVICE);
|
|
|
|
err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
|
|
req->mr ? &req->reg_wr.wr : NULL);
|
|
if (unlikely(err))
|
|
goto err_unmap;
|
|
|
|
return BLK_STS_OK;
|
|
|
|
err_unmap:
|
|
nvme_rdma_unmap_data(queue, rq);
|
|
err:
|
|
if (err == -ENOMEM || err == -EAGAIN)
|
|
ret = BLK_STS_RESOURCE;
|
|
else
|
|
ret = BLK_STS_IOERR;
|
|
nvme_cleanup_cmd(rq);
|
|
unmap_qe:
|
|
ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
|
|
DMA_TO_DEVICE);
|
|
return ret;
|
|
}
|
|
|
|
static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx)
|
|
{
|
|
struct nvme_rdma_queue *queue = hctx->driver_data;
|
|
|
|
return ib_process_cq_direct(queue->ib_cq, -1);
|
|
}
|
|
|
|
static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req)
|
|
{
|
|
struct request *rq = blk_mq_rq_from_pdu(req);
|
|
struct ib_mr_status mr_status;
|
|
int ret;
|
|
|
|
ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
|
|
if (ret) {
|
|
pr_err("ib_check_mr_status failed, ret %d\n", ret);
|
|
nvme_req(rq)->status = NVME_SC_INVALID_PI;
|
|
return;
|
|
}
|
|
|
|
if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
|
|
switch (mr_status.sig_err.err_type) {
|
|
case IB_SIG_BAD_GUARD:
|
|
nvme_req(rq)->status = NVME_SC_GUARD_CHECK;
|
|
break;
|
|
case IB_SIG_BAD_REFTAG:
|
|
nvme_req(rq)->status = NVME_SC_REFTAG_CHECK;
|
|
break;
|
|
case IB_SIG_BAD_APPTAG:
|
|
nvme_req(rq)->status = NVME_SC_APPTAG_CHECK;
|
|
break;
|
|
}
|
|
pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
|
|
mr_status.sig_err.err_type, mr_status.sig_err.expected,
|
|
mr_status.sig_err.actual);
|
|
}
|
|
}
|
|
|
|
static void nvme_rdma_complete_rq(struct request *rq)
|
|
{
|
|
struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
|
|
struct nvme_rdma_queue *queue = req->queue;
|
|
struct ib_device *ibdev = queue->device->dev;
|
|
|
|
if (req->use_sig_mr)
|
|
nvme_rdma_check_pi_status(req);
|
|
|
|
nvme_rdma_unmap_data(queue, rq);
|
|
ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
|
|
DMA_TO_DEVICE);
|
|
nvme_complete_rq(rq);
|
|
}
|
|
|
|
static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
|
|
{
|
|
struct nvme_rdma_ctrl *ctrl = set->driver_data;
|
|
struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
|
|
|
|
if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
|
|
/* separate read/write queues */
|
|
set->map[HCTX_TYPE_DEFAULT].nr_queues =
|
|
ctrl->io_queues[HCTX_TYPE_DEFAULT];
|
|
set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
|
|
set->map[HCTX_TYPE_READ].nr_queues =
|
|
ctrl->io_queues[HCTX_TYPE_READ];
|
|
set->map[HCTX_TYPE_READ].queue_offset =
|
|
ctrl->io_queues[HCTX_TYPE_DEFAULT];
|
|
} else {
|
|
/* shared read/write queues */
|
|
set->map[HCTX_TYPE_DEFAULT].nr_queues =
|
|
ctrl->io_queues[HCTX_TYPE_DEFAULT];
|
|
set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
|
|
set->map[HCTX_TYPE_READ].nr_queues =
|
|
ctrl->io_queues[HCTX_TYPE_DEFAULT];
|
|
set->map[HCTX_TYPE_READ].queue_offset = 0;
|
|
}
|
|
blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT],
|
|
ctrl->device->dev, 0);
|
|
blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ],
|
|
ctrl->device->dev, 0);
|
|
|
|
if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
|
|
/* map dedicated poll queues only if we have queues left */
|
|
set->map[HCTX_TYPE_POLL].nr_queues =
|
|
ctrl->io_queues[HCTX_TYPE_POLL];
|
|
set->map[HCTX_TYPE_POLL].queue_offset =
|
|
ctrl->io_queues[HCTX_TYPE_DEFAULT] +
|
|
ctrl->io_queues[HCTX_TYPE_READ];
|
|
blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
|
|
}
|
|
|
|
dev_info(ctrl->ctrl.device,
|
|
"mapped %d/%d/%d default/read/poll queues.\n",
|
|
ctrl->io_queues[HCTX_TYPE_DEFAULT],
|
|
ctrl->io_queues[HCTX_TYPE_READ],
|
|
ctrl->io_queues[HCTX_TYPE_POLL]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct blk_mq_ops nvme_rdma_mq_ops = {
|
|
.queue_rq = nvme_rdma_queue_rq,
|
|
.complete = nvme_rdma_complete_rq,
|
|
.init_request = nvme_rdma_init_request,
|
|
.exit_request = nvme_rdma_exit_request,
|
|
.init_hctx = nvme_rdma_init_hctx,
|
|
.timeout = nvme_rdma_timeout,
|
|
.map_queues = nvme_rdma_map_queues,
|
|
.poll = nvme_rdma_poll,
|
|
};
|
|
|
|
static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
|
|
.queue_rq = nvme_rdma_queue_rq,
|
|
.complete = nvme_rdma_complete_rq,
|
|
.init_request = nvme_rdma_init_request,
|
|
.exit_request = nvme_rdma_exit_request,
|
|
.init_hctx = nvme_rdma_init_admin_hctx,
|
|
.timeout = nvme_rdma_timeout,
|
|
};
|
|
|
|
static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
|
|
{
|
|
cancel_work_sync(&ctrl->err_work);
|
|
cancel_delayed_work_sync(&ctrl->reconnect_work);
|
|
|
|
nvme_rdma_teardown_io_queues(ctrl, shutdown);
|
|
blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
|
|
if (shutdown)
|
|
nvme_shutdown_ctrl(&ctrl->ctrl);
|
|
else
|
|
nvme_disable_ctrl(&ctrl->ctrl);
|
|
nvme_rdma_teardown_admin_queue(ctrl, shutdown);
|
|
}
|
|
|
|
static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
|
|
{
|
|
nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
|
|
}
|
|
|
|
static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
|
|
{
|
|
struct nvme_rdma_ctrl *ctrl =
|
|
container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
|
|
|
|
nvme_stop_ctrl(&ctrl->ctrl);
|
|
nvme_rdma_shutdown_ctrl(ctrl, false);
|
|
|
|
if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
|
|
/* state change failure should never happen */
|
|
WARN_ON_ONCE(1);
|
|
return;
|
|
}
|
|
|
|
if (nvme_rdma_setup_ctrl(ctrl, false))
|
|
goto out_fail;
|
|
|
|
return;
|
|
|
|
out_fail:
|
|
++ctrl->ctrl.nr_reconnects;
|
|
nvme_rdma_reconnect_or_remove(ctrl);
|
|
}
|
|
|
|
static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
|
|
.name = "rdma",
|
|
.module = THIS_MODULE,
|
|
.flags = NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED,
|
|
.reg_read32 = nvmf_reg_read32,
|
|
.reg_read64 = nvmf_reg_read64,
|
|
.reg_write32 = nvmf_reg_write32,
|
|
.free_ctrl = nvme_rdma_free_ctrl,
|
|
.submit_async_event = nvme_rdma_submit_async_event,
|
|
.delete_ctrl = nvme_rdma_delete_ctrl,
|
|
.get_address = nvmf_get_address,
|
|
};
|
|
|
|
/*
|
|
* Fails a connection request if it matches an existing controller
|
|
* (association) with the same tuple:
|
|
* <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
|
|
*
|
|
* if local address is not specified in the request, it will match an
|
|
* existing controller with all the other parameters the same and no
|
|
* local port address specified as well.
|
|
*
|
|
* The ports don't need to be compared as they are intrinsically
|
|
* already matched by the port pointers supplied.
|
|
*/
|
|
static bool
|
|
nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
|
|
{
|
|
struct nvme_rdma_ctrl *ctrl;
|
|
bool found = false;
|
|
|
|
mutex_lock(&nvme_rdma_ctrl_mutex);
|
|
list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
|
|
found = nvmf_ip_options_match(&ctrl->ctrl, opts);
|
|
if (found)
|
|
break;
|
|
}
|
|
mutex_unlock(&nvme_rdma_ctrl_mutex);
|
|
|
|
return found;
|
|
}
|
|
|
|
static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
|
|
struct nvmf_ctrl_options *opts)
|
|
{
|
|
struct nvme_rdma_ctrl *ctrl;
|
|
int ret;
|
|
bool changed;
|
|
|
|
ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
|
|
if (!ctrl)
|
|
return ERR_PTR(-ENOMEM);
|
|
ctrl->ctrl.opts = opts;
|
|
INIT_LIST_HEAD(&ctrl->list);
|
|
|
|
if (!(opts->mask & NVMF_OPT_TRSVCID)) {
|
|
opts->trsvcid =
|
|
kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
|
|
if (!opts->trsvcid) {
|
|
ret = -ENOMEM;
|
|
goto out_free_ctrl;
|
|
}
|
|
opts->mask |= NVMF_OPT_TRSVCID;
|
|
}
|
|
|
|
ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
|
|
opts->traddr, opts->trsvcid, &ctrl->addr);
|
|
if (ret) {
|
|
pr_err("malformed address passed: %s:%s\n",
|
|
opts->traddr, opts->trsvcid);
|
|
goto out_free_ctrl;
|
|
}
|
|
|
|
if (opts->mask & NVMF_OPT_HOST_TRADDR) {
|
|
ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
|
|
opts->host_traddr, NULL, &ctrl->src_addr);
|
|
if (ret) {
|
|
pr_err("malformed src address passed: %s\n",
|
|
opts->host_traddr);
|
|
goto out_free_ctrl;
|
|
}
|
|
}
|
|
|
|
if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
|
|
ret = -EALREADY;
|
|
goto out_free_ctrl;
|
|
}
|
|
|
|
INIT_DELAYED_WORK(&ctrl->reconnect_work,
|
|
nvme_rdma_reconnect_ctrl_work);
|
|
INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
|
|
INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
|
|
|
|
ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
|
|
opts->nr_poll_queues + 1;
|
|
ctrl->ctrl.sqsize = opts->queue_size - 1;
|
|
ctrl->ctrl.kato = opts->kato;
|
|
|
|
ret = -ENOMEM;
|
|
ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
|
|
GFP_KERNEL);
|
|
if (!ctrl->queues)
|
|
goto out_free_ctrl;
|
|
|
|
ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
|
|
0 /* no quirks, we're perfect! */);
|
|
if (ret)
|
|
goto out_kfree_queues;
|
|
|
|
changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
|
|
WARN_ON_ONCE(!changed);
|
|
|
|
ret = nvme_rdma_setup_ctrl(ctrl, true);
|
|
if (ret)
|
|
goto out_uninit_ctrl;
|
|
|
|
dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
|
|
ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
|
|
|
|
mutex_lock(&nvme_rdma_ctrl_mutex);
|
|
list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
|
|
mutex_unlock(&nvme_rdma_ctrl_mutex);
|
|
|
|
return &ctrl->ctrl;
|
|
|
|
out_uninit_ctrl:
|
|
nvme_uninit_ctrl(&ctrl->ctrl);
|
|
nvme_put_ctrl(&ctrl->ctrl);
|
|
if (ret > 0)
|
|
ret = -EIO;
|
|
return ERR_PTR(ret);
|
|
out_kfree_queues:
|
|
kfree(ctrl->queues);
|
|
out_free_ctrl:
|
|
kfree(ctrl);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static struct nvmf_transport_ops nvme_rdma_transport = {
|
|
.name = "rdma",
|
|
.module = THIS_MODULE,
|
|
.required_opts = NVMF_OPT_TRADDR,
|
|
.allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
|
|
NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
|
|
NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
|
|
NVMF_OPT_TOS,
|
|
.create_ctrl = nvme_rdma_create_ctrl,
|
|
};
|
|
|
|
static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
|
|
{
|
|
struct nvme_rdma_ctrl *ctrl;
|
|
struct nvme_rdma_device *ndev;
|
|
bool found = false;
|
|
|
|
mutex_lock(&device_list_mutex);
|
|
list_for_each_entry(ndev, &device_list, entry) {
|
|
if (ndev->dev == ib_device) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
mutex_unlock(&device_list_mutex);
|
|
|
|
if (!found)
|
|
return;
|
|
|
|
/* Delete all controllers using this device */
|
|
mutex_lock(&nvme_rdma_ctrl_mutex);
|
|
list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
|
|
if (ctrl->device->dev != ib_device)
|
|
continue;
|
|
nvme_delete_ctrl(&ctrl->ctrl);
|
|
}
|
|
mutex_unlock(&nvme_rdma_ctrl_mutex);
|
|
|
|
flush_workqueue(nvme_delete_wq);
|
|
}
|
|
|
|
static struct ib_client nvme_rdma_ib_client = {
|
|
.name = "nvme_rdma",
|
|
.remove = nvme_rdma_remove_one
|
|
};
|
|
|
|
static int __init nvme_rdma_init_module(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = ib_register_client(&nvme_rdma_ib_client);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = nvmf_register_transport(&nvme_rdma_transport);
|
|
if (ret)
|
|
goto err_unreg_client;
|
|
|
|
return 0;
|
|
|
|
err_unreg_client:
|
|
ib_unregister_client(&nvme_rdma_ib_client);
|
|
return ret;
|
|
}
|
|
|
|
static void __exit nvme_rdma_cleanup_module(void)
|
|
{
|
|
struct nvme_rdma_ctrl *ctrl;
|
|
|
|
nvmf_unregister_transport(&nvme_rdma_transport);
|
|
ib_unregister_client(&nvme_rdma_ib_client);
|
|
|
|
mutex_lock(&nvme_rdma_ctrl_mutex);
|
|
list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
|
|
nvme_delete_ctrl(&ctrl->ctrl);
|
|
mutex_unlock(&nvme_rdma_ctrl_mutex);
|
|
flush_workqueue(nvme_delete_wq);
|
|
}
|
|
|
|
module_init(nvme_rdma_init_module);
|
|
module_exit(nvme_rdma_cleanup_module);
|
|
|
|
MODULE_LICENSE("GPL v2");
|