forked from Minki/linux
e6218cc47b
Set the value of extra_tx_headroom in a central place, rather than in each of the drivers. This is preparatory for taking alignment space into account in the TX headroom requested by rt2x00. Signed-off-by: Gertjan van Wingerde <gwingerde@gmail.com> Acked-by: Ivo van Doorn <IvDoorn@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2285 lines
75 KiB
C
2285 lines
75 KiB
C
/*
|
|
Copyright (C) 2009 Bartlomiej Zolnierkiewicz <bzolnier@gmail.com>
|
|
Copyright (C) 2009 Gertjan van Wingerde <gwingerde@gmail.com>
|
|
|
|
Based on the original rt2800pci.c and rt2800usb.c.
|
|
Copyright (C) 2009 Ivo van Doorn <IvDoorn@gmail.com>
|
|
Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
|
|
Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
|
|
Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
|
|
Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
|
|
Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
|
|
Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
|
|
<http://rt2x00.serialmonkey.com>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the
|
|
Free Software Foundation, Inc.,
|
|
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*/
|
|
|
|
/*
|
|
Module: rt2800lib
|
|
Abstract: rt2800 generic device routines.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
|
|
#include "rt2x00.h"
|
|
#ifdef CONFIG_RT2800USB
|
|
#include "rt2x00usb.h"
|
|
#endif
|
|
#include "rt2800lib.h"
|
|
#include "rt2800.h"
|
|
#include "rt2800usb.h"
|
|
|
|
MODULE_AUTHOR("Bartlomiej Zolnierkiewicz");
|
|
MODULE_DESCRIPTION("rt2800 library");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
/*
|
|
* Register access.
|
|
* All access to the CSR registers will go through the methods
|
|
* rt2800_register_read and rt2800_register_write.
|
|
* BBP and RF register require indirect register access,
|
|
* and use the CSR registers BBPCSR and RFCSR to achieve this.
|
|
* These indirect registers work with busy bits,
|
|
* and we will try maximal REGISTER_BUSY_COUNT times to access
|
|
* the register while taking a REGISTER_BUSY_DELAY us delay
|
|
* between each attampt. When the busy bit is still set at that time,
|
|
* the access attempt is considered to have failed,
|
|
* and we will print an error.
|
|
* The _lock versions must be used if you already hold the csr_mutex
|
|
*/
|
|
#define WAIT_FOR_BBP(__dev, __reg) \
|
|
rt2800_regbusy_read((__dev), BBP_CSR_CFG, BBP_CSR_CFG_BUSY, (__reg))
|
|
#define WAIT_FOR_RFCSR(__dev, __reg) \
|
|
rt2800_regbusy_read((__dev), RF_CSR_CFG, RF_CSR_CFG_BUSY, (__reg))
|
|
#define WAIT_FOR_RF(__dev, __reg) \
|
|
rt2800_regbusy_read((__dev), RF_CSR_CFG0, RF_CSR_CFG0_BUSY, (__reg))
|
|
#define WAIT_FOR_MCU(__dev, __reg) \
|
|
rt2800_regbusy_read((__dev), H2M_MAILBOX_CSR, \
|
|
H2M_MAILBOX_CSR_OWNER, (__reg))
|
|
|
|
static void rt2800_bbp_write(struct rt2x00_dev *rt2x00dev,
|
|
const unsigned int word, const u8 value)
|
|
{
|
|
u32 reg;
|
|
|
|
mutex_lock(&rt2x00dev->csr_mutex);
|
|
|
|
/*
|
|
* Wait until the BBP becomes available, afterwards we
|
|
* can safely write the new data into the register.
|
|
*/
|
|
if (WAIT_FOR_BBP(rt2x00dev, ®)) {
|
|
reg = 0;
|
|
rt2x00_set_field32(®, BBP_CSR_CFG_VALUE, value);
|
|
rt2x00_set_field32(®, BBP_CSR_CFG_REGNUM, word);
|
|
rt2x00_set_field32(®, BBP_CSR_CFG_BUSY, 1);
|
|
rt2x00_set_field32(®, BBP_CSR_CFG_READ_CONTROL, 0);
|
|
if (rt2x00_intf_is_pci(rt2x00dev))
|
|
rt2x00_set_field32(®, BBP_CSR_CFG_BBP_RW_MODE, 1);
|
|
|
|
rt2800_register_write_lock(rt2x00dev, BBP_CSR_CFG, reg);
|
|
}
|
|
|
|
mutex_unlock(&rt2x00dev->csr_mutex);
|
|
}
|
|
|
|
static void rt2800_bbp_read(struct rt2x00_dev *rt2x00dev,
|
|
const unsigned int word, u8 *value)
|
|
{
|
|
u32 reg;
|
|
|
|
mutex_lock(&rt2x00dev->csr_mutex);
|
|
|
|
/*
|
|
* Wait until the BBP becomes available, afterwards we
|
|
* can safely write the read request into the register.
|
|
* After the data has been written, we wait until hardware
|
|
* returns the correct value, if at any time the register
|
|
* doesn't become available in time, reg will be 0xffffffff
|
|
* which means we return 0xff to the caller.
|
|
*/
|
|
if (WAIT_FOR_BBP(rt2x00dev, ®)) {
|
|
reg = 0;
|
|
rt2x00_set_field32(®, BBP_CSR_CFG_REGNUM, word);
|
|
rt2x00_set_field32(®, BBP_CSR_CFG_BUSY, 1);
|
|
rt2x00_set_field32(®, BBP_CSR_CFG_READ_CONTROL, 1);
|
|
if (rt2x00_intf_is_pci(rt2x00dev))
|
|
rt2x00_set_field32(®, BBP_CSR_CFG_BBP_RW_MODE, 1);
|
|
|
|
rt2800_register_write_lock(rt2x00dev, BBP_CSR_CFG, reg);
|
|
|
|
WAIT_FOR_BBP(rt2x00dev, ®);
|
|
}
|
|
|
|
*value = rt2x00_get_field32(reg, BBP_CSR_CFG_VALUE);
|
|
|
|
mutex_unlock(&rt2x00dev->csr_mutex);
|
|
}
|
|
|
|
static void rt2800_rfcsr_write(struct rt2x00_dev *rt2x00dev,
|
|
const unsigned int word, const u8 value)
|
|
{
|
|
u32 reg;
|
|
|
|
mutex_lock(&rt2x00dev->csr_mutex);
|
|
|
|
/*
|
|
* Wait until the RFCSR becomes available, afterwards we
|
|
* can safely write the new data into the register.
|
|
*/
|
|
if (WAIT_FOR_RFCSR(rt2x00dev, ®)) {
|
|
reg = 0;
|
|
rt2x00_set_field32(®, RF_CSR_CFG_DATA, value);
|
|
rt2x00_set_field32(®, RF_CSR_CFG_REGNUM, word);
|
|
rt2x00_set_field32(®, RF_CSR_CFG_WRITE, 1);
|
|
rt2x00_set_field32(®, RF_CSR_CFG_BUSY, 1);
|
|
|
|
rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg);
|
|
}
|
|
|
|
mutex_unlock(&rt2x00dev->csr_mutex);
|
|
}
|
|
|
|
static void rt2800_rfcsr_read(struct rt2x00_dev *rt2x00dev,
|
|
const unsigned int word, u8 *value)
|
|
{
|
|
u32 reg;
|
|
|
|
mutex_lock(&rt2x00dev->csr_mutex);
|
|
|
|
/*
|
|
* Wait until the RFCSR becomes available, afterwards we
|
|
* can safely write the read request into the register.
|
|
* After the data has been written, we wait until hardware
|
|
* returns the correct value, if at any time the register
|
|
* doesn't become available in time, reg will be 0xffffffff
|
|
* which means we return 0xff to the caller.
|
|
*/
|
|
if (WAIT_FOR_RFCSR(rt2x00dev, ®)) {
|
|
reg = 0;
|
|
rt2x00_set_field32(®, RF_CSR_CFG_REGNUM, word);
|
|
rt2x00_set_field32(®, RF_CSR_CFG_WRITE, 0);
|
|
rt2x00_set_field32(®, RF_CSR_CFG_BUSY, 1);
|
|
|
|
rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg);
|
|
|
|
WAIT_FOR_RFCSR(rt2x00dev, ®);
|
|
}
|
|
|
|
*value = rt2x00_get_field32(reg, RF_CSR_CFG_DATA);
|
|
|
|
mutex_unlock(&rt2x00dev->csr_mutex);
|
|
}
|
|
|
|
static void rt2800_rf_write(struct rt2x00_dev *rt2x00dev,
|
|
const unsigned int word, const u32 value)
|
|
{
|
|
u32 reg;
|
|
|
|
mutex_lock(&rt2x00dev->csr_mutex);
|
|
|
|
/*
|
|
* Wait until the RF becomes available, afterwards we
|
|
* can safely write the new data into the register.
|
|
*/
|
|
if (WAIT_FOR_RF(rt2x00dev, ®)) {
|
|
reg = 0;
|
|
rt2x00_set_field32(®, RF_CSR_CFG0_REG_VALUE_BW, value);
|
|
rt2x00_set_field32(®, RF_CSR_CFG0_STANDBYMODE, 0);
|
|
rt2x00_set_field32(®, RF_CSR_CFG0_SEL, 0);
|
|
rt2x00_set_field32(®, RF_CSR_CFG0_BUSY, 1);
|
|
|
|
rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG0, reg);
|
|
rt2x00_rf_write(rt2x00dev, word, value);
|
|
}
|
|
|
|
mutex_unlock(&rt2x00dev->csr_mutex);
|
|
}
|
|
|
|
void rt2800_mcu_request(struct rt2x00_dev *rt2x00dev,
|
|
const u8 command, const u8 token,
|
|
const u8 arg0, const u8 arg1)
|
|
{
|
|
u32 reg;
|
|
|
|
/*
|
|
* RT2880 and RT3052 don't support MCU requests.
|
|
*/
|
|
if (rt2x00_rt(&rt2x00dev->chip, RT2880) ||
|
|
rt2x00_rt(&rt2x00dev->chip, RT3052))
|
|
return;
|
|
|
|
mutex_lock(&rt2x00dev->csr_mutex);
|
|
|
|
/*
|
|
* Wait until the MCU becomes available, afterwards we
|
|
* can safely write the new data into the register.
|
|
*/
|
|
if (WAIT_FOR_MCU(rt2x00dev, ®)) {
|
|
rt2x00_set_field32(®, H2M_MAILBOX_CSR_OWNER, 1);
|
|
rt2x00_set_field32(®, H2M_MAILBOX_CSR_CMD_TOKEN, token);
|
|
rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG0, arg0);
|
|
rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG1, arg1);
|
|
rt2800_register_write_lock(rt2x00dev, H2M_MAILBOX_CSR, reg);
|
|
|
|
reg = 0;
|
|
rt2x00_set_field32(®, HOST_CMD_CSR_HOST_COMMAND, command);
|
|
rt2800_register_write_lock(rt2x00dev, HOST_CMD_CSR, reg);
|
|
}
|
|
|
|
mutex_unlock(&rt2x00dev->csr_mutex);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_mcu_request);
|
|
|
|
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
|
|
const struct rt2x00debug rt2800_rt2x00debug = {
|
|
.owner = THIS_MODULE,
|
|
.csr = {
|
|
.read = rt2800_register_read,
|
|
.write = rt2800_register_write,
|
|
.flags = RT2X00DEBUGFS_OFFSET,
|
|
.word_base = CSR_REG_BASE,
|
|
.word_size = sizeof(u32),
|
|
.word_count = CSR_REG_SIZE / sizeof(u32),
|
|
},
|
|
.eeprom = {
|
|
.read = rt2x00_eeprom_read,
|
|
.write = rt2x00_eeprom_write,
|
|
.word_base = EEPROM_BASE,
|
|
.word_size = sizeof(u16),
|
|
.word_count = EEPROM_SIZE / sizeof(u16),
|
|
},
|
|
.bbp = {
|
|
.read = rt2800_bbp_read,
|
|
.write = rt2800_bbp_write,
|
|
.word_base = BBP_BASE,
|
|
.word_size = sizeof(u8),
|
|
.word_count = BBP_SIZE / sizeof(u8),
|
|
},
|
|
.rf = {
|
|
.read = rt2x00_rf_read,
|
|
.write = rt2800_rf_write,
|
|
.word_base = RF_BASE,
|
|
.word_size = sizeof(u32),
|
|
.word_count = RF_SIZE / sizeof(u32),
|
|
},
|
|
};
|
|
EXPORT_SYMBOL_GPL(rt2800_rt2x00debug);
|
|
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
|
|
|
|
int rt2800_rfkill_poll(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u32 reg;
|
|
|
|
rt2800_register_read(rt2x00dev, GPIO_CTRL_CFG, ®);
|
|
return rt2x00_get_field32(reg, GPIO_CTRL_CFG_BIT2);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_rfkill_poll);
|
|
|
|
#ifdef CONFIG_RT2X00_LIB_LEDS
|
|
static void rt2800_brightness_set(struct led_classdev *led_cdev,
|
|
enum led_brightness brightness)
|
|
{
|
|
struct rt2x00_led *led =
|
|
container_of(led_cdev, struct rt2x00_led, led_dev);
|
|
unsigned int enabled = brightness != LED_OFF;
|
|
unsigned int bg_mode =
|
|
(enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
|
|
unsigned int polarity =
|
|
rt2x00_get_field16(led->rt2x00dev->led_mcu_reg,
|
|
EEPROM_FREQ_LED_POLARITY);
|
|
unsigned int ledmode =
|
|
rt2x00_get_field16(led->rt2x00dev->led_mcu_reg,
|
|
EEPROM_FREQ_LED_MODE);
|
|
|
|
if (led->type == LED_TYPE_RADIO) {
|
|
rt2800_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode,
|
|
enabled ? 0x20 : 0);
|
|
} else if (led->type == LED_TYPE_ASSOC) {
|
|
rt2800_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode,
|
|
enabled ? (bg_mode ? 0x60 : 0xa0) : 0x20);
|
|
} else if (led->type == LED_TYPE_QUALITY) {
|
|
/*
|
|
* The brightness is divided into 6 levels (0 - 5),
|
|
* The specs tell us the following levels:
|
|
* 0, 1 ,3, 7, 15, 31
|
|
* to determine the level in a simple way we can simply
|
|
* work with bitshifting:
|
|
* (1 << level) - 1
|
|
*/
|
|
rt2800_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
|
|
(1 << brightness / (LED_FULL / 6)) - 1,
|
|
polarity);
|
|
}
|
|
}
|
|
|
|
static int rt2800_blink_set(struct led_classdev *led_cdev,
|
|
unsigned long *delay_on, unsigned long *delay_off)
|
|
{
|
|
struct rt2x00_led *led =
|
|
container_of(led_cdev, struct rt2x00_led, led_dev);
|
|
u32 reg;
|
|
|
|
rt2800_register_read(led->rt2x00dev, LED_CFG, ®);
|
|
rt2x00_set_field32(®, LED_CFG_ON_PERIOD, *delay_on);
|
|
rt2x00_set_field32(®, LED_CFG_OFF_PERIOD, *delay_off);
|
|
rt2x00_set_field32(®, LED_CFG_SLOW_BLINK_PERIOD, 3);
|
|
rt2x00_set_field32(®, LED_CFG_R_LED_MODE, 3);
|
|
rt2x00_set_field32(®, LED_CFG_G_LED_MODE, 12);
|
|
rt2x00_set_field32(®, LED_CFG_Y_LED_MODE, 3);
|
|
rt2x00_set_field32(®, LED_CFG_LED_POLAR, 1);
|
|
rt2800_register_write(led->rt2x00dev, LED_CFG, reg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void rt2800_init_led(struct rt2x00_dev *rt2x00dev,
|
|
struct rt2x00_led *led, enum led_type type)
|
|
{
|
|
led->rt2x00dev = rt2x00dev;
|
|
led->type = type;
|
|
led->led_dev.brightness_set = rt2800_brightness_set;
|
|
led->led_dev.blink_set = rt2800_blink_set;
|
|
led->flags = LED_INITIALIZED;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_init_led);
|
|
#endif /* CONFIG_RT2X00_LIB_LEDS */
|
|
|
|
/*
|
|
* Configuration handlers.
|
|
*/
|
|
static void rt2800_config_wcid_attr(struct rt2x00_dev *rt2x00dev,
|
|
struct rt2x00lib_crypto *crypto,
|
|
struct ieee80211_key_conf *key)
|
|
{
|
|
struct mac_wcid_entry wcid_entry;
|
|
struct mac_iveiv_entry iveiv_entry;
|
|
u32 offset;
|
|
u32 reg;
|
|
|
|
offset = MAC_WCID_ATTR_ENTRY(key->hw_key_idx);
|
|
|
|
rt2800_register_read(rt2x00dev, offset, ®);
|
|
rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_KEYTAB,
|
|
!!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE));
|
|
rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_CIPHER,
|
|
(crypto->cmd == SET_KEY) * crypto->cipher);
|
|
rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_BSS_IDX,
|
|
(crypto->cmd == SET_KEY) * crypto->bssidx);
|
|
rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_RX_WIUDF, crypto->cipher);
|
|
rt2800_register_write(rt2x00dev, offset, reg);
|
|
|
|
offset = MAC_IVEIV_ENTRY(key->hw_key_idx);
|
|
|
|
memset(&iveiv_entry, 0, sizeof(iveiv_entry));
|
|
if ((crypto->cipher == CIPHER_TKIP) ||
|
|
(crypto->cipher == CIPHER_TKIP_NO_MIC) ||
|
|
(crypto->cipher == CIPHER_AES))
|
|
iveiv_entry.iv[3] |= 0x20;
|
|
iveiv_entry.iv[3] |= key->keyidx << 6;
|
|
rt2800_register_multiwrite(rt2x00dev, offset,
|
|
&iveiv_entry, sizeof(iveiv_entry));
|
|
|
|
offset = MAC_WCID_ENTRY(key->hw_key_idx);
|
|
|
|
memset(&wcid_entry, 0, sizeof(wcid_entry));
|
|
if (crypto->cmd == SET_KEY)
|
|
memcpy(&wcid_entry, crypto->address, ETH_ALEN);
|
|
rt2800_register_multiwrite(rt2x00dev, offset,
|
|
&wcid_entry, sizeof(wcid_entry));
|
|
}
|
|
|
|
int rt2800_config_shared_key(struct rt2x00_dev *rt2x00dev,
|
|
struct rt2x00lib_crypto *crypto,
|
|
struct ieee80211_key_conf *key)
|
|
{
|
|
struct hw_key_entry key_entry;
|
|
struct rt2x00_field32 field;
|
|
u32 offset;
|
|
u32 reg;
|
|
|
|
if (crypto->cmd == SET_KEY) {
|
|
key->hw_key_idx = (4 * crypto->bssidx) + key->keyidx;
|
|
|
|
memcpy(key_entry.key, crypto->key,
|
|
sizeof(key_entry.key));
|
|
memcpy(key_entry.tx_mic, crypto->tx_mic,
|
|
sizeof(key_entry.tx_mic));
|
|
memcpy(key_entry.rx_mic, crypto->rx_mic,
|
|
sizeof(key_entry.rx_mic));
|
|
|
|
offset = SHARED_KEY_ENTRY(key->hw_key_idx);
|
|
rt2800_register_multiwrite(rt2x00dev, offset,
|
|
&key_entry, sizeof(key_entry));
|
|
}
|
|
|
|
/*
|
|
* The cipher types are stored over multiple registers
|
|
* starting with SHARED_KEY_MODE_BASE each word will have
|
|
* 32 bits and contains the cipher types for 2 bssidx each.
|
|
* Using the correct defines correctly will cause overhead,
|
|
* so just calculate the correct offset.
|
|
*/
|
|
field.bit_offset = 4 * (key->hw_key_idx % 8);
|
|
field.bit_mask = 0x7 << field.bit_offset;
|
|
|
|
offset = SHARED_KEY_MODE_ENTRY(key->hw_key_idx / 8);
|
|
|
|
rt2800_register_read(rt2x00dev, offset, ®);
|
|
rt2x00_set_field32(®, field,
|
|
(crypto->cmd == SET_KEY) * crypto->cipher);
|
|
rt2800_register_write(rt2x00dev, offset, reg);
|
|
|
|
/*
|
|
* Update WCID information
|
|
*/
|
|
rt2800_config_wcid_attr(rt2x00dev, crypto, key);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_config_shared_key);
|
|
|
|
int rt2800_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
|
|
struct rt2x00lib_crypto *crypto,
|
|
struct ieee80211_key_conf *key)
|
|
{
|
|
struct hw_key_entry key_entry;
|
|
u32 offset;
|
|
|
|
if (crypto->cmd == SET_KEY) {
|
|
/*
|
|
* 1 pairwise key is possible per AID, this means that the AID
|
|
* equals our hw_key_idx. Make sure the WCID starts _after_ the
|
|
* last possible shared key entry.
|
|
*/
|
|
if (crypto->aid > (256 - 32))
|
|
return -ENOSPC;
|
|
|
|
key->hw_key_idx = 32 + crypto->aid;
|
|
|
|
memcpy(key_entry.key, crypto->key,
|
|
sizeof(key_entry.key));
|
|
memcpy(key_entry.tx_mic, crypto->tx_mic,
|
|
sizeof(key_entry.tx_mic));
|
|
memcpy(key_entry.rx_mic, crypto->rx_mic,
|
|
sizeof(key_entry.rx_mic));
|
|
|
|
offset = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
|
|
rt2800_register_multiwrite(rt2x00dev, offset,
|
|
&key_entry, sizeof(key_entry));
|
|
}
|
|
|
|
/*
|
|
* Update WCID information
|
|
*/
|
|
rt2800_config_wcid_attr(rt2x00dev, crypto, key);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_config_pairwise_key);
|
|
|
|
void rt2800_config_filter(struct rt2x00_dev *rt2x00dev,
|
|
const unsigned int filter_flags)
|
|
{
|
|
u32 reg;
|
|
|
|
/*
|
|
* Start configuration steps.
|
|
* Note that the version error will always be dropped
|
|
* and broadcast frames will always be accepted since
|
|
* there is no filter for it at this time.
|
|
*/
|
|
rt2800_register_read(rt2x00dev, RX_FILTER_CFG, ®);
|
|
rt2x00_set_field32(®, RX_FILTER_CFG_DROP_CRC_ERROR,
|
|
!(filter_flags & FIF_FCSFAIL));
|
|
rt2x00_set_field32(®, RX_FILTER_CFG_DROP_PHY_ERROR,
|
|
!(filter_flags & FIF_PLCPFAIL));
|
|
rt2x00_set_field32(®, RX_FILTER_CFG_DROP_NOT_TO_ME,
|
|
!(filter_flags & FIF_PROMISC_IN_BSS));
|
|
rt2x00_set_field32(®, RX_FILTER_CFG_DROP_NOT_MY_BSSD, 0);
|
|
rt2x00_set_field32(®, RX_FILTER_CFG_DROP_VER_ERROR, 1);
|
|
rt2x00_set_field32(®, RX_FILTER_CFG_DROP_MULTICAST,
|
|
!(filter_flags & FIF_ALLMULTI));
|
|
rt2x00_set_field32(®, RX_FILTER_CFG_DROP_BROADCAST, 0);
|
|
rt2x00_set_field32(®, RX_FILTER_CFG_DROP_DUPLICATE, 1);
|
|
rt2x00_set_field32(®, RX_FILTER_CFG_DROP_CF_END_ACK,
|
|
!(filter_flags & FIF_CONTROL));
|
|
rt2x00_set_field32(®, RX_FILTER_CFG_DROP_CF_END,
|
|
!(filter_flags & FIF_CONTROL));
|
|
rt2x00_set_field32(®, RX_FILTER_CFG_DROP_ACK,
|
|
!(filter_flags & FIF_CONTROL));
|
|
rt2x00_set_field32(®, RX_FILTER_CFG_DROP_CTS,
|
|
!(filter_flags & FIF_CONTROL));
|
|
rt2x00_set_field32(®, RX_FILTER_CFG_DROP_RTS,
|
|
!(filter_flags & FIF_CONTROL));
|
|
rt2x00_set_field32(®, RX_FILTER_CFG_DROP_PSPOLL,
|
|
!(filter_flags & FIF_PSPOLL));
|
|
rt2x00_set_field32(®, RX_FILTER_CFG_DROP_BA, 1);
|
|
rt2x00_set_field32(®, RX_FILTER_CFG_DROP_BAR, 0);
|
|
rt2x00_set_field32(®, RX_FILTER_CFG_DROP_CNTL,
|
|
!(filter_flags & FIF_CONTROL));
|
|
rt2800_register_write(rt2x00dev, RX_FILTER_CFG, reg);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_config_filter);
|
|
|
|
void rt2800_config_intf(struct rt2x00_dev *rt2x00dev, struct rt2x00_intf *intf,
|
|
struct rt2x00intf_conf *conf, const unsigned int flags)
|
|
{
|
|
unsigned int beacon_base;
|
|
u32 reg;
|
|
|
|
if (flags & CONFIG_UPDATE_TYPE) {
|
|
/*
|
|
* Clear current synchronisation setup.
|
|
* For the Beacon base registers we only need to clear
|
|
* the first byte since that byte contains the VALID and OWNER
|
|
* bits which (when set to 0) will invalidate the entire beacon.
|
|
*/
|
|
beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
|
|
rt2800_register_write(rt2x00dev, beacon_base, 0);
|
|
|
|
/*
|
|
* Enable synchronisation.
|
|
*/
|
|
rt2800_register_read(rt2x00dev, BCN_TIME_CFG, ®);
|
|
rt2x00_set_field32(®, BCN_TIME_CFG_TSF_TICKING, 1);
|
|
rt2x00_set_field32(®, BCN_TIME_CFG_TSF_SYNC, conf->sync);
|
|
rt2x00_set_field32(®, BCN_TIME_CFG_TBTT_ENABLE,
|
|
(conf->sync == TSF_SYNC_BEACON));
|
|
rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
|
|
}
|
|
|
|
if (flags & CONFIG_UPDATE_MAC) {
|
|
reg = le32_to_cpu(conf->mac[1]);
|
|
rt2x00_set_field32(®, MAC_ADDR_DW1_UNICAST_TO_ME_MASK, 0xff);
|
|
conf->mac[1] = cpu_to_le32(reg);
|
|
|
|
rt2800_register_multiwrite(rt2x00dev, MAC_ADDR_DW0,
|
|
conf->mac, sizeof(conf->mac));
|
|
}
|
|
|
|
if (flags & CONFIG_UPDATE_BSSID) {
|
|
reg = le32_to_cpu(conf->bssid[1]);
|
|
rt2x00_set_field32(®, MAC_BSSID_DW1_BSS_ID_MASK, 0);
|
|
rt2x00_set_field32(®, MAC_BSSID_DW1_BSS_BCN_NUM, 0);
|
|
conf->bssid[1] = cpu_to_le32(reg);
|
|
|
|
rt2800_register_multiwrite(rt2x00dev, MAC_BSSID_DW0,
|
|
conf->bssid, sizeof(conf->bssid));
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_config_intf);
|
|
|
|
void rt2800_config_erp(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_erp *erp)
|
|
{
|
|
u32 reg;
|
|
|
|
rt2800_register_read(rt2x00dev, TX_TIMEOUT_CFG, ®);
|
|
rt2x00_set_field32(®, TX_TIMEOUT_CFG_RX_ACK_TIMEOUT, 0x20);
|
|
rt2800_register_write(rt2x00dev, TX_TIMEOUT_CFG, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, AUTO_RSP_CFG, ®);
|
|
rt2x00_set_field32(®, AUTO_RSP_CFG_BAC_ACK_POLICY,
|
|
!!erp->short_preamble);
|
|
rt2x00_set_field32(®, AUTO_RSP_CFG_AR_PREAMBLE,
|
|
!!erp->short_preamble);
|
|
rt2800_register_write(rt2x00dev, AUTO_RSP_CFG, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, ®);
|
|
rt2x00_set_field32(®, OFDM_PROT_CFG_PROTECT_CTRL,
|
|
erp->cts_protection ? 2 : 0);
|
|
rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
|
|
|
|
rt2800_register_write(rt2x00dev, LEGACY_BASIC_RATE,
|
|
erp->basic_rates);
|
|
rt2800_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003);
|
|
|
|
rt2800_register_read(rt2x00dev, BKOFF_SLOT_CFG, ®);
|
|
rt2x00_set_field32(®, BKOFF_SLOT_CFG_SLOT_TIME, erp->slot_time);
|
|
rt2x00_set_field32(®, BKOFF_SLOT_CFG_CC_DELAY_TIME, 2);
|
|
rt2800_register_write(rt2x00dev, BKOFF_SLOT_CFG, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, XIFS_TIME_CFG, ®);
|
|
rt2x00_set_field32(®, XIFS_TIME_CFG_CCKM_SIFS_TIME, erp->sifs);
|
|
rt2x00_set_field32(®, XIFS_TIME_CFG_OFDM_SIFS_TIME, erp->sifs);
|
|
rt2x00_set_field32(®, XIFS_TIME_CFG_OFDM_XIFS_TIME, 4);
|
|
rt2x00_set_field32(®, XIFS_TIME_CFG_EIFS, erp->eifs);
|
|
rt2x00_set_field32(®, XIFS_TIME_CFG_BB_RXEND_ENABLE, 1);
|
|
rt2800_register_write(rt2x00dev, XIFS_TIME_CFG, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, BCN_TIME_CFG, ®);
|
|
rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_INTERVAL,
|
|
erp->beacon_int * 16);
|
|
rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_config_erp);
|
|
|
|
void rt2800_config_ant(struct rt2x00_dev *rt2x00dev, struct antenna_setup *ant)
|
|
{
|
|
u8 r1;
|
|
u8 r3;
|
|
|
|
rt2800_bbp_read(rt2x00dev, 1, &r1);
|
|
rt2800_bbp_read(rt2x00dev, 3, &r3);
|
|
|
|
/*
|
|
* Configure the TX antenna.
|
|
*/
|
|
switch ((int)ant->tx) {
|
|
case 1:
|
|
rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 0);
|
|
if (rt2x00_intf_is_pci(rt2x00dev))
|
|
rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 0);
|
|
break;
|
|
case 2:
|
|
rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 2);
|
|
break;
|
|
case 3:
|
|
/* Do nothing */
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Configure the RX antenna.
|
|
*/
|
|
switch ((int)ant->rx) {
|
|
case 1:
|
|
rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 0);
|
|
break;
|
|
case 2:
|
|
rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 1);
|
|
break;
|
|
case 3:
|
|
rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 2);
|
|
break;
|
|
}
|
|
|
|
rt2800_bbp_write(rt2x00dev, 3, r3);
|
|
rt2800_bbp_write(rt2x00dev, 1, r1);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_config_ant);
|
|
|
|
static void rt2800_config_lna_gain(struct rt2x00_dev *rt2x00dev,
|
|
struct rt2x00lib_conf *libconf)
|
|
{
|
|
u16 eeprom;
|
|
short lna_gain;
|
|
|
|
if (libconf->rf.channel <= 14) {
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &eeprom);
|
|
lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_BG);
|
|
} else if (libconf->rf.channel <= 64) {
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &eeprom);
|
|
lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_A0);
|
|
} else if (libconf->rf.channel <= 128) {
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &eeprom);
|
|
lna_gain = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG2_LNA_A1);
|
|
} else {
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &eeprom);
|
|
lna_gain = rt2x00_get_field16(eeprom, EEPROM_RSSI_A2_LNA_A2);
|
|
}
|
|
|
|
rt2x00dev->lna_gain = lna_gain;
|
|
}
|
|
|
|
static void rt2800_config_channel_rt2x(struct rt2x00_dev *rt2x00dev,
|
|
struct ieee80211_conf *conf,
|
|
struct rf_channel *rf,
|
|
struct channel_info *info)
|
|
{
|
|
rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
|
|
|
|
if (rt2x00dev->default_ant.tx == 1)
|
|
rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_TX1, 1);
|
|
|
|
if (rt2x00dev->default_ant.rx == 1) {
|
|
rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX1, 1);
|
|
rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1);
|
|
} else if (rt2x00dev->default_ant.rx == 2)
|
|
rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1);
|
|
|
|
if (rf->channel > 14) {
|
|
/*
|
|
* When TX power is below 0, we should increase it by 7 to
|
|
* make it a positive value (Minumum value is -7).
|
|
* However this means that values between 0 and 7 have
|
|
* double meaning, and we should set a 7DBm boost flag.
|
|
*/
|
|
rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A_7DBM_BOOST,
|
|
(info->tx_power1 >= 0));
|
|
|
|
if (info->tx_power1 < 0)
|
|
info->tx_power1 += 7;
|
|
|
|
rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A,
|
|
TXPOWER_A_TO_DEV(info->tx_power1));
|
|
|
|
rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A_7DBM_BOOST,
|
|
(info->tx_power2 >= 0));
|
|
|
|
if (info->tx_power2 < 0)
|
|
info->tx_power2 += 7;
|
|
|
|
rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A,
|
|
TXPOWER_A_TO_DEV(info->tx_power2));
|
|
} else {
|
|
rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_G,
|
|
TXPOWER_G_TO_DEV(info->tx_power1));
|
|
rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_G,
|
|
TXPOWER_G_TO_DEV(info->tx_power2));
|
|
}
|
|
|
|
rt2x00_set_field32(&rf->rf4, RF4_HT40, conf_is_ht40(conf));
|
|
|
|
rt2800_rf_write(rt2x00dev, 1, rf->rf1);
|
|
rt2800_rf_write(rt2x00dev, 2, rf->rf2);
|
|
rt2800_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
|
|
rt2800_rf_write(rt2x00dev, 4, rf->rf4);
|
|
|
|
udelay(200);
|
|
|
|
rt2800_rf_write(rt2x00dev, 1, rf->rf1);
|
|
rt2800_rf_write(rt2x00dev, 2, rf->rf2);
|
|
rt2800_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
|
|
rt2800_rf_write(rt2x00dev, 4, rf->rf4);
|
|
|
|
udelay(200);
|
|
|
|
rt2800_rf_write(rt2x00dev, 1, rf->rf1);
|
|
rt2800_rf_write(rt2x00dev, 2, rf->rf2);
|
|
rt2800_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
|
|
rt2800_rf_write(rt2x00dev, 4, rf->rf4);
|
|
}
|
|
|
|
static void rt2800_config_channel_rt3x(struct rt2x00_dev *rt2x00dev,
|
|
struct ieee80211_conf *conf,
|
|
struct rf_channel *rf,
|
|
struct channel_info *info)
|
|
{
|
|
u8 rfcsr;
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 2, rf->rf1);
|
|
rt2800_rfcsr_write(rt2x00dev, 3, rf->rf3);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR6_R, rf->rf2);
|
|
rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 12, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR12_TX_POWER,
|
|
TXPOWER_G_TO_DEV(info->tx_power1));
|
|
rt2800_rfcsr_write(rt2x00dev, 12, rfcsr);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 23, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR23_FREQ_OFFSET, rt2x00dev->freq_offset);
|
|
rt2800_rfcsr_write(rt2x00dev, 23, rfcsr);
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 24,
|
|
rt2x00dev->calibration[conf_is_ht40(conf)]);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 23, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR7_RF_TUNING, 1);
|
|
rt2800_rfcsr_write(rt2x00dev, 23, rfcsr);
|
|
}
|
|
|
|
static void rt2800_config_channel(struct rt2x00_dev *rt2x00dev,
|
|
struct ieee80211_conf *conf,
|
|
struct rf_channel *rf,
|
|
struct channel_info *info)
|
|
{
|
|
u32 reg;
|
|
unsigned int tx_pin;
|
|
u8 bbp;
|
|
|
|
if ((rt2x00_rt(&rt2x00dev->chip, RT3070) ||
|
|
rt2x00_rt(&rt2x00dev->chip, RT3090)) &&
|
|
(rt2x00_rf(&rt2x00dev->chip, RF2020) ||
|
|
rt2x00_rf(&rt2x00dev->chip, RF3020) ||
|
|
rt2x00_rf(&rt2x00dev->chip, RF3021) ||
|
|
rt2x00_rf(&rt2x00dev->chip, RF3022)))
|
|
rt2800_config_channel_rt3x(rt2x00dev, conf, rf, info);
|
|
else
|
|
rt2800_config_channel_rt2x(rt2x00dev, conf, rf, info);
|
|
|
|
/*
|
|
* Change BBP settings
|
|
*/
|
|
rt2800_bbp_write(rt2x00dev, 62, 0x37 - rt2x00dev->lna_gain);
|
|
rt2800_bbp_write(rt2x00dev, 63, 0x37 - rt2x00dev->lna_gain);
|
|
rt2800_bbp_write(rt2x00dev, 64, 0x37 - rt2x00dev->lna_gain);
|
|
rt2800_bbp_write(rt2x00dev, 86, 0);
|
|
|
|
if (rf->channel <= 14) {
|
|
if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
|
|
rt2800_bbp_write(rt2x00dev, 82, 0x62);
|
|
rt2800_bbp_write(rt2x00dev, 75, 0x46);
|
|
} else {
|
|
rt2800_bbp_write(rt2x00dev, 82, 0x84);
|
|
rt2800_bbp_write(rt2x00dev, 75, 0x50);
|
|
}
|
|
} else {
|
|
rt2800_bbp_write(rt2x00dev, 82, 0xf2);
|
|
|
|
if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
|
|
rt2800_bbp_write(rt2x00dev, 75, 0x46);
|
|
else
|
|
rt2800_bbp_write(rt2x00dev, 75, 0x50);
|
|
}
|
|
|
|
rt2800_register_read(rt2x00dev, TX_BAND_CFG, ®);
|
|
rt2x00_set_field32(®, TX_BAND_CFG_HT40_PLUS, conf_is_ht40_plus(conf));
|
|
rt2x00_set_field32(®, TX_BAND_CFG_A, rf->channel > 14);
|
|
rt2x00_set_field32(®, TX_BAND_CFG_BG, rf->channel <= 14);
|
|
rt2800_register_write(rt2x00dev, TX_BAND_CFG, reg);
|
|
|
|
tx_pin = 0;
|
|
|
|
/* Turn on unused PA or LNA when not using 1T or 1R */
|
|
if (rt2x00dev->default_ant.tx != 1) {
|
|
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A1_EN, 1);
|
|
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G1_EN, 1);
|
|
}
|
|
|
|
/* Turn on unused PA or LNA when not using 1T or 1R */
|
|
if (rt2x00dev->default_ant.rx != 1) {
|
|
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A1_EN, 1);
|
|
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G1_EN, 1);
|
|
}
|
|
|
|
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A0_EN, 1);
|
|
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G0_EN, 1);
|
|
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_RFTR_EN, 1);
|
|
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_TRSW_EN, 1);
|
|
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G0_EN, rf->channel <= 14);
|
|
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A0_EN, rf->channel > 14);
|
|
|
|
rt2800_register_write(rt2x00dev, TX_PIN_CFG, tx_pin);
|
|
|
|
rt2800_bbp_read(rt2x00dev, 4, &bbp);
|
|
rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * conf_is_ht40(conf));
|
|
rt2800_bbp_write(rt2x00dev, 4, bbp);
|
|
|
|
rt2800_bbp_read(rt2x00dev, 3, &bbp);
|
|
rt2x00_set_field8(&bbp, BBP3_HT40_PLUS, conf_is_ht40_plus(conf));
|
|
rt2800_bbp_write(rt2x00dev, 3, bbp);
|
|
|
|
if (rt2x00_rev(&rt2x00dev->chip) == RT2860C_VERSION) {
|
|
if (conf_is_ht40(conf)) {
|
|
rt2800_bbp_write(rt2x00dev, 69, 0x1a);
|
|
rt2800_bbp_write(rt2x00dev, 70, 0x0a);
|
|
rt2800_bbp_write(rt2x00dev, 73, 0x16);
|
|
} else {
|
|
rt2800_bbp_write(rt2x00dev, 69, 0x16);
|
|
rt2800_bbp_write(rt2x00dev, 70, 0x08);
|
|
rt2800_bbp_write(rt2x00dev, 73, 0x11);
|
|
}
|
|
}
|
|
|
|
msleep(1);
|
|
}
|
|
|
|
static void rt2800_config_txpower(struct rt2x00_dev *rt2x00dev,
|
|
const int txpower)
|
|
{
|
|
u32 reg;
|
|
u32 value = TXPOWER_G_TO_DEV(txpower);
|
|
u8 r1;
|
|
|
|
rt2800_bbp_read(rt2x00dev, 1, &r1);
|
|
rt2x00_set_field8(®, BBP1_TX_POWER, 0);
|
|
rt2800_bbp_write(rt2x00dev, 1, r1);
|
|
|
|
rt2800_register_read(rt2x00dev, TX_PWR_CFG_0, ®);
|
|
rt2x00_set_field32(®, TX_PWR_CFG_0_1MBS, value);
|
|
rt2x00_set_field32(®, TX_PWR_CFG_0_2MBS, value);
|
|
rt2x00_set_field32(®, TX_PWR_CFG_0_55MBS, value);
|
|
rt2x00_set_field32(®, TX_PWR_CFG_0_11MBS, value);
|
|
rt2x00_set_field32(®, TX_PWR_CFG_0_6MBS, value);
|
|
rt2x00_set_field32(®, TX_PWR_CFG_0_9MBS, value);
|
|
rt2x00_set_field32(®, TX_PWR_CFG_0_12MBS, value);
|
|
rt2x00_set_field32(®, TX_PWR_CFG_0_18MBS, value);
|
|
rt2800_register_write(rt2x00dev, TX_PWR_CFG_0, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, TX_PWR_CFG_1, ®);
|
|
rt2x00_set_field32(®, TX_PWR_CFG_1_24MBS, value);
|
|
rt2x00_set_field32(®, TX_PWR_CFG_1_36MBS, value);
|
|
rt2x00_set_field32(®, TX_PWR_CFG_1_48MBS, value);
|
|
rt2x00_set_field32(®, TX_PWR_CFG_1_54MBS, value);
|
|
rt2x00_set_field32(®, TX_PWR_CFG_1_MCS0, value);
|
|
rt2x00_set_field32(®, TX_PWR_CFG_1_MCS1, value);
|
|
rt2x00_set_field32(®, TX_PWR_CFG_1_MCS2, value);
|
|
rt2x00_set_field32(®, TX_PWR_CFG_1_MCS3, value);
|
|
rt2800_register_write(rt2x00dev, TX_PWR_CFG_1, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, TX_PWR_CFG_2, ®);
|
|
rt2x00_set_field32(®, TX_PWR_CFG_2_MCS4, value);
|
|
rt2x00_set_field32(®, TX_PWR_CFG_2_MCS5, value);
|
|
rt2x00_set_field32(®, TX_PWR_CFG_2_MCS6, value);
|
|
rt2x00_set_field32(®, TX_PWR_CFG_2_MCS7, value);
|
|
rt2x00_set_field32(®, TX_PWR_CFG_2_MCS8, value);
|
|
rt2x00_set_field32(®, TX_PWR_CFG_2_MCS9, value);
|
|
rt2x00_set_field32(®, TX_PWR_CFG_2_MCS10, value);
|
|
rt2x00_set_field32(®, TX_PWR_CFG_2_MCS11, value);
|
|
rt2800_register_write(rt2x00dev, TX_PWR_CFG_2, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, TX_PWR_CFG_3, ®);
|
|
rt2x00_set_field32(®, TX_PWR_CFG_3_MCS12, value);
|
|
rt2x00_set_field32(®, TX_PWR_CFG_3_MCS13, value);
|
|
rt2x00_set_field32(®, TX_PWR_CFG_3_MCS14, value);
|
|
rt2x00_set_field32(®, TX_PWR_CFG_3_MCS15, value);
|
|
rt2x00_set_field32(®, TX_PWR_CFG_3_UKNOWN1, value);
|
|
rt2x00_set_field32(®, TX_PWR_CFG_3_UKNOWN2, value);
|
|
rt2x00_set_field32(®, TX_PWR_CFG_3_UKNOWN3, value);
|
|
rt2x00_set_field32(®, TX_PWR_CFG_3_UKNOWN4, value);
|
|
rt2800_register_write(rt2x00dev, TX_PWR_CFG_3, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, TX_PWR_CFG_4, ®);
|
|
rt2x00_set_field32(®, TX_PWR_CFG_4_UKNOWN5, value);
|
|
rt2x00_set_field32(®, TX_PWR_CFG_4_UKNOWN6, value);
|
|
rt2x00_set_field32(®, TX_PWR_CFG_4_UKNOWN7, value);
|
|
rt2x00_set_field32(®, TX_PWR_CFG_4_UKNOWN8, value);
|
|
rt2800_register_write(rt2x00dev, TX_PWR_CFG_4, reg);
|
|
}
|
|
|
|
static void rt2800_config_retry_limit(struct rt2x00_dev *rt2x00dev,
|
|
struct rt2x00lib_conf *libconf)
|
|
{
|
|
u32 reg;
|
|
|
|
rt2800_register_read(rt2x00dev, TX_RTY_CFG, ®);
|
|
rt2x00_set_field32(®, TX_RTY_CFG_SHORT_RTY_LIMIT,
|
|
libconf->conf->short_frame_max_tx_count);
|
|
rt2x00_set_field32(®, TX_RTY_CFG_LONG_RTY_LIMIT,
|
|
libconf->conf->long_frame_max_tx_count);
|
|
rt2x00_set_field32(®, TX_RTY_CFG_LONG_RTY_THRE, 2000);
|
|
rt2x00_set_field32(®, TX_RTY_CFG_NON_AGG_RTY_MODE, 0);
|
|
rt2x00_set_field32(®, TX_RTY_CFG_AGG_RTY_MODE, 0);
|
|
rt2x00_set_field32(®, TX_RTY_CFG_TX_AUTO_FB_ENABLE, 1);
|
|
rt2800_register_write(rt2x00dev, TX_RTY_CFG, reg);
|
|
}
|
|
|
|
static void rt2800_config_ps(struct rt2x00_dev *rt2x00dev,
|
|
struct rt2x00lib_conf *libconf)
|
|
{
|
|
enum dev_state state =
|
|
(libconf->conf->flags & IEEE80211_CONF_PS) ?
|
|
STATE_SLEEP : STATE_AWAKE;
|
|
u32 reg;
|
|
|
|
if (state == STATE_SLEEP) {
|
|
rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0);
|
|
|
|
rt2800_register_read(rt2x00dev, AUTOWAKEUP_CFG, ®);
|
|
rt2x00_set_field32(®, AUTOWAKEUP_CFG_AUTO_LEAD_TIME, 5);
|
|
rt2x00_set_field32(®, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE,
|
|
libconf->conf->listen_interval - 1);
|
|
rt2x00_set_field32(®, AUTOWAKEUP_CFG_AUTOWAKE, 1);
|
|
rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, reg);
|
|
|
|
rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
|
|
} else {
|
|
rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
|
|
|
|
rt2800_register_read(rt2x00dev, AUTOWAKEUP_CFG, ®);
|
|
rt2x00_set_field32(®, AUTOWAKEUP_CFG_AUTO_LEAD_TIME, 0);
|
|
rt2x00_set_field32(®, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE, 0);
|
|
rt2x00_set_field32(®, AUTOWAKEUP_CFG_AUTOWAKE, 0);
|
|
rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, reg);
|
|
}
|
|
}
|
|
|
|
void rt2800_config(struct rt2x00_dev *rt2x00dev,
|
|
struct rt2x00lib_conf *libconf,
|
|
const unsigned int flags)
|
|
{
|
|
/* Always recalculate LNA gain before changing configuration */
|
|
rt2800_config_lna_gain(rt2x00dev, libconf);
|
|
|
|
if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
|
|
rt2800_config_channel(rt2x00dev, libconf->conf,
|
|
&libconf->rf, &libconf->channel);
|
|
if (flags & IEEE80211_CONF_CHANGE_POWER)
|
|
rt2800_config_txpower(rt2x00dev, libconf->conf->power_level);
|
|
if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
|
|
rt2800_config_retry_limit(rt2x00dev, libconf);
|
|
if (flags & IEEE80211_CONF_CHANGE_PS)
|
|
rt2800_config_ps(rt2x00dev, libconf);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_config);
|
|
|
|
/*
|
|
* Link tuning
|
|
*/
|
|
void rt2800_link_stats(struct rt2x00_dev *rt2x00dev, struct link_qual *qual)
|
|
{
|
|
u32 reg;
|
|
|
|
/*
|
|
* Update FCS error count from register.
|
|
*/
|
|
rt2800_register_read(rt2x00dev, RX_STA_CNT0, ®);
|
|
qual->rx_failed = rt2x00_get_field32(reg, RX_STA_CNT0_CRC_ERR);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_link_stats);
|
|
|
|
static u8 rt2800_get_default_vgc(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
if (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ) {
|
|
if (rt2x00_intf_is_usb(rt2x00dev) &&
|
|
rt2x00_rev(&rt2x00dev->chip) == RT3070_VERSION)
|
|
return 0x1c + (2 * rt2x00dev->lna_gain);
|
|
else
|
|
return 0x2e + rt2x00dev->lna_gain;
|
|
}
|
|
|
|
if (!test_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags))
|
|
return 0x32 + (rt2x00dev->lna_gain * 5) / 3;
|
|
else
|
|
return 0x3a + (rt2x00dev->lna_gain * 5) / 3;
|
|
}
|
|
|
|
static inline void rt2800_set_vgc(struct rt2x00_dev *rt2x00dev,
|
|
struct link_qual *qual, u8 vgc_level)
|
|
{
|
|
if (qual->vgc_level != vgc_level) {
|
|
rt2800_bbp_write(rt2x00dev, 66, vgc_level);
|
|
qual->vgc_level = vgc_level;
|
|
qual->vgc_level_reg = vgc_level;
|
|
}
|
|
}
|
|
|
|
void rt2800_reset_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual)
|
|
{
|
|
rt2800_set_vgc(rt2x00dev, qual, rt2800_get_default_vgc(rt2x00dev));
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_reset_tuner);
|
|
|
|
void rt2800_link_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual,
|
|
const u32 count)
|
|
{
|
|
if (rt2x00_rev(&rt2x00dev->chip) == RT2860C_VERSION)
|
|
return;
|
|
|
|
/*
|
|
* When RSSI is better then -80 increase VGC level with 0x10
|
|
*/
|
|
rt2800_set_vgc(rt2x00dev, qual,
|
|
rt2800_get_default_vgc(rt2x00dev) +
|
|
((qual->rssi > -80) * 0x10));
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_link_tuner);
|
|
|
|
/*
|
|
* Initialization functions.
|
|
*/
|
|
int rt2800_init_registers(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u32 reg;
|
|
unsigned int i;
|
|
|
|
if (rt2x00_intf_is_usb(rt2x00dev)) {
|
|
/*
|
|
* Wait until BBP and RF are ready.
|
|
*/
|
|
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
|
|
rt2800_register_read(rt2x00dev, MAC_CSR0, ®);
|
|
if (reg && reg != ~0)
|
|
break;
|
|
msleep(1);
|
|
}
|
|
|
|
if (i == REGISTER_BUSY_COUNT) {
|
|
ERROR(rt2x00dev, "Unstable hardware.\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
rt2800_register_read(rt2x00dev, PBF_SYS_CTRL, ®);
|
|
rt2800_register_write(rt2x00dev, PBF_SYS_CTRL,
|
|
reg & ~0x00002000);
|
|
} else if (rt2x00_intf_is_pci(rt2x00dev))
|
|
rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
|
|
|
|
rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, ®);
|
|
rt2x00_set_field32(®, MAC_SYS_CTRL_RESET_CSR, 1);
|
|
rt2x00_set_field32(®, MAC_SYS_CTRL_RESET_BBP, 1);
|
|
rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
|
|
|
|
if (rt2x00_intf_is_usb(rt2x00dev)) {
|
|
rt2800_register_write(rt2x00dev, USB_DMA_CFG, 0x00000000);
|
|
#ifdef CONFIG_RT2800USB
|
|
rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
|
|
USB_MODE_RESET, REGISTER_TIMEOUT);
|
|
#endif
|
|
}
|
|
|
|
rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
|
|
|
|
rt2800_register_read(rt2x00dev, BCN_OFFSET0, ®);
|
|
rt2x00_set_field32(®, BCN_OFFSET0_BCN0, 0xe0); /* 0x3800 */
|
|
rt2x00_set_field32(®, BCN_OFFSET0_BCN1, 0xe8); /* 0x3a00 */
|
|
rt2x00_set_field32(®, BCN_OFFSET0_BCN2, 0xf0); /* 0x3c00 */
|
|
rt2x00_set_field32(®, BCN_OFFSET0_BCN3, 0xf8); /* 0x3e00 */
|
|
rt2800_register_write(rt2x00dev, BCN_OFFSET0, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, BCN_OFFSET1, ®);
|
|
rt2x00_set_field32(®, BCN_OFFSET1_BCN4, 0xc8); /* 0x3200 */
|
|
rt2x00_set_field32(®, BCN_OFFSET1_BCN5, 0xd0); /* 0x3400 */
|
|
rt2x00_set_field32(®, BCN_OFFSET1_BCN6, 0x77); /* 0x1dc0 */
|
|
rt2x00_set_field32(®, BCN_OFFSET1_BCN7, 0x6f); /* 0x1bc0 */
|
|
rt2800_register_write(rt2x00dev, BCN_OFFSET1, reg);
|
|
|
|
rt2800_register_write(rt2x00dev, LEGACY_BASIC_RATE, 0x0000013f);
|
|
rt2800_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003);
|
|
|
|
rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
|
|
|
|
rt2800_register_read(rt2x00dev, BCN_TIME_CFG, ®);
|
|
rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_INTERVAL, 0);
|
|
rt2x00_set_field32(®, BCN_TIME_CFG_TSF_TICKING, 0);
|
|
rt2x00_set_field32(®, BCN_TIME_CFG_TSF_SYNC, 0);
|
|
rt2x00_set_field32(®, BCN_TIME_CFG_TBTT_ENABLE, 0);
|
|
rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 0);
|
|
rt2x00_set_field32(®, BCN_TIME_CFG_TX_TIME_COMPENSATE, 0);
|
|
rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
|
|
|
|
if (rt2x00_intf_is_usb(rt2x00dev) &&
|
|
rt2x00_rev(&rt2x00dev->chip) == RT3070_VERSION) {
|
|
rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400);
|
|
rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000);
|
|
rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000);
|
|
} else {
|
|
rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000000);
|
|
rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
|
|
}
|
|
|
|
rt2800_register_read(rt2x00dev, TX_LINK_CFG, ®);
|
|
rt2x00_set_field32(®, TX_LINK_CFG_REMOTE_MFB_LIFETIME, 32);
|
|
rt2x00_set_field32(®, TX_LINK_CFG_MFB_ENABLE, 0);
|
|
rt2x00_set_field32(®, TX_LINK_CFG_REMOTE_UMFS_ENABLE, 0);
|
|
rt2x00_set_field32(®, TX_LINK_CFG_TX_MRQ_EN, 0);
|
|
rt2x00_set_field32(®, TX_LINK_CFG_TX_RDG_EN, 0);
|
|
rt2x00_set_field32(®, TX_LINK_CFG_TX_CF_ACK_EN, 1);
|
|
rt2x00_set_field32(®, TX_LINK_CFG_REMOTE_MFB, 0);
|
|
rt2x00_set_field32(®, TX_LINK_CFG_REMOTE_MFS, 0);
|
|
rt2800_register_write(rt2x00dev, TX_LINK_CFG, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, TX_TIMEOUT_CFG, ®);
|
|
rt2x00_set_field32(®, TX_TIMEOUT_CFG_MPDU_LIFETIME, 9);
|
|
rt2x00_set_field32(®, TX_TIMEOUT_CFG_TX_OP_TIMEOUT, 10);
|
|
rt2800_register_write(rt2x00dev, TX_TIMEOUT_CFG, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, MAX_LEN_CFG, ®);
|
|
rt2x00_set_field32(®, MAX_LEN_CFG_MAX_MPDU, AGGREGATION_SIZE);
|
|
if (rt2x00_rev(&rt2x00dev->chip) >= RT2880E_VERSION &&
|
|
rt2x00_rev(&rt2x00dev->chip) < RT3070_VERSION)
|
|
rt2x00_set_field32(®, MAX_LEN_CFG_MAX_PSDU, 2);
|
|
else
|
|
rt2x00_set_field32(®, MAX_LEN_CFG_MAX_PSDU, 1);
|
|
rt2x00_set_field32(®, MAX_LEN_CFG_MIN_PSDU, 0);
|
|
rt2x00_set_field32(®, MAX_LEN_CFG_MIN_MPDU, 0);
|
|
rt2800_register_write(rt2x00dev, MAX_LEN_CFG, reg);
|
|
|
|
rt2800_register_write(rt2x00dev, PBF_MAX_PCNT, 0x1f3fbf9f);
|
|
|
|
rt2800_register_read(rt2x00dev, AUTO_RSP_CFG, ®);
|
|
rt2x00_set_field32(®, AUTO_RSP_CFG_AUTORESPONDER, 1);
|
|
rt2x00_set_field32(®, AUTO_RSP_CFG_CTS_40_MMODE, 0);
|
|
rt2x00_set_field32(®, AUTO_RSP_CFG_CTS_40_MREF, 0);
|
|
rt2x00_set_field32(®, AUTO_RSP_CFG_DUAL_CTS_EN, 0);
|
|
rt2x00_set_field32(®, AUTO_RSP_CFG_ACK_CTS_PSM_BIT, 0);
|
|
rt2800_register_write(rt2x00dev, AUTO_RSP_CFG, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, CCK_PROT_CFG, ®);
|
|
rt2x00_set_field32(®, CCK_PROT_CFG_PROTECT_RATE, 8);
|
|
rt2x00_set_field32(®, CCK_PROT_CFG_PROTECT_CTRL, 0);
|
|
rt2x00_set_field32(®, CCK_PROT_CFG_PROTECT_NAV, 1);
|
|
rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_CCK, 1);
|
|
rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
|
|
rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_MM20, 1);
|
|
rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_MM40, 1);
|
|
rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_GF20, 1);
|
|
rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_GF40, 1);
|
|
rt2800_register_write(rt2x00dev, CCK_PROT_CFG, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, ®);
|
|
rt2x00_set_field32(®, OFDM_PROT_CFG_PROTECT_RATE, 8);
|
|
rt2x00_set_field32(®, OFDM_PROT_CFG_PROTECT_CTRL, 0);
|
|
rt2x00_set_field32(®, OFDM_PROT_CFG_PROTECT_NAV, 1);
|
|
rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_CCK, 1);
|
|
rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
|
|
rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_MM20, 1);
|
|
rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_MM40, 1);
|
|
rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_GF20, 1);
|
|
rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_GF40, 1);
|
|
rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, MM20_PROT_CFG, ®);
|
|
rt2x00_set_field32(®, MM20_PROT_CFG_PROTECT_RATE, 0x4004);
|
|
rt2x00_set_field32(®, MM20_PROT_CFG_PROTECT_CTRL, 0);
|
|
rt2x00_set_field32(®, MM20_PROT_CFG_PROTECT_NAV, 1);
|
|
rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_CCK, 1);
|
|
rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
|
|
rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_MM20, 1);
|
|
rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_MM40, 0);
|
|
rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_GF20, 1);
|
|
rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_GF40, 0);
|
|
rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, MM40_PROT_CFG, ®);
|
|
rt2x00_set_field32(®, MM40_PROT_CFG_PROTECT_RATE, 0x4084);
|
|
rt2x00_set_field32(®, MM40_PROT_CFG_PROTECT_CTRL, 0);
|
|
rt2x00_set_field32(®, MM40_PROT_CFG_PROTECT_NAV, 1);
|
|
rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_CCK, 1);
|
|
rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
|
|
rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_MM20, 1);
|
|
rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_MM40, 1);
|
|
rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_GF20, 1);
|
|
rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_GF40, 1);
|
|
rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, GF20_PROT_CFG, ®);
|
|
rt2x00_set_field32(®, GF20_PROT_CFG_PROTECT_RATE, 0x4004);
|
|
rt2x00_set_field32(®, GF20_PROT_CFG_PROTECT_CTRL, 0);
|
|
rt2x00_set_field32(®, GF20_PROT_CFG_PROTECT_NAV, 1);
|
|
rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_CCK, 1);
|
|
rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
|
|
rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_MM20, 1);
|
|
rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_MM40, 0);
|
|
rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_GF20, 1);
|
|
rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_GF40, 0);
|
|
rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, GF40_PROT_CFG, ®);
|
|
rt2x00_set_field32(®, GF40_PROT_CFG_PROTECT_RATE, 0x4084);
|
|
rt2x00_set_field32(®, GF40_PROT_CFG_PROTECT_CTRL, 0);
|
|
rt2x00_set_field32(®, GF40_PROT_CFG_PROTECT_NAV, 1);
|
|
rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_CCK, 1);
|
|
rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
|
|
rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_MM20, 1);
|
|
rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_MM40, 1);
|
|
rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_GF20, 1);
|
|
rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_GF40, 1);
|
|
rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg);
|
|
|
|
if (rt2x00_intf_is_usb(rt2x00dev)) {
|
|
rt2800_register_write(rt2x00dev, PBF_CFG, 0xf40006);
|
|
|
|
rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®);
|
|
rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
|
|
rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
|
|
rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
|
|
rt2x00_set_field32(®, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
|
|
rt2x00_set_field32(®, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 3);
|
|
rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 0);
|
|
rt2x00_set_field32(®, WPDMA_GLO_CFG_BIG_ENDIAN, 0);
|
|
rt2x00_set_field32(®, WPDMA_GLO_CFG_RX_HDR_SCATTER, 0);
|
|
rt2x00_set_field32(®, WPDMA_GLO_CFG_HDR_SEG_LEN, 0);
|
|
rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
|
|
}
|
|
|
|
rt2800_register_write(rt2x00dev, TXOP_CTRL_CFG, 0x0000583f);
|
|
rt2800_register_write(rt2x00dev, TXOP_HLDR_ET, 0x00000002);
|
|
|
|
rt2800_register_read(rt2x00dev, TX_RTS_CFG, ®);
|
|
rt2x00_set_field32(®, TX_RTS_CFG_AUTO_RTS_RETRY_LIMIT, 32);
|
|
rt2x00_set_field32(®, TX_RTS_CFG_RTS_THRES,
|
|
IEEE80211_MAX_RTS_THRESHOLD);
|
|
rt2x00_set_field32(®, TX_RTS_CFG_RTS_FBK_EN, 0);
|
|
rt2800_register_write(rt2x00dev, TX_RTS_CFG, reg);
|
|
|
|
rt2800_register_write(rt2x00dev, EXP_ACK_TIME, 0x002400ca);
|
|
rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
|
|
|
|
/*
|
|
* ASIC will keep garbage value after boot, clear encryption keys.
|
|
*/
|
|
for (i = 0; i < 4; i++)
|
|
rt2800_register_write(rt2x00dev,
|
|
SHARED_KEY_MODE_ENTRY(i), 0);
|
|
|
|
for (i = 0; i < 256; i++) {
|
|
u32 wcid[2] = { 0xffffffff, 0x00ffffff };
|
|
rt2800_register_multiwrite(rt2x00dev, MAC_WCID_ENTRY(i),
|
|
wcid, sizeof(wcid));
|
|
|
|
rt2800_register_write(rt2x00dev, MAC_WCID_ATTR_ENTRY(i), 1);
|
|
rt2800_register_write(rt2x00dev, MAC_IVEIV_ENTRY(i), 0);
|
|
}
|
|
|
|
/*
|
|
* Clear all beacons
|
|
* For the Beacon base registers we only need to clear
|
|
* the first byte since that byte contains the VALID and OWNER
|
|
* bits which (when set to 0) will invalidate the entire beacon.
|
|
*/
|
|
rt2800_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
|
|
rt2800_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
|
|
rt2800_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
|
|
rt2800_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
|
|
rt2800_register_write(rt2x00dev, HW_BEACON_BASE4, 0);
|
|
rt2800_register_write(rt2x00dev, HW_BEACON_BASE5, 0);
|
|
rt2800_register_write(rt2x00dev, HW_BEACON_BASE6, 0);
|
|
rt2800_register_write(rt2x00dev, HW_BEACON_BASE7, 0);
|
|
|
|
if (rt2x00_intf_is_usb(rt2x00dev)) {
|
|
rt2800_register_read(rt2x00dev, USB_CYC_CFG, ®);
|
|
rt2x00_set_field32(®, USB_CYC_CFG_CLOCK_CYCLE, 30);
|
|
rt2800_register_write(rt2x00dev, USB_CYC_CFG, reg);
|
|
}
|
|
|
|
rt2800_register_read(rt2x00dev, HT_FBK_CFG0, ®);
|
|
rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS0FBK, 0);
|
|
rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS1FBK, 0);
|
|
rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS2FBK, 1);
|
|
rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS3FBK, 2);
|
|
rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS4FBK, 3);
|
|
rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS5FBK, 4);
|
|
rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS6FBK, 5);
|
|
rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS7FBK, 6);
|
|
rt2800_register_write(rt2x00dev, HT_FBK_CFG0, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, HT_FBK_CFG1, ®);
|
|
rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS8FBK, 8);
|
|
rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS9FBK, 8);
|
|
rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS10FBK, 9);
|
|
rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS11FBK, 10);
|
|
rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS12FBK, 11);
|
|
rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS13FBK, 12);
|
|
rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS14FBK, 13);
|
|
rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS15FBK, 14);
|
|
rt2800_register_write(rt2x00dev, HT_FBK_CFG1, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, LG_FBK_CFG0, ®);
|
|
rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS0FBK, 8);
|
|
rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS1FBK, 8);
|
|
rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS2FBK, 9);
|
|
rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS3FBK, 10);
|
|
rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS4FBK, 11);
|
|
rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS5FBK, 12);
|
|
rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS6FBK, 13);
|
|
rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS7FBK, 14);
|
|
rt2800_register_write(rt2x00dev, LG_FBK_CFG0, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, LG_FBK_CFG1, ®);
|
|
rt2x00_set_field32(®, LG_FBK_CFG0_CCKMCS0FBK, 0);
|
|
rt2x00_set_field32(®, LG_FBK_CFG0_CCKMCS1FBK, 0);
|
|
rt2x00_set_field32(®, LG_FBK_CFG0_CCKMCS2FBK, 1);
|
|
rt2x00_set_field32(®, LG_FBK_CFG0_CCKMCS3FBK, 2);
|
|
rt2800_register_write(rt2x00dev, LG_FBK_CFG1, reg);
|
|
|
|
/*
|
|
* We must clear the error counters.
|
|
* These registers are cleared on read,
|
|
* so we may pass a useless variable to store the value.
|
|
*/
|
|
rt2800_register_read(rt2x00dev, RX_STA_CNT0, ®);
|
|
rt2800_register_read(rt2x00dev, RX_STA_CNT1, ®);
|
|
rt2800_register_read(rt2x00dev, RX_STA_CNT2, ®);
|
|
rt2800_register_read(rt2x00dev, TX_STA_CNT0, ®);
|
|
rt2800_register_read(rt2x00dev, TX_STA_CNT1, ®);
|
|
rt2800_register_read(rt2x00dev, TX_STA_CNT2, ®);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_init_registers);
|
|
|
|
static int rt2800_wait_bbp_rf_ready(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
unsigned int i;
|
|
u32 reg;
|
|
|
|
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
|
|
rt2800_register_read(rt2x00dev, MAC_STATUS_CFG, ®);
|
|
if (!rt2x00_get_field32(reg, MAC_STATUS_CFG_BBP_RF_BUSY))
|
|
return 0;
|
|
|
|
udelay(REGISTER_BUSY_DELAY);
|
|
}
|
|
|
|
ERROR(rt2x00dev, "BBP/RF register access failed, aborting.\n");
|
|
return -EACCES;
|
|
}
|
|
|
|
static int rt2800_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
unsigned int i;
|
|
u8 value;
|
|
|
|
/*
|
|
* BBP was enabled after firmware was loaded,
|
|
* but we need to reactivate it now.
|
|
*/
|
|
rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
|
|
rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
|
|
msleep(1);
|
|
|
|
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
|
|
rt2800_bbp_read(rt2x00dev, 0, &value);
|
|
if ((value != 0xff) && (value != 0x00))
|
|
return 0;
|
|
udelay(REGISTER_BUSY_DELAY);
|
|
}
|
|
|
|
ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
|
|
return -EACCES;
|
|
}
|
|
|
|
int rt2800_init_bbp(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
unsigned int i;
|
|
u16 eeprom;
|
|
u8 reg_id;
|
|
u8 value;
|
|
|
|
if (unlikely(rt2800_wait_bbp_rf_ready(rt2x00dev) ||
|
|
rt2800_wait_bbp_ready(rt2x00dev)))
|
|
return -EACCES;
|
|
|
|
rt2800_bbp_write(rt2x00dev, 65, 0x2c);
|
|
rt2800_bbp_write(rt2x00dev, 66, 0x38);
|
|
rt2800_bbp_write(rt2x00dev, 69, 0x12);
|
|
rt2800_bbp_write(rt2x00dev, 70, 0x0a);
|
|
rt2800_bbp_write(rt2x00dev, 73, 0x10);
|
|
rt2800_bbp_write(rt2x00dev, 81, 0x37);
|
|
rt2800_bbp_write(rt2x00dev, 82, 0x62);
|
|
rt2800_bbp_write(rt2x00dev, 83, 0x6a);
|
|
rt2800_bbp_write(rt2x00dev, 84, 0x99);
|
|
rt2800_bbp_write(rt2x00dev, 86, 0x00);
|
|
rt2800_bbp_write(rt2x00dev, 91, 0x04);
|
|
rt2800_bbp_write(rt2x00dev, 92, 0x00);
|
|
rt2800_bbp_write(rt2x00dev, 103, 0x00);
|
|
rt2800_bbp_write(rt2x00dev, 105, 0x05);
|
|
|
|
if (rt2x00_rev(&rt2x00dev->chip) == RT2860C_VERSION) {
|
|
rt2800_bbp_write(rt2x00dev, 69, 0x16);
|
|
rt2800_bbp_write(rt2x00dev, 73, 0x12);
|
|
}
|
|
|
|
if (rt2x00_rev(&rt2x00dev->chip) > RT2860D_VERSION)
|
|
rt2800_bbp_write(rt2x00dev, 84, 0x19);
|
|
|
|
if (rt2x00_intf_is_usb(rt2x00dev) &&
|
|
rt2x00_rev(&rt2x00dev->chip) == RT3070_VERSION) {
|
|
rt2800_bbp_write(rt2x00dev, 70, 0x0a);
|
|
rt2800_bbp_write(rt2x00dev, 84, 0x99);
|
|
rt2800_bbp_write(rt2x00dev, 105, 0x05);
|
|
}
|
|
|
|
if (rt2x00_rt(&rt2x00dev->chip, RT3052)) {
|
|
rt2800_bbp_write(rt2x00dev, 31, 0x08);
|
|
rt2800_bbp_write(rt2x00dev, 78, 0x0e);
|
|
rt2800_bbp_write(rt2x00dev, 80, 0x08);
|
|
}
|
|
|
|
for (i = 0; i < EEPROM_BBP_SIZE; i++) {
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
|
|
|
|
if (eeprom != 0xffff && eeprom != 0x0000) {
|
|
reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
|
|
value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
|
|
rt2800_bbp_write(rt2x00dev, reg_id, value);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_init_bbp);
|
|
|
|
static u8 rt2800_init_rx_filter(struct rt2x00_dev *rt2x00dev,
|
|
bool bw40, u8 rfcsr24, u8 filter_target)
|
|
{
|
|
unsigned int i;
|
|
u8 bbp;
|
|
u8 rfcsr;
|
|
u8 passband;
|
|
u8 stopband;
|
|
u8 overtuned = 0;
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
|
|
|
|
rt2800_bbp_read(rt2x00dev, 4, &bbp);
|
|
rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * bw40);
|
|
rt2800_bbp_write(rt2x00dev, 4, bbp);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 22, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 1);
|
|
rt2800_rfcsr_write(rt2x00dev, 22, rfcsr);
|
|
|
|
/*
|
|
* Set power & frequency of passband test tone
|
|
*/
|
|
rt2800_bbp_write(rt2x00dev, 24, 0);
|
|
|
|
for (i = 0; i < 100; i++) {
|
|
rt2800_bbp_write(rt2x00dev, 25, 0x90);
|
|
msleep(1);
|
|
|
|
rt2800_bbp_read(rt2x00dev, 55, &passband);
|
|
if (passband)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Set power & frequency of stopband test tone
|
|
*/
|
|
rt2800_bbp_write(rt2x00dev, 24, 0x06);
|
|
|
|
for (i = 0; i < 100; i++) {
|
|
rt2800_bbp_write(rt2x00dev, 25, 0x90);
|
|
msleep(1);
|
|
|
|
rt2800_bbp_read(rt2x00dev, 55, &stopband);
|
|
|
|
if ((passband - stopband) <= filter_target) {
|
|
rfcsr24++;
|
|
overtuned += ((passband - stopband) == filter_target);
|
|
} else
|
|
break;
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
|
|
}
|
|
|
|
rfcsr24 -= !!overtuned;
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
|
|
return rfcsr24;
|
|
}
|
|
|
|
int rt2800_init_rfcsr(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u8 rfcsr;
|
|
u8 bbp;
|
|
|
|
if (rt2x00_intf_is_usb(rt2x00dev) &&
|
|
rt2x00_rev(&rt2x00dev->chip) != RT3070_VERSION)
|
|
return 0;
|
|
|
|
if (rt2x00_intf_is_pci(rt2x00dev)) {
|
|
if (!rt2x00_rf(&rt2x00dev->chip, RF3020) &&
|
|
!rt2x00_rf(&rt2x00dev->chip, RF3021) &&
|
|
!rt2x00_rf(&rt2x00dev->chip, RF3022))
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Init RF calibration.
|
|
*/
|
|
rt2800_rfcsr_read(rt2x00dev, 30, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 1);
|
|
rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
|
|
msleep(1);
|
|
rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 0);
|
|
rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
|
|
|
|
if (rt2x00_intf_is_usb(rt2x00dev)) {
|
|
rt2800_rfcsr_write(rt2x00dev, 4, 0x40);
|
|
rt2800_rfcsr_write(rt2x00dev, 5, 0x03);
|
|
rt2800_rfcsr_write(rt2x00dev, 6, 0x02);
|
|
rt2800_rfcsr_write(rt2x00dev, 7, 0x70);
|
|
rt2800_rfcsr_write(rt2x00dev, 9, 0x0f);
|
|
rt2800_rfcsr_write(rt2x00dev, 10, 0x71);
|
|
rt2800_rfcsr_write(rt2x00dev, 11, 0x21);
|
|
rt2800_rfcsr_write(rt2x00dev, 12, 0x7b);
|
|
rt2800_rfcsr_write(rt2x00dev, 14, 0x90);
|
|
rt2800_rfcsr_write(rt2x00dev, 15, 0x58);
|
|
rt2800_rfcsr_write(rt2x00dev, 16, 0xb3);
|
|
rt2800_rfcsr_write(rt2x00dev, 17, 0x92);
|
|
rt2800_rfcsr_write(rt2x00dev, 18, 0x2c);
|
|
rt2800_rfcsr_write(rt2x00dev, 19, 0x02);
|
|
rt2800_rfcsr_write(rt2x00dev, 20, 0xba);
|
|
rt2800_rfcsr_write(rt2x00dev, 21, 0xdb);
|
|
rt2800_rfcsr_write(rt2x00dev, 24, 0x16);
|
|
rt2800_rfcsr_write(rt2x00dev, 25, 0x01);
|
|
rt2800_rfcsr_write(rt2x00dev, 27, 0x03);
|
|
rt2800_rfcsr_write(rt2x00dev, 29, 0x1f);
|
|
} else if (rt2x00_intf_is_pci(rt2x00dev)) {
|
|
rt2800_rfcsr_write(rt2x00dev, 0, 0x50);
|
|
rt2800_rfcsr_write(rt2x00dev, 1, 0x01);
|
|
rt2800_rfcsr_write(rt2x00dev, 2, 0xf7);
|
|
rt2800_rfcsr_write(rt2x00dev, 3, 0x75);
|
|
rt2800_rfcsr_write(rt2x00dev, 4, 0x40);
|
|
rt2800_rfcsr_write(rt2x00dev, 5, 0x03);
|
|
rt2800_rfcsr_write(rt2x00dev, 6, 0x02);
|
|
rt2800_rfcsr_write(rt2x00dev, 7, 0x50);
|
|
rt2800_rfcsr_write(rt2x00dev, 8, 0x39);
|
|
rt2800_rfcsr_write(rt2x00dev, 9, 0x0f);
|
|
rt2800_rfcsr_write(rt2x00dev, 10, 0x60);
|
|
rt2800_rfcsr_write(rt2x00dev, 11, 0x21);
|
|
rt2800_rfcsr_write(rt2x00dev, 12, 0x75);
|
|
rt2800_rfcsr_write(rt2x00dev, 13, 0x75);
|
|
rt2800_rfcsr_write(rt2x00dev, 14, 0x90);
|
|
rt2800_rfcsr_write(rt2x00dev, 15, 0x58);
|
|
rt2800_rfcsr_write(rt2x00dev, 16, 0xb3);
|
|
rt2800_rfcsr_write(rt2x00dev, 17, 0x92);
|
|
rt2800_rfcsr_write(rt2x00dev, 18, 0x2c);
|
|
rt2800_rfcsr_write(rt2x00dev, 19, 0x02);
|
|
rt2800_rfcsr_write(rt2x00dev, 20, 0xba);
|
|
rt2800_rfcsr_write(rt2x00dev, 21, 0xdb);
|
|
rt2800_rfcsr_write(rt2x00dev, 22, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 23, 0x31);
|
|
rt2800_rfcsr_write(rt2x00dev, 24, 0x08);
|
|
rt2800_rfcsr_write(rt2x00dev, 25, 0x01);
|
|
rt2800_rfcsr_write(rt2x00dev, 26, 0x25);
|
|
rt2800_rfcsr_write(rt2x00dev, 27, 0x23);
|
|
rt2800_rfcsr_write(rt2x00dev, 28, 0x13);
|
|
rt2800_rfcsr_write(rt2x00dev, 29, 0x83);
|
|
}
|
|
|
|
/*
|
|
* Set RX Filter calibration for 20MHz and 40MHz
|
|
*/
|
|
rt2x00dev->calibration[0] =
|
|
rt2800_init_rx_filter(rt2x00dev, false, 0x07, 0x16);
|
|
rt2x00dev->calibration[1] =
|
|
rt2800_init_rx_filter(rt2x00dev, true, 0x27, 0x19);
|
|
|
|
/*
|
|
* Set back to initial state
|
|
*/
|
|
rt2800_bbp_write(rt2x00dev, 24, 0);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 22, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 0);
|
|
rt2800_rfcsr_write(rt2x00dev, 22, rfcsr);
|
|
|
|
/*
|
|
* set BBP back to BW20
|
|
*/
|
|
rt2800_bbp_read(rt2x00dev, 4, &bbp);
|
|
rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 0);
|
|
rt2800_bbp_write(rt2x00dev, 4, bbp);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_init_rfcsr);
|
|
|
|
int rt2800_efuse_detect(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u32 reg;
|
|
|
|
rt2800_register_read(rt2x00dev, EFUSE_CTRL, ®);
|
|
|
|
return rt2x00_get_field32(reg, EFUSE_CTRL_PRESENT);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_efuse_detect);
|
|
|
|
static void rt2800_efuse_read(struct rt2x00_dev *rt2x00dev, unsigned int i)
|
|
{
|
|
u32 reg;
|
|
|
|
mutex_lock(&rt2x00dev->csr_mutex);
|
|
|
|
rt2800_register_read_lock(rt2x00dev, EFUSE_CTRL, ®);
|
|
rt2x00_set_field32(®, EFUSE_CTRL_ADDRESS_IN, i);
|
|
rt2x00_set_field32(®, EFUSE_CTRL_MODE, 0);
|
|
rt2x00_set_field32(®, EFUSE_CTRL_KICK, 1);
|
|
rt2800_register_write_lock(rt2x00dev, EFUSE_CTRL, reg);
|
|
|
|
/* Wait until the EEPROM has been loaded */
|
|
rt2800_regbusy_read(rt2x00dev, EFUSE_CTRL, EFUSE_CTRL_KICK, ®);
|
|
|
|
/* Apparently the data is read from end to start */
|
|
rt2800_register_read_lock(rt2x00dev, EFUSE_DATA3,
|
|
(u32 *)&rt2x00dev->eeprom[i]);
|
|
rt2800_register_read_lock(rt2x00dev, EFUSE_DATA2,
|
|
(u32 *)&rt2x00dev->eeprom[i + 2]);
|
|
rt2800_register_read_lock(rt2x00dev, EFUSE_DATA1,
|
|
(u32 *)&rt2x00dev->eeprom[i + 4]);
|
|
rt2800_register_read_lock(rt2x00dev, EFUSE_DATA0,
|
|
(u32 *)&rt2x00dev->eeprom[i + 6]);
|
|
|
|
mutex_unlock(&rt2x00dev->csr_mutex);
|
|
}
|
|
|
|
void rt2800_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < EEPROM_SIZE / sizeof(u16); i += 8)
|
|
rt2800_efuse_read(rt2x00dev, i);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_read_eeprom_efuse);
|
|
|
|
int rt2800_validate_eeprom(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u16 word;
|
|
u8 *mac;
|
|
u8 default_lna_gain;
|
|
|
|
/*
|
|
* Start validation of the data that has been read.
|
|
*/
|
|
mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
|
|
if (!is_valid_ether_addr(mac)) {
|
|
random_ether_addr(mac);
|
|
EEPROM(rt2x00dev, "MAC: %pM\n", mac);
|
|
}
|
|
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
|
|
if (word == 0xffff) {
|
|
rt2x00_set_field16(&word, EEPROM_ANTENNA_RXPATH, 2);
|
|
rt2x00_set_field16(&word, EEPROM_ANTENNA_TXPATH, 1);
|
|
rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2820);
|
|
rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
|
|
EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
|
|
} else if (rt2x00_rev(&rt2x00dev->chip) < RT2883_VERSION) {
|
|
/*
|
|
* There is a max of 2 RX streams for RT28x0 series
|
|
*/
|
|
if (rt2x00_get_field16(word, EEPROM_ANTENNA_RXPATH) > 2)
|
|
rt2x00_set_field16(&word, EEPROM_ANTENNA_RXPATH, 2);
|
|
rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
|
|
}
|
|
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
|
|
if (word == 0xffff) {
|
|
rt2x00_set_field16(&word, EEPROM_NIC_HW_RADIO, 0);
|
|
rt2x00_set_field16(&word, EEPROM_NIC_DYNAMIC_TX_AGC, 0);
|
|
rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
|
|
rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
|
|
rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
|
|
rt2x00_set_field16(&word, EEPROM_NIC_BW40M_SB_BG, 0);
|
|
rt2x00_set_field16(&word, EEPROM_NIC_BW40M_SB_A, 0);
|
|
rt2x00_set_field16(&word, EEPROM_NIC_WPS_PBC, 0);
|
|
rt2x00_set_field16(&word, EEPROM_NIC_BW40M_BG, 0);
|
|
rt2x00_set_field16(&word, EEPROM_NIC_BW40M_A, 0);
|
|
rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
|
|
EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
|
|
}
|
|
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
|
|
if ((word & 0x00ff) == 0x00ff) {
|
|
rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
|
|
rt2x00_set_field16(&word, EEPROM_FREQ_LED_MODE,
|
|
LED_MODE_TXRX_ACTIVITY);
|
|
rt2x00_set_field16(&word, EEPROM_FREQ_LED_POLARITY, 0);
|
|
rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
|
|
rt2x00_eeprom_write(rt2x00dev, EEPROM_LED1, 0x5555);
|
|
rt2x00_eeprom_write(rt2x00dev, EEPROM_LED2, 0x2221);
|
|
rt2x00_eeprom_write(rt2x00dev, EEPROM_LED3, 0xa9f8);
|
|
EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
|
|
}
|
|
|
|
/*
|
|
* During the LNA validation we are going to use
|
|
* lna0 as correct value. Note that EEPROM_LNA
|
|
* is never validated.
|
|
*/
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &word);
|
|
default_lna_gain = rt2x00_get_field16(word, EEPROM_LNA_A0);
|
|
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG, &word);
|
|
if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET0)) > 10)
|
|
rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET0, 0);
|
|
if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET1)) > 10)
|
|
rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET1, 0);
|
|
rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG, word);
|
|
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &word);
|
|
if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG2_OFFSET2)) > 10)
|
|
rt2x00_set_field16(&word, EEPROM_RSSI_BG2_OFFSET2, 0);
|
|
if (rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0x00 ||
|
|
rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0xff)
|
|
rt2x00_set_field16(&word, EEPROM_RSSI_BG2_LNA_A1,
|
|
default_lna_gain);
|
|
rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG2, word);
|
|
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A, &word);
|
|
if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET0)) > 10)
|
|
rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET0, 0);
|
|
if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET1)) > 10)
|
|
rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET1, 0);
|
|
rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A, word);
|
|
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &word);
|
|
if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A2_OFFSET2)) > 10)
|
|
rt2x00_set_field16(&word, EEPROM_RSSI_A2_OFFSET2, 0);
|
|
if (rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0x00 ||
|
|
rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0xff)
|
|
rt2x00_set_field16(&word, EEPROM_RSSI_A2_LNA_A2,
|
|
default_lna_gain);
|
|
rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A2, word);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_validate_eeprom);
|
|
|
|
int rt2800_init_eeprom(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u32 reg;
|
|
u16 value;
|
|
u16 eeprom;
|
|
|
|
/*
|
|
* Read EEPROM word for configuration.
|
|
*/
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
|
|
|
|
/*
|
|
* Identify RF chipset.
|
|
*/
|
|
value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
|
|
rt2800_register_read(rt2x00dev, MAC_CSR0, ®);
|
|
|
|
rt2x00_set_chip_rf(rt2x00dev, value, reg);
|
|
|
|
if (rt2x00_intf_is_usb(rt2x00dev)) {
|
|
struct rt2x00_chip *chip = &rt2x00dev->chip;
|
|
|
|
/*
|
|
* The check for rt2860 is not a typo, some rt2870 hardware
|
|
* identifies itself as rt2860 in the CSR register.
|
|
*/
|
|
if (rt2x00_check_rev(chip, 0xfff00000, 0x28600000) ||
|
|
rt2x00_check_rev(chip, 0xfff00000, 0x28700000) ||
|
|
rt2x00_check_rev(chip, 0xfff00000, 0x28800000)) {
|
|
rt2x00_set_chip_rt(rt2x00dev, RT2870);
|
|
} else if (rt2x00_check_rev(chip, 0xffff0000, 0x30700000)) {
|
|
rt2x00_set_chip_rt(rt2x00dev, RT3070);
|
|
} else {
|
|
ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
|
|
return -ENODEV;
|
|
}
|
|
}
|
|
rt2x00_print_chip(rt2x00dev);
|
|
|
|
if (!rt2x00_rf(&rt2x00dev->chip, RF2820) &&
|
|
!rt2x00_rf(&rt2x00dev->chip, RF2850) &&
|
|
!rt2x00_rf(&rt2x00dev->chip, RF2720) &&
|
|
!rt2x00_rf(&rt2x00dev->chip, RF2750) &&
|
|
!rt2x00_rf(&rt2x00dev->chip, RF3020) &&
|
|
!rt2x00_rf(&rt2x00dev->chip, RF2020) &&
|
|
!rt2x00_rf(&rt2x00dev->chip, RF3021) &&
|
|
!rt2x00_rf(&rt2x00dev->chip, RF3022)) {
|
|
ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
/*
|
|
* Identify default antenna configuration.
|
|
*/
|
|
rt2x00dev->default_ant.tx =
|
|
rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH);
|
|
rt2x00dev->default_ant.rx =
|
|
rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH);
|
|
|
|
/*
|
|
* Read frequency offset and RF programming sequence.
|
|
*/
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
|
|
rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
|
|
|
|
/*
|
|
* Read external LNA informations.
|
|
*/
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
|
|
|
|
if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
|
|
__set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
|
|
if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
|
|
__set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
|
|
|
|
/*
|
|
* Detect if this device has an hardware controlled radio.
|
|
*/
|
|
if (rt2x00_get_field16(eeprom, EEPROM_NIC_HW_RADIO))
|
|
__set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
|
|
|
|
/*
|
|
* Store led settings, for correct led behaviour.
|
|
*/
|
|
#ifdef CONFIG_RT2X00_LIB_LEDS
|
|
rt2800_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
|
|
rt2800_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
|
|
rt2800_init_led(rt2x00dev, &rt2x00dev->led_qual, LED_TYPE_QUALITY);
|
|
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &rt2x00dev->led_mcu_reg);
|
|
#endif /* CONFIG_RT2X00_LIB_LEDS */
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_init_eeprom);
|
|
|
|
/*
|
|
* RF value list for rt28x0
|
|
* Supports: 2.4 GHz (all) & 5.2 GHz (RF2850 & RF2750)
|
|
*/
|
|
static const struct rf_channel rf_vals[] = {
|
|
{ 1, 0x18402ecc, 0x184c0786, 0x1816b455, 0x1800510b },
|
|
{ 2, 0x18402ecc, 0x184c0786, 0x18168a55, 0x1800519f },
|
|
{ 3, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800518b },
|
|
{ 4, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800519f },
|
|
{ 5, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800518b },
|
|
{ 6, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800519f },
|
|
{ 7, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800518b },
|
|
{ 8, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800519f },
|
|
{ 9, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800518b },
|
|
{ 10, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800519f },
|
|
{ 11, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800518b },
|
|
{ 12, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800519f },
|
|
{ 13, 0x18402ecc, 0x184c079e, 0x18168a55, 0x1800518b },
|
|
{ 14, 0x18402ecc, 0x184c07a2, 0x18168a55, 0x18005193 },
|
|
|
|
/* 802.11 UNI / HyperLan 2 */
|
|
{ 36, 0x18402ecc, 0x184c099a, 0x18158a55, 0x180ed1a3 },
|
|
{ 38, 0x18402ecc, 0x184c099e, 0x18158a55, 0x180ed193 },
|
|
{ 40, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed183 },
|
|
{ 44, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed1a3 },
|
|
{ 46, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed18b },
|
|
{ 48, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed19b },
|
|
{ 52, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed193 },
|
|
{ 54, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed1a3 },
|
|
{ 56, 0x18402ec8, 0x184c068e, 0x18158a55, 0x180ed18b },
|
|
{ 60, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed183 },
|
|
{ 62, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed193 },
|
|
{ 64, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed1a3 },
|
|
|
|
/* 802.11 HyperLan 2 */
|
|
{ 100, 0x18402ec8, 0x184c06b2, 0x18178a55, 0x180ed783 },
|
|
{ 102, 0x18402ec8, 0x184c06b2, 0x18578a55, 0x180ed793 },
|
|
{ 104, 0x18402ec8, 0x185c06b2, 0x18578a55, 0x180ed1a3 },
|
|
{ 108, 0x18402ecc, 0x185c0a32, 0x18578a55, 0x180ed193 },
|
|
{ 110, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed183 },
|
|
{ 112, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed19b },
|
|
{ 116, 0x18402ecc, 0x184c0a3a, 0x18178a55, 0x180ed1a3 },
|
|
{ 118, 0x18402ecc, 0x184c0a3e, 0x18178a55, 0x180ed193 },
|
|
{ 120, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed183 },
|
|
{ 124, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed193 },
|
|
{ 126, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed15b },
|
|
{ 128, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed1a3 },
|
|
{ 132, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed18b },
|
|
{ 134, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed193 },
|
|
{ 136, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed19b },
|
|
{ 140, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed183 },
|
|
|
|
/* 802.11 UNII */
|
|
{ 149, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed1a7 },
|
|
{ 151, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed187 },
|
|
{ 153, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed18f },
|
|
{ 157, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed19f },
|
|
{ 159, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed1a7 },
|
|
{ 161, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed187 },
|
|
{ 165, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed197 },
|
|
{ 167, 0x18402ec4, 0x184c03d2, 0x18179855, 0x1815531f },
|
|
{ 169, 0x18402ec4, 0x184c03d2, 0x18179855, 0x18155327 },
|
|
{ 171, 0x18402ec4, 0x184c03d6, 0x18179855, 0x18155307 },
|
|
{ 173, 0x18402ec4, 0x184c03d6, 0x18179855, 0x1815530f },
|
|
|
|
/* 802.11 Japan */
|
|
{ 184, 0x15002ccc, 0x1500491e, 0x1509be55, 0x150c0a0b },
|
|
{ 188, 0x15002ccc, 0x15004922, 0x1509be55, 0x150c0a13 },
|
|
{ 192, 0x15002ccc, 0x15004926, 0x1509be55, 0x150c0a1b },
|
|
{ 196, 0x15002ccc, 0x1500492a, 0x1509be55, 0x150c0a23 },
|
|
{ 208, 0x15002ccc, 0x1500493a, 0x1509be55, 0x150c0a13 },
|
|
{ 212, 0x15002ccc, 0x1500493e, 0x1509be55, 0x150c0a1b },
|
|
{ 216, 0x15002ccc, 0x15004982, 0x1509be55, 0x150c0a23 },
|
|
};
|
|
|
|
/*
|
|
* RF value list for rt3070
|
|
* Supports: 2.4 GHz
|
|
*/
|
|
static const struct rf_channel rf_vals_302x[] = {
|
|
{1, 241, 2, 2 },
|
|
{2, 241, 2, 7 },
|
|
{3, 242, 2, 2 },
|
|
{4, 242, 2, 7 },
|
|
{5, 243, 2, 2 },
|
|
{6, 243, 2, 7 },
|
|
{7, 244, 2, 2 },
|
|
{8, 244, 2, 7 },
|
|
{9, 245, 2, 2 },
|
|
{10, 245, 2, 7 },
|
|
{11, 246, 2, 2 },
|
|
{12, 246, 2, 7 },
|
|
{13, 247, 2, 2 },
|
|
{14, 248, 2, 4 },
|
|
};
|
|
|
|
int rt2800_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
struct rt2x00_chip *chip = &rt2x00dev->chip;
|
|
struct hw_mode_spec *spec = &rt2x00dev->spec;
|
|
struct channel_info *info;
|
|
char *tx_power1;
|
|
char *tx_power2;
|
|
unsigned int i;
|
|
u16 eeprom;
|
|
|
|
/*
|
|
* Initialize all hw fields.
|
|
*/
|
|
rt2x00dev->hw->flags =
|
|
IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
|
|
IEEE80211_HW_SIGNAL_DBM |
|
|
IEEE80211_HW_SUPPORTS_PS |
|
|
IEEE80211_HW_PS_NULLFUNC_STACK;
|
|
|
|
SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
|
|
SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
|
|
rt2x00_eeprom_addr(rt2x00dev,
|
|
EEPROM_MAC_ADDR_0));
|
|
|
|
rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
|
|
|
|
/*
|
|
* Initialize hw_mode information.
|
|
*/
|
|
spec->supported_bands = SUPPORT_BAND_2GHZ;
|
|
spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
|
|
|
|
if (rt2x00_rf(chip, RF2820) ||
|
|
rt2x00_rf(chip, RF2720) ||
|
|
(rt2x00_intf_is_pci(rt2x00dev) && rt2x00_rf(chip, RF3052))) {
|
|
spec->num_channels = 14;
|
|
spec->channels = rf_vals;
|
|
} else if (rt2x00_rf(chip, RF2850) || rt2x00_rf(chip, RF2750)) {
|
|
spec->supported_bands |= SUPPORT_BAND_5GHZ;
|
|
spec->num_channels = ARRAY_SIZE(rf_vals);
|
|
spec->channels = rf_vals;
|
|
} else if (rt2x00_rf(chip, RF3020) ||
|
|
rt2x00_rf(chip, RF2020) ||
|
|
rt2x00_rf(chip, RF3021) ||
|
|
rt2x00_rf(chip, RF3022)) {
|
|
spec->num_channels = ARRAY_SIZE(rf_vals_302x);
|
|
spec->channels = rf_vals_302x;
|
|
}
|
|
|
|
/*
|
|
* Initialize HT information.
|
|
*/
|
|
if (!rt2x00_rf(chip, RF2020))
|
|
spec->ht.ht_supported = true;
|
|
else
|
|
spec->ht.ht_supported = false;
|
|
|
|
spec->ht.cap =
|
|
IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
|
|
IEEE80211_HT_CAP_GRN_FLD |
|
|
IEEE80211_HT_CAP_SGI_20 |
|
|
IEEE80211_HT_CAP_SGI_40 |
|
|
IEEE80211_HT_CAP_TX_STBC |
|
|
IEEE80211_HT_CAP_RX_STBC |
|
|
IEEE80211_HT_CAP_PSMP_SUPPORT;
|
|
spec->ht.ampdu_factor = 3;
|
|
spec->ht.ampdu_density = 4;
|
|
spec->ht.mcs.tx_params =
|
|
IEEE80211_HT_MCS_TX_DEFINED |
|
|
IEEE80211_HT_MCS_TX_RX_DIFF |
|
|
((rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH) - 1) <<
|
|
IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
|
|
|
|
switch (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH)) {
|
|
case 3:
|
|
spec->ht.mcs.rx_mask[2] = 0xff;
|
|
case 2:
|
|
spec->ht.mcs.rx_mask[1] = 0xff;
|
|
case 1:
|
|
spec->ht.mcs.rx_mask[0] = 0xff;
|
|
spec->ht.mcs.rx_mask[4] = 0x1; /* MCS32 */
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Create channel information array
|
|
*/
|
|
info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
|
|
if (!info)
|
|
return -ENOMEM;
|
|
|
|
spec->channels_info = info;
|
|
|
|
tx_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG1);
|
|
tx_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG2);
|
|
|
|
for (i = 0; i < 14; i++) {
|
|
info[i].tx_power1 = TXPOWER_G_FROM_DEV(tx_power1[i]);
|
|
info[i].tx_power2 = TXPOWER_G_FROM_DEV(tx_power2[i]);
|
|
}
|
|
|
|
if (spec->num_channels > 14) {
|
|
tx_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A1);
|
|
tx_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A2);
|
|
|
|
for (i = 14; i < spec->num_channels; i++) {
|
|
info[i].tx_power1 = TXPOWER_A_FROM_DEV(tx_power1[i]);
|
|
info[i].tx_power2 = TXPOWER_A_FROM_DEV(tx_power2[i]);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_probe_hw_mode);
|
|
|
|
/*
|
|
* IEEE80211 stack callback functions.
|
|
*/
|
|
static void rt2800_get_tkip_seq(struct ieee80211_hw *hw, u8 hw_key_idx,
|
|
u32 *iv32, u16 *iv16)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = hw->priv;
|
|
struct mac_iveiv_entry iveiv_entry;
|
|
u32 offset;
|
|
|
|
offset = MAC_IVEIV_ENTRY(hw_key_idx);
|
|
rt2800_register_multiread(rt2x00dev, offset,
|
|
&iveiv_entry, sizeof(iveiv_entry));
|
|
|
|
memcpy(&iveiv_entry.iv[0], iv16, sizeof(iv16));
|
|
memcpy(&iveiv_entry.iv[4], iv32, sizeof(iv32));
|
|
}
|
|
|
|
static int rt2800_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = hw->priv;
|
|
u32 reg;
|
|
bool enabled = (value < IEEE80211_MAX_RTS_THRESHOLD);
|
|
|
|
rt2800_register_read(rt2x00dev, TX_RTS_CFG, ®);
|
|
rt2x00_set_field32(®, TX_RTS_CFG_RTS_THRES, value);
|
|
rt2800_register_write(rt2x00dev, TX_RTS_CFG, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, CCK_PROT_CFG, ®);
|
|
rt2x00_set_field32(®, CCK_PROT_CFG_RTS_TH_EN, enabled);
|
|
rt2800_register_write(rt2x00dev, CCK_PROT_CFG, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, ®);
|
|
rt2x00_set_field32(®, OFDM_PROT_CFG_RTS_TH_EN, enabled);
|
|
rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, MM20_PROT_CFG, ®);
|
|
rt2x00_set_field32(®, MM20_PROT_CFG_RTS_TH_EN, enabled);
|
|
rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, MM40_PROT_CFG, ®);
|
|
rt2x00_set_field32(®, MM40_PROT_CFG_RTS_TH_EN, enabled);
|
|
rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, GF20_PROT_CFG, ®);
|
|
rt2x00_set_field32(®, GF20_PROT_CFG_RTS_TH_EN, enabled);
|
|
rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, GF40_PROT_CFG, ®);
|
|
rt2x00_set_field32(®, GF40_PROT_CFG_RTS_TH_EN, enabled);
|
|
rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rt2800_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
|
|
const struct ieee80211_tx_queue_params *params)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = hw->priv;
|
|
struct data_queue *queue;
|
|
struct rt2x00_field32 field;
|
|
int retval;
|
|
u32 reg;
|
|
u32 offset;
|
|
|
|
/*
|
|
* First pass the configuration through rt2x00lib, that will
|
|
* update the queue settings and validate the input. After that
|
|
* we are free to update the registers based on the value
|
|
* in the queue parameter.
|
|
*/
|
|
retval = rt2x00mac_conf_tx(hw, queue_idx, params);
|
|
if (retval)
|
|
return retval;
|
|
|
|
/*
|
|
* We only need to perform additional register initialization
|
|
* for WMM queues/
|
|
*/
|
|
if (queue_idx >= 4)
|
|
return 0;
|
|
|
|
queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
|
|
|
|
/* Update WMM TXOP register */
|
|
offset = WMM_TXOP0_CFG + (sizeof(u32) * (!!(queue_idx & 2)));
|
|
field.bit_offset = (queue_idx & 1) * 16;
|
|
field.bit_mask = 0xffff << field.bit_offset;
|
|
|
|
rt2800_register_read(rt2x00dev, offset, ®);
|
|
rt2x00_set_field32(®, field, queue->txop);
|
|
rt2800_register_write(rt2x00dev, offset, reg);
|
|
|
|
/* Update WMM registers */
|
|
field.bit_offset = queue_idx * 4;
|
|
field.bit_mask = 0xf << field.bit_offset;
|
|
|
|
rt2800_register_read(rt2x00dev, WMM_AIFSN_CFG, ®);
|
|
rt2x00_set_field32(®, field, queue->aifs);
|
|
rt2800_register_write(rt2x00dev, WMM_AIFSN_CFG, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, WMM_CWMIN_CFG, ®);
|
|
rt2x00_set_field32(®, field, queue->cw_min);
|
|
rt2800_register_write(rt2x00dev, WMM_CWMIN_CFG, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, WMM_CWMAX_CFG, ®);
|
|
rt2x00_set_field32(®, field, queue->cw_max);
|
|
rt2800_register_write(rt2x00dev, WMM_CWMAX_CFG, reg);
|
|
|
|
/* Update EDCA registers */
|
|
offset = EDCA_AC0_CFG + (sizeof(u32) * queue_idx);
|
|
|
|
rt2800_register_read(rt2x00dev, offset, ®);
|
|
rt2x00_set_field32(®, EDCA_AC0_CFG_TX_OP, queue->txop);
|
|
rt2x00_set_field32(®, EDCA_AC0_CFG_AIFSN, queue->aifs);
|
|
rt2x00_set_field32(®, EDCA_AC0_CFG_CWMIN, queue->cw_min);
|
|
rt2x00_set_field32(®, EDCA_AC0_CFG_CWMAX, queue->cw_max);
|
|
rt2800_register_write(rt2x00dev, offset, reg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u64 rt2800_get_tsf(struct ieee80211_hw *hw)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = hw->priv;
|
|
u64 tsf;
|
|
u32 reg;
|
|
|
|
rt2800_register_read(rt2x00dev, TSF_TIMER_DW1, ®);
|
|
tsf = (u64) rt2x00_get_field32(reg, TSF_TIMER_DW1_HIGH_WORD) << 32;
|
|
rt2800_register_read(rt2x00dev, TSF_TIMER_DW0, ®);
|
|
tsf |= rt2x00_get_field32(reg, TSF_TIMER_DW0_LOW_WORD);
|
|
|
|
return tsf;
|
|
}
|
|
|
|
const struct ieee80211_ops rt2800_mac80211_ops = {
|
|
.tx = rt2x00mac_tx,
|
|
.start = rt2x00mac_start,
|
|
.stop = rt2x00mac_stop,
|
|
.add_interface = rt2x00mac_add_interface,
|
|
.remove_interface = rt2x00mac_remove_interface,
|
|
.config = rt2x00mac_config,
|
|
.configure_filter = rt2x00mac_configure_filter,
|
|
.set_tim = rt2x00mac_set_tim,
|
|
.set_key = rt2x00mac_set_key,
|
|
.get_stats = rt2x00mac_get_stats,
|
|
.get_tkip_seq = rt2800_get_tkip_seq,
|
|
.set_rts_threshold = rt2800_set_rts_threshold,
|
|
.bss_info_changed = rt2x00mac_bss_info_changed,
|
|
.conf_tx = rt2800_conf_tx,
|
|
.get_tx_stats = rt2x00mac_get_tx_stats,
|
|
.get_tsf = rt2800_get_tsf,
|
|
.rfkill_poll = rt2x00mac_rfkill_poll,
|
|
};
|
|
EXPORT_SYMBOL_GPL(rt2800_mac80211_ops);
|