linux/drivers/net/wireless/rt2x00/rt61pci.c
Stanislaw Gruszka bc0df75aea rt2x00: restore original beaconing state
After changing local per interface beacon setting restore original
global beaconing state.

Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2014-04-22 15:06:31 -04:00

3115 lines
94 KiB
C

/*
Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
<http://rt2x00.serialmonkey.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/*
Module: rt61pci
Abstract: rt61pci device specific routines.
Supported chipsets: RT2561, RT2561s, RT2661.
*/
#include <linux/crc-itu-t.h>
#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/pci.h>
#include <linux/eeprom_93cx6.h>
#include "rt2x00.h"
#include "rt2x00mmio.h"
#include "rt2x00pci.h"
#include "rt61pci.h"
/*
* Allow hardware encryption to be disabled.
*/
static bool modparam_nohwcrypt = false;
module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
/*
* Register access.
* BBP and RF register require indirect register access,
* and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
* These indirect registers work with busy bits,
* and we will try maximal REGISTER_BUSY_COUNT times to access
* the register while taking a REGISTER_BUSY_DELAY us delay
* between each attempt. When the busy bit is still set at that time,
* the access attempt is considered to have failed,
* and we will print an error.
*/
#define WAIT_FOR_BBP(__dev, __reg) \
rt2x00mmio_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
#define WAIT_FOR_RF(__dev, __reg) \
rt2x00mmio_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
#define WAIT_FOR_MCU(__dev, __reg) \
rt2x00mmio_regbusy_read((__dev), H2M_MAILBOX_CSR, \
H2M_MAILBOX_CSR_OWNER, (__reg))
static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
const unsigned int word, const u8 value)
{
u32 reg;
mutex_lock(&rt2x00dev->csr_mutex);
/*
* Wait until the BBP becomes available, afterwards we
* can safely write the new data into the register.
*/
if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
reg = 0;
rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg);
}
mutex_unlock(&rt2x00dev->csr_mutex);
}
static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
const unsigned int word, u8 *value)
{
u32 reg;
mutex_lock(&rt2x00dev->csr_mutex);
/*
* Wait until the BBP becomes available, afterwards we
* can safely write the read request into the register.
* After the data has been written, we wait until hardware
* returns the correct value, if at any time the register
* doesn't become available in time, reg will be 0xffffffff
* which means we return 0xff to the caller.
*/
if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
reg = 0;
rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg);
WAIT_FOR_BBP(rt2x00dev, &reg);
}
*value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
mutex_unlock(&rt2x00dev->csr_mutex);
}
static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
const unsigned int word, const u32 value)
{
u32 reg;
mutex_lock(&rt2x00dev->csr_mutex);
/*
* Wait until the RF becomes available, afterwards we
* can safely write the new data into the register.
*/
if (WAIT_FOR_RF(rt2x00dev, &reg)) {
reg = 0;
rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
rt2x00mmio_register_write(rt2x00dev, PHY_CSR4, reg);
rt2x00_rf_write(rt2x00dev, word, value);
}
mutex_unlock(&rt2x00dev->csr_mutex);
}
static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
const u8 command, const u8 token,
const u8 arg0, const u8 arg1)
{
u32 reg;
mutex_lock(&rt2x00dev->csr_mutex);
/*
* Wait until the MCU becomes available, afterwards we
* can safely write the new data into the register.
*/
if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
rt2x00mmio_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, reg);
}
mutex_unlock(&rt2x00dev->csr_mutex);
}
static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
{
struct rt2x00_dev *rt2x00dev = eeprom->data;
u32 reg;
rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR, &reg);
eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
eeprom->reg_data_clock =
!!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
eeprom->reg_chip_select =
!!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
}
static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
{
struct rt2x00_dev *rt2x00dev = eeprom->data;
u32 reg = 0;
rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
!!eeprom->reg_data_clock);
rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
!!eeprom->reg_chip_select);
rt2x00mmio_register_write(rt2x00dev, E2PROM_CSR, reg);
}
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
static const struct rt2x00debug rt61pci_rt2x00debug = {
.owner = THIS_MODULE,
.csr = {
.read = rt2x00mmio_register_read,
.write = rt2x00mmio_register_write,
.flags = RT2X00DEBUGFS_OFFSET,
.word_base = CSR_REG_BASE,
.word_size = sizeof(u32),
.word_count = CSR_REG_SIZE / sizeof(u32),
},
.eeprom = {
.read = rt2x00_eeprom_read,
.write = rt2x00_eeprom_write,
.word_base = EEPROM_BASE,
.word_size = sizeof(u16),
.word_count = EEPROM_SIZE / sizeof(u16),
},
.bbp = {
.read = rt61pci_bbp_read,
.write = rt61pci_bbp_write,
.word_base = BBP_BASE,
.word_size = sizeof(u8),
.word_count = BBP_SIZE / sizeof(u8),
},
.rf = {
.read = rt2x00_rf_read,
.write = rt61pci_rf_write,
.word_base = RF_BASE,
.word_size = sizeof(u32),
.word_count = RF_SIZE / sizeof(u32),
},
};
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
{
u32 reg;
rt2x00mmio_register_read(rt2x00dev, MAC_CSR13, &reg);
return rt2x00_get_field32(reg, MAC_CSR13_VAL5);
}
#ifdef CONFIG_RT2X00_LIB_LEDS
static void rt61pci_brightness_set(struct led_classdev *led_cdev,
enum led_brightness brightness)
{
struct rt2x00_led *led =
container_of(led_cdev, struct rt2x00_led, led_dev);
unsigned int enabled = brightness != LED_OFF;
unsigned int a_mode =
(enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
unsigned int bg_mode =
(enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
if (led->type == LED_TYPE_RADIO) {
rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
MCU_LEDCS_RADIO_STATUS, enabled);
rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
(led->rt2x00dev->led_mcu_reg & 0xff),
((led->rt2x00dev->led_mcu_reg >> 8)));
} else if (led->type == LED_TYPE_ASSOC) {
rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
MCU_LEDCS_LINK_BG_STATUS, bg_mode);
rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
MCU_LEDCS_LINK_A_STATUS, a_mode);
rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
(led->rt2x00dev->led_mcu_reg & 0xff),
((led->rt2x00dev->led_mcu_reg >> 8)));
} else if (led->type == LED_TYPE_QUALITY) {
/*
* The brightness is divided into 6 levels (0 - 5),
* this means we need to convert the brightness
* argument into the matching level within that range.
*/
rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
brightness / (LED_FULL / 6), 0);
}
}
static int rt61pci_blink_set(struct led_classdev *led_cdev,
unsigned long *delay_on,
unsigned long *delay_off)
{
struct rt2x00_led *led =
container_of(led_cdev, struct rt2x00_led, led_dev);
u32 reg;
rt2x00mmio_register_read(led->rt2x00dev, MAC_CSR14, &reg);
rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
rt2x00mmio_register_write(led->rt2x00dev, MAC_CSR14, reg);
return 0;
}
static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
struct rt2x00_led *led,
enum led_type type)
{
led->rt2x00dev = rt2x00dev;
led->type = type;
led->led_dev.brightness_set = rt61pci_brightness_set;
led->led_dev.blink_set = rt61pci_blink_set;
led->flags = LED_INITIALIZED;
}
#endif /* CONFIG_RT2X00_LIB_LEDS */
/*
* Configuration handlers.
*/
static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
struct rt2x00lib_crypto *crypto,
struct ieee80211_key_conf *key)
{
struct hw_key_entry key_entry;
struct rt2x00_field32 field;
u32 mask;
u32 reg;
if (crypto->cmd == SET_KEY) {
/*
* rt2x00lib can't determine the correct free
* key_idx for shared keys. We have 1 register
* with key valid bits. The goal is simple, read
* the register, if that is full we have no slots
* left.
* Note that each BSS is allowed to have up to 4
* shared keys, so put a mask over the allowed
* entries.
*/
mask = (0xf << crypto->bssidx);
rt2x00mmio_register_read(rt2x00dev, SEC_CSR0, &reg);
reg &= mask;
if (reg && reg == mask)
return -ENOSPC;
key->hw_key_idx += reg ? ffz(reg) : 0;
/*
* Upload key to hardware
*/
memcpy(key_entry.key, crypto->key,
sizeof(key_entry.key));
memcpy(key_entry.tx_mic, crypto->tx_mic,
sizeof(key_entry.tx_mic));
memcpy(key_entry.rx_mic, crypto->rx_mic,
sizeof(key_entry.rx_mic));
reg = SHARED_KEY_ENTRY(key->hw_key_idx);
rt2x00mmio_register_multiwrite(rt2x00dev, reg,
&key_entry, sizeof(key_entry));
/*
* The cipher types are stored over 2 registers.
* bssidx 0 and 1 keys are stored in SEC_CSR1 and
* bssidx 1 and 2 keys are stored in SEC_CSR5.
* Using the correct defines correctly will cause overhead,
* so just calculate the correct offset.
*/
if (key->hw_key_idx < 8) {
field.bit_offset = (3 * key->hw_key_idx);
field.bit_mask = 0x7 << field.bit_offset;
rt2x00mmio_register_read(rt2x00dev, SEC_CSR1, &reg);
rt2x00_set_field32(&reg, field, crypto->cipher);
rt2x00mmio_register_write(rt2x00dev, SEC_CSR1, reg);
} else {
field.bit_offset = (3 * (key->hw_key_idx - 8));
field.bit_mask = 0x7 << field.bit_offset;
rt2x00mmio_register_read(rt2x00dev, SEC_CSR5, &reg);
rt2x00_set_field32(&reg, field, crypto->cipher);
rt2x00mmio_register_write(rt2x00dev, SEC_CSR5, reg);
}
/*
* The driver does not support the IV/EIV generation
* in hardware. However it doesn't support the IV/EIV
* inside the ieee80211 frame either, but requires it
* to be provided separately for the descriptor.
* rt2x00lib will cut the IV/EIV data out of all frames
* given to us by mac80211, but we must tell mac80211
* to generate the IV/EIV data.
*/
key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
}
/*
* SEC_CSR0 contains only single-bit fields to indicate
* a particular key is valid. Because using the FIELD32()
* defines directly will cause a lot of overhead, we use
* a calculation to determine the correct bit directly.
*/
mask = 1 << key->hw_key_idx;
rt2x00mmio_register_read(rt2x00dev, SEC_CSR0, &reg);
if (crypto->cmd == SET_KEY)
reg |= mask;
else if (crypto->cmd == DISABLE_KEY)
reg &= ~mask;
rt2x00mmio_register_write(rt2x00dev, SEC_CSR0, reg);
return 0;
}
static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
struct rt2x00lib_crypto *crypto,
struct ieee80211_key_conf *key)
{
struct hw_pairwise_ta_entry addr_entry;
struct hw_key_entry key_entry;
u32 mask;
u32 reg;
if (crypto->cmd == SET_KEY) {
/*
* rt2x00lib can't determine the correct free
* key_idx for pairwise keys. We have 2 registers
* with key valid bits. The goal is simple: read
* the first register. If that is full, move to
* the next register.
* When both registers are full, we drop the key.
* Otherwise, we use the first invalid entry.
*/
rt2x00mmio_register_read(rt2x00dev, SEC_CSR2, &reg);
if (reg && reg == ~0) {
key->hw_key_idx = 32;
rt2x00mmio_register_read(rt2x00dev, SEC_CSR3, &reg);
if (reg && reg == ~0)
return -ENOSPC;
}
key->hw_key_idx += reg ? ffz(reg) : 0;
/*
* Upload key to hardware
*/
memcpy(key_entry.key, crypto->key,
sizeof(key_entry.key));
memcpy(key_entry.tx_mic, crypto->tx_mic,
sizeof(key_entry.tx_mic));
memcpy(key_entry.rx_mic, crypto->rx_mic,
sizeof(key_entry.rx_mic));
memset(&addr_entry, 0, sizeof(addr_entry));
memcpy(&addr_entry, crypto->address, ETH_ALEN);
addr_entry.cipher = crypto->cipher;
reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
rt2x00mmio_register_multiwrite(rt2x00dev, reg,
&key_entry, sizeof(key_entry));
reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
rt2x00mmio_register_multiwrite(rt2x00dev, reg,
&addr_entry, sizeof(addr_entry));
/*
* Enable pairwise lookup table for given BSS idx.
* Without this, received frames will not be decrypted
* by the hardware.
*/
rt2x00mmio_register_read(rt2x00dev, SEC_CSR4, &reg);
reg |= (1 << crypto->bssidx);
rt2x00mmio_register_write(rt2x00dev, SEC_CSR4, reg);
/*
* The driver does not support the IV/EIV generation
* in hardware. However it doesn't support the IV/EIV
* inside the ieee80211 frame either, but requires it
* to be provided separately for the descriptor.
* rt2x00lib will cut the IV/EIV data out of all frames
* given to us by mac80211, but we must tell mac80211
* to generate the IV/EIV data.
*/
key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
}
/*
* SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
* a particular key is valid. Because using the FIELD32()
* defines directly will cause a lot of overhead, we use
* a calculation to determine the correct bit directly.
*/
if (key->hw_key_idx < 32) {
mask = 1 << key->hw_key_idx;
rt2x00mmio_register_read(rt2x00dev, SEC_CSR2, &reg);
if (crypto->cmd == SET_KEY)
reg |= mask;
else if (crypto->cmd == DISABLE_KEY)
reg &= ~mask;
rt2x00mmio_register_write(rt2x00dev, SEC_CSR2, reg);
} else {
mask = 1 << (key->hw_key_idx - 32);
rt2x00mmio_register_read(rt2x00dev, SEC_CSR3, &reg);
if (crypto->cmd == SET_KEY)
reg |= mask;
else if (crypto->cmd == DISABLE_KEY)
reg &= ~mask;
rt2x00mmio_register_write(rt2x00dev, SEC_CSR3, reg);
}
return 0;
}
static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
const unsigned int filter_flags)
{
u32 reg;
/*
* Start configuration steps.
* Note that the version error will always be dropped
* and broadcast frames will always be accepted since
* there is no filter for it at this time.
*/
rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
!(filter_flags & FIF_FCSFAIL));
rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
!(filter_flags & FIF_PLCPFAIL));
rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
!(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
!(filter_flags & FIF_PROMISC_IN_BSS));
rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
!(filter_flags & FIF_PROMISC_IN_BSS) &&
!rt2x00dev->intf_ap_count);
rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
!(filter_flags & FIF_ALLMULTI));
rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
!(filter_flags & FIF_CONTROL));
rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
}
static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
struct rt2x00_intf *intf,
struct rt2x00intf_conf *conf,
const unsigned int flags)
{
u32 reg;
if (flags & CONFIG_UPDATE_TYPE) {
/*
* Enable synchronisation.
*/
rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
}
if (flags & CONFIG_UPDATE_MAC) {
reg = le32_to_cpu(conf->mac[1]);
rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
conf->mac[1] = cpu_to_le32(reg);
rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR2,
conf->mac, sizeof(conf->mac));
}
if (flags & CONFIG_UPDATE_BSSID) {
reg = le32_to_cpu(conf->bssid[1]);
rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
conf->bssid[1] = cpu_to_le32(reg);
rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR4,
conf->bssid,
sizeof(conf->bssid));
}
}
static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
struct rt2x00lib_erp *erp,
u32 changed)
{
u32 reg;
rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
if (changed & BSS_CHANGED_ERP_PREAMBLE) {
rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4, &reg);
rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
!!erp->short_preamble);
rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg);
}
if (changed & BSS_CHANGED_BASIC_RATES)
rt2x00mmio_register_write(rt2x00dev, TXRX_CSR5,
erp->basic_rates);
if (changed & BSS_CHANGED_BEACON_INT) {
rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
erp->beacon_int * 16);
rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
}
if (changed & BSS_CHANGED_ERP_SLOT) {
rt2x00mmio_register_read(rt2x00dev, MAC_CSR9, &reg);
rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg);
rt2x00mmio_register_read(rt2x00dev, MAC_CSR8, &reg);
rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
rt2x00mmio_register_write(rt2x00dev, MAC_CSR8, reg);
}
}
static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
struct antenna_setup *ant)
{
u8 r3;
u8 r4;
u8 r77;
rt61pci_bbp_read(rt2x00dev, 3, &r3);
rt61pci_bbp_read(rt2x00dev, 4, &r4);
rt61pci_bbp_read(rt2x00dev, 77, &r77);
rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325));
/*
* Configure the RX antenna.
*/
switch (ant->rx) {
case ANTENNA_HW_DIVERSITY:
rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
(rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
break;
case ANTENNA_A:
rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
else
rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
break;
case ANTENNA_B:
default:
rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
else
rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
break;
}
rt61pci_bbp_write(rt2x00dev, 77, r77);
rt61pci_bbp_write(rt2x00dev, 3, r3);
rt61pci_bbp_write(rt2x00dev, 4, r4);
}
static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
struct antenna_setup *ant)
{
u8 r3;
u8 r4;
u8 r77;
rt61pci_bbp_read(rt2x00dev, 3, &r3);
rt61pci_bbp_read(rt2x00dev, 4, &r4);
rt61pci_bbp_read(rt2x00dev, 77, &r77);
rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529));
rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
!rt2x00_has_cap_frame_type(rt2x00dev));
/*
* Configure the RX antenna.
*/
switch (ant->rx) {
case ANTENNA_HW_DIVERSITY:
rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
break;
case ANTENNA_A:
rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
break;
case ANTENNA_B:
default:
rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
break;
}
rt61pci_bbp_write(rt2x00dev, 77, r77);
rt61pci_bbp_write(rt2x00dev, 3, r3);
rt61pci_bbp_write(rt2x00dev, 4, r4);
}
static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
const int p1, const int p2)
{
u32 reg;
rt2x00mmio_register_read(rt2x00dev, MAC_CSR13, &reg);
rt2x00_set_field32(&reg, MAC_CSR13_DIR4, 0);
rt2x00_set_field32(&reg, MAC_CSR13_VAL4, p1);
rt2x00_set_field32(&reg, MAC_CSR13_DIR3, 0);
rt2x00_set_field32(&reg, MAC_CSR13_VAL3, !p2);
rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg);
}
static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
struct antenna_setup *ant)
{
u8 r3;
u8 r4;
u8 r77;
rt61pci_bbp_read(rt2x00dev, 3, &r3);
rt61pci_bbp_read(rt2x00dev, 4, &r4);
rt61pci_bbp_read(rt2x00dev, 77, &r77);
/*
* Configure the RX antenna.
*/
switch (ant->rx) {
case ANTENNA_A:
rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
break;
case ANTENNA_HW_DIVERSITY:
/*
* FIXME: Antenna selection for the rf 2529 is very confusing
* in the legacy driver. Just default to antenna B until the
* legacy code can be properly translated into rt2x00 code.
*/
case ANTENNA_B:
default:
rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
break;
}
rt61pci_bbp_write(rt2x00dev, 77, r77);
rt61pci_bbp_write(rt2x00dev, 3, r3);
rt61pci_bbp_write(rt2x00dev, 4, r4);
}
struct antenna_sel {
u8 word;
/*
* value[0] -> non-LNA
* value[1] -> LNA
*/
u8 value[2];
};
static const struct antenna_sel antenna_sel_a[] = {
{ 96, { 0x58, 0x78 } },
{ 104, { 0x38, 0x48 } },
{ 75, { 0xfe, 0x80 } },
{ 86, { 0xfe, 0x80 } },
{ 88, { 0xfe, 0x80 } },
{ 35, { 0x60, 0x60 } },
{ 97, { 0x58, 0x58 } },
{ 98, { 0x58, 0x58 } },
};
static const struct antenna_sel antenna_sel_bg[] = {
{ 96, { 0x48, 0x68 } },
{ 104, { 0x2c, 0x3c } },
{ 75, { 0xfe, 0x80 } },
{ 86, { 0xfe, 0x80 } },
{ 88, { 0xfe, 0x80 } },
{ 35, { 0x50, 0x50 } },
{ 97, { 0x48, 0x48 } },
{ 98, { 0x48, 0x48 } },
};
static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
struct antenna_setup *ant)
{
const struct antenna_sel *sel;
unsigned int lna;
unsigned int i;
u32 reg;
/*
* We should never come here because rt2x00lib is supposed
* to catch this and send us the correct antenna explicitely.
*/
BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
ant->tx == ANTENNA_SW_DIVERSITY);
if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
sel = antenna_sel_a;
lna = rt2x00_has_cap_external_lna_a(rt2x00dev);
} else {
sel = antenna_sel_bg;
lna = rt2x00_has_cap_external_lna_bg(rt2x00dev);
}
for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
rt2x00mmio_register_read(rt2x00dev, PHY_CSR0, &reg);
rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
rt2x00mmio_register_write(rt2x00dev, PHY_CSR0, reg);
if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325))
rt61pci_config_antenna_5x(rt2x00dev, ant);
else if (rt2x00_rf(rt2x00dev, RF2527))
rt61pci_config_antenna_2x(rt2x00dev, ant);
else if (rt2x00_rf(rt2x00dev, RF2529)) {
if (rt2x00_has_cap_double_antenna(rt2x00dev))
rt61pci_config_antenna_2x(rt2x00dev, ant);
else
rt61pci_config_antenna_2529(rt2x00dev, ant);
}
}
static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
struct rt2x00lib_conf *libconf)
{
u16 eeprom;
short lna_gain = 0;
if (libconf->conf->chandef.chan->band == IEEE80211_BAND_2GHZ) {
if (rt2x00_has_cap_external_lna_bg(rt2x00dev))
lna_gain += 14;
rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
} else {
if (rt2x00_has_cap_external_lna_a(rt2x00dev))
lna_gain += 14;
rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
}
rt2x00dev->lna_gain = lna_gain;
}
static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
struct rf_channel *rf, const int txpower)
{
u8 r3;
u8 r94;
u8 smart;
rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
rt61pci_bbp_read(rt2x00dev, 3, &r3);
rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
rt61pci_bbp_write(rt2x00dev, 3, r3);
r94 = 6;
if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
r94 += txpower - MAX_TXPOWER;
else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
r94 += txpower;
rt61pci_bbp_write(rt2x00dev, 94, r94);
rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
udelay(200);
rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
udelay(200);
rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
msleep(1);
}
static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
const int txpower)
{
struct rf_channel rf;
rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
rt61pci_config_channel(rt2x00dev, &rf, txpower);
}
static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
struct rt2x00lib_conf *libconf)
{
u32 reg;
rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4, &reg);
rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
libconf->conf->long_frame_max_tx_count);
rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
libconf->conf->short_frame_max_tx_count);
rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg);
}
static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
struct rt2x00lib_conf *libconf)
{
enum dev_state state =
(libconf->conf->flags & IEEE80211_CONF_PS) ?
STATE_SLEEP : STATE_AWAKE;
u32 reg;
if (state == STATE_SLEEP) {
rt2x00mmio_register_read(rt2x00dev, MAC_CSR11, &reg);
rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
rt2x00dev->beacon_int - 10);
rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
libconf->conf->listen_interval - 1);
rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
/* We must first disable autowake before it can be enabled */
rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR,
0x00000005);
rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
} else {
rt2x00mmio_register_read(rt2x00dev, MAC_CSR11, &reg);
rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR,
0x00000007);
rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
}
}
static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
struct rt2x00lib_conf *libconf,
const unsigned int flags)
{
/* Always recalculate LNA gain before changing configuration */
rt61pci_config_lna_gain(rt2x00dev, libconf);
if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
rt61pci_config_channel(rt2x00dev, &libconf->rf,
libconf->conf->power_level);
if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
!(flags & IEEE80211_CONF_CHANGE_CHANNEL))
rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
rt61pci_config_retry_limit(rt2x00dev, libconf);
if (flags & IEEE80211_CONF_CHANGE_PS)
rt61pci_config_ps(rt2x00dev, libconf);
}
/*
* Link tuning
*/
static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
struct link_qual *qual)
{
u32 reg;
/*
* Update FCS error count from register.
*/
rt2x00mmio_register_read(rt2x00dev, STA_CSR0, &reg);
qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
/*
* Update False CCA count from register.
*/
rt2x00mmio_register_read(rt2x00dev, STA_CSR1, &reg);
qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
}
static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
struct link_qual *qual, u8 vgc_level)
{
if (qual->vgc_level != vgc_level) {
rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
qual->vgc_level = vgc_level;
qual->vgc_level_reg = vgc_level;
}
}
static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
struct link_qual *qual)
{
rt61pci_set_vgc(rt2x00dev, qual, 0x20);
}
static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
struct link_qual *qual, const u32 count)
{
u8 up_bound;
u8 low_bound;
/*
* Determine r17 bounds.
*/
if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
low_bound = 0x28;
up_bound = 0x48;
if (rt2x00_has_cap_external_lna_a(rt2x00dev)) {
low_bound += 0x10;
up_bound += 0x10;
}
} else {
low_bound = 0x20;
up_bound = 0x40;
if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) {
low_bound += 0x10;
up_bound += 0x10;
}
}
/*
* If we are not associated, we should go straight to the
* dynamic CCA tuning.
*/
if (!rt2x00dev->intf_associated)
goto dynamic_cca_tune;
/*
* Special big-R17 for very short distance
*/
if (qual->rssi >= -35) {
rt61pci_set_vgc(rt2x00dev, qual, 0x60);
return;
}
/*
* Special big-R17 for short distance
*/
if (qual->rssi >= -58) {
rt61pci_set_vgc(rt2x00dev, qual, up_bound);
return;
}
/*
* Special big-R17 for middle-short distance
*/
if (qual->rssi >= -66) {
rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
return;
}
/*
* Special mid-R17 for middle distance
*/
if (qual->rssi >= -74) {
rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
return;
}
/*
* Special case: Change up_bound based on the rssi.
* Lower up_bound when rssi is weaker then -74 dBm.
*/
up_bound -= 2 * (-74 - qual->rssi);
if (low_bound > up_bound)
up_bound = low_bound;
if (qual->vgc_level > up_bound) {
rt61pci_set_vgc(rt2x00dev, qual, up_bound);
return;
}
dynamic_cca_tune:
/*
* r17 does not yet exceed upper limit, continue and base
* the r17 tuning on the false CCA count.
*/
if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
}
/*
* Queue handlers.
*/
static void rt61pci_start_queue(struct data_queue *queue)
{
struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
u32 reg;
switch (queue->qid) {
case QID_RX:
rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
break;
case QID_BEACON:
rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
break;
default:
break;
}
}
static void rt61pci_kick_queue(struct data_queue *queue)
{
struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
u32 reg;
switch (queue->qid) {
case QID_AC_VO:
rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, 1);
rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
break;
case QID_AC_VI:
rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, 1);
rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
break;
case QID_AC_BE:
rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, 1);
rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
break;
case QID_AC_BK:
rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, 1);
rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
break;
default:
break;
}
}
static void rt61pci_stop_queue(struct data_queue *queue)
{
struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
u32 reg;
switch (queue->qid) {
case QID_AC_VO:
rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
break;
case QID_AC_VI:
rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
break;
case QID_AC_BE:
rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
break;
case QID_AC_BK:
rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
break;
case QID_RX:
rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 1);
rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
break;
case QID_BEACON:
rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
/*
* Wait for possibly running tbtt tasklets.
*/
tasklet_kill(&rt2x00dev->tbtt_tasklet);
break;
default:
break;
}
}
/*
* Firmware functions
*/
static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
{
u16 chip;
char *fw_name;
pci_read_config_word(to_pci_dev(rt2x00dev->dev), PCI_DEVICE_ID, &chip);
switch (chip) {
case RT2561_PCI_ID:
fw_name = FIRMWARE_RT2561;
break;
case RT2561s_PCI_ID:
fw_name = FIRMWARE_RT2561s;
break;
case RT2661_PCI_ID:
fw_name = FIRMWARE_RT2661;
break;
default:
fw_name = NULL;
break;
}
return fw_name;
}
static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
const u8 *data, const size_t len)
{
u16 fw_crc;
u16 crc;
/*
* Only support 8kb firmware files.
*/
if (len != 8192)
return FW_BAD_LENGTH;
/*
* The last 2 bytes in the firmware array are the crc checksum itself.
* This means that we should never pass those 2 bytes to the crc
* algorithm.
*/
fw_crc = (data[len - 2] << 8 | data[len - 1]);
/*
* Use the crc itu-t algorithm.
*/
crc = crc_itu_t(0, data, len - 2);
crc = crc_itu_t_byte(crc, 0);
crc = crc_itu_t_byte(crc, 0);
return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
}
static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
const u8 *data, const size_t len)
{
int i;
u32 reg;
/*
* Wait for stable hardware.
*/
for (i = 0; i < 100; i++) {
rt2x00mmio_register_read(rt2x00dev, MAC_CSR0, &reg);
if (reg)
break;
msleep(1);
}
if (!reg) {
rt2x00_err(rt2x00dev, "Unstable hardware\n");
return -EBUSY;
}
/*
* Prepare MCU and mailbox for firmware loading.
*/
reg = 0;
rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, 0);
/*
* Write firmware to device.
*/
reg = 0;
rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
rt2x00mmio_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
data, len);
rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
for (i = 0; i < 100; i++) {
rt2x00mmio_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
break;
msleep(1);
}
if (i == 100) {
rt2x00_err(rt2x00dev, "MCU Control register not ready\n");
return -EBUSY;
}
/*
* Hardware needs another millisecond before it is ready.
*/
msleep(1);
/*
* Reset MAC and BBP registers.
*/
reg = 0;
rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
return 0;
}
/*
* Initialization functions.
*/
static bool rt61pci_get_entry_state(struct queue_entry *entry)
{
struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
u32 word;
if (entry->queue->qid == QID_RX) {
rt2x00_desc_read(entry_priv->desc, 0, &word);
return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
} else {
rt2x00_desc_read(entry_priv->desc, 0, &word);
return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
rt2x00_get_field32(word, TXD_W0_VALID));
}
}
static void rt61pci_clear_entry(struct queue_entry *entry)
{
struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
u32 word;
if (entry->queue->qid == QID_RX) {
rt2x00_desc_read(entry_priv->desc, 5, &word);
rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
skbdesc->skb_dma);
rt2x00_desc_write(entry_priv->desc, 5, word);
rt2x00_desc_read(entry_priv->desc, 0, &word);
rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
rt2x00_desc_write(entry_priv->desc, 0, word);
} else {
rt2x00_desc_read(entry_priv->desc, 0, &word);
rt2x00_set_field32(&word, TXD_W0_VALID, 0);
rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
rt2x00_desc_write(entry_priv->desc, 0, word);
}
}
static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
{
struct queue_entry_priv_mmio *entry_priv;
u32 reg;
/*
* Initialize registers.
*/
rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR0, &reg);
rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
rt2x00dev->tx[0].limit);
rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
rt2x00dev->tx[1].limit);
rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
rt2x00dev->tx[2].limit);
rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
rt2x00dev->tx[3].limit);
rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR0, reg);
rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR1, &reg);
rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
rt2x00dev->tx[0].desc_size / 4);
rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR1, reg);
entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
rt2x00mmio_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
entry_priv->desc_dma);
rt2x00mmio_register_write(rt2x00dev, AC0_BASE_CSR, reg);
entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
rt2x00mmio_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
entry_priv->desc_dma);
rt2x00mmio_register_write(rt2x00dev, AC1_BASE_CSR, reg);
entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
rt2x00mmio_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
entry_priv->desc_dma);
rt2x00mmio_register_write(rt2x00dev, AC2_BASE_CSR, reg);
entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
rt2x00mmio_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
entry_priv->desc_dma);
rt2x00mmio_register_write(rt2x00dev, AC3_BASE_CSR, reg);
rt2x00mmio_register_read(rt2x00dev, RX_RING_CSR, &reg);
rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
rt2x00dev->rx->desc_size / 4);
rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
rt2x00mmio_register_write(rt2x00dev, RX_RING_CSR, reg);
entry_priv = rt2x00dev->rx->entries[0].priv_data;
rt2x00mmio_register_read(rt2x00dev, RX_BASE_CSR, &reg);
rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
entry_priv->desc_dma);
rt2x00mmio_register_write(rt2x00dev, RX_BASE_CSR, reg);
rt2x00mmio_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
rt2x00mmio_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
rt2x00mmio_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
rt2x00mmio_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg);
return 0;
}
static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
{
u32 reg;
rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
rt2x00mmio_register_read(rt2x00dev, TXRX_CSR1, &reg);
rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
rt2x00mmio_register_write(rt2x00dev, TXRX_CSR1, reg);
/*
* CCK TXD BBP registers
*/
rt2x00mmio_register_read(rt2x00dev, TXRX_CSR2, &reg);
rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
rt2x00mmio_register_write(rt2x00dev, TXRX_CSR2, reg);
/*
* OFDM TXD BBP registers
*/
rt2x00mmio_register_read(rt2x00dev, TXRX_CSR3, &reg);
rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
rt2x00mmio_register_write(rt2x00dev, TXRX_CSR3, reg);
rt2x00mmio_register_read(rt2x00dev, TXRX_CSR7, &reg);
rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
rt2x00mmio_register_write(rt2x00dev, TXRX_CSR7, reg);
rt2x00mmio_register_read(rt2x00dev, TXRX_CSR8, &reg);
rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
rt2x00mmio_register_write(rt2x00dev, TXRX_CSR8, reg);
rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
rt2x00mmio_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
rt2x00mmio_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
rt2x00mmio_register_read(rt2x00dev, MAC_CSR9, &reg);
rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg);
rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
return -EBUSY;
rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
/*
* Invalidate all Shared Keys (SEC_CSR0),
* and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
*/
rt2x00mmio_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
rt2x00mmio_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
rt2x00mmio_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
rt2x00mmio_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
rt2x00mmio_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
rt2x00mmio_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
rt2x00mmio_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
rt2x00mmio_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
rt2x00mmio_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
/*
* Clear all beacons
* For the Beacon base registers we only need to clear
* the first byte since that byte contains the VALID and OWNER
* bits which (when set to 0) will invalidate the entire beacon.
*/
rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
/*
* We must clear the error counters.
* These registers are cleared on read,
* so we may pass a useless variable to store the value.
*/
rt2x00mmio_register_read(rt2x00dev, STA_CSR0, &reg);
rt2x00mmio_register_read(rt2x00dev, STA_CSR1, &reg);
rt2x00mmio_register_read(rt2x00dev, STA_CSR2, &reg);
/*
* Reset MAC and BBP registers.
*/
rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
return 0;
}
static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
{
unsigned int i;
u8 value;
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
rt61pci_bbp_read(rt2x00dev, 0, &value);
if ((value != 0xff) && (value != 0x00))
return 0;
udelay(REGISTER_BUSY_DELAY);
}
rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
return -EACCES;
}
static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
{
unsigned int i;
u16 eeprom;
u8 reg_id;
u8 value;
if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
return -EACCES;
rt61pci_bbp_write(rt2x00dev, 3, 0x00);
rt61pci_bbp_write(rt2x00dev, 15, 0x30);
rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
rt61pci_bbp_write(rt2x00dev, 22, 0x38);
rt61pci_bbp_write(rt2x00dev, 23, 0x06);
rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
rt61pci_bbp_write(rt2x00dev, 34, 0x12);
rt61pci_bbp_write(rt2x00dev, 37, 0x07);
rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
rt61pci_bbp_write(rt2x00dev, 41, 0x60);
rt61pci_bbp_write(rt2x00dev, 53, 0x10);
rt61pci_bbp_write(rt2x00dev, 54, 0x18);
rt61pci_bbp_write(rt2x00dev, 60, 0x10);
rt61pci_bbp_write(rt2x00dev, 61, 0x04);
rt61pci_bbp_write(rt2x00dev, 62, 0x04);
rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
rt61pci_bbp_write(rt2x00dev, 99, 0x00);
rt61pci_bbp_write(rt2x00dev, 102, 0x16);
rt61pci_bbp_write(rt2x00dev, 107, 0x04);
for (i = 0; i < EEPROM_BBP_SIZE; i++) {
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
if (eeprom != 0xffff && eeprom != 0x0000) {
reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
rt61pci_bbp_write(rt2x00dev, reg_id, value);
}
}
return 0;
}
/*
* Device state switch handlers.
*/
static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
enum dev_state state)
{
int mask = (state == STATE_RADIO_IRQ_OFF);
u32 reg;
unsigned long flags;
/*
* When interrupts are being enabled, the interrupt registers
* should clear the register to assure a clean state.
*/
if (state == STATE_RADIO_IRQ_ON) {
rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
}
/*
* Only toggle the interrupts bits we are going to use.
* Non-checked interrupt bits are disabled by default.
*/
spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
rt2x00_set_field32(&reg, INT_MASK_CSR_BEACON_DONE, mask);
rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_TWAKEUP, mask);
rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
if (state == STATE_RADIO_IRQ_OFF) {
/*
* Ensure that all tasklets are finished.
*/
tasklet_kill(&rt2x00dev->txstatus_tasklet);
tasklet_kill(&rt2x00dev->rxdone_tasklet);
tasklet_kill(&rt2x00dev->autowake_tasklet);
tasklet_kill(&rt2x00dev->tbtt_tasklet);
}
}
static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
{
u32 reg;
/*
* Initialize all registers.
*/
if (unlikely(rt61pci_init_queues(rt2x00dev) ||
rt61pci_init_registers(rt2x00dev) ||
rt61pci_init_bbp(rt2x00dev)))
return -EIO;
/*
* Enable RX.
*/
rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg);
return 0;
}
static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
{
/*
* Disable power
*/
rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
}
static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
{
u32 reg, reg2;
unsigned int i;
char put_to_sleep;
put_to_sleep = (state != STATE_AWAKE);
rt2x00mmio_register_read(rt2x00dev, MAC_CSR12, &reg);
rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg);
/*
* Device is not guaranteed to be in the requested state yet.
* We must wait until the register indicates that the
* device has entered the correct state.
*/
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
rt2x00mmio_register_read(rt2x00dev, MAC_CSR12, &reg2);
state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
if (state == !put_to_sleep)
return 0;
rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg);
msleep(10);
}
return -EBUSY;
}
static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
enum dev_state state)
{
int retval = 0;
switch (state) {
case STATE_RADIO_ON:
retval = rt61pci_enable_radio(rt2x00dev);
break;
case STATE_RADIO_OFF:
rt61pci_disable_radio(rt2x00dev);
break;
case STATE_RADIO_IRQ_ON:
case STATE_RADIO_IRQ_OFF:
rt61pci_toggle_irq(rt2x00dev, state);
break;
case STATE_DEEP_SLEEP:
case STATE_SLEEP:
case STATE_STANDBY:
case STATE_AWAKE:
retval = rt61pci_set_state(rt2x00dev, state);
break;
default:
retval = -ENOTSUPP;
break;
}
if (unlikely(retval))
rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
state, retval);
return retval;
}
/*
* TX descriptor initialization
*/
static void rt61pci_write_tx_desc(struct queue_entry *entry,
struct txentry_desc *txdesc)
{
struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
__le32 *txd = entry_priv->desc;
u32 word;
/*
* Start writing the descriptor words.
*/
rt2x00_desc_read(txd, 1, &word);
rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
rt2x00_desc_write(txd, 1, word);
rt2x00_desc_read(txd, 2, &word);
rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
txdesc->u.plcp.length_low);
rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
txdesc->u.plcp.length_high);
rt2x00_desc_write(txd, 2, word);
if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
_rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
_rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
}
rt2x00_desc_read(txd, 5, &word);
rt2x00_set_field32(&word, TXD_W5_PID_TYPE, entry->queue->qid);
rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
skbdesc->entry->entry_idx);
rt2x00_set_field32(&word, TXD_W5_TX_POWER,
TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
rt2x00_desc_write(txd, 5, word);
if (entry->queue->qid != QID_BEACON) {
rt2x00_desc_read(txd, 6, &word);
rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
skbdesc->skb_dma);
rt2x00_desc_write(txd, 6, word);
rt2x00_desc_read(txd, 11, &word);
rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0,
txdesc->length);
rt2x00_desc_write(txd, 11, word);
}
/*
* Writing TXD word 0 must the last to prevent a race condition with
* the device, whereby the device may take hold of the TXD before we
* finished updating it.
*/
rt2x00_desc_read(txd, 0, &word);
rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
rt2x00_set_field32(&word, TXD_W0_VALID, 1);
rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
rt2x00_set_field32(&word, TXD_W0_ACK,
test_bit(ENTRY_TXD_ACK, &txdesc->flags));
rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
rt2x00_set_field32(&word, TXD_W0_OFDM,
(txdesc->rate_mode == RATE_MODE_OFDM));
rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
rt2x00_set_field32(&word, TXD_W0_BURST,
test_bit(ENTRY_TXD_BURST, &txdesc->flags));
rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
rt2x00_desc_write(txd, 0, word);
/*
* Register descriptor details in skb frame descriptor.
*/
skbdesc->desc = txd;
skbdesc->desc_len = (entry->queue->qid == QID_BEACON) ? TXINFO_SIZE :
TXD_DESC_SIZE;
}
/*
* TX data initialization
*/
static void rt61pci_write_beacon(struct queue_entry *entry,
struct txentry_desc *txdesc)
{
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
unsigned int beacon_base;
unsigned int padding_len;
u32 orig_reg, reg;
/*
* Disable beaconing while we are reloading the beacon data,
* otherwise we might be sending out invalid data.
*/
rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
orig_reg = reg;
rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
/*
* Write the TX descriptor for the beacon.
*/
rt61pci_write_tx_desc(entry, txdesc);
/*
* Dump beacon to userspace through debugfs.
*/
rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
/*
* Write entire beacon with descriptor and padding to register.
*/
padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
if (padding_len && skb_pad(entry->skb, padding_len)) {
rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n");
/* skb freed by skb_pad() on failure */
entry->skb = NULL;
rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
return;
}
beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base,
entry_priv->desc, TXINFO_SIZE);
rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base + TXINFO_SIZE,
entry->skb->data,
entry->skb->len + padding_len);
/*
* Enable beaconing again.
*
* For Wi-Fi faily generated beacons between participating
* stations. Set TBTT phase adaptive adjustment step to 8us.
*/
rt2x00mmio_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
/*
* Clean up beacon skb.
*/
dev_kfree_skb_any(entry->skb);
entry->skb = NULL;
}
static void rt61pci_clear_beacon(struct queue_entry *entry)
{
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
u32 orig_reg, reg;
/*
* Disable beaconing while we are reloading the beacon data,
* otherwise we might be sending out invalid data.
*/
rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &orig_reg);
reg = orig_reg;
rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
/*
* Clear beacon.
*/
rt2x00mmio_register_write(rt2x00dev,
HW_BEACON_OFFSET(entry->entry_idx), 0);
/*
* Restore global beaconing state.
*/
rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
}
/*
* RX control handlers
*/
static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
{
u8 offset = rt2x00dev->lna_gain;
u8 lna;
lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
switch (lna) {
case 3:
offset += 90;
break;
case 2:
offset += 74;
break;
case 1:
offset += 64;
break;
default:
return 0;
}
if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
if (lna == 3 || lna == 2)
offset += 10;
}
return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
}
static void rt61pci_fill_rxdone(struct queue_entry *entry,
struct rxdone_entry_desc *rxdesc)
{
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
u32 word0;
u32 word1;
rt2x00_desc_read(entry_priv->desc, 0, &word0);
rt2x00_desc_read(entry_priv->desc, 1, &word1);
if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
if (rxdesc->cipher != CIPHER_NONE) {
_rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]);
_rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]);
rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
_rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
/*
* Hardware has stripped IV/EIV data from 802.11 frame during
* decryption. It has provided the data separately but rt2x00lib
* should decide if it should be reinserted.
*/
rxdesc->flags |= RX_FLAG_IV_STRIPPED;
/*
* The hardware has already checked the Michael Mic and has
* stripped it from the frame. Signal this to mac80211.
*/
rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
rxdesc->flags |= RX_FLAG_DECRYPTED;
else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
rxdesc->flags |= RX_FLAG_MMIC_ERROR;
}
/*
* Obtain the status about this packet.
* When frame was received with an OFDM bitrate,
* the signal is the PLCP value. If it was received with
* a CCK bitrate the signal is the rate in 100kbit/s.
*/
rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
if (rt2x00_get_field32(word0, RXD_W0_OFDM))
rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
else
rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
rxdesc->dev_flags |= RXDONE_MY_BSS;
}
/*
* Interrupt functions.
*/
static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
{
struct data_queue *queue;
struct queue_entry *entry;
struct queue_entry *entry_done;
struct queue_entry_priv_mmio *entry_priv;
struct txdone_entry_desc txdesc;
u32 word;
u32 reg;
int type;
int index;
int i;
/*
* TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
* at most X times and also stop processing once the TX_STA_FIFO_VALID
* flag is not set anymore.
*
* The legacy drivers use X=TX_RING_SIZE but state in a comment
* that the TX_STA_FIFO stack has a size of 16. We stick to our
* tx ring size for now.
*/
for (i = 0; i < rt2x00dev->tx->limit; i++) {
rt2x00mmio_register_read(rt2x00dev, STA_CSR4, &reg);
if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
break;
/*
* Skip this entry when it contains an invalid
* queue identication number.
*/
type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
queue = rt2x00queue_get_tx_queue(rt2x00dev, type);
if (unlikely(!queue))
continue;
/*
* Skip this entry when it contains an invalid
* index number.
*/
index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
if (unlikely(index >= queue->limit))
continue;
entry = &queue->entries[index];
entry_priv = entry->priv_data;
rt2x00_desc_read(entry_priv->desc, 0, &word);
if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
!rt2x00_get_field32(word, TXD_W0_VALID))
return;
entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
while (entry != entry_done) {
/* Catch up.
* Just report any entries we missed as failed.
*/
rt2x00_warn(rt2x00dev, "TX status report missed for entry %d\n",
entry_done->entry_idx);
rt2x00lib_txdone_noinfo(entry_done, TXDONE_UNKNOWN);
entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
}
/*
* Obtain the status about this packet.
*/
txdesc.flags = 0;
switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
case 0: /* Success, maybe with retry */
__set_bit(TXDONE_SUCCESS, &txdesc.flags);
break;
case 6: /* Failure, excessive retries */
__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
/* Don't break, this is a failed frame! */
default: /* Failure */
__set_bit(TXDONE_FAILURE, &txdesc.flags);
}
txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
/*
* the frame was retried at least once
* -> hw used fallback rates
*/
if (txdesc.retry)
__set_bit(TXDONE_FALLBACK, &txdesc.flags);
rt2x00lib_txdone(entry, &txdesc);
}
}
static void rt61pci_wakeup(struct rt2x00_dev *rt2x00dev)
{
struct rt2x00lib_conf libconf = { .conf = &rt2x00dev->hw->conf };
rt61pci_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
}
static inline void rt61pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
struct rt2x00_field32 irq_field)
{
u32 reg;
/*
* Enable a single interrupt. The interrupt mask register
* access needs locking.
*/
spin_lock_irq(&rt2x00dev->irqmask_lock);
rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
rt2x00_set_field32(&reg, irq_field, 0);
rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
spin_unlock_irq(&rt2x00dev->irqmask_lock);
}
static void rt61pci_enable_mcu_interrupt(struct rt2x00_dev *rt2x00dev,
struct rt2x00_field32 irq_field)
{
u32 reg;
/*
* Enable a single MCU interrupt. The interrupt mask register
* access needs locking.
*/
spin_lock_irq(&rt2x00dev->irqmask_lock);
rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
rt2x00_set_field32(&reg, irq_field, 0);
rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
spin_unlock_irq(&rt2x00dev->irqmask_lock);
}
static void rt61pci_txstatus_tasklet(unsigned long data)
{
struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
rt61pci_txdone(rt2x00dev);
if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TXDONE);
}
static void rt61pci_tbtt_tasklet(unsigned long data)
{
struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
rt2x00lib_beacondone(rt2x00dev);
if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_BEACON_DONE);
}
static void rt61pci_rxdone_tasklet(unsigned long data)
{
struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
if (rt2x00mmio_rxdone(rt2x00dev))
tasklet_schedule(&rt2x00dev->rxdone_tasklet);
else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RXDONE);
}
static void rt61pci_autowake_tasklet(unsigned long data)
{
struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
rt61pci_wakeup(rt2x00dev);
rt2x00mmio_register_write(rt2x00dev,
M2H_CMD_DONE_CSR, 0xffffffff);
if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
rt61pci_enable_mcu_interrupt(rt2x00dev, MCU_INT_MASK_CSR_TWAKEUP);
}
static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
{
struct rt2x00_dev *rt2x00dev = dev_instance;
u32 reg_mcu, mask_mcu;
u32 reg, mask;
/*
* Get the interrupt sources & saved to local variable.
* Write register value back to clear pending interrupts.
*/
rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
if (!reg && !reg_mcu)
return IRQ_NONE;
if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
return IRQ_HANDLED;
/*
* Schedule tasklets for interrupt handling.
*/
if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
tasklet_schedule(&rt2x00dev->rxdone_tasklet);
if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
tasklet_schedule(&rt2x00dev->txstatus_tasklet);
if (rt2x00_get_field32(reg, INT_SOURCE_CSR_BEACON_DONE))
tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
if (rt2x00_get_field32(reg_mcu, MCU_INT_SOURCE_CSR_TWAKEUP))
tasklet_schedule(&rt2x00dev->autowake_tasklet);
/*
* Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
* for interrupts and interrupt masks we can just use the value of
* INT_SOURCE_CSR to create the interrupt mask.
*/
mask = reg;
mask_mcu = reg_mcu;
/*
* Disable all interrupts for which a tasklet was scheduled right now,
* the tasklet will reenable the appropriate interrupts.
*/
spin_lock(&rt2x00dev->irqmask_lock);
rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
reg |= mask;
rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
reg |= mask_mcu;
rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
spin_unlock(&rt2x00dev->irqmask_lock);
return IRQ_HANDLED;
}
/*
* Device probe functions.
*/
static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
{
struct eeprom_93cx6 eeprom;
u32 reg;
u16 word;
u8 *mac;
s8 value;
rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR, &reg);
eeprom.data = rt2x00dev;
eeprom.register_read = rt61pci_eepromregister_read;
eeprom.register_write = rt61pci_eepromregister_write;
eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
eeprom.reg_data_in = 0;
eeprom.reg_data_out = 0;
eeprom.reg_data_clock = 0;
eeprom.reg_chip_select = 0;
eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
EEPROM_SIZE / sizeof(u16));
/*
* Start validation of the data that has been read.
*/
mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
if (!is_valid_ether_addr(mac)) {
eth_random_addr(mac);
rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
}
rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
if (word == 0xffff) {
rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
ANTENNA_B);
rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
ANTENNA_B);
rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
}
rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
if (word == 0xffff) {
rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
}
rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
if (word == 0xffff) {
rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
LED_MODE_DEFAULT);
rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
rt2x00_eeprom_dbg(rt2x00dev, "Led: 0x%04x\n", word);
}
rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
if (word == 0xffff) {
rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
rt2x00_eeprom_dbg(rt2x00dev, "Freq: 0x%04x\n", word);
}
rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
if (word == 0xffff) {
rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
} else {
value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
if (value < -10 || value > 10)
rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
if (value < -10 || value > 10)
rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
}
rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
if (word == 0xffff) {
rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
} else {
value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
if (value < -10 || value > 10)
rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
if (value < -10 || value > 10)
rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
}
return 0;
}
static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
{
u32 reg;
u16 value;
u16 eeprom;
/*
* Read EEPROM word for configuration.
*/
rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
/*
* Identify RF chipset.
*/
value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
rt2x00mmio_register_read(rt2x00dev, MAC_CSR0, &reg);
rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
if (!rt2x00_rf(rt2x00dev, RF5225) &&
!rt2x00_rf(rt2x00dev, RF5325) &&
!rt2x00_rf(rt2x00dev, RF2527) &&
!rt2x00_rf(rt2x00dev, RF2529)) {
rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
return -ENODEV;
}
/*
* Determine number of antennas.
*/
if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
__set_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags);
/*
* Identify default antenna configuration.
*/
rt2x00dev->default_ant.tx =
rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
rt2x00dev->default_ant.rx =
rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
/*
* Read the Frame type.
*/
if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
__set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags);
/*
* Detect if this device has a hardware controlled radio.
*/
if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
/*
* Read frequency offset and RF programming sequence.
*/
rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
__set_bit(CAPABILITY_RF_SEQUENCE, &rt2x00dev->cap_flags);
rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
/*
* Read external LNA informations.
*/
rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
__set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
__set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
/*
* When working with a RF2529 chip without double antenna,
* the antenna settings should be gathered from the NIC
* eeprom word.
*/
if (rt2x00_rf(rt2x00dev, RF2529) &&
!rt2x00_has_cap_double_antenna(rt2x00dev)) {
rt2x00dev->default_ant.rx =
ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
rt2x00dev->default_ant.tx =
ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
}
/*
* Store led settings, for correct led behaviour.
* If the eeprom value is invalid,
* switch to default led mode.
*/
#ifdef CONFIG_RT2X00_LIB_LEDS
rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
if (value == LED_MODE_SIGNAL_STRENGTH)
rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
LED_TYPE_QUALITY);
rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
rt2x00_get_field16(eeprom,
EEPROM_LED_POLARITY_GPIO_0));
rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
rt2x00_get_field16(eeprom,
EEPROM_LED_POLARITY_GPIO_1));
rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
rt2x00_get_field16(eeprom,
EEPROM_LED_POLARITY_GPIO_2));
rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
rt2x00_get_field16(eeprom,
EEPROM_LED_POLARITY_GPIO_3));
rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
rt2x00_get_field16(eeprom,
EEPROM_LED_POLARITY_GPIO_4));
rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
rt2x00_get_field16(eeprom,
EEPROM_LED_POLARITY_RDY_G));
rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
rt2x00_get_field16(eeprom,
EEPROM_LED_POLARITY_RDY_A));
#endif /* CONFIG_RT2X00_LIB_LEDS */
return 0;
}
/*
* RF value list for RF5225 & RF5325
* Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
*/
static const struct rf_channel rf_vals_noseq[] = {
{ 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
{ 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
{ 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
{ 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
{ 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
{ 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
{ 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
{ 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
{ 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
/* 802.11 UNI / HyperLan 2 */
{ 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
{ 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
{ 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
{ 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
{ 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
{ 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
{ 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
{ 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
/* 802.11 HyperLan 2 */
{ 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
{ 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
{ 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
{ 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
{ 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
{ 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
{ 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
{ 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
{ 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
{ 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
/* 802.11 UNII */
{ 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
{ 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
{ 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
{ 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
{ 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
{ 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
/* MMAC(Japan)J52 ch 34,38,42,46 */
{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
};
/*
* RF value list for RF5225 & RF5325
* Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
*/
static const struct rf_channel rf_vals_seq[] = {
{ 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
{ 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
{ 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
{ 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
{ 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
{ 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
{ 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
{ 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
{ 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
/* 802.11 UNI / HyperLan 2 */
{ 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
{ 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
{ 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
{ 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
{ 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
{ 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
{ 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
{ 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
/* 802.11 HyperLan 2 */
{ 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
{ 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
{ 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
{ 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
{ 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
{ 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
{ 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
{ 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
{ 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
{ 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
/* 802.11 UNII */
{ 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
{ 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
{ 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
{ 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
{ 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
{ 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
/* MMAC(Japan)J52 ch 34,38,42,46 */
{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
};
static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
{
struct hw_mode_spec *spec = &rt2x00dev->spec;
struct channel_info *info;
char *tx_power;
unsigned int i;
/*
* Disable powersaving as default.
*/
rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
/*
* Initialize all hw fields.
*/
rt2x00dev->hw->flags =
IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
IEEE80211_HW_SIGNAL_DBM |
IEEE80211_HW_SUPPORTS_PS |
IEEE80211_HW_PS_NULLFUNC_STACK;
SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
rt2x00_eeprom_addr(rt2x00dev,
EEPROM_MAC_ADDR_0));
/*
* As rt61 has a global fallback table we cannot specify
* more then one tx rate per frame but since the hw will
* try several rates (based on the fallback table) we should
* initialize max_report_rates to the maximum number of rates
* we are going to try. Otherwise mac80211 will truncate our
* reported tx rates and the rc algortihm will end up with
* incorrect data.
*/
rt2x00dev->hw->max_rates = 1;
rt2x00dev->hw->max_report_rates = 7;
rt2x00dev->hw->max_rate_tries = 1;
/*
* Initialize hw_mode information.
*/
spec->supported_bands = SUPPORT_BAND_2GHZ;
spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
if (!rt2x00_has_cap_rf_sequence(rt2x00dev)) {
spec->num_channels = 14;
spec->channels = rf_vals_noseq;
} else {
spec->num_channels = 14;
spec->channels = rf_vals_seq;
}
if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) {
spec->supported_bands |= SUPPORT_BAND_5GHZ;
spec->num_channels = ARRAY_SIZE(rf_vals_seq);
}
/*
* Create channel information array
*/
info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
if (!info)
return -ENOMEM;
spec->channels_info = info;
tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
for (i = 0; i < 14; i++) {
info[i].max_power = MAX_TXPOWER;
info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
}
if (spec->num_channels > 14) {
tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
for (i = 14; i < spec->num_channels; i++) {
info[i].max_power = MAX_TXPOWER;
info[i].default_power1 =
TXPOWER_FROM_DEV(tx_power[i - 14]);
}
}
return 0;
}
static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
{
int retval;
u32 reg;
/*
* Disable power saving.
*/
rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
/*
* Allocate eeprom data.
*/
retval = rt61pci_validate_eeprom(rt2x00dev);
if (retval)
return retval;
retval = rt61pci_init_eeprom(rt2x00dev);
if (retval)
return retval;
/*
* Enable rfkill polling by setting GPIO direction of the
* rfkill switch GPIO pin correctly.
*/
rt2x00mmio_register_read(rt2x00dev, MAC_CSR13, &reg);
rt2x00_set_field32(&reg, MAC_CSR13_DIR5, 1);
rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg);
/*
* Initialize hw specifications.
*/
retval = rt61pci_probe_hw_mode(rt2x00dev);
if (retval)
return retval;
/*
* This device has multiple filters for control frames,
* but has no a separate filter for PS Poll frames.
*/
__set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
/*
* This device requires firmware and DMA mapped skbs.
*/
__set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
if (!modparam_nohwcrypt)
__set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
/*
* Set the rssi offset.
*/
rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
return 0;
}
/*
* IEEE80211 stack callback functions.
*/
static int rt61pci_conf_tx(struct ieee80211_hw *hw,
struct ieee80211_vif *vif, u16 queue_idx,
const struct ieee80211_tx_queue_params *params)
{
struct rt2x00_dev *rt2x00dev = hw->priv;
struct data_queue *queue;
struct rt2x00_field32 field;
int retval;
u32 reg;
u32 offset;
/*
* First pass the configuration through rt2x00lib, that will
* update the queue settings and validate the input. After that
* we are free to update the registers based on the value
* in the queue parameter.
*/
retval = rt2x00mac_conf_tx(hw, vif, queue_idx, params);
if (retval)
return retval;
/*
* We only need to perform additional register initialization
* for WMM queues.
*/
if (queue_idx >= 4)
return 0;
queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
/* Update WMM TXOP register */
offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
field.bit_offset = (queue_idx & 1) * 16;
field.bit_mask = 0xffff << field.bit_offset;
rt2x00mmio_register_read(rt2x00dev, offset, &reg);
rt2x00_set_field32(&reg, field, queue->txop);
rt2x00mmio_register_write(rt2x00dev, offset, reg);
/* Update WMM registers */
field.bit_offset = queue_idx * 4;
field.bit_mask = 0xf << field.bit_offset;
rt2x00mmio_register_read(rt2x00dev, AIFSN_CSR, &reg);
rt2x00_set_field32(&reg, field, queue->aifs);
rt2x00mmio_register_write(rt2x00dev, AIFSN_CSR, reg);
rt2x00mmio_register_read(rt2x00dev, CWMIN_CSR, &reg);
rt2x00_set_field32(&reg, field, queue->cw_min);
rt2x00mmio_register_write(rt2x00dev, CWMIN_CSR, reg);
rt2x00mmio_register_read(rt2x00dev, CWMAX_CSR, &reg);
rt2x00_set_field32(&reg, field, queue->cw_max);
rt2x00mmio_register_write(rt2x00dev, CWMAX_CSR, reg);
return 0;
}
static u64 rt61pci_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
{
struct rt2x00_dev *rt2x00dev = hw->priv;
u64 tsf;
u32 reg;
rt2x00mmio_register_read(rt2x00dev, TXRX_CSR13, &reg);
tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
rt2x00mmio_register_read(rt2x00dev, TXRX_CSR12, &reg);
tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
return tsf;
}
static const struct ieee80211_ops rt61pci_mac80211_ops = {
.tx = rt2x00mac_tx,
.start = rt2x00mac_start,
.stop = rt2x00mac_stop,
.add_interface = rt2x00mac_add_interface,
.remove_interface = rt2x00mac_remove_interface,
.config = rt2x00mac_config,
.configure_filter = rt2x00mac_configure_filter,
.set_key = rt2x00mac_set_key,
.sw_scan_start = rt2x00mac_sw_scan_start,
.sw_scan_complete = rt2x00mac_sw_scan_complete,
.get_stats = rt2x00mac_get_stats,
.bss_info_changed = rt2x00mac_bss_info_changed,
.conf_tx = rt61pci_conf_tx,
.get_tsf = rt61pci_get_tsf,
.rfkill_poll = rt2x00mac_rfkill_poll,
.flush = rt2x00mac_flush,
.set_antenna = rt2x00mac_set_antenna,
.get_antenna = rt2x00mac_get_antenna,
.get_ringparam = rt2x00mac_get_ringparam,
.tx_frames_pending = rt2x00mac_tx_frames_pending,
};
static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
.irq_handler = rt61pci_interrupt,
.txstatus_tasklet = rt61pci_txstatus_tasklet,
.tbtt_tasklet = rt61pci_tbtt_tasklet,
.rxdone_tasklet = rt61pci_rxdone_tasklet,
.autowake_tasklet = rt61pci_autowake_tasklet,
.probe_hw = rt61pci_probe_hw,
.get_firmware_name = rt61pci_get_firmware_name,
.check_firmware = rt61pci_check_firmware,
.load_firmware = rt61pci_load_firmware,
.initialize = rt2x00mmio_initialize,
.uninitialize = rt2x00mmio_uninitialize,
.get_entry_state = rt61pci_get_entry_state,
.clear_entry = rt61pci_clear_entry,
.set_device_state = rt61pci_set_device_state,
.rfkill_poll = rt61pci_rfkill_poll,
.link_stats = rt61pci_link_stats,
.reset_tuner = rt61pci_reset_tuner,
.link_tuner = rt61pci_link_tuner,
.start_queue = rt61pci_start_queue,
.kick_queue = rt61pci_kick_queue,
.stop_queue = rt61pci_stop_queue,
.flush_queue = rt2x00mmio_flush_queue,
.write_tx_desc = rt61pci_write_tx_desc,
.write_beacon = rt61pci_write_beacon,
.clear_beacon = rt61pci_clear_beacon,
.fill_rxdone = rt61pci_fill_rxdone,
.config_shared_key = rt61pci_config_shared_key,
.config_pairwise_key = rt61pci_config_pairwise_key,
.config_filter = rt61pci_config_filter,
.config_intf = rt61pci_config_intf,
.config_erp = rt61pci_config_erp,
.config_ant = rt61pci_config_ant,
.config = rt61pci_config,
};
static void rt61pci_queue_init(struct data_queue *queue)
{
switch (queue->qid) {
case QID_RX:
queue->limit = 32;
queue->data_size = DATA_FRAME_SIZE;
queue->desc_size = RXD_DESC_SIZE;
queue->priv_size = sizeof(struct queue_entry_priv_mmio);
break;
case QID_AC_VO:
case QID_AC_VI:
case QID_AC_BE:
case QID_AC_BK:
queue->limit = 32;
queue->data_size = DATA_FRAME_SIZE;
queue->desc_size = TXD_DESC_SIZE;
queue->priv_size = sizeof(struct queue_entry_priv_mmio);
break;
case QID_BEACON:
queue->limit = 4;
queue->data_size = 0; /* No DMA required for beacons */
queue->desc_size = TXINFO_SIZE;
queue->priv_size = sizeof(struct queue_entry_priv_mmio);
break;
case QID_ATIM:
/* fallthrough */
default:
BUG();
break;
}
}
static const struct rt2x00_ops rt61pci_ops = {
.name = KBUILD_MODNAME,
.max_ap_intf = 4,
.eeprom_size = EEPROM_SIZE,
.rf_size = RF_SIZE,
.tx_queues = NUM_TX_QUEUES,
.queue_init = rt61pci_queue_init,
.lib = &rt61pci_rt2x00_ops,
.hw = &rt61pci_mac80211_ops,
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
.debugfs = &rt61pci_rt2x00debug,
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
};
/*
* RT61pci module information.
*/
static DEFINE_PCI_DEVICE_TABLE(rt61pci_device_table) = {
/* RT2561s */
{ PCI_DEVICE(0x1814, 0x0301) },
/* RT2561 v2 */
{ PCI_DEVICE(0x1814, 0x0302) },
/* RT2661 */
{ PCI_DEVICE(0x1814, 0x0401) },
{ 0, }
};
MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
"PCI & PCMCIA chipset based cards");
MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
MODULE_FIRMWARE(FIRMWARE_RT2561);
MODULE_FIRMWARE(FIRMWARE_RT2561s);
MODULE_FIRMWARE(FIRMWARE_RT2661);
MODULE_LICENSE("GPL");
static int rt61pci_probe(struct pci_dev *pci_dev,
const struct pci_device_id *id)
{
return rt2x00pci_probe(pci_dev, &rt61pci_ops);
}
static struct pci_driver rt61pci_driver = {
.name = KBUILD_MODNAME,
.id_table = rt61pci_device_table,
.probe = rt61pci_probe,
.remove = rt2x00pci_remove,
.suspend = rt2x00pci_suspend,
.resume = rt2x00pci_resume,
};
module_pci_driver(rt61pci_driver);