Now that lazy TLB suppresses all flush IPIs (as opposed to all but the first), there's no need to leave_mm() when going idle. This means we can get rid of the rcuidle hack in switch_mm_irqs_off() and we can unexport leave_mm(). This also removes acpi_unlazy_tlb() from the x86 and ia64 headers, since it has no callers any more. Signed-off-by: Andy Lutomirski <luto@kernel.org> Reviewed-by: Nadav Amit <nadav.amit@gmail.com> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/03c699cfd6021e467be650d6b73deaccfe4b4bd7.1498751203.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
503 lines
14 KiB
C
503 lines
14 KiB
C
#include <linux/init.h>
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/export.h>
|
|
#include <linux/cpu.h>
|
|
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/cache.h>
|
|
#include <asm/apic.h>
|
|
#include <asm/uv/uv.h>
|
|
#include <linux/debugfs.h>
|
|
|
|
/*
|
|
* TLB flushing, formerly SMP-only
|
|
* c/o Linus Torvalds.
|
|
*
|
|
* These mean you can really definitely utterly forget about
|
|
* writing to user space from interrupts. (Its not allowed anyway).
|
|
*
|
|
* Optimizations Manfred Spraul <manfred@colorfullife.com>
|
|
*
|
|
* More scalable flush, from Andi Kleen
|
|
*
|
|
* Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
|
|
*/
|
|
|
|
atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
|
|
|
|
void leave_mm(int cpu)
|
|
{
|
|
struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
|
|
|
|
/*
|
|
* It's plausible that we're in lazy TLB mode while our mm is init_mm.
|
|
* If so, our callers still expect us to flush the TLB, but there
|
|
* aren't any user TLB entries in init_mm to worry about.
|
|
*
|
|
* This needs to happen before any other sanity checks due to
|
|
* intel_idle's shenanigans.
|
|
*/
|
|
if (loaded_mm == &init_mm)
|
|
return;
|
|
|
|
/* Warn if we're not lazy. */
|
|
WARN_ON(cpumask_test_cpu(smp_processor_id(), mm_cpumask(loaded_mm)));
|
|
|
|
switch_mm(NULL, &init_mm, NULL);
|
|
}
|
|
|
|
void switch_mm(struct mm_struct *prev, struct mm_struct *next,
|
|
struct task_struct *tsk)
|
|
{
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
switch_mm_irqs_off(prev, next, tsk);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
|
|
struct task_struct *tsk)
|
|
{
|
|
struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
|
|
unsigned cpu = smp_processor_id();
|
|
u64 next_tlb_gen;
|
|
|
|
/*
|
|
* NB: The scheduler will call us with prev == next when switching
|
|
* from lazy TLB mode to normal mode if active_mm isn't changing.
|
|
* When this happens, we don't assume that CR3 (and hence
|
|
* cpu_tlbstate.loaded_mm) matches next.
|
|
*
|
|
* NB: leave_mm() calls us with prev == NULL and tsk == NULL.
|
|
*/
|
|
|
|
/* We don't want flush_tlb_func_* to run concurrently with us. */
|
|
if (IS_ENABLED(CONFIG_PROVE_LOCKING))
|
|
WARN_ON_ONCE(!irqs_disabled());
|
|
|
|
/*
|
|
* Verify that CR3 is what we think it is. This will catch
|
|
* hypothetical buggy code that directly switches to swapper_pg_dir
|
|
* without going through leave_mm() / switch_mm_irqs_off().
|
|
*/
|
|
VM_BUG_ON(read_cr3_pa() != __pa(real_prev->pgd));
|
|
|
|
if (real_prev == next) {
|
|
VM_BUG_ON(this_cpu_read(cpu_tlbstate.ctxs[0].ctx_id) !=
|
|
next->context.ctx_id);
|
|
|
|
if (cpumask_test_cpu(cpu, mm_cpumask(next))) {
|
|
/*
|
|
* There's nothing to do: we weren't lazy, and we
|
|
* aren't changing our mm. We don't need to flush
|
|
* anything, nor do we need to update CR3, CR4, or
|
|
* LDTR.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
/* Resume remote flushes and then read tlb_gen. */
|
|
cpumask_set_cpu(cpu, mm_cpumask(next));
|
|
next_tlb_gen = atomic64_read(&next->context.tlb_gen);
|
|
|
|
if (this_cpu_read(cpu_tlbstate.ctxs[0].tlb_gen) < next_tlb_gen) {
|
|
/*
|
|
* Ideally, we'd have a flush_tlb() variant that
|
|
* takes the known CR3 value as input. This would
|
|
* be faster on Xen PV and on hypothetical CPUs
|
|
* on which INVPCID is fast.
|
|
*/
|
|
this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen,
|
|
next_tlb_gen);
|
|
write_cr3(__pa(next->pgd));
|
|
trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH,
|
|
TLB_FLUSH_ALL);
|
|
}
|
|
|
|
/*
|
|
* We just exited lazy mode, which means that CR4 and/or LDTR
|
|
* may be stale. (Changes to the required CR4 and LDTR states
|
|
* are not reflected in tlb_gen.)
|
|
*/
|
|
} else {
|
|
VM_BUG_ON(this_cpu_read(cpu_tlbstate.ctxs[0].ctx_id) ==
|
|
next->context.ctx_id);
|
|
|
|
if (IS_ENABLED(CONFIG_VMAP_STACK)) {
|
|
/*
|
|
* If our current stack is in vmalloc space and isn't
|
|
* mapped in the new pgd, we'll double-fault. Forcibly
|
|
* map it.
|
|
*/
|
|
unsigned int index = pgd_index(current_stack_pointer());
|
|
pgd_t *pgd = next->pgd + index;
|
|
|
|
if (unlikely(pgd_none(*pgd)))
|
|
set_pgd(pgd, init_mm.pgd[index]);
|
|
}
|
|
|
|
/* Stop remote flushes for the previous mm */
|
|
if (cpumask_test_cpu(cpu, mm_cpumask(real_prev)))
|
|
cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
|
|
|
|
VM_WARN_ON_ONCE(cpumask_test_cpu(cpu, mm_cpumask(next)));
|
|
|
|
/*
|
|
* Start remote flushes and then read tlb_gen.
|
|
*/
|
|
cpumask_set_cpu(cpu, mm_cpumask(next));
|
|
next_tlb_gen = atomic64_read(&next->context.tlb_gen);
|
|
|
|
this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, next->context.ctx_id);
|
|
this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, next_tlb_gen);
|
|
this_cpu_write(cpu_tlbstate.loaded_mm, next);
|
|
write_cr3(__pa(next->pgd));
|
|
|
|
trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
|
|
}
|
|
|
|
load_mm_cr4(next);
|
|
switch_ldt(real_prev, next);
|
|
}
|
|
|
|
/*
|
|
* flush_tlb_func_common()'s memory ordering requirement is that any
|
|
* TLB fills that happen after we flush the TLB are ordered after we
|
|
* read active_mm's tlb_gen. We don't need any explicit barriers
|
|
* because all x86 flush operations are serializing and the
|
|
* atomic64_read operation won't be reordered by the compiler.
|
|
*/
|
|
static void flush_tlb_func_common(const struct flush_tlb_info *f,
|
|
bool local, enum tlb_flush_reason reason)
|
|
{
|
|
/*
|
|
* We have three different tlb_gen values in here. They are:
|
|
*
|
|
* - mm_tlb_gen: the latest generation.
|
|
* - local_tlb_gen: the generation that this CPU has already caught
|
|
* up to.
|
|
* - f->new_tlb_gen: the generation that the requester of the flush
|
|
* wants us to catch up to.
|
|
*/
|
|
struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
|
|
u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
|
|
u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[0].tlb_gen);
|
|
|
|
/* This code cannot presently handle being reentered. */
|
|
VM_WARN_ON(!irqs_disabled());
|
|
|
|
VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[0].ctx_id) !=
|
|
loaded_mm->context.ctx_id);
|
|
|
|
if (!cpumask_test_cpu(smp_processor_id(), mm_cpumask(loaded_mm))) {
|
|
/*
|
|
* We're in lazy mode -- don't flush. We can get here on
|
|
* remote flushes due to races and on local flushes if a
|
|
* kernel thread coincidentally flushes the mm it's lazily
|
|
* still using.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
if (unlikely(local_tlb_gen == mm_tlb_gen)) {
|
|
/*
|
|
* There's nothing to do: we're already up to date. This can
|
|
* happen if two concurrent flushes happen -- the first flush to
|
|
* be handled can catch us all the way up, leaving no work for
|
|
* the second flush.
|
|
*/
|
|
trace_tlb_flush(reason, 0);
|
|
return;
|
|
}
|
|
|
|
WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
|
|
WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
|
|
|
|
/*
|
|
* If we get to this point, we know that our TLB is out of date.
|
|
* This does not strictly imply that we need to flush (it's
|
|
* possible that f->new_tlb_gen <= local_tlb_gen), but we're
|
|
* going to need to flush in the very near future, so we might
|
|
* as well get it over with.
|
|
*
|
|
* The only question is whether to do a full or partial flush.
|
|
*
|
|
* We do a partial flush if requested and two extra conditions
|
|
* are met:
|
|
*
|
|
* 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that
|
|
* we've always done all needed flushes to catch up to
|
|
* local_tlb_gen. If, for example, local_tlb_gen == 2 and
|
|
* f->new_tlb_gen == 3, then we know that the flush needed to bring
|
|
* us up to date for tlb_gen 3 is the partial flush we're
|
|
* processing.
|
|
*
|
|
* As an example of why this check is needed, suppose that there
|
|
* are two concurrent flushes. The first is a full flush that
|
|
* changes context.tlb_gen from 1 to 2. The second is a partial
|
|
* flush that changes context.tlb_gen from 2 to 3. If they get
|
|
* processed on this CPU in reverse order, we'll see
|
|
* local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
|
|
* If we were to use __flush_tlb_single() and set local_tlb_gen to
|
|
* 3, we'd be break the invariant: we'd update local_tlb_gen above
|
|
* 1 without the full flush that's needed for tlb_gen 2.
|
|
*
|
|
* 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimiation.
|
|
* Partial TLB flushes are not all that much cheaper than full TLB
|
|
* flushes, so it seems unlikely that it would be a performance win
|
|
* to do a partial flush if that won't bring our TLB fully up to
|
|
* date. By doing a full flush instead, we can increase
|
|
* local_tlb_gen all the way to mm_tlb_gen and we can probably
|
|
* avoid another flush in the very near future.
|
|
*/
|
|
if (f->end != TLB_FLUSH_ALL &&
|
|
f->new_tlb_gen == local_tlb_gen + 1 &&
|
|
f->new_tlb_gen == mm_tlb_gen) {
|
|
/* Partial flush */
|
|
unsigned long addr;
|
|
unsigned long nr_pages = (f->end - f->start) >> PAGE_SHIFT;
|
|
|
|
addr = f->start;
|
|
while (addr < f->end) {
|
|
__flush_tlb_single(addr);
|
|
addr += PAGE_SIZE;
|
|
}
|
|
if (local)
|
|
count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_pages);
|
|
trace_tlb_flush(reason, nr_pages);
|
|
} else {
|
|
/* Full flush. */
|
|
local_flush_tlb();
|
|
if (local)
|
|
count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
|
|
trace_tlb_flush(reason, TLB_FLUSH_ALL);
|
|
}
|
|
|
|
/* Both paths above update our state to mm_tlb_gen. */
|
|
this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, mm_tlb_gen);
|
|
}
|
|
|
|
static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason)
|
|
{
|
|
const struct flush_tlb_info *f = info;
|
|
|
|
flush_tlb_func_common(f, true, reason);
|
|
}
|
|
|
|
static void flush_tlb_func_remote(void *info)
|
|
{
|
|
const struct flush_tlb_info *f = info;
|
|
|
|
inc_irq_stat(irq_tlb_count);
|
|
|
|
if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
|
|
return;
|
|
|
|
count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
|
|
flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
|
|
}
|
|
|
|
void native_flush_tlb_others(const struct cpumask *cpumask,
|
|
const struct flush_tlb_info *info)
|
|
{
|
|
count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
|
|
if (info->end == TLB_FLUSH_ALL)
|
|
trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
|
|
else
|
|
trace_tlb_flush(TLB_REMOTE_SEND_IPI,
|
|
(info->end - info->start) >> PAGE_SHIFT);
|
|
|
|
if (is_uv_system()) {
|
|
/*
|
|
* This whole special case is confused. UV has a "Broadcast
|
|
* Assist Unit", which seems to be a fancy way to send IPIs.
|
|
* Back when x86 used an explicit TLB flush IPI, UV was
|
|
* optimized to use its own mechanism. These days, x86 uses
|
|
* smp_call_function_many(), but UV still uses a manual IPI,
|
|
* and that IPI's action is out of date -- it does a manual
|
|
* flush instead of calling flush_tlb_func_remote(). This
|
|
* means that the percpu tlb_gen variables won't be updated
|
|
* and we'll do pointless flushes on future context switches.
|
|
*
|
|
* Rather than hooking native_flush_tlb_others() here, I think
|
|
* that UV should be updated so that smp_call_function_many(),
|
|
* etc, are optimal on UV.
|
|
*/
|
|
unsigned int cpu;
|
|
|
|
cpu = smp_processor_id();
|
|
cpumask = uv_flush_tlb_others(cpumask, info);
|
|
if (cpumask)
|
|
smp_call_function_many(cpumask, flush_tlb_func_remote,
|
|
(void *)info, 1);
|
|
return;
|
|
}
|
|
smp_call_function_many(cpumask, flush_tlb_func_remote,
|
|
(void *)info, 1);
|
|
}
|
|
|
|
/*
|
|
* See Documentation/x86/tlb.txt for details. We choose 33
|
|
* because it is large enough to cover the vast majority (at
|
|
* least 95%) of allocations, and is small enough that we are
|
|
* confident it will not cause too much overhead. Each single
|
|
* flush is about 100 ns, so this caps the maximum overhead at
|
|
* _about_ 3,000 ns.
|
|
*
|
|
* This is in units of pages.
|
|
*/
|
|
static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
|
|
|
|
void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
|
|
unsigned long end, unsigned long vmflag)
|
|
{
|
|
int cpu;
|
|
|
|
struct flush_tlb_info info = {
|
|
.mm = mm,
|
|
};
|
|
|
|
cpu = get_cpu();
|
|
|
|
/* This is also a barrier that synchronizes with switch_mm(). */
|
|
info.new_tlb_gen = inc_mm_tlb_gen(mm);
|
|
|
|
/* Should we flush just the requested range? */
|
|
if ((end != TLB_FLUSH_ALL) &&
|
|
!(vmflag & VM_HUGETLB) &&
|
|
((end - start) >> PAGE_SHIFT) <= tlb_single_page_flush_ceiling) {
|
|
info.start = start;
|
|
info.end = end;
|
|
} else {
|
|
info.start = 0UL;
|
|
info.end = TLB_FLUSH_ALL;
|
|
}
|
|
|
|
if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
|
|
VM_WARN_ON(irqs_disabled());
|
|
local_irq_disable();
|
|
flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN);
|
|
local_irq_enable();
|
|
}
|
|
|
|
if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
|
|
flush_tlb_others(mm_cpumask(mm), &info);
|
|
|
|
put_cpu();
|
|
}
|
|
|
|
|
|
static void do_flush_tlb_all(void *info)
|
|
{
|
|
count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
|
|
__flush_tlb_all();
|
|
}
|
|
|
|
void flush_tlb_all(void)
|
|
{
|
|
count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
|
|
on_each_cpu(do_flush_tlb_all, NULL, 1);
|
|
}
|
|
|
|
static void do_kernel_range_flush(void *info)
|
|
{
|
|
struct flush_tlb_info *f = info;
|
|
unsigned long addr;
|
|
|
|
/* flush range by one by one 'invlpg' */
|
|
for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
|
|
__flush_tlb_single(addr);
|
|
}
|
|
|
|
void flush_tlb_kernel_range(unsigned long start, unsigned long end)
|
|
{
|
|
|
|
/* Balance as user space task's flush, a bit conservative */
|
|
if (end == TLB_FLUSH_ALL ||
|
|
(end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
|
|
on_each_cpu(do_flush_tlb_all, NULL, 1);
|
|
} else {
|
|
struct flush_tlb_info info;
|
|
info.start = start;
|
|
info.end = end;
|
|
on_each_cpu(do_kernel_range_flush, &info, 1);
|
|
}
|
|
}
|
|
|
|
void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
|
|
{
|
|
struct flush_tlb_info info = {
|
|
.mm = NULL,
|
|
.start = 0UL,
|
|
.end = TLB_FLUSH_ALL,
|
|
};
|
|
|
|
int cpu = get_cpu();
|
|
|
|
if (cpumask_test_cpu(cpu, &batch->cpumask)) {
|
|
VM_WARN_ON(irqs_disabled());
|
|
local_irq_disable();
|
|
flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN);
|
|
local_irq_enable();
|
|
}
|
|
|
|
if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
|
|
flush_tlb_others(&batch->cpumask, &info);
|
|
|
|
cpumask_clear(&batch->cpumask);
|
|
|
|
put_cpu();
|
|
}
|
|
|
|
static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
char buf[32];
|
|
unsigned int len;
|
|
|
|
len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
|
|
return simple_read_from_buffer(user_buf, count, ppos, buf, len);
|
|
}
|
|
|
|
static ssize_t tlbflush_write_file(struct file *file,
|
|
const char __user *user_buf, size_t count, loff_t *ppos)
|
|
{
|
|
char buf[32];
|
|
ssize_t len;
|
|
int ceiling;
|
|
|
|
len = min(count, sizeof(buf) - 1);
|
|
if (copy_from_user(buf, user_buf, len))
|
|
return -EFAULT;
|
|
|
|
buf[len] = '\0';
|
|
if (kstrtoint(buf, 0, &ceiling))
|
|
return -EINVAL;
|
|
|
|
if (ceiling < 0)
|
|
return -EINVAL;
|
|
|
|
tlb_single_page_flush_ceiling = ceiling;
|
|
return count;
|
|
}
|
|
|
|
static const struct file_operations fops_tlbflush = {
|
|
.read = tlbflush_read_file,
|
|
.write = tlbflush_write_file,
|
|
.llseek = default_llseek,
|
|
};
|
|
|
|
static int __init create_tlb_single_page_flush_ceiling(void)
|
|
{
|
|
debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
|
|
arch_debugfs_dir, NULL, &fops_tlbflush);
|
|
return 0;
|
|
}
|
|
late_initcall(create_tlb_single_page_flush_ceiling);
|