linux/fs/xfs/linux-2.6/xfs_lrw.c
Linus Torvalds 1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00

1083 lines
27 KiB
C

/*
* Copyright (c) 2000-2003 Silicon Graphics, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*
* Further, this software is distributed without any warranty that it is
* free of the rightful claim of any third person regarding infringement
* or the like. Any license provided herein, whether implied or
* otherwise, applies only to this software file. Patent licenses, if
* any, provided herein do not apply to combinations of this program with
* other software, or any other product whatsoever.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write the Free Software Foundation, Inc., 59
* Temple Place - Suite 330, Boston MA 02111-1307, USA.
*
* Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
* Mountain View, CA 94043, or:
*
* http://www.sgi.com
*
* For further information regarding this notice, see:
*
* http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
*/
/*
* fs/xfs/linux/xfs_lrw.c (Linux Read Write stuff)
*
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_inum.h"
#include "xfs_log.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_dir.h"
#include "xfs_dir2.h"
#include "xfs_alloc.h"
#include "xfs_dmapi.h"
#include "xfs_quota.h"
#include "xfs_mount.h"
#include "xfs_alloc_btree.h"
#include "xfs_bmap_btree.h"
#include "xfs_ialloc_btree.h"
#include "xfs_btree.h"
#include "xfs_ialloc.h"
#include "xfs_attr_sf.h"
#include "xfs_dir_sf.h"
#include "xfs_dir2_sf.h"
#include "xfs_dinode.h"
#include "xfs_inode.h"
#include "xfs_bmap.h"
#include "xfs_bit.h"
#include "xfs_rtalloc.h"
#include "xfs_error.h"
#include "xfs_itable.h"
#include "xfs_rw.h"
#include "xfs_acl.h"
#include "xfs_cap.h"
#include "xfs_mac.h"
#include "xfs_attr.h"
#include "xfs_inode_item.h"
#include "xfs_buf_item.h"
#include "xfs_utils.h"
#include "xfs_iomap.h"
#include <linux/capability.h>
#include <linux/writeback.h>
#if defined(XFS_RW_TRACE)
void
xfs_rw_enter_trace(
int tag,
xfs_iocore_t *io,
void *data,
size_t segs,
loff_t offset,
int ioflags)
{
xfs_inode_t *ip = XFS_IO_INODE(io);
if (ip->i_rwtrace == NULL)
return;
ktrace_enter(ip->i_rwtrace,
(void *)(unsigned long)tag,
(void *)ip,
(void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)),
(void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)),
(void *)data,
(void *)((unsigned long)segs),
(void *)((unsigned long)((offset >> 32) & 0xffffffff)),
(void *)((unsigned long)(offset & 0xffffffff)),
(void *)((unsigned long)ioflags),
(void *)((unsigned long)((io->io_new_size >> 32) & 0xffffffff)),
(void *)((unsigned long)(io->io_new_size & 0xffffffff)),
(void *)NULL,
(void *)NULL,
(void *)NULL,
(void *)NULL,
(void *)NULL);
}
void
xfs_inval_cached_trace(
xfs_iocore_t *io,
xfs_off_t offset,
xfs_off_t len,
xfs_off_t first,
xfs_off_t last)
{
xfs_inode_t *ip = XFS_IO_INODE(io);
if (ip->i_rwtrace == NULL)
return;
ktrace_enter(ip->i_rwtrace,
(void *)(__psint_t)XFS_INVAL_CACHED,
(void *)ip,
(void *)((unsigned long)((offset >> 32) & 0xffffffff)),
(void *)((unsigned long)(offset & 0xffffffff)),
(void *)((unsigned long)((len >> 32) & 0xffffffff)),
(void *)((unsigned long)(len & 0xffffffff)),
(void *)((unsigned long)((first >> 32) & 0xffffffff)),
(void *)((unsigned long)(first & 0xffffffff)),
(void *)((unsigned long)((last >> 32) & 0xffffffff)),
(void *)((unsigned long)(last & 0xffffffff)),
(void *)NULL,
(void *)NULL,
(void *)NULL,
(void *)NULL,
(void *)NULL,
(void *)NULL);
}
#endif
/*
* xfs_iozero
*
* xfs_iozero clears the specified range of buffer supplied,
* and marks all the affected blocks as valid and modified. If
* an affected block is not allocated, it will be allocated. If
* an affected block is not completely overwritten, and is not
* valid before the operation, it will be read from disk before
* being partially zeroed.
*/
STATIC int
xfs_iozero(
struct inode *ip, /* inode */
loff_t pos, /* offset in file */
size_t count, /* size of data to zero */
loff_t end_size) /* max file size to set */
{
unsigned bytes;
struct page *page;
struct address_space *mapping;
char *kaddr;
int status;
mapping = ip->i_mapping;
do {
unsigned long index, offset;
offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
index = pos >> PAGE_CACHE_SHIFT;
bytes = PAGE_CACHE_SIZE - offset;
if (bytes > count)
bytes = count;
status = -ENOMEM;
page = grab_cache_page(mapping, index);
if (!page)
break;
kaddr = kmap(page);
status = mapping->a_ops->prepare_write(NULL, page, offset,
offset + bytes);
if (status) {
goto unlock;
}
memset((void *) (kaddr + offset), 0, bytes);
flush_dcache_page(page);
status = mapping->a_ops->commit_write(NULL, page, offset,
offset + bytes);
if (!status) {
pos += bytes;
count -= bytes;
if (pos > i_size_read(ip))
i_size_write(ip, pos < end_size ? pos : end_size);
}
unlock:
kunmap(page);
unlock_page(page);
page_cache_release(page);
if (status)
break;
} while (count);
return (-status);
}
/*
* xfs_inval_cached_pages
*
* This routine is responsible for keeping direct I/O and buffered I/O
* somewhat coherent. From here we make sure that we're at least
* temporarily holding the inode I/O lock exclusively and then call
* the page cache to flush and invalidate any cached pages. If there
* are no cached pages this routine will be very quick.
*/
void
xfs_inval_cached_pages(
vnode_t *vp,
xfs_iocore_t *io,
xfs_off_t offset,
int write,
int relock)
{
if (VN_CACHED(vp)) {
xfs_inval_cached_trace(io, offset, -1, ctooff(offtoct(offset)), -1);
VOP_FLUSHINVAL_PAGES(vp, ctooff(offtoct(offset)), -1, FI_REMAPF_LOCKED);
}
}
ssize_t /* bytes read, or (-) error */
xfs_read(
bhv_desc_t *bdp,
struct kiocb *iocb,
const struct iovec *iovp,
unsigned int segs,
loff_t *offset,
int ioflags,
cred_t *credp)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file->f_mapping->host;
size_t size = 0;
ssize_t ret;
xfs_fsize_t n;
xfs_inode_t *ip;
xfs_mount_t *mp;
vnode_t *vp;
unsigned long seg;
ip = XFS_BHVTOI(bdp);
vp = BHV_TO_VNODE(bdp);
mp = ip->i_mount;
XFS_STATS_INC(xs_read_calls);
/* START copy & waste from filemap.c */
for (seg = 0; seg < segs; seg++) {
const struct iovec *iv = &iovp[seg];
/*
* If any segment has a negative length, or the cumulative
* length ever wraps negative then return -EINVAL.
*/
size += iv->iov_len;
if (unlikely((ssize_t)(size|iv->iov_len) < 0))
return XFS_ERROR(-EINVAL);
}
/* END copy & waste from filemap.c */
if (unlikely(ioflags & IO_ISDIRECT)) {
xfs_buftarg_t *target =
(ip->i_d.di_flags & XFS_DIFLAG_REALTIME) ?
mp->m_rtdev_targp : mp->m_ddev_targp;
if ((*offset & target->pbr_smask) ||
(size & target->pbr_smask)) {
if (*offset == ip->i_d.di_size) {
return (0);
}
return -XFS_ERROR(EINVAL);
}
}
n = XFS_MAXIOFFSET(mp) - *offset;
if ((n <= 0) || (size == 0))
return 0;
if (n < size)
size = n;
if (XFS_FORCED_SHUTDOWN(mp)) {
return -EIO;
}
if (unlikely(ioflags & IO_ISDIRECT))
down(&inode->i_sem);
xfs_ilock(ip, XFS_IOLOCK_SHARED);
if (DM_EVENT_ENABLED(vp->v_vfsp, ip, DM_EVENT_READ) &&
!(ioflags & IO_INVIS)) {
vrwlock_t locktype = VRWLOCK_READ;
ret = -XFS_SEND_DATA(mp, DM_EVENT_READ,
BHV_TO_VNODE(bdp), *offset, size,
FILP_DELAY_FLAG(file), &locktype);
if (ret) {
xfs_iunlock(ip, XFS_IOLOCK_SHARED);
goto unlock_isem;
}
}
xfs_rw_enter_trace(XFS_READ_ENTER, &ip->i_iocore,
(void *)iovp, segs, *offset, ioflags);
ret = __generic_file_aio_read(iocb, iovp, segs, offset);
if (ret == -EIOCBQUEUED && !(ioflags & IO_ISAIO))
ret = wait_on_sync_kiocb(iocb);
if (ret > 0)
XFS_STATS_ADD(xs_read_bytes, ret);
xfs_iunlock(ip, XFS_IOLOCK_SHARED);
if (likely(!(ioflags & IO_INVIS)))
xfs_ichgtime(ip, XFS_ICHGTIME_ACC);
unlock_isem:
if (unlikely(ioflags & IO_ISDIRECT))
up(&inode->i_sem);
return ret;
}
ssize_t
xfs_sendfile(
bhv_desc_t *bdp,
struct file *filp,
loff_t *offset,
int ioflags,
size_t count,
read_actor_t actor,
void *target,
cred_t *credp)
{
ssize_t ret;
xfs_fsize_t n;
xfs_inode_t *ip;
xfs_mount_t *mp;
vnode_t *vp;
ip = XFS_BHVTOI(bdp);
vp = BHV_TO_VNODE(bdp);
mp = ip->i_mount;
XFS_STATS_INC(xs_read_calls);
n = XFS_MAXIOFFSET(mp) - *offset;
if ((n <= 0) || (count == 0))
return 0;
if (n < count)
count = n;
if (XFS_FORCED_SHUTDOWN(ip->i_mount))
return -EIO;
xfs_ilock(ip, XFS_IOLOCK_SHARED);
if (DM_EVENT_ENABLED(vp->v_vfsp, ip, DM_EVENT_READ) &&
(!(ioflags & IO_INVIS))) {
vrwlock_t locktype = VRWLOCK_READ;
int error;
error = XFS_SEND_DATA(mp, DM_EVENT_READ, BHV_TO_VNODE(bdp), *offset, count,
FILP_DELAY_FLAG(filp), &locktype);
if (error) {
xfs_iunlock(ip, XFS_IOLOCK_SHARED);
return -error;
}
}
xfs_rw_enter_trace(XFS_SENDFILE_ENTER, &ip->i_iocore,
(void *)(unsigned long)target, count, *offset, ioflags);
ret = generic_file_sendfile(filp, offset, count, actor, target);
xfs_iunlock(ip, XFS_IOLOCK_SHARED);
if (ret > 0)
XFS_STATS_ADD(xs_read_bytes, ret);
if (likely(!(ioflags & IO_INVIS)))
xfs_ichgtime(ip, XFS_ICHGTIME_ACC);
return ret;
}
/*
* This routine is called to handle zeroing any space in the last
* block of the file that is beyond the EOF. We do this since the
* size is being increased without writing anything to that block
* and we don't want anyone to read the garbage on the disk.
*/
STATIC int /* error (positive) */
xfs_zero_last_block(
struct inode *ip,
xfs_iocore_t *io,
xfs_off_t offset,
xfs_fsize_t isize,
xfs_fsize_t end_size)
{
xfs_fileoff_t last_fsb;
xfs_mount_t *mp;
int nimaps;
int zero_offset;
int zero_len;
int isize_fsb_offset;
int error = 0;
xfs_bmbt_irec_t imap;
loff_t loff;
size_t lsize;
ASSERT(ismrlocked(io->io_lock, MR_UPDATE) != 0);
ASSERT(offset > isize);
mp = io->io_mount;
isize_fsb_offset = XFS_B_FSB_OFFSET(mp, isize);
if (isize_fsb_offset == 0) {
/*
* There are no extra bytes in the last block on disk to
* zero, so return.
*/
return 0;
}
last_fsb = XFS_B_TO_FSBT(mp, isize);
nimaps = 1;
error = XFS_BMAPI(mp, NULL, io, last_fsb, 1, 0, NULL, 0, &imap,
&nimaps, NULL);
if (error) {
return error;
}
ASSERT(nimaps > 0);
/*
* If the block underlying isize is just a hole, then there
* is nothing to zero.
*/
if (imap.br_startblock == HOLESTARTBLOCK) {
return 0;
}
/*
* Zero the part of the last block beyond the EOF, and write it
* out sync. We need to drop the ilock while we do this so we
* don't deadlock when the buffer cache calls back to us.
*/
XFS_IUNLOCK(mp, io, XFS_ILOCK_EXCL| XFS_EXTSIZE_RD);
loff = XFS_FSB_TO_B(mp, last_fsb);
lsize = XFS_FSB_TO_B(mp, 1);
zero_offset = isize_fsb_offset;
zero_len = mp->m_sb.sb_blocksize - isize_fsb_offset;
error = xfs_iozero(ip, loff + zero_offset, zero_len, end_size);
XFS_ILOCK(mp, io, XFS_ILOCK_EXCL|XFS_EXTSIZE_RD);
ASSERT(error >= 0);
return error;
}
/*
* Zero any on disk space between the current EOF and the new,
* larger EOF. This handles the normal case of zeroing the remainder
* of the last block in the file and the unusual case of zeroing blocks
* out beyond the size of the file. This second case only happens
* with fixed size extents and when the system crashes before the inode
* size was updated but after blocks were allocated. If fill is set,
* then any holes in the range are filled and zeroed. If not, the holes
* are left alone as holes.
*/
int /* error (positive) */
xfs_zero_eof(
vnode_t *vp,
xfs_iocore_t *io,
xfs_off_t offset, /* starting I/O offset */
xfs_fsize_t isize, /* current inode size */
xfs_fsize_t end_size) /* terminal inode size */
{
struct inode *ip = LINVFS_GET_IP(vp);
xfs_fileoff_t start_zero_fsb;
xfs_fileoff_t end_zero_fsb;
xfs_fileoff_t prev_zero_fsb;
xfs_fileoff_t zero_count_fsb;
xfs_fileoff_t last_fsb;
xfs_extlen_t buf_len_fsb;
xfs_extlen_t prev_zero_count;
xfs_mount_t *mp;
int nimaps;
int error = 0;
xfs_bmbt_irec_t imap;
loff_t loff;
size_t lsize;
ASSERT(ismrlocked(io->io_lock, MR_UPDATE));
ASSERT(ismrlocked(io->io_iolock, MR_UPDATE));
mp = io->io_mount;
/*
* First handle zeroing the block on which isize resides.
* We only zero a part of that block so it is handled specially.
*/
error = xfs_zero_last_block(ip, io, offset, isize, end_size);
if (error) {
ASSERT(ismrlocked(io->io_lock, MR_UPDATE));
ASSERT(ismrlocked(io->io_iolock, MR_UPDATE));
return error;
}
/*
* Calculate the range between the new size and the old
* where blocks needing to be zeroed may exist. To get the
* block where the last byte in the file currently resides,
* we need to subtract one from the size and truncate back
* to a block boundary. We subtract 1 in case the size is
* exactly on a block boundary.
*/
last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
if (last_fsb == end_zero_fsb) {
/*
* The size was only incremented on its last block.
* We took care of that above, so just return.
*/
return 0;
}
ASSERT(start_zero_fsb <= end_zero_fsb);
prev_zero_fsb = NULLFILEOFF;
prev_zero_count = 0;
while (start_zero_fsb <= end_zero_fsb) {
nimaps = 1;
zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
error = XFS_BMAPI(mp, NULL, io, start_zero_fsb, zero_count_fsb,
0, NULL, 0, &imap, &nimaps, NULL);
if (error) {
ASSERT(ismrlocked(io->io_lock, MR_UPDATE));
ASSERT(ismrlocked(io->io_iolock, MR_UPDATE));
return error;
}
ASSERT(nimaps > 0);
if (imap.br_state == XFS_EXT_UNWRITTEN ||
imap.br_startblock == HOLESTARTBLOCK) {
/*
* This loop handles initializing pages that were
* partially initialized by the code below this
* loop. It basically zeroes the part of the page
* that sits on a hole and sets the page as P_HOLE
* and calls remapf if it is a mapped file.
*/
prev_zero_fsb = NULLFILEOFF;
prev_zero_count = 0;
start_zero_fsb = imap.br_startoff +
imap.br_blockcount;
ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
continue;
}
/*
* There are blocks in the range requested.
* Zero them a single write at a time. We actually
* don't zero the entire range returned if it is
* too big and simply loop around to get the rest.
* That is not the most efficient thing to do, but it
* is simple and this path should not be exercised often.
*/
buf_len_fsb = XFS_FILBLKS_MIN(imap.br_blockcount,
mp->m_writeio_blocks << 8);
/*
* Drop the inode lock while we're doing the I/O.
* We'll still have the iolock to protect us.
*/
XFS_IUNLOCK(mp, io, XFS_ILOCK_EXCL|XFS_EXTSIZE_RD);
loff = XFS_FSB_TO_B(mp, start_zero_fsb);
lsize = XFS_FSB_TO_B(mp, buf_len_fsb);
error = xfs_iozero(ip, loff, lsize, end_size);
if (error) {
goto out_lock;
}
prev_zero_fsb = start_zero_fsb;
prev_zero_count = buf_len_fsb;
start_zero_fsb = imap.br_startoff + buf_len_fsb;
ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
XFS_ILOCK(mp, io, XFS_ILOCK_EXCL|XFS_EXTSIZE_RD);
}
return 0;
out_lock:
XFS_ILOCK(mp, io, XFS_ILOCK_EXCL|XFS_EXTSIZE_RD);
ASSERT(error >= 0);
return error;
}
ssize_t /* bytes written, or (-) error */
xfs_write(
bhv_desc_t *bdp,
struct kiocb *iocb,
const struct iovec *iovp,
unsigned int nsegs,
loff_t *offset,
int ioflags,
cred_t *credp)
{
struct file *file = iocb->ki_filp;
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
unsigned long segs = nsegs;
xfs_inode_t *xip;
xfs_mount_t *mp;
ssize_t ret = 0, error = 0;
xfs_fsize_t isize, new_size;
xfs_iocore_t *io;
vnode_t *vp;
unsigned long seg;
int iolock;
int eventsent = 0;
vrwlock_t locktype;
size_t ocount = 0, count;
loff_t pos;
int need_isem = 1, need_flush = 0;
XFS_STATS_INC(xs_write_calls);
vp = BHV_TO_VNODE(bdp);
xip = XFS_BHVTOI(bdp);
for (seg = 0; seg < segs; seg++) {
const struct iovec *iv = &iovp[seg];
/*
* If any segment has a negative length, or the cumulative
* length ever wraps negative then return -EINVAL.
*/
ocount += iv->iov_len;
if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))
return -EINVAL;
if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
continue;
if (seg == 0)
return -EFAULT;
segs = seg;
ocount -= iv->iov_len; /* This segment is no good */
break;
}
count = ocount;
pos = *offset;
if (count == 0)
return 0;
io = &xip->i_iocore;
mp = io->io_mount;
if (XFS_FORCED_SHUTDOWN(mp))
return -EIO;
fs_check_frozen(vp->v_vfsp, SB_FREEZE_WRITE);
if (ioflags & IO_ISDIRECT) {
xfs_buftarg_t *target =
(xip->i_d.di_flags & XFS_DIFLAG_REALTIME) ?
mp->m_rtdev_targp : mp->m_ddev_targp;
if ((pos & target->pbr_smask) || (count & target->pbr_smask))
return XFS_ERROR(-EINVAL);
if (!VN_CACHED(vp) && pos < i_size_read(inode))
need_isem = 0;
if (VN_CACHED(vp))
need_flush = 1;
}
relock:
if (need_isem) {
iolock = XFS_IOLOCK_EXCL;
locktype = VRWLOCK_WRITE;
down(&inode->i_sem);
} else {
iolock = XFS_IOLOCK_SHARED;
locktype = VRWLOCK_WRITE_DIRECT;
}
xfs_ilock(xip, XFS_ILOCK_EXCL|iolock);
isize = i_size_read(inode);
if (file->f_flags & O_APPEND)
*offset = isize;
start:
error = -generic_write_checks(file, &pos, &count,
S_ISBLK(inode->i_mode));
if (error) {
xfs_iunlock(xip, XFS_ILOCK_EXCL|iolock);
goto out_unlock_isem;
}
new_size = pos + count;
if (new_size > isize)
io->io_new_size = new_size;
if ((DM_EVENT_ENABLED(vp->v_vfsp, xip, DM_EVENT_WRITE) &&
!(ioflags & IO_INVIS) && !eventsent)) {
loff_t savedsize = pos;
int dmflags = FILP_DELAY_FLAG(file);
if (need_isem)
dmflags |= DM_FLAGS_ISEM;
xfs_iunlock(xip, XFS_ILOCK_EXCL);
error = XFS_SEND_DATA(xip->i_mount, DM_EVENT_WRITE, vp,
pos, count,
dmflags, &locktype);
if (error) {
xfs_iunlock(xip, iolock);
goto out_unlock_isem;
}
xfs_ilock(xip, XFS_ILOCK_EXCL);
eventsent = 1;
/*
* The iolock was dropped and reaquired in XFS_SEND_DATA
* so we have to recheck the size when appending.
* We will only "goto start;" once, since having sent the
* event prevents another call to XFS_SEND_DATA, which is
* what allows the size to change in the first place.
*/
if ((file->f_flags & O_APPEND) && savedsize != isize) {
pos = isize = xip->i_d.di_size;
goto start;
}
}
/*
* On Linux, generic_file_write updates the times even if
* no data is copied in so long as the write had a size.
*
* We must update xfs' times since revalidate will overcopy xfs.
*/
if (!(ioflags & IO_INVIS)) {
xfs_ichgtime(xip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
inode_update_time(inode, 1);
}
/*
* If the offset is beyond the size of the file, we have a couple
* of things to do. First, if there is already space allocated
* we need to either create holes or zero the disk or ...
*
* If there is a page where the previous size lands, we need
* to zero it out up to the new size.
*/
if (pos > isize) {
error = xfs_zero_eof(BHV_TO_VNODE(bdp), io, pos,
isize, pos + count);
if (error) {
xfs_iunlock(xip, XFS_ILOCK_EXCL|iolock);
goto out_unlock_isem;
}
}
xfs_iunlock(xip, XFS_ILOCK_EXCL);
/*
* If we're writing the file then make sure to clear the
* setuid and setgid bits if the process is not being run
* by root. This keeps people from modifying setuid and
* setgid binaries.
*/
if (((xip->i_d.di_mode & S_ISUID) ||
((xip->i_d.di_mode & (S_ISGID | S_IXGRP)) ==
(S_ISGID | S_IXGRP))) &&
!capable(CAP_FSETID)) {
error = xfs_write_clear_setuid(xip);
if (likely(!error))
error = -remove_suid(file->f_dentry);
if (unlikely(error)) {
xfs_iunlock(xip, iolock);
goto out_unlock_isem;
}
}
retry:
/* We can write back this queue in page reclaim */
current->backing_dev_info = mapping->backing_dev_info;
if ((ioflags & IO_ISDIRECT)) {
if (need_flush) {
xfs_inval_cached_trace(io, pos, -1,
ctooff(offtoct(pos)), -1);
VOP_FLUSHINVAL_PAGES(vp, ctooff(offtoct(pos)),
-1, FI_REMAPF_LOCKED);
}
if (need_isem) {
/* demote the lock now the cached pages are gone */
XFS_ILOCK_DEMOTE(mp, io, XFS_IOLOCK_EXCL);
up(&inode->i_sem);
iolock = XFS_IOLOCK_SHARED;
locktype = VRWLOCK_WRITE_DIRECT;
need_isem = 0;
}
xfs_rw_enter_trace(XFS_DIOWR_ENTER, io, (void *)iovp, segs,
*offset, ioflags);
ret = generic_file_direct_write(iocb, iovp,
&segs, pos, offset, count, ocount);
/*
* direct-io write to a hole: fall through to buffered I/O
* for completing the rest of the request.
*/
if (ret >= 0 && ret != count) {
XFS_STATS_ADD(xs_write_bytes, ret);
pos += ret;
count -= ret;
need_isem = 1;
ioflags &= ~IO_ISDIRECT;
xfs_iunlock(xip, iolock);
goto relock;
}
} else {
xfs_rw_enter_trace(XFS_WRITE_ENTER, io, (void *)iovp, segs,
*offset, ioflags);
ret = generic_file_buffered_write(iocb, iovp, segs,
pos, offset, count, ret);
}
current->backing_dev_info = NULL;
if (ret == -EIOCBQUEUED && !(ioflags & IO_ISAIO))
ret = wait_on_sync_kiocb(iocb);
if ((ret == -ENOSPC) &&
DM_EVENT_ENABLED(vp->v_vfsp, xip, DM_EVENT_NOSPACE) &&
!(ioflags & IO_INVIS)) {
xfs_rwunlock(bdp, locktype);
error = XFS_SEND_NAMESP(xip->i_mount, DM_EVENT_NOSPACE, vp,
DM_RIGHT_NULL, vp, DM_RIGHT_NULL, NULL, NULL,
0, 0, 0); /* Delay flag intentionally unused */
if (error)
goto out_unlock_isem;
xfs_rwlock(bdp, locktype);
pos = xip->i_d.di_size;
ret = 0;
goto retry;
}
if (*offset > xip->i_d.di_size) {
xfs_ilock(xip, XFS_ILOCK_EXCL);
if (*offset > xip->i_d.di_size) {
xip->i_d.di_size = *offset;
i_size_write(inode, *offset);
xip->i_update_core = 1;
xip->i_update_size = 1;
}
xfs_iunlock(xip, XFS_ILOCK_EXCL);
}
error = -ret;
if (ret <= 0)
goto out_unlock_internal;
XFS_STATS_ADD(xs_write_bytes, ret);
/* Handle various SYNC-type writes */
if ((file->f_flags & O_SYNC) || IS_SYNC(inode)) {
/*
* If we're treating this as O_DSYNC and we have not updated the
* size, force the log.
*/
if (!(mp->m_flags & XFS_MOUNT_OSYNCISOSYNC) &&
!(xip->i_update_size)) {
xfs_inode_log_item_t *iip = xip->i_itemp;
/*
* If an allocation transaction occurred
* without extending the size, then we have to force
* the log up the proper point to ensure that the
* allocation is permanent. We can't count on
* the fact that buffered writes lock out direct I/O
* writes - the direct I/O write could have extended
* the size nontransactionally, then finished before
* we started. xfs_write_file will think that the file
* didn't grow but the update isn't safe unless the
* size change is logged.
*
* Force the log if we've committed a transaction
* against the inode or if someone else has and
* the commit record hasn't gone to disk (e.g.
* the inode is pinned). This guarantees that
* all changes affecting the inode are permanent
* when we return.
*/
if (iip && iip->ili_last_lsn) {
xfs_log_force(mp, iip->ili_last_lsn,
XFS_LOG_FORCE | XFS_LOG_SYNC);
} else if (xfs_ipincount(xip) > 0) {
xfs_log_force(mp, (xfs_lsn_t)0,
XFS_LOG_FORCE | XFS_LOG_SYNC);
}
} else {
xfs_trans_t *tp;
/*
* O_SYNC or O_DSYNC _with_ a size update are handled
* the same way.
*
* If the write was synchronous then we need to make
* sure that the inode modification time is permanent.
* We'll have updated the timestamp above, so here
* we use a synchronous transaction to log the inode.
* It's not fast, but it's necessary.
*
* If this a dsync write and the size got changed
* non-transactionally, then we need to ensure that
* the size change gets logged in a synchronous
* transaction.
*/
tp = xfs_trans_alloc(mp, XFS_TRANS_WRITE_SYNC);
if ((error = xfs_trans_reserve(tp, 0,
XFS_SWRITE_LOG_RES(mp),
0, 0, 0))) {
/* Transaction reserve failed */
xfs_trans_cancel(tp, 0);
} else {
/* Transaction reserve successful */
xfs_ilock(xip, XFS_ILOCK_EXCL);
xfs_trans_ijoin(tp, xip, XFS_ILOCK_EXCL);
xfs_trans_ihold(tp, xip);
xfs_trans_log_inode(tp, xip, XFS_ILOG_CORE);
xfs_trans_set_sync(tp);
error = xfs_trans_commit(tp, 0, NULL);
xfs_iunlock(xip, XFS_ILOCK_EXCL);
}
if (error)
goto out_unlock_internal;
}
xfs_rwunlock(bdp, locktype);
if (need_isem)
up(&inode->i_sem);
error = sync_page_range(inode, mapping, pos, ret);
if (!error)
error = ret;
return error;
}
out_unlock_internal:
xfs_rwunlock(bdp, locktype);
out_unlock_isem:
if (need_isem)
up(&inode->i_sem);
return -error;
}
/*
* All xfs metadata buffers except log state machine buffers
* get this attached as their b_bdstrat callback function.
* This is so that we can catch a buffer
* after prematurely unpinning it to forcibly shutdown the filesystem.
*/
int
xfs_bdstrat_cb(struct xfs_buf *bp)
{
xfs_mount_t *mp;
mp = XFS_BUF_FSPRIVATE3(bp, xfs_mount_t *);
if (!XFS_FORCED_SHUTDOWN(mp)) {
pagebuf_iorequest(bp);
return 0;
} else {
xfs_buftrace("XFS__BDSTRAT IOERROR", bp);
/*
* Metadata write that didn't get logged but
* written delayed anyway. These aren't associated
* with a transaction, and can be ignored.
*/
if (XFS_BUF_IODONE_FUNC(bp) == NULL &&
(XFS_BUF_ISREAD(bp)) == 0)
return (xfs_bioerror_relse(bp));
else
return (xfs_bioerror(bp));
}
}
int
xfs_bmap(bhv_desc_t *bdp,
xfs_off_t offset,
ssize_t count,
int flags,
xfs_iomap_t *iomapp,
int *niomaps)
{
xfs_inode_t *ip = XFS_BHVTOI(bdp);
xfs_iocore_t *io = &ip->i_iocore;
ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG);
ASSERT(((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) != 0) ==
((ip->i_iocore.io_flags & XFS_IOCORE_RT) != 0));
return xfs_iomap(io, offset, count, flags, iomapp, niomaps);
}
/*
* Wrapper around bdstrat so that we can stop data
* from going to disk in case we are shutting down the filesystem.
* Typically user data goes thru this path; one of the exceptions
* is the superblock.
*/
int
xfsbdstrat(
struct xfs_mount *mp,
struct xfs_buf *bp)
{
ASSERT(mp);
if (!XFS_FORCED_SHUTDOWN(mp)) {
/* Grio redirection would go here
* if (XFS_BUF_IS_GRIO(bp)) {
*/
pagebuf_iorequest(bp);
return 0;
}
xfs_buftrace("XFSBDSTRAT IOERROR", bp);
return (xfs_bioerror_relse(bp));
}
/*
* If the underlying (data/log/rt) device is readonly, there are some
* operations that cannot proceed.
*/
int
xfs_dev_is_read_only(
xfs_mount_t *mp,
char *message)
{
if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
xfs_readonly_buftarg(mp->m_logdev_targp) ||
(mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
cmn_err(CE_NOTE,
"XFS: %s required on read-only device.", message);
cmn_err(CE_NOTE,
"XFS: write access unavailable, cannot proceed.");
return EROFS;
}
return 0;
}